(19) 대한민국특허청(KR) (12) 특허공보(B1)

(51) Int. CI.4 B01J 23/74

(45) 공고일자 1987년04월09일

(11) 공고번호 87-000713

<u>B01J 35/10</u>			
(21) 출원번호	≒ 1984−0000253	(65) 공개번호	≒ 1984-0007360
(22) 출원일자	1984년01월20일	(43) 공개일자	1984년 12월 07일
(30) 우선권주장	8300218 1983년01월20일 네달	별란드(NL)	
(71) 출원인	유니레버 엔 · 브이 에이션	i · 반 · 발렌	
	네델란드왕국, 3000 디 케이 를	로테르담, 부르게미스(터 쟈콤플레인 1
(72) 발명자	헬무트 클리멕		
	독일연방공화국, 4140 에머리히	히 3, 루이트 가르디스	스트라세 15
	귄터 클라우 엔버그		
	독일연방공화국, 4190 클레베-	마터보른 휘겔베그 5	5

심사관 : 김효정 (책자공보 제1281호)

서대석

(54) 닉켈기질촉매와 그 제조방법

ROF

내용 없음.

(74) 대리인

대표도

도1

명세서

[발명의 명칭]

닉켈기질촉매와 그 제조방법

[도면의 간단한 설명]

제1도는 규조토를 가진 녹색케이크를 1000배 확대시킨 촉매와 주사전자 현미경 사진.

제2도는 100회전/분의 규조토상 촉매를 500배(1㎜ 2㎞) 확대시킨 주사현미경 사진.

[발명의 상세한 설명]

본 발명은 닉켈 기질촉매와 그 제조방법 및 수소화반응에의 적용에 관한 것이다.

닉켈을 기질로 하는 촉매는 공지이며 수소화 촉매로 널리 사용된다. 이러한 촉매는 대개의 경우 담체의 존재하에, 알칼리성 반응제를 사용하여 닉켈염의 수용액으로부터 닉켈-수산화물 및/또는 탄산 염을 침전시키는 것에 의해 제조되는 것이 통례이다.

이 촉매를 제조할 때에는 용액에 현탁되어 있는 담체입자 위에 그 용액으로부터 가능한 한 서서히 불용성 닉켈화합물을 침전시키는 방법을 사용하는 것이 보통이다. 이러한 목적의 한 방법은 닉켈-암 모니아 착화합물 용액 중의 담체현탁액을 가열시켜 암모니아를 이탈시킴으로써 닉켈을 침전시키는 것이다(GB-A-926,235 참조). 다른 방법으로는 담체가 현탁된 용액 속에 요소를 첨가한 후에 요소를 가열 분해시켜(GB-A-1,220,105 참조) 닉켈 수산화물을 침전시키는 것이 있다. 닉켈을 이처럼 매우 서서히 침전시키는 목적은 담체입자를 닉켈화합물로 완전하게 또는 대부분 덮어씌우기 위함이다. 그 밖에 GB-A-1,367,088에는 온도, pH, 알칼리도 및 체류시간을 좁은 범위내에 유지시키면서 규조토상 에 닉켈을 침전시켜 촉매를 제조하는 방법이 발표되어 있다. 이 방법에서는 반응용기 속의 희석용액 으로부터 닉켈수산화물을 서서히 침전시킨 후 고형성분을 분리한다. 침전반응 과후-반응(후자를 보 통 "숙성"이라 칭함)이 동일 반응 용기 내에서 발생하므로 이 반응용기는 동일 반응조건하에서 비 교적 커야만 한다.

그러나, 이제 여기서 제시되는 새롭게 개량된 닉켈-기질촉매는 상술한 방법을 적어도 2개의 독립단 계들 내에서 수행시킴으로써 제조될 수 있다는 것을 알게 되었다. 즉,

i) 매우 신속한 침전단계-침전반응기 내에서 격력한 교반하에 닉켈 수산화물/ 탄산염이 침전.

여기서는 평균체류시간은 0.01-10분, 바람직하게는 0.2-4.5분, 특히 3.5분 이하이며, 과잉의 알칼리를 함유하는 침전반응기 내의 용액의 규정농도(N)는 0.05-.05N, 바람직하게는 0.1-0.3N이며, 침전반응기 내의 액체의 온도는 5-95℃, 바람직하게 20-55℃로 유지된다.

ii) 최소한 1개의 독립된 숙성단계-평균체류시간이 20-180분인 후 -반응기내에서 숙성이 수행됨.

여기서 온도는 60-100℃, 바람직하게 90-98℃로 유지된다. 숙성단계(들)중의 온도와 침전단계 중의 온도를 다르게 하는 것이 때때로 바람직한데, 특히 숙성단계를 침전온도보다 다소 높은(예를들어 10 ℃ 높은)온도에서 수행하면 유리할 수도 있다.

본 발명에 의한 닉켁기질화촉매는 침전중에 존재하고 있거나 또는 첨가되는 물에 안녹는 담체물질을 함유한다. 적당한 담체물질의 예로는 규조토와 같은 실리카 - 함유물질, 3산화알루미늄, 및 벤토나 이트와 같은 규산염 등이 있다. 이 중에서 규조토, 특히 50-90% 중량 %의 비정질 실리카를 함유하는 규조토가 바람직하다.

담체물질은 (a) 직접 그대로 (b) 수성현탁액으로 (c) 가급적이면 수성닉켈염용액 중의 현탁액으로 (d) 알카리성 화합물수용액 중의 현탁액으로 첨가될 수 있다.

실시태양(a)-(d)에 의하면 당체는 침체 전에 또는 중에 첨가될 수 있다. 그러나, 실시태양(a), (b) 또는 (d)에 의하면 당체는 침전 후, 숙성전 또는 숙성 후에 전부 또는 일부(후자가 적절함)가 첨가될 수 있다.

본 발명에 의한 침전 및 숙성 후에 고형물을 액체로부터 분리시켜, 공지의 방법으로 경우에 따라 세척 및 건조한 후 고온에서 수소로 활성화한다.

본 발명에 따르면 촉매제조용 출발물질로 사용될 수 있는 닉켈화합물은 질산염, 황산염, 초산염 및 염화물 등과 같은 수용성닉켈화합물이다. 침전반응기에 투입되는 용액은 1리터당 10-80g의 니켈을 함유하는 것이 바람직하며, 특히 바람직한 용액은 1리터당 25-60g의 닉켈을 함유하는 것이다.

본 발명에 따르면 방법에서 출발물질로 사용될 수 있는 알카리성 화합물은 알카리금속 수산화물, 알 카리금속 탄산염, 알카리금속 중탄산염, 이에 상당하는 암모니움 화합물 및 앞서 언급한 화합물의 혼합물 등이 있다. 침전반응기에 투입되는 알카리성 용액의 농도는 1리터당 20-300g의 무수물질이 바람직하며(용해도가 허용하는 한도에서), 특히 바람직하게는 50-250g/ L 이다.

두 용액(닉켈함유용액과 알카리성용액)을 대략 같은 당량농도, 즉 대략 같은 부피로 사용하는 것이 실제적으로 유리하다.

닉켈함유용액과 알카리성용액은 약간 과잉의 알카리성 화합물이 침전단계 중에 존재하는 되는 비율로, 즉 액체의 규정농도가 0.05-0.5N, 바람직하게는 0.1-0.3N이 되도록 투입한다(상기 규정농도는 지시약으로 메틸오랜지를 사용하여 염산수용액으로 적정함으로써 결정됨). 때때로 숙성단계 중에 알카리성 용액을 더 첨가하여 앞서 한정한 범위내로 알칼리도(규정농도)를 유지시키는 것이 바람직할수도 있다.

침전 반응기에는 격렬한 교반용 장치가 장비되며, 침전반응의 크기는 투입된 유량에 대하여 나타나는 평균체류시간을 짧게 할 수 있는 크기이다. 침전반응기 내에서의 바람직한 평균체류시간은 보통 0.01-10분, 특히 0.2-4.5분이다. 침전단계뿐만 아니라 숙성단계도 배치식, 연속식 및 반연속식(예를들어, 케스케이드 방법에 따라)으로 수행될 수 있다.

적절한 연속 침전방법에 있어서, 침전반응기에 첨가되는 용액의 속도는 방출액체의 알카리도(규정농도)를 연속 또는 불연속으로 측정함에 의해 조절된다. 때때로 이 조절은 pH를 감시하여 수행될 수도 있다. 또한 침전반응기에 투입되는 반응액체의 온도는 침전이 발생하는 온도를 조절하기 위하여 사용되다.

침전반응기내의 액체에 요구되는 격렬한 교반은 용액 1000kg당 5-25kW의 에너지 입력에 의해 바람직하게 수행된다. 제트혼합 또는 2000kW/kg까지의 훨씬 더 큰 비(比) 에너지 입력을 포함하는 적당한 방법이다.

침전반응기로부터 얻은 반응혼합물은 그후 더 큰 후-반응기로 이송되어 추가 교반된다. 원할 경우에는 담체물질, 앞서 설명된 것과 같은 알카리용액 및/또는 경우에 따라서는 촉진제와 같은 추가성분들을 여기에 배합시킬 수 있다.

후 반응기내의-즉 숙성단계중의-액체의 온도는 60-180℃, 바람직하게는 90-98℃의 온도로 유지된다.

숙성단계(단계 ii)중 후-반응기내에서 액체이 규정농도는 침전단계(단계 i) 중에서와 같은 범위내에 유지되며 다시 약간의 알카리첨가가 필요하게 될지도 모른다. 숙성단계는 1기 이상의 후-반응기에서 시행될 수 있으며, (총) 평균체류시간을 20-180분, 바람직하게는 60-150분으로 유지한다. 2기이상의 후반응기가 사용될 경우 제2또는 그 다음 후-반응기에서 액체의 온도를 제1후-반응기에서의 온도보다 10-15℃ 낮추어 배치하는 것이 바람직하다.

숙성단계의 완료 후 고형물을 모액으로부터 분리시켜, 보통 수세, 건조하고, 경우에 따라 분쇄 및/ 또는 하소한 다음 통상 250-500℃, 바람직하게는 300-400℃의 높은 온도에서 수소 개스로 활성화시 킨다. 이 활성화를 대기와 또는 보다 높은 압력에서 발생할 수 있으나 대기압이 바람직하다.

바람직하게는 건조전에, 또는 그전의 어떤 단계중에도 촉진제를 편리하게 첨가할 수 있다. 촉진제는 구리, 코발트, 지르코니움, 몰리브텐, 은, 마그네슘, 그 밖의 어떤 금속 및 이들의 조합과 같은금속/화합물의 0.05-10%(니켈 중량기준으로 계산)의 양을 함유한다.

분리된 고형물을 물, 약알카리성물, 또는 세제가 첨가된 물로 세척하는 것이 바람직하다.

유기용매를 때로는 유용하게 사용할 수 있다. 건조는 강제기체순환에 의하는 것이 적절하다. 분모 건조 및 동결건조도 또한 매우 적절하게 될 수 있다.

본 발명이 제공하는 것은 10-90 중량부의 닉켈/닉켈화합물, 90-10중량부의 불용성 담체물질 및 0-10, 바람직하게는 0.05-5 중량부의 금속촉진제를 함유하는 새로이 개량된 닉켈-기질 촉매이며, 상기촉매는 활성닉켈 표면적이 70-200m²/g, 바람직하게는 $100m^2$ /g이상이며, 또한 2-100μm, 바람직하게는 5-25μm의 평균입자크기를 가지는 닉켈/닉켈화합물로 주로 이루어진 응집체를 함유하며, 상기 응집체에는 최소한 60%에 대해서는 담체입자가 전혀 부착되지 않은(외촉)표면이 있다.

닉켈/닉켈화합물 응집체는 담체입자가 전혀 부착되지 않은 표면을 80% 이상, 특히 90% 이상 소유하는 것이 바람직하다.

닉켈/닉켈화합물 응집체는 80%이상, 바람직하게는 90% 이상의 닉켈 및 닉켈산화물로 주로 구성되나, 약간의 촉진제 물질이 존재할 수도 있다. 이 응집체는 0.5-10㎜, 특히 1-3㎜의 평균직경을 가진 닉켈결정자를 함유하는 것이 바람직하다.

본 발명에 따르는 촉매는 불포화 유기화합물(특히 오일, 지방, 지방산 및 이들의 유도체)의 수소화에 사용된다.

다음의 실시예로 본 발명을 설명한다.

[실시예 1]

NiSo₄ 용액(35g Ni/ℓ및 1.2N)에 규조토(7.0%의 비정질 SiO₂함유)를 1 : 2.3의 Ni : SiO₂비로 현탁시켜 수성현탁액을 제조하였다. 또한 수성 소다용액(75g Na₂So₄ (무수)/ℓ및 1.4N)을 제조하였다. 그다음에 이 두 용액을 격렬하게 교반되는 펌프반응기 내에 대략 같은 용량으로 펌프로 연속 송입하였더니 80℃에서 닉켈수산화물/탄산염의 침전이 발생했다. 이렇게 해서 얻은 현탁액의 알카리도는 0.96N이었다. 침전이 발생하는 반응기에서 현탁액을 4분간 체류한 다음 즉각 2기의 연속되어 있는 후반기중 첫번째 반응기에 넣었다. 이들 후-반응기의 각가에서 97℃와 80℃로 침전물을 50분(평균체류시간)동안 숙성시켰다. 그후 숙성된 침전물을 연속적으로 여과시킨 다음, 이렇게 해서 얻은 녹색 여과 케이크를 수세, 건조한 후 350℃, 대기압하에서 수소로 활성화시켰다.

전자현미경 및 마이크로뢴트겐 분석으로는 그 촉매가 평균하여 2nm의 닉켈결정자와 평균하여 21㎞응집체로 구성되어 있다는 것을 나타내었다. 닉켈/닉켈화합물 응집체의 표면에는 대략 85%에 대해서는 담체입자가 전혀 없었으며, 또한 규산질골격의 원형이 대부분 노출되어 매우 쉽게 식별할 수가 있었다

[실시예 2-7]

본 발명에 따르는 촉매를 실시예 1에 기재한 공정에 의하여 제조하였으나 표 I에 제시한 바와 같이양 및 조건을 변화시켰다. 그 밖의 조건들은 변화시키지 않은 채 측정하였다.

표 Ⅱ에는 이 촉매의 수소화특성 및 문헌으로 공지된 촉매와의 비교가 제시된다.

지방산 수소화의 경우에 일정한 옥소가로 도달시키는데 걸리는 수소화 시간이 본 발명의 촉매로는 절반이하이면 충분하며, 어유의 경우에는 이 촉매는 더 오래기간 활성이 유지된다는 것이 밝혀졌다. 새로운 촉매가 더 적은 3-포화(tri-saturated) 트리글리세리드를 형성시켰음을 융점으로부터 알 수 있으며, 따라서 새로운 촉매가 더 큰 선택성을 가졌음이 명백해졌다.

지방산 수소화의 경우에는 똑같은 수소와 시간에서의 본 발명의 촉매에 의한 수소화가 비교하기 위해 사용된 공지의 촉매에 의한 수소화보다 더 낮은 옥소가를 달성, 즉 더 빨리 진행하였다. 그리고 또한 더욱 낮은 수소화 온도로 수소화반응을 시행하여도 우수한 결과를 얻을 수 있었다.

게다가, 새로운 촉매는 어떠한 경우에서도 공지의 촉매보다 더 우수하게 그리고 매우 효과적으로 여과될 수 있었다.

다음의 표에는 수소화 시간에 대한 지방산 수소화의 영향(그 밖의 조건들을 동일하게 해놓은 상태에서의 옥소가와 수소화 시간과의 관계)이 제시된다.

[표 Ⅲ]

	촉매 4(표 ▮)에 의한 옥소가	공지의 촉매(표 I) 에 의한 옥소가	수소화시간 (분)	촉매 4(표 표)에 의한 옥소가	공지의 촉매(표 II) 에 의한 옥소가
30	45. 1	72. 1	120	5.3	17.8
60	15. 3	45. 5	150	3. 3	15. 1
90	9, 8	22. 2			

표 III에는 지방산을 수소화시켜 약 15.2의 옥소가를 얻는데 걸리는 시간이 이러한 목적으로 널리 사용되는 종래의 촉매의 경우 약 150분인 반면에 본 발명에 따르는 촉매의 경우 약 60분이었다는 것이제시된다. 즉 본 발명의 촉매는 기술적으로 현저히 개량된 것이다.

[표 |]

실 시 예	1	2	3	4	5	6	7
Ni : SiO ₂ 비율	2. 3	2, 3	2, 3	2. 3	2, 3	1. 8	1. 8
침 전:							
소디용액 등도(mal/l)	0.7	0.7	0.7	0.7	0.7	0.7	1. 0
닉켈용액농도(mol/l)	0.6	0.6	0.6	0, 6	0.6	0.6	0.
침전온도(°℃)	80	20	30	55	50	85	2
평군체류시간(i 단계)(분)	4	1	i	1	1	0.3	0.
과잉알칼리(규정농도)	0.10	0.19	0, 21	0. 22	0. 21	0. 13	0. 2
침전물의 숙성:							
후반웅기의 수	2	2	1.	2	2	1	
은 도(°C)	97/80	97/80	96	93/80	90/77	95	9
명균체류시간(ii 단계)(분)	50/50	50/50	50	50/50	85/50	30	3
파잉알카리(<i>물/l</i>)	0. 135/	_	_	_		_	-
≔보통 이상의 알칼리	0. 192						

촉매 1-5는 닉켈 70% 및 SiO₂ 30%를 함유하였으며, 촉매 6,7은 닉켈 64%와 SiO₂ 36%를 함유하였음.

활성닉켈표면은 닉켈 1g당 120-150m²임.

닉켈응집체의 크기는 9-26ᡣ인 것을 알 수 있으며, 실시예 4의 촉매는 닉켈응집체 표면의 85%에 대해 담체입자가 부착안된 것으로 나타났다.

[표 비]

실	싀	લો	1	2	3	4	5	6	7	비교실시예
한원된 추 · 오일수소	대중의 닉켈 % :화시훠	%	52. 4	51.8	52. 6	53. 0	52. 7	51. 2	52. 0	22 (지방현탁액중
옥소가 : 오일을	165의 정제마 옥소가 85로 ⁻	_							,	
0.1% 닉 바아, 최	Dg, 오일에 대 켈, 60lH₂/시 대온도 180°(한원온도 350°	, 압력 1 C, 750rpm,								
수소화시	간(분)		92	85	83	92	85	90	103	127
오일의 ·	용점(°C)		32	32. 5	32	32. 5	32 . 5	33	32. 5	36
방산(올레 0.07% Ni 온도 180°	소화시험 300g 인유불) 지방 , H ₂ 압력 30 C 교반속도 150분, 촉매 ³	난에 대해 바아, 최대 850rpm, 수								
人工制力	나응 후의 옥소	,	3, 1	2. 5	3. 2	3. 3	2, 6	3. 4	3.0	15. 1

[실시예 8]

규조토(22g/ℓ)가 혼합되어 있는 3.5% 수성황산닉켈(닉켈로 계산하여) 용액과 10% 수성소다용액을 용액 1ℓ당 6Watt의 에너지 입력으로 격렬하게 교반되는 소형 침전반응기 (용량 75㎡)내에 연속적으 로 펌프송입하였다. 그러한 속도로 이 두용액을 반응기에 연속 송입하였더니 침전반응기내의 pH는 9.3이 되었다. 체류시간은 0.5분이었다.

약 4%의 고형물이 함유된 슬러리가 침전된 후에 이 슬러리를 비교적 큰 용기(용량 4.5ℓ)내에서 적당히 저으면서 연속 숙성시켰다. 숙성온도는 97℃였으며 pH는 8.9이었다. 숙성반응기 내에서의 평균

체류시간은 약 30분이었다. 90분 후에 흐름을 중지시키고 4.5ℓ의 슬러리를 뷔흐너 깔대기에서 감압하에 여과시켰다. 여과 후에 고형물을 4ℓ의 증류수로 세척하였다. 얻어진 여과 케이크를 오븐에서 120℃로 하루밤 동안 건조시켰다.

녹색 여과케이크의 시료를 전자현미경(배율 500 및 1000)으로 조사하였다. 그 사진에는 담체입자가 부착되지 않은 표면이 80%인 작은 닉켈/닉켈화합물 응집체가 나타났으며 또한 규산질 골격의 원형은 대부분 닉켈/닉켈화합물을 덮어 씌워있지 않아서 쉽게 식별할 수가 있었다.

녹색 여과케이크를 400에서 30분 동안 15N*m³/kgNi의 수소로 환원시켰다. (참조 : * - 표준상태)

수소 화학흡착으로 측정한 활성닉켈 표면적은 110㎡/mg Ni이었다. 닉켈 결정자의 평균크기는 3nm이며 닉켈/닉켈화합물 응집체의 크기는 30㎞인 것으로 밝혀졌다.

이 촉매에는 대두유 및 어유의 수소화에 대한 우수한 특성이 있다.

(57) 청구의 범위

청구항 1

10-90 중량부의 닉켈/닉켈화합물 및 90-10 중량부의 실리카를 함유하며, 닉켈 1g당 70-200m² 의 활성닉켈 총표면적을 가지는 수소화촉매에 있어서, 상기 촉매가 2-100㎞의 평균입자 크기를 가진 닉켈/닉켈화합물 응집체로 구성되며 산기 닉켈/닉켈화합물 응집체는 담체입자가 전혀없는 표면을 60%이상 가지는 것을 특징으로 하는 수소화촉매.

청구항 2

제1항에 있어서, 닉켈/닉켈화합물 응집체는 담체입자가 없는 표면이 80% 이상인 것을 특징으로 하는 수소화촉매.

청구항 3

제2항에 있어서, 닉켈/닉켈화합물 응집체는 담체입자가 없는 표면이 90% 이상인 것을 특징으로 하는 수소화촉매.

청구항 4

제1항에 있어서, 닉켈/닉켈화합물 응집체가 평균 입자크기가 5-25㎞인 것을 특징으로 하는 수소화촉매.

청구항 5

제1항에 있어서, 평균 닉켈결정자 크기가 0.5-10nm인 것을 특징으로 하는 수소화촉매.

청구항 6

제5항에 있어서, 평균닉켈 결정자크기가 1-3nm인 것을 특징으로 하는 수소화촉매.

청구항 7

불용성 담체 및 경우에 따라 촉진제를 함유하는 닉켈기질촉매의 제조방법에 있어서, 상기 방법을 다음 2단계 , 즉 :

- i) 침전반응기내에서 0.01-10분인 평균체류시간, 0.05-0.5N인 과잉의 알카리를 함유하는 침전반응 기내 용액의 규정농도, 5-95℃로 유지되는 침전반응기내 용액의 온도 및 격렬한 교반하에 닉켈수산 화물/탄산염을 침전시키는 신속한 침전단계.
- ii) 후-반응기내에서 20-180분의 평균체류시간 및 60-100℃로 유지되는 온도하에 수행되는 1회 이상의 독립숙성단계로 시행한 후, 이렇게 해서 얻은 고형물을 공지의 방법으로 분리, 건조시켜 수소로 활성화시키는 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 8

제7항에 있어서, 침전되는 닉켈염용액이 1ℓ당 10-80g의 닉켈을 함유하는 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 9

제7항에 있어서, 담체가 20-200g/ℓ의 양으로 첨가되는 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 10

제7항에 있어서, 알카리성 화합물의 용액이 1ℓ당 30-300g의 무수알카리성화합물을 함유하는 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 11

제7항에 있어서, 알카리성 용액이 탄산나트륨을 함유하는 것을 특징으로 하는 닉켈기질촉매의 제조 방법.

청구항 12

제7항에 있어서, 닉켈화합물이 무기산의 염인 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 13

제7항에 있어서, 담체가 실리카인 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 14

제13항에 있어서, 사용된 실리카가 50-90 중량 %의 비정질 SiO₂를 함유하는 규조토인 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 15

제7항에 있어서, 침전반응중의 교반을 용액 1000ℓ당 5-5000kW의 기계적 에너지입력으로 시행하는 것을 특징으로 하는 닉켈기질촉매의 제조방법.

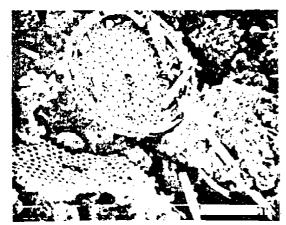
청구항 16

제7항에 있어서, 기계적 교반을 제트 혼합으로 수행하는 것을 특징으로 하는 닉켈기질촉매의 제조방 법

청구항 17

제7항에 있어서, 촉매의 활성화를 250-500℃의 온도에서 수소로 시행하는 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 18


제7항에 있어서, 침전이 수성닉켈염용액 중의 담체현탁물을 격렬하게 교반하고 있는 소형혼합펌프내에 알카리성용액과 함께 첨가하는 것에 의해 수행되며, 계속해서 그 현탁액을 1기 이상의 후반응기내에 펌프로 이송하는 것을 특징으로 하는 닉켈기질촉매의 제조방법.

청구항 19

제18항에 있어서, 2기 이상의 후-반응기가 사용될 경우에 제 2 및 그 다음 계속되는 어느 후반응기 내의 온도가 제1후-반응기내의 온도보다 5-15℃ 낮은 것을 특징으로 하는 닉켈기질촉매의 제조방법.

도면

도면1

제나를 사고 규칙되었어 찍은 최메리 전세한다면 사진 . 1000 베학대

도면2

제2도 - 휨방촉매의 전체현대경 차진, 100 m.P.m. 5505 배 확대 (1m m ⇔ 2 um.)