
(19) United States
US 2002O094,080A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0094080 A1
Duan et al. (43) Pub. Date: Jul.18, 2002

(54) VARIABLE SIZE KEY CIPHER AND
METHOD AND DEVICE USING THE SAME

(76) Inventors: Chenggang Duan, Shanghai (CN);
Fengguang Zhao, Shanghai (CN);
Sunil K. Gupta, Edison, NJ (US)

Correspondence Address:
HARNESS, DICKEY & PIERCE, P.L.C.
P.O. BOX 8910
RESTON, WA 20195 (US)

(21) Appl. No.: 09/725,910

(22) Filed: Nov.30, 2000

(30) Foreign Application Priority Data

Nov. 29, 2000 (CN)....................................... OO134266.5

Publication Classification

(51) Int. Cl. H04K 1/00; H04L 9/00

1011100i
ENCOOING BIT STREAM

START: R-1, L=SYNWORD

(52) U.S. Cl. .. 380/28
(57) ABSTRACT
An encryption device and method and decryption device and
method which implement a bit-based encryption Scheme and
hardware design. The encryption device includes a random
number generator, receiving a main key, determining a
working key using at least one random number and output
ting a working key, a model, receiving the main key, the
working key and plain text to be encoded and generating at
least two frequency counts. The encryption device further
includes an encoder, which outputs encoded text based on
the working key, the plain text and the at least two frequency
counts. The encryption device and method and decryption
device and method progreSS encrypted text that is based
upon a stream Structure with an unlimited key length and
may be compressed by 50%. The encoded text is changeable
with different environments even for the same plain text and
the same key. Operations of the hardware design are based
on arithmetic additions and Shifts, and not multiplications
and divisions. As a result, the hardware design is simple and
applicable to cryptography and e-commerce.

22

24
MODEL UPDATE

CoC1

OUTPUT MSB CFL
<<= 1; R<<= 1

IF R> - THEN R= ~L+1

Patent Application Publication Jul.18, 2002 Sheet 1 of 5 US 2002/0094080 A1

O

Patent Application Publication Jul.18, 2002 Sheet 2 of 5 US 2002/0094080 A1

FIG. 3 40
1.

START: R-1, L-SYN WORD *NWRSSESS
44

OUTPUT i DECODING BIT
STREAMS

MODEL UPDATE, i-O

CO

EXCHANGE
CO AND C1

i= i

<<= 1 RKK= 1; Yggs 1
W-NEXT BIT FROMS

IFRY - THEN R = -

Patent Application Publication Jul.18, 2002. Sheet 3 of 5 US 2002/0094080 A1

issue 5 ?

Frequency of zero Frequency of one

Patent Application Publication Jul.18, 2002 Sheet 4 of 5 US 2002/0094080 A1

Patent Application Publication Jul.18, 2002 Sheet 5 of 5 US 2002/0094080 A1

FIG 7

START, R-1, L=SYNWORD

one update/
CoC1

-?
22

11011100i
ENCOOING BIT STREAM

OUTPUT MSB OF L
(Kas 1; R<<= 1;

IF Re-L THEN R= ~L+1

US 2002/0094080 A1

WARIABLE SIZE KEY CIPHER AND METHOD
AND DEVICE USING THE SAME

FIELD OF THE INVENTION

0001. The present invention is directed to encryption and
decryption, and more particularly, to a variable size key
cipher and method and device for utilizing variable Size key
cipher to perform encryption and decryption.

DESCRIPTION OF THE RELATED ART

0002 Traditionally, compression and cryptography have
been considered distinct and Separate technologies, which
were developed and applied Separately. However, they share
a common goal of removing redundancy of an output,
although they do So in different ways. Recognizing this
common goal, Witten, Neal and Cleary (hereafter known as
WNC) were the first to apply adaptive arithmetic coding to
encryption. In particular, WNC made the following obser
Vations:

0003 by re-coding messages, compression protects
the messages from casual observers,

0004 removing redundancy denies a cryptanalyst
the leverage of exploiting the normal Statistical regul
larities in natural language; and

0005 adaptively taking advantage of the character
istics of the data being transmitted provides good
compression performance.

0006 The properties identified in these three observa
tions appear to offer the benefits of good compression as
well as good security-the best of both worlds.
0007. The schematic flow of a conventional, general,
arithmetic coding, model-based encryption Scheme 10, Such
as the WNC Scheme, is illustrated in FIG. 1. As illustrated
in FIG. 1, plain text 12 is input to both an encoder 14 and
a model 16. A key 18 is also input to the model 16. The
encoder 14 produces cipher text 20 based on the plain text
12 and an output of the model 16. The model 16 provides,
in any given context, a probability distribution for the next
character. The Simplest models are insensitive to context and
give the same distribution regardless of the neighboring
character. The model 16 should not assign Zero probability
to any Symbol that actually occurs, otherwise the Symbol
cannot be coded because the upper and lower ends of its
range coincide. For encoder 14, a Source Symbol alphabet is
chosen and each Symbol is assigned a probability of occur
rence. The interval range is usually 0 to 1 and each Source
Symbol occupies a Subinterval in the range according to its
probability. The interval is successively subdivided as each
new source symbol is read. Highly probable symbols reduce
the interval by a smaller amount than less probable symbols.
The cipher text 20 is represented by a value in the interval.
Such a system is described in “Data Security in a Fixed
Model Arithmetic Coding Compression Algorithm' pub
lished in Computer & Security, 11(1992), pp. 445-461.
0008. As the name arithmetic coding might suggest, the
Source Symbols which make up the plain text 12 are encoded
numerically. Each Symbol does not necessarily translate into
the same fixed code which makes up the cipher text 20 each
time the Symbol is encoded. An input Source String, which
may be a String of Source Symbols, is usually represented by

Jul.18, 2002

an interval of real numbers between 0 and 1. The range of
the interval may initially be defined by a value proportional
to the probability of the symbol in question. The interval
may be Successively Subdivided as each new Source Symbol
is read from the plain text 12. Highly probable symbols in
the plain text 12 reduce the interval by a Smaller amount than
leSS probable Symbols. AS an analogy, the arithmetic coding,
as illustrated in FIG. 1, is like using a flexible ruler to
measure a symbol String.
0009. The WNC scheme is a byte-based arithmetic cod
ing Scheme for encryption that utilizes a frequency table
without a random generator. Key features of the WNC
Scheme are a byte-based model and an initial frequency table
as the key for encryption. In WNC, the working key and
main key are the same.
0010. However, Subsequent research by Bergen et al. in
“Data Security in a Fixed-Model Arithmetic Coding Com
pression Algorithm”, Computer & Security, pp. 445-461,
1992, has shown that there are security issues with the WNC
scheme. In particular, the WNC implementation of a fixed
model arithmetic-coding algorithm promotes easy analysis
and therefore the possibility of easy and Straightforward
deciphering. This ease of analysis and deciphering is the
direct result of repeating fixed Sub-Strings in the output,
which characterize each particular symbol. The fixed nature
of the WNC implementation permits relatively easy deter
mination of both the ordering of symbols in the initial
frequency table and the actual values of the Symbol frequen
cies. As a result, it is difficult to design a Secure model and
key control for the WNC encryption scheme.

SUMMARY OF THE INVENTION

0011. The present invention solves the problems with
conventional arithmetic coding techniques by providing an
encryption device and method and a decryption device and
method which are based on a bit-based arithmetic coding
technique. The encryption device and method and the
decryption device and method utilize frequency tables for
value 0 and 1 and a random generator. The frequency tables
includes working keys not main keys, as in conventional
techniques. At the beginning of the encoding, a main key is
input into an encoder. A model initializes the frequency table
according to the main keys and a random bit to form a
working key. The working key, which is changeable, is used
as the probability to encode plain text. The model in the
present invention update the probability according to the
input text.
0012 More specifically, the present invention is directed
to an encryption device, comprising a random number
generator, receiving a main key, determining a Working key
using at least one random number and outputting the work
ing key, a model, receiving the main key, the working key
and plain text and generating at least two frequency counts,
and an encoder, outputting cipher text, based on the working
key, the plain text, and the at least two frequency counts.
0013 Further, the present invention is directed to a
method of encrypting, comprising processing random bits
and key bits to generate at least one frequency table; and
encoding plain text using the at least one frequency table.
Still further, the present invention is directed to a decryption
device, comprising a model, receiving a main key, a working
key and plain text and generating at least two frequency

US 2002/0094080 A1

counts, a decoder, outputting plain text, based on the work
ing key, the main key, the plain text, the at least two
frequency counts, and a random number generator, receiving
the plain text and determining the working key using at least
one random number and outputting the working key to Said
model. Still further, the present invention is directed to a
method of decrypting, comprising processing random bits
and key bits to generate at least one frequency table; and
decoding cipher text using the at least one frequency table.

0.014) A bit-based encryption scheme and hardware
design of the present invention produces a cipher that is
based upon Stream Structure and with an unlimited key
length. The cipher also has the advantage that it may
compress plain text by at least 50%. The cipher is change
able with different environment even for the same plain text
and the Same key. Operations in the hardware design are
based on arithmetic additions and Shifts, no multiplication
and divisions are included. Therefore, the hardware design
is simple. The cipher, encoder, decoder and methods are
applicable to cryptography and e-commerce.

BRIEF DESCRIPTION OF THE DRAWINGS

0.015 FIG. 1 illustrates a conventional, general, arith
metic coding, model-based encryption Scheme.

0016 FIG. 2 illustrates an exemplary schematic flow for
encryption in one exemplary embodiment of the present
invention.

0017 FIG. 3 illustrates a flowchart for encoding in one
embodiment of the present invention; and
0.018 FIG. 4 illustrates a model in more detail in one
exemplary embodiment of the present invention.

0019 FIG. 5 illustrates the frequency table in one exem
plary embodiment of the present invention.

0020 FIG. 6 illustrates an exemplary schematic flow of
decryption in one exemplary embodiment of the present
invention;

0021 FIG. 7 illustrates a flowchart for decoding in one
embodiment of the present invention; and

0022 FIG. 8 illustrates a model in more detail in another
exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0023 FIG. 2 illustrates an exemplary schematic flow for
encryption in one embodiment of the present invention. AS
illustrated in FIG. 2, plain text 12 is input to both an encoder
114 and a model 116. A main key 118 is supplied to the
model 116 and to a random generator 122. The random
generator 122 produces working keys from the main key 118
and random numbers generated within and the working keys
are output to the encoder 114 and the model 116. The model
116 provides to the encoder 114, two frequency counts, for
0 and 1, respectively and the encoder 114 output is a
compressed bit stream. The encoder 114 produces com
pressed information (i.e., cipher text 120), based on the plain
text 12 and the working keys output from the random
number generator 122, and the frequency counts 0,1 from
the model 116.

Jul.18, 2002

0024. The encoder 114 may operate as follows. A mes
Sage to be encoded is represented by an interval of real
numbers between 0 and 1. AS the message becomes longer,
the interval needed to represent the message decreases and
the number of bits needed to specify the interval increase.
Successive Symbols of the message reduce the Size of the
interval in accordance with the Symbol probabilities gener
ated by the model 116. The more likely symbols reduce the
range by less than the unlikely Symbols and hence add fewer
bits to the message.

0025 Initially, the interval assigned to a message is the
entire interval 0,1)(0,1) denotes the half-open interval
0SX-1). As each Symbol in the message is processed, the
range is narrowed to that portion of the range allocated to the
given Symbol. For example, assume the alphabet is (a, b, c,
d, e, f) and a fixed model is used with the probabilities shown
in Table 1.

TABLE 1.

Symbol Probability Range

al O25 0,0.25)
b 0.25 0.25, 0.5)
C O.1 0.5,0.6)
d O.1 0.6,0.7)
e O.1 0.7, 0.8)
f O.2 0.8, 1.0)

0026 Assume the message abc is transmitted. Initially,
the encoder 114 (and an associated decoder which will be
described later) knows that the range is 0,1). After receiving
the first symbol a, the encoder 114 narrows the range to
0,0.25), the range that model 116 allocates to the symbola.
The Second Symbol b narrows the new range to the Second
one-fourth, 0.0625, 0.125)-the previous range was 0.25
units long and one-fourth of that is 0.0625. The next symbol
c is allocated 0.5, 0.6), which when applied to 0.0625,
0.125) gives the Smaller range 0.09375, 0.1).
0027 Suppose all the associated decoder knows about the
message is the final range 0.9375, 0.1). The decoder can
immediately deduce that the first character was a, Since the
range lies entirely within the space the model of Table 1
allocates for a. After this, the range is 0, 0.25). After Seeing
b 0.0625, 0.125) which entirely encloses the given range
0.09375, 0.1), the second character is b. Proceeding in this
manner, the decoder can identify the whole message.

0028. In one exemplary embodiment, the encoder 114 is
the encoder described in copending U.S. application Ser. No.
09/240,576 entitled “Multiplication-Free Arithmetic Cod
ing filed on Feb. 1, 1999, the entire contents of which are
hereby incorporated by reference. An advantage of this
encoder are that there is no multiplication and division
operation involved, which makes the hardware design
simple. This encoder is described below.
0029. Encoding

0030) Initially, two registers R and L, are set to 1 and an
arbitrary number, respectively. The encoder 114 is supplied
with three inputs, a first frequency count co representing a
fractional value of the probability of 0, a Second frequency
count c, representing a fractional value of the probability 1,
and a so-far encoded symbol i (either 0 or 1).

US 2002/0094080 A1

0031. The encoding steps performed by the encoder 114
can be Summarized in pseudocode as:

0032 1. If codic, exchange the values of co and c,
and let i=li.

0033 2. While Rsc, do
0034)
0035)
0036)

0037 3. If i=0, then R=co; else R=R-co, L=L+co.
0038 Output L
0039) Note that some C Language notation is employed
in the above pseudocode. represents logic complement,
represents binary complement, and <<=represents arithmetic
shift left. From the description above, the present invention
operates on the following assumption: for each iteration,
Rasco-c.

Output the most significant bit of L.

L=L<<=1, R=R<<=1.

If R>~L, then R=-L+1.

L:=L, R:=co, i=0 (1)
L =L--co R.'=R-co i=1 (2)

0040. In the present invention, initializing the two regis
ters R and L to 1 and an arbitrary number, respectively,
permits the first word in the output Stream to denote a
Synchronous word for real time transmission applications.
Further, Step 1 is generally referred to as an exchange Step,
Step 2 is referred to as an adjustment Step, and Step 3 is
referred to as an encoding Step. A magnitude Step, which is
required in conventional multiplication-free arithmetic cod
ing techniques is not required in the present invention. In the
present invention, the adjustment Step is executed before the
encoding Step. In the adjustment-step, executing the “while'
loop when the value of register R is less than or equal to the
value of the Second frequency count and Setting the value of
register R equal to the binary complement of the value of
register L. plus one if the value of the register R is greater
than the binary complement of the value of register R
eliminates the need for a Subsequent bit Stuffing Step.
0041) To summarize, the method of multiplication-free
arithmetic coding of the present invention produces an
encoded bit Stream by receiving a Symbol from an encoded
String and two frequency counts, finding a most probable
Symbol and a least probable Symbol; Subjecting a first
register to magnitude shift operations for outputting bits to
the encoded bit Stream and for approximating a contextual
probability of each Symbol in the encoded String, and
encoding a next Symbol in the encoded String based on the
contextual probability.
0.042 FIG. 3 includes the specific steps performed by the
encoder 114 in the encoding process 20 in more detail. In
particular, in Step 22, registers R and L are initialized to 1
and the Sync word, respectively. The encoded bit Stream, in
this example, 11011100i, is input along with the initial
values of registers R and L to the 0-order Markov model at
Step 24 to produce the frequency counts co and c. In Step 26,
co and c are compared and if co is greater than c, co and c.
are eXchanged and i is Set to its logical complement at Step
28. If however, co is not greater than c, processing proceeds
to step 30, where it is determined whether the value in
register R is greater than or equal to c. If So, processing
proceeds to Step 32, where the most Significant bit of the L

Jul.18, 2002

register is output, Land R are arithmetically left shifted, and
if R is greater than the binary complement of L, then R is Set
to the binary complement of L plus one, and processing
returns to step 30. If the value of register R is not greater than
equal to C, then processing continues to Step 34. In Step 34
it is determined whether i is equal to 0. If i is equal to 0, then
the value of register R is Set equal to Co. at Step 36 and if i
is not equal to 0 then R is set to the previous value of R
minus co and L is set to the previous value of L plus coin Step
38, thereby encoding the next bit in the bit stream. The
process then repeats by inputting the next bit to the Markov
model update at Step 24. The processing is continued until all
bits of the input bit stream are encoded. Then, the value of
register L is output as the encoded bit stream.
0043 Although the present invention is described utiliz
ing a 0-order Markov model, any model, known to one
ordinary skill in the art, could be utilized.
0044 As illustrated in FIG. 4, the model 116 includes a
frequency table 130 (illustrated as RAMs 126) and a model
controller 128. The frequency counts contained in frequency
table 130 represent the probabilities, such as the probabili
ties shown in Table 1. The plain text 12, the main key 118
and the working keys are input to the model controller 128.
The random generator 122 generates one random bit per
system clock. As illustrated in FIG. 4, the frequency table
130 may include two related terms that make it very difficult
to trace all information saved in the frequency table 130
except the two related terms. The model 116 can use an
address register r to record the closest t bits currently
processed, the size of the frequency table 130 is 2. In one
embodiment, the model 116 is a t-order Markov model and
r looks like sliding windows of Size t. Initially, the values in
the frequency table 130 may be set to 1.
004.5 The present invention may be described as a two
phase cipher. The first phase processes random bits and key
bits. In the first phase, the key size controls the random bit
generator, So that controller 128 can obtain random bit String
with the same size as the key. For each bit pair (one random
bit, one key bit), controller 128 can perform the following:

0046) 1) according to a shift register in model con
troller 128, get F0 and F1 from RAMs 126;

0047. 2) if the key bit is 0, add 1 to F0; else add 1
to F1;

0.048 3) pass the random bit and F0, F1 to encoder
114;

0049 4) if the random bit is 0, add 1 to F0; else add
1 to F1;

0050) 5) write F0 and F1 back to RAMs 126;
0051 6) left shift the shift register in model con
troller 128, and insert the current random bit into the
last position of the shift register.

0052. In the first phase, the random bit is provided to
encoder 114 (or decoder) via the model controller 128.
When the first phase is completed, a useful initial frequency
table is obtained in RAMs 126.

0053. In the second phase, the plain text 12 is encoded. In
the Second phase, the plain text 12 is input to the model
controller 128 which executes the following actions for each
input bit:

US 2002/0094080 A1

0054) 1) according to the shift register, get F0 and F1
from RAMs 126;

0.055 2) pass the plain text bit and F0, F1 to encoder
114;

0056) 3) if the plain text bit is 0, add 1 to F0; else add
1 to F1;

0057 4) write F0 and F1 back to RAMs 126;
0.058 5) left shift the shift register, and insert the
current plain text bit into the last position of the shift
register. Therefore, the plain text 12 also will pass to
encoder 114 (or decoder) via the model controller
128.

0059 FIG. 5 illustrates the frequency table 130 in one
preferred embodiment of the present invention. AS illus
trated in FIG. 5, the frequency table 130 includes r entries
for the frequency of 0 and r entries for the frequency of 1.
The size of the frequency table 130 in one embodiment is 2.
In one embodiment, t=15.
0060. The model controller 128 controls the read and
writes of the RAMs 126 and the output of the frequency
table 130 and source bit to the arithmetic coder 114. The
inputs to the encoder 114 include a text bit from the plain
text 12, a key bit from the main key 118, a random bit from
the random generator 122, and two frequencies 136 from the
RAMs 126. The output of the model controller 128 to RAMs
126 is a read-enable signal 138, a write-enable signal 140,
modified frequencies 142 for bits “0” and “1”, respectively
and an address 144. The outputs from the model controller
128 to the encoder 114 include a source bit 146 and a pair
of frequency counts 148 for bits “0” and “1”. In one
exemplary embodiment, the model 116 is implemented
utilizing two clocks, a System clock and a RAM clock, in
order to permit the model controller 128 to finish a read and
write to the RAMs 126 in one system cycle.
0061 The interaction between the encoder 114 and the
model 116 is as follows. Initially, r may be set to a fixed
number, the current value of r is used to find two frequency
counts respectively for 0 and 1 from the frequency table 130.
The two counts are then input to the encoder 114. The
current bit is encoded and the frequency count is updated at
the location pointed to by r. Then, slide r to contain the
current bit and repeat until all bits are encoded.
0062). As illustrated in the embodiment of FIG. 4, the
frequency table 130 includes random access memories 126.
The two RAMs 126 represent the frequency tables for bits
“0” and “1”, respectively. In one exemplary embodiment,
there are a total of 64k pairs of frequencies for bits “0” and
“1”. As a result, the frequency may range from 1 to 255. The
encoder 114 implements an arithmetic encoding algorithm,
where its input signal is a one bit Source Signal and a pair of
frequencies for bits “0” and “1”. For each time interval, the
pair of frequencies are different and dependent on the input
Source bit. The output of the encoder 114 is the cipher-text
120 and an output valid bit 150.
0063 The present invention may also use a key (any
length of bit stream) to control the initial value in frequency
table 130 and a random bit stream to control the values of r.
The random bit Stream may be generated by the random
generator 122. The key for encryption is termed the working

Jul.18, 2002

key. To be more precise, if k, k, ..., k, is the bit stream
for encryption key. An exemplary algorithm is as follows:
0064. Encryption
0065. Initialization: r=0. Let all items in frequency table
130 be 1, initialize the encoder 114.j=1
0066 Input: k, k, ..., k
0067. 1. While j<=n, do

0068 Find the location pointed by r from the fre
quency table 130.

0069). If k=1, add 1 to frequency 1 location; else add
1 to frequency 0 location.

0070 Use the current frequency counts to encode
one bit 1 from random generator 122.

0071. If I=1, add 1 to frequency 1 location; else, add
1 to frequency 0 location.

0.072 Left shift r, r=r the random bit
0073 2. Encode plain text 12 and update model 116 as
follows:

0074. If current bit is 1, add 1 to frequency 1 location,
else add 1 to frequency 0 location.
0075) Left shift r, r=r the current bit
0076. It is noted that step 1 is used to generate the initial
frequency table 130, the frequency table 130 may depend on
environment, since random generator 122 is used. Further,
even if the same encryption key is used at different times, a
different frequency table 130 will result. This indicates the
cipher in the present invention is not one-to-one but is
variable.

0077. In one preferred embodiment, VHDL language is
used to describe the behavior model between the model
controller 128 and the encoder 114 illustrated in FIG. 4.
Exemplary VHDL is set forth below:

library IEEE:
- use IEEE.std logic uusigned.all;

use IEEE.std logic signed.all;
use IEEE.std logic arith..all;
use IEEE.std logic 1164.all;

entity cipher is
port (

key :in std logic;
random :in std logic;
text :in std logic;
end of key : in std logic;
end of text : in std logic;
dataO in : in std logic vector(7 downto 0):
data1 in : in std logic vector(7 downto 0):
sys clock : in std logic;
mem clock : in std logic;
dataO out : Out std logic vector (7 downto 0);
data1 out : Out std logic vector (7 downto 0);
addr : buffer std logic vector(15 dowuto 0);
READ ENABLE : Out std logic;
WRITE ENABLE : Out std logic;

cipher text : Out std logic;
out valid : Out std logic

);
end cipher;
architecture RTL of cipher is
signal encode bit : std logic;

US 2002/0094080 A1

0085

TABLE 3

Plain text “It is incredible for us’

Ex
peri
ments Keys Cipher Text (HEX)

1. Zfg E795 CE 8C A3 B7 7E1D989E 1E 6F OD 77
32 14 C5 S8 24 4b FF 40 69 43 1C 45 298O

2 Zfg 2B CF 08 FD SF 54.87 E1 D989 E1 E6 FO D7
73 21 4CSS 82 44 BFF4 O694 31 C4 5298

3 123 C4999E F497 49 2732 O697.32 OAOB 6286
25 13 CAS1 2E 44 BA 86 72 45 CA 95 27 OO

4 123 E5 3D CO 5C 8258 12 EA84 95.5285 69 OD 77
32 14 C5 S8 24 4.B FF 4O 69 43 1C 45 298O

0086) From Tables 2 and 3 above, the following is
apparent: 1) for the same plain text with the same key,
different cipher text results, 2) the size of cipher text is
changeable with different experiment parameters and differ
ent keys, and 3) for high correlative data the compression
rate is high, but for leSS correlative date or a shorter String,
the compression rate is also good.
0087. The technique of the present invention may be used
for encryption if the values in the frequency table are used
as the encryption key. One difference between the present
invention and WNC is the model. The bit-based model of the
present invention makes it extremely difficult to trace all the
initial values using a technique Such as the one described by
Bergen/Hogan. The compressed bit stream or cipher text 120
may be decoded by a reverse process.
0088 FIG. 6 illustrates an exemplary schematic flow of
decryption in one embodiment of the present invention. AS
illustrated in FIG. 6, the cipher text 120 is input to a decoder
124. A main key 118 is input to the model 116 and to the
decoder 124. The output of random bit generator 152 is input
to the model 116. The output of the model 116 is input to the
decoder 124. The decoder 124 decodes the cipher text 120
to produce the plain text 12 which is fed back to the model
116. The decoder 124 also passes an output to the random
generator 152. In one exemplary embodiment, the decoder
124 is the decoder described in copending U.S. application
Ser. No. 09/240,576 entitled “Multiplication-Free Arith
metic Coding filed on Feb. 1, 1999, the entire contents of
which are hereby incorporated by reference. This decoder is
described in more detail below.

0089 Decoding
0090 For decoding the R and L registers are again
initialized and a third register V is utilized to store part of the
decoding bit stream, and i denotes the output bit. If S is the
decoding bit Stream, which is generated by the encoding
algorithm described above, the decoding Steps performed by
the decoder 124 are Summarized in pseudocode as:

0091 1. If coac, exchange the values of co, and c,
and let i=1, else i=0.

0092) 2. While Risc, do
0093 L=L<<1, R=Rz<1, V=V<<1.
0094) V=V next bit from S.
0.095 If Rd.-L, then R=-L+1.

Jul.18, 2002

0.096 3. If co-V, then R=co; else R=R-co, L=L+
co, and i=li

0097. To summarize, the method of the multiplication
free arithmetic coding to produce a decoded String receives
bits from a decoded Stream and two frequency counts, finds
a most probable symbol and a least probable symbol,
Subjecting a first register to magnitude shift operations for
inputting bits from the decoded bit stream and for approxi
mating a contextual probability of each Symbol in the
decoded String, and decoding a next symbol to the decoded
Stream based on the contextual probability.
0.098 FIG. 7 includes the specific steps performed by the
decoder 124 in the decoding process 40 in more detail. In
particular, in Step 42, the register R, L, and V are initialized.
The values of registers R, L, and V and the string to be
decoded are input to 0-Markov model at step 44 to produce
frequency counts co and c. In Step 46, co and c are
compared and if cois greater than c, co and c are eXchanged
and i is set to its logical complement at Step 48. If however,
co is not greater than c, processing proceeds to step 50,
where it is determined whether the value of register R is
greater than or equal to c. If So, processing proceeds to Step
52 where registers R, L, and V are all arithmetically left
shifted, the next bit from the decoding bit stream S is added
to register V, and if R is greater than the binary complement
of L, then R is Set to the binary complement of L plus one.
Processing then returns to step 50.
0099] If the value of register R is not greater than or equal
to c, then processing continues to step 54. In step 54, it is
determined whether co is less than V. If c is less than V, then
the value of register R is Set equal to coat Step 56 and if co
is not less than V, then R is set to the previous value of R
minus co, L is Set to the previous value of L plus co, and i
is Set to its logic complement at Step 58, thereby decoding
the next bit in the bit stream S. The process then repeats by
inputting the next bit to the Markov model update at step 44.
The processing is continued until all bits of the decoding bit
Stream S are decoded.

0100 Again, although the present invention just
described utilizing a 0-order Markov model, any model,
known to one of ordinary skill in the art, could be utilized.
0101 Table 4, set forth below, illustrates a compression
ratio comparison for files of varying types, between an
encoder which implements multiplication, the prior art tech
nique disclosed in U.S. Pat. No. 4,652,856, and the multi
plication-free arithmetic coding of the present invention.

TABLE 4

Encoder of the U.S. Pat.
Multiplier Present No.

Source File Size Encoder Invention 4,652,856

C source 2762O 37.5% 38.4% 39.9%
Chinese file 72596 43.3% 43.8% 44.9%
Scale image 26233O 67.9% 68.8% 69.6%
EXE file 54645 74.3% 74.6% 75.6%
Mixed data 417.192 67.2% 68.0% 68.9%

0102) As illustrated in Table 4, the present invention
achieves a compression ratio better than prior art multipli
cation-free arithmetic techniques. Table 4 also illustrates that
the multiplication encoder usually provides the best com

US 2002/0094080 A1

pression because each multiplication-free design utilizes
Some approximate value instead of practical probabilities, So
there will usually Some degradation in compression ratioS
utilizing multiplication-free arithmetic techniques. How
ever, the present invention, as illustrated in Table 4, provides
a low computationally complex and low cost hardware
implementation, which still achieves compression ratioS
which are comparable to multiplication-base techniques.
0103) As illustrated in FIG. 8, the main key 118 is
supplied to the model controller 128. The model controller
128 controls the read and writes of the RAMs 126 and the
output of the frequency table 130 and the source bit to the
decoder 124. The inputs to the decoder 124 include a text bit
from the cipher text 120, a key bit from the main key 118,
and a pair of frequency counts 148 for bits “0” and “1”. The
output of the model controller 128 to RAMs 126 is a read
enable signal 138, a write enable signal 140, modified
frequencies 142 for bits “0” and “1”, respectively, and an
address 144. The RAMs 126 output two frequencies 136 to
the model controller 128. In one exemplary embodiment, the
model 116 is implemented utilizing two clocks, a System
clock and a RAM clock, in order to permit a model con
troller 128 to finish read and write to the RAMs 126 in one
System cycle.

0104. The present invention may also be described as a
two-phase decipher. In the first phase, random bits are
decoded from cipher bits. In the first phase, the key size
controls the decoder 124 so that the model controller 128 can
receive random bit strings from the decoder 124 with the
same size as the key. For each bit pair (one random bit and
one key bit), decipher is performed by:

0105 1) using a shift register in decoder 124, to get
F and F1 from RAMs 126;

0106] 2) if the key bit is 0, add 1 to F0; add 1 to F1;
0107 3) pass F0, F1 to decoder 124;
0108) 4) decoder 124 decodes random bit and send
the random bit to model controller 128;

0109) 5) if the random bit is 0, the model controller
128 adds 1 to F; else adds 1 to F1,

0110) 6) write F0 and F1 back into RAMs 126; and
0111 7) shift the register left, and insert the current
random bit into the last position of the shift register.

0112) When the first phase is completed, a useful initial
frequency table is obtained in RAMs 126.
0113. In the second phase, the plain text 12 is decoded. In
the Second phase, only one input, the cipher text 120, is
required and deciphering includes the following Steps for
each input bit:

0114 1) according to the shift register, get F0 and F1
from RAMs 126;

0115 2) pass F0, F1 to the decoder 124;
0116 3) decoder 124 decodes a plain text bit and
sends the plain text bit to model controller 126;

0117 4) if the plain text bit is 0, add I to F0; else add
1 to F1;

Jul.18, 2002

0118 5) write F0 and F1 back into to RAMs 126;
and

0119) 6) shift the register left, and insert the current
plain text bit into the last portion of the shift register.
Therefore, plain text 12 will be output from decoder
124.

0120 To decode an encrypted message, the frequency
table 130 may be constructed and the random bit stream in
the cipher text 120 can be recovered before decoding
begin(s). Decoding can also be defined in pseudocode as
follows:

0121 Decryption
0122) 1. While j<=n, do
0123 Find the location pointed by r from the
frequency table 130.

0124) If k=1, add 1 to frequency 1 location; else
add 1 to frequency 0 location.

0.125 Use the current frequency counts to decode
one random bit 1.

0.126 If l=1, add 1 to frequency 1 location; else,
add 1 to frequency 0 location.

0127. Left shift r, r=r the random bit
0128 2. Decode cipher text 120 and update model
as follows:

0129. If current bit is 1, add 1 to frequency 1
location, else add 1 to frequency 0 location.

0130 Left shift r, r=r current bit.
0131. It is noted that the functional blocks in
FIGS. 1-3, 6 and 8 may be implemented in hard
ware and/or Software. The hardware/software
implementations may include a combination of
processor(s) and article(s) of manufacture. The
article(s) of manufacture may further include Stor
age media and executable computer program(s).
The executable computer program(s) may include
the instructions to perform the described opera
tions. The computer executable program(s) may
also be provided as part of externally Supplied
propagated signal(s).

0132) The invention being thus described, it will be
obvious that the same may be varied in many ways. Such
variations are not to be regarded as a departure from the
Spirit and Scope of the invention, and all Such modifications
as would be obvious to one skilled in the art are intended to
be included within the scope of the following claims.

1. An encryption device, comprising:
a random number generator, receiving a main key, deter

mining a working key using at least one random
number and outputting the working key;

a model, receiving the main key, the working key and
plain text and generating at least two frequency counts,
and

an encoder, outputting cipher text, based on the working
key, the plain text, and the at least two frequency
COuntS.

US 2002/0094080 A1

2. The encryption device of claim 1, wherein the working
key produced by Said random number generator is variable
length.

3. The encryption device of claim 1, wherein Said encoder
output is variable.

4. The encryption device of claim 1, wherein the working
key and the main key are different.

5. The encryption device of claim 1, wherein said model
includes at least one frequency table containing the at least
two frequency counts.

6. The encryption device of claim 1, wherein the at least
one frequency table is stored in a RAM.

7. The encryption device of claim 1, wherein the ciphered
text output by Said encoder is based on a bit-based proceSS
ing Scheme.

8. The encryption device of claim 5, wherein the at least
one frequency table includes the working key.

9. A method of encrypting, comprising:
processing random bits and key bits to generate at least

one frequency table; and
encoding plain text using the at least one frequency table.
10. The method of claim 9, wherein said processing step

includes generating a random bit String of a length equal to
a key.

11. The method of claim 9, wherein Said processing Step,
different key bits produce a different at least one frequency
table.

12. The method of claim 9, wherein said encoding step
output is variable.

13. The method of claim 9, wherein the ciphered text
output by Said encoder is based on a bit-based processing
Scheme.

14. The method of claim 11, wherein the at least one
frequency table includes the working key.

15. A decryption device, comprising:
a model, receiving a main key, a working key and plain

text and generating at least two frequency counts,

Jul.18, 2002

a decoder, outputting plain text, based on the working key,
the main key, the plain text, the at least two frequency
counts, and

a random number generator, receiving the plain text and
determining the working key using at least one random
number and outputting the working key to Said model.

16. The decryption device of claim 15, wherein the
working key produced by Said random number generator is
variable length.

17. The decryption device of claim 15, wherein said
decoder output is variable.

18. The decryption device of claim 15, wherein the
working key and the main key are different.

19. The decryption device of claim 15, wherein said
model includes at least one frequency table containing the at
least two frequency counts.

20. The decryption device of claim 1, wherein the at least
one frequency table is stored in a RAM.

21. The decryption device of claim 15, wherein the
ciphered text output by Said encoder is based on a bit-based
processing Scheme.

22. The decryption device of claim 19, wherein the at least
one frequency table includes the working key.

23. A method of decrypting, comprising:
processing random bits and key bits to generate at least

one frequency table; and
decoding cipher text using the at least one frequency

table.
24. The method of claim 23, wherein Said processing Step

includes generating a random bit string of a length equal to
a key.

25. The method of claim 23, wherein Said processing Step,
different key bits produce a different at least one frequency
table.

26. The method of claim 23, wherein said decoding step
output is variable.

