7061105 A2 I 0O A0 0 R O A

(19) World Intellectual Property Organization vd”I;v

International Bureau

(43) International Publication Date
22 May 2008 (22.05.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2008/061105 A2

(51) International Patent Classification: Louis, Achille [US/US]; 5775 Morehouse Drive, San
GOG6F 11/36 (2006.01) Diego, California 92121 (US). PYLA, Manojkumar
[IN/US]; 5775 Morehouse Drive, San Diego, California

(21) International Application Number: 92121 (US). CHEN, Xufeng [CN/US]; 5775 Morehouse

PCT/US2007/084587 Drive, San Diego, California 92121 (US).
(22) International Filing Date: (74) Agents: BACHAND, Richard, A. et al.; 5775 Morehouse
13 November 2007 (13.11.2007) Drive, San Diego, California 92121 (US).
(81) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
(26) Publication Language: English CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
L. ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
(30) Priority Data: IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
11/560,344 15 November 2006 (15.11.2006) US LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
(71) Applicant (for all designated States except US): QUAL- MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
COMM INCORPORATED [US/US]; International PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, §Y,
.. . . . TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IP Administration, 5775 Morehouse Drive, San Diego, TM. 7W
California 92121 (US). ’ ’
(84) Designated States (unless otherwise indicated, for every
(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(75) Inventors/Applicants (for US only): CODRESCU, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

Lucian [US/US]; 5775 Morehouse Drive, San Diego, Cal-
ifornia 92121 (US). ANDERSON, William, C. [US/US];
5775 Morehouse Drive, San Diego, California 92121 (US).
VENKUMAHANTI, Suresh [US/US]; 5775 Morehouse
Drive, San Diego, California 92121 (US). GIANNINI,

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR INSTRUCTION STUFFING OPERATIONS DURING NON-INTRUSIVE DIGITAL

SIGNAL PROCESSOR DEBUGGING

250
e QT 1SDB 1ISDB (‘QRL
M DESCRIPTION SEPRESS | TRUSTED | UNTRUSTED | g phicyisoR

MODE

1ISDBST 1ISDB STATUS 0x0 R Rb R
ISODBCEGH ISDB CONFIG 0x1 RiW NONE NONE
1SDRCFGI 18DB CONFIG | 0x2 RiW NONFE NONE
BRKPTINIO BREAKPOINT INFO 0x3 R NONC NONC
BRKPTINCO BRLEAKPOINT 0 ADDRESS 0x4 W NONLC NONL
BRKPTINGO BREAKPOINT 0 CONFIG 0x5 W NONE NONE
BRKPTINC1 BREAKPOINT | ADDRESS Ox6 W NONE NONE
BRKPTINGI BREAKPOINT 1 CONFIG 0x7 W NONE NONE
STFINST STUFE INSTRUCTION Ox8 W NONE NONE

1ISDBMBXIN MAILBOX IN (ISDB--»CORF) 0x9 W W R

ISDBMXOUT MAILBOX IN (CORFE--=ISDB) OxA R R W
1SDBCMD 1SDB COMMAND 0xB w we NONE
ISDB_EN ISDB ENABLE 0xC R'W R'W NONE
ISDB_VERSION TSDB VERSION 0xD R R NONE
ISDB_GPR 1SDB GEI?F%?&]:F;URPOSE 0xF RW NONE RW

Y NO ACCESS 1S ALLOWED FROM TIE CORE IN USER MODE
b ONLY BITS 4:0 ARE VISIBLE IN UNTRUSTED MODF,
“ONLY THE INTERRUPT COMMAND IS AVAILABLE

(57) Abstract: Techniques for the design and use of a digital signal processor, including (but not limited to) for processing trans-

o missions in a communications (e.g., CDMA) system. Stuffing instructions in a processing pipeline of a multi-threaded digital signal
processor provides for operating a core processor process and a debugging process within a debugging mechanism. Writing a stuff
& instruction into a debugging process registry and a stuff command in a debugging process command register provides for identifying

a predetermined thread of the multi-threaded digital signal processor in which to execute the stuff instruction. The instruction stuff-

0

ing process issues a debugging process control resume command during a predetermined stage of executing on the predetermined
thread and directs the core processor to perform the stuff instruction during the debugging process. The core processor may then
execute the stuffed instruction in association with the core processor process and the debugging process.

WO 2008/061105 A2 {0000 00000100 00 0O 0 O

Declarations under Rule 4.17: Published:
— as to applicant’s entitlement to apply for and be granted a — without international search report and to be republished
patent (Rule 4.17(ii)) upon receipt of that report

— asto the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

WO 2008/061105 PCT/US2007/084587

METHOD AND SYSTEM FOR INSTRUCTION STUFFING OPERATIONS
DURING NON-INTRUSIVE DIGITAL SIGNAL PROCESSOR DEBUGGING

FIELD

[0001] The disclosed subject matter relates to data processing systems and
processes such as may find use in data communications and similar applications. More
particularly, this disclosure relates to a novel and improved method and system for
instruction stuffing operations during non-intrusive digital signal processor debugging

operations.

DESCRIPTION OF THE RELATED ART

[0002] Increasingly, telecommunications and other types of electronic
equipment and supporting video, complex audio, videoconferencing and other rich
software applications involve signal processing. Signal processing requires fast
mathematical calculations and data generation in complex, but repetitive algorithms.
Many applications require computations in real-time, i.c., the signal is a continuous
function of time, which must be sampled and converted to digital signals for numerical
processing. The processor must execute algorithms performing discrete computations on
the samples as they arrive.

[0003] The architecture of a digital signal processor (DSP) is optimized to
handle such algorithms. The characteristics of a good signal processing engine include
fast, flexible arithmetic computation units, unconstrained data flow to and from the
computation units, extended precision and dynamic range in the computation units, dual
address generators, efficient program sequencing, and ease of programming.

[0004] One promising application of DSP technology includes communications
systems such as a code division multiple access (CDMA) system that supports voice
and data communications, as well as text messaging and other applications, between
users over a satellite or terrestrial link. The use of CDMA techniques in a multiple
access communication system is disclosed in U.S. Pat. No. 4,901,307, entitled
"SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM
USING SATELLITE OR TERRESTRIAL REPEATERS," and U.S. Pat. No. 5,103,459
entitled "SYSTEM AND METHOD FOR GENERATING WAVEFORMS IN A

WO 2008/061105 PCT/US2007/084587
2
CDMA CELLULAR TELEHANDSET SYSTEM," both assigned to the assignee of the

claimed subject matter.

[0005] A CDMA system is typically designed to conform to one or more
standards. One such first generation standard is the "TIA/EIA/IS-95 Terminal-Base
Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular
System," hereinafter referred to as the IS-95 standard. The IS-95 CDMA systems are
able to transmit voice data and packet data. A newer generation standard that may more
efficiently transmit packet data is offered by a consortium named the "3 Generation
Partnership Project” (3GPP) and embodied in a set of documents including Document
Nos. 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214, which are readily
available to the public. The 3GPP standard is hereinafter referred to as the W-CDMA
Standard.

[0006] Complex DSP operational software employing the W-DCMA Standard,
for example, requires robust development tools. Such development tools may include
those for code generation, integration, testing, debugging, and evaluating application
performance. In developing and operating software or complex DSP applications, such
as advanced telecommunications applications, there is the need for sophisticated, yet
non-intrusive debugging software. That is, debugging software applications must be not
only sufficiently robust to monitor, test, and support the correction of software defects
and operational problems, but also they may operate so as not to interfere with the core
processor software during debugging operations. Otherwise, any problems in the core
processing software may not be detected or detected properly during the use of such
debugging software.

[0007] Moreover, during or in association with non-intrusive debugging
processes, there is frequently the need to operate a variety of diagnostic, analytical, and
other processes for determining various aspects of core processor operations. Such
diagnostic, analytical, and similar programs may vary according to the specific type and
amount of information a use may desire or an associated debugging process may need.
Accordingly, the ability to insert or stuff instructions into a debugging process
dynamically could have significant advantages.

[0008] Presently, however, no known way to perform instruction stuffing
operations exists for debugging core processes in association with a multi-threaded

digital signal processor as has been here described. Yet further, no instruction stuffing

WO 2008/061105 PCT/US2007/084587

3

process exists that may be thread-selective by performing the functions of operating
stuffed instructions on one, two, or more threads of a multi-threaded digital signal
processor. Moreover, no instruction stuffing process or mechanism is known that allows
a debugging process to execute instructions on the core processor in conjunction with or
in association with both the core processing functions and the non-intrusive debugging
process.

[0009] Reasons for which instruction stuffing operations may be advantageous
include for the purpose of reading and/or writing core registers and memory. Also,
debugging process operations may be abstracted for user analysis, including the use of
various analytical application programs. Moreover, instruction operations may allow a
user to enter into the debugging process various instructions applicable to a specific type
of debugging.

[0010] There is a need, therefore, for a debugging process and system for
operation with a DSP, which debugging process and system provides the ability for
instruction stuffing operations during non-intrusive digital signal processor debugging
operations.

[0011] A need exists for an instruction stuffing process and mechanism that may
be applicable to multi-threaded digital signal processor debugging operations.

[0012] A need exists for an instruction stuffing process and mechanism that may
be thread-selective, by providing the ability operate stuffed instructions on one, two, or
more threads of a multi-threaded digital signal processor.

[0013] Still a need exists for an instruction stuffing process or mechanism that
allows a debugging process to execute instructions on the core processor in conjunction
with or in association with both the core processing functions and the non-intrusive
debugging process.

[0014] Also, a need exists for a non-intrusive software debugging process
instruction stuffing operations for processing instructions and data on a core process

during non-intrusive digital signal processor debugging operations.

WO 2008/061105 PCT/US2007/084587

SUMMARY

[0015] Techniques for providing non-intrusive, thread-selective, debugging
method and system for a digital signal processor, including a multi-threaded digital
signal processor, are disclosed, which techniques provide for instruction stuffing
operations during non-intrusive debugging operations. The method and system here
disclosed improve both the operation of a digital signal processor and the efficient use
of digital signal processor instructions for increasingly powerful software applications,
including applications operating in personal computers, personal digital assistants,
wireless handsets, and similar electronic devices, as well as increasing the associated
digital processor speed and service quality.

[0016] According to one aspect of the disclosed subject matter, a method and
system for stuffing instructions in a processing pipeline of a multi-threaded digital
signal processor provide for improved software instruction debugging operations. The
method and system provide for operating a core processor process within a core
processor associated with the digital signal processor and a debugging process within a
debugging mechanism of the digital signal processor. The debugging mechanism is
associated with the core processor. The disclosed subject matter includes writing a stuff
instruction into a debugging process registry associated with the debugging process and
a stuff command in a debugging process command register associated with the
debugging process registry in response to the stuff instruction. The stuff command
provides for identification of a predetermined thread of the multi-threaded digital signal
processor in which to execute the stuff instruction. The present disclosure issues a
debugging process control resume command from the core processor during a
predetermined stage of executing on the predetermined thread and directs the core
processor to perform the stuffed instruction during the debugging process. The present
disclosure provides the stuffed instruction to the core processor for executing the stuffed
instruction in association with the core processor process and the debugging process.
[0017] These and other advantages of the disclosed subject matter, as well as
additional novel features, will be apparent from the description provided herein. The
intent of this summary is not to be a comprehensive description of the claimed subject
matter, but rather to provide a short overview of some of the subject matter’s
functionality. Other systems, methods, features and advantages here provided will

become apparent to one with skill in the art upon examination of the following

WO 2008/061105 PCT/US2007/084587
5

FIGURE:s and detailed description. It is intended that all such additional systems,
methods, features and advantages be included within this description, be within the

scope of the accompanying claims.

BRIEF DESCRIPTIONS OF THE DRAWINGS

[0018] The features, nature, and advantages of the disclosed subject matter may
become more apparent from the detailed description set forth below when taken in
conjunction with the drawings in which like reference characters identify
correspondingly throughout and wherein:

[0019] FIGURE 1 is a simplified block diagram of a communications system
that may implement one of the various embodiments here disclosed;

[0020] FIGURE 2 illustrates a DSP architecture for carrying forth the teachings
of the present disclosure;

[0021] FIGURE 3 provides an architecture block diagram of one embodiment
of a multi-threaded digital signal processor;

[0022] FIGURE 4 shows further an architectural diagram of the process flows
for the control unit, the instruction unit, and other functional components of the present
digital signal processor;

[0023] FIGURE 5 discloses certain aspects of a digital signal processor core
applying the ISDB/JTAG interface features of the present disclosure;

[0024] FIGURE 6 shows an aspect of an ISDB JTAGSync circuit for
performing certain aspects of the debugging procedures here disclosed;

[0025] FIGURE 7 presents a process flow diagram applicable to the operating
modes of the digital signal processor, including the debugging mode of operation to
which the present disclosure pertains;

[0026] FIGURE 8 depicts a breakpoint processing scheme applicable to the
embodiment of the present disclosure;

[0027] FIGURE 9 illustrates the ISDB command register contents for one
embodiment of the disclosed subject matter, including an instruction stuffing register for
disclosing the disclosed process; and

[0028] FIGURE 10 presents a processing timing cycle chart for depicting the
disclosed process for instruction stuffing in association with a non-intrusive debugging

Proccess.

WO 2008/061105 PCT/US2007/084587
6
DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS

[0029] The disclosed subject matter for a non-intrusive, thread-selective,
debugging method and system for a multi-threaded digital signal processor has
application for multi-threaded processing of any type for which the benefits here
presented may be advantageous. One application appears in telecommunications and, in
particular, in wireless handsets that employ one or more digital signal processing
circuits. For explaining how a wireless handset may be used, FIGURE 1 provides a
simplified block diagram of a communications system 10 that may implement the
presented embodiments of the disclosed interrupt processing method and system. At a
transmitter unit 12, data is sent, typically in blocks, from a data source 14 to a transmit
(TX) data processor 16 that formats, codes, and processes the data to generate one or
more analog signals. The analog signals are then provided to a transmitter (TMTR) 18
that modulates, filters, amplifies, and up converts the baseband signals to generate a
modulated signal. The modulated signal is then transmitted via an antenna 20 to one or
more receiver units.

[0030] At a receiver unit 22, the transmitted signal is received by an antenna 24
and provided to a receiver (RCVR) 26. Within receiver 26, the received signal is
amplified, filtered, down converted, demodulated, and digitized to generate in phase (I)
and (Q) samples. The samples are then decoded and processed by a receive (RX) data
processor 28 to recover the transmitted data. The decoding and processing at receiver
unit 22 are performed in a manner complementary to the coding and processing
performed at transmitter unit 12. The recovered data is then provided to a data sink 30.
[0031] The signal processing described above supports transmissions of voice,
video, packet data, messaging, and other types of communication in one direction. A bi-
directional communications system supports two-way data transmission. However, the
signal processing for the other direction is not shown in FIGURE 1 for simplicity.
Communications system 10 may be a code division multiple access (CDMA) system, a
time division multiple access (TDMA) communications system (e.g., a GSM system), a
frequency division multiple access (FDMA) communications system, or other multiple
access communications system that supports voice and data communication between
users over a terrestrial link. In a specific embodiment, communications system 10 is a

CDMA system that conforms to the W-CDMA Standard.

WO 2008/061105 PCT/US2007/084587
7

[0032] FIGURE 2 illustrates DSP 40 architecture that may serve as the transmit
data processor 16 and receive data processor 28 of FIGURE 1. We emphasize that DSP
40 only represents one embodiment among a great many of possible digital signal
processor embodiments that may effectively use the teachings and concepts here
presented. In DSP 40, therefore, threads T0:TS (reference numerals 42 through 52),
contain sets of instructions from different threads. Circuit 54 represents the instruction
access mechanism and is used for fetching instructions for threads T0:TS. Instructions
for circuit 54 are queued into instruction queue 56. Instructions in instruction queue 56
are ready to be issued into processor pipeline 66 (see below). From instruction queue
56, a single thread, e.g., thread T0, may be selected by issue logic circuit 58. Register
file 60 of a selected thread is read and read data is sent to execution data paths 62 for
SLOTO0:SLOT3. SLOTO0:SLOTS3, in this example, provide for the packet grouping
combination employed in the present embodiment.

[0033] Output from execution data paths 62 goes to register file write circuit 64,
also configured to accommodate individual threads TO:TS, for returning the results from
the operations of DSP 40. Thus, the data path from circuit 54 and before to register file
write circuit 64 forms a processing pipeline 66. The present embodiment may employ a
hybrid of a heterogeneous element processor (HEP) system using a single processor
with up to six threads, T0:TS. Processor pipeline 66 has six stages, which matches the
minimum number of processor cycles necessary to fetch a data item from circuit 54 to
registers 60 and 64. DSP 40 concurrently executes instructions of different threads
TO:T5S within a processor pipeline 66. That is, DSP 40 provides six independent
program counters, an internal tagging mechanism to distinguish instructions of threads
T0:T5S within processor pipeline 66, and a mechanism that triggers a thread switch.
Thread-switch overhead varies from zero to only a few cycles.

[0034] DSP 40, therefore, provides a general-purpose digital signal processor
designed for high-performance and low-power across a wide variety of signal, image,
and video processing applications. FIGURE 3 provides a brief overview of the DSP 40
architecture, including some aspects of the associated instruction set architecture for one
manifestation of the disclosed subject matter. Implementations of the DSP 40
architecture support interleaved multithreading (IMT). In this execution model, the
hardware supports concurrent execution of multiple hardware threads TO0:TS by

interleaving instructions from different threads in the pipeline. This feature allows DSP

WO 2008/061105 PCT/US2007/084587

8

40 to include an aggressive clock frequency while still maintaining high core and
memory utilization. IMT provides high throughput without the need for expensive
compensation mechanisms such as out-of-order execution, extensive forwarding
networks, and so on. Moreover, the DSP 40 may include variations of IMT, such as
those variations and novel approaches disclosed in the commonly-assigned U.S. Patent

Applications by M. Ahmed, et al, and entitled “Variable Interleaved Multi-threaded

Processor Method and System”™ and “Method and Svstem for Variable Thread

’

Allocation and Switching in a Multi-threaded Processor.’

[0035] FIGURE 3, in particular, provides a core processing architecture 70
block diagram for DSP 40 as applied to a single thread that may employ the teachings of
the disclosed subject matter. Block diagram 70 depicts shared instruction cache 72
which receives instructions via Bus interface (I/F) 73 from AXI Bus 74, which
instructions include mixed 16-bit and 32-bit instructions. These instructions reach to
sequencer 76, user control register 78, and supervisor control register 80 of threads
TO:TS. The core-level system architecture of the disclosed subject matter also includes
in-silicon debugging system(ISDB) 82, which interfaces core processor 70 via JTAG
interface 84, both of which are described in more detail below.

[0036] Sequencer 76 provides hybrid two-way superscalar instructions and four-
way VLIW instructions to S-Pipe unit 86, M-Pipe unit 88, LD[Load]-Pipe 90, and
LD/ST[Store]-Pipe unit 92, all of which communicate with general registers 94. AXI
Bus 74 also communicates via Bus I/F 73 with shared data cache 96 LD/ST instructions
to threads TO0:TS. Optional L2 Cache/TCM 98 signals include LD/ST instructions with
shared data TCM 100, which LD/ST instructions further flow to threads General
Registers 94. From AHB peripheral bus 102 MSM specific controller 104
communicates interrupts with T0: TS, including interrupt controller instructions,
debugging instructions, and timing instructions. Global control registers 106
communicates control register instructions with threads T0:T5.

[0037] DSP 40, therefore, includes six virtual DSP cores, each containing global
control registers 106 and private supervisor control registers 80. Global control registers
106 are shared between all threads. Each thread shares a common data cache and a
common instruction cache. Load, store, and fetch operations are serviced by a common
bus interface. High performance AXI bus 74 and a lower performance AHB bus 102 are

used to connect the data and instruction traffic to off-core memory and peripherals. An

WO 2008/061105 PCT/US2007/084587

9

integrated level two memory (cache and/or TCM) input 98 is optional. Peripheral access
may be through memory-mapped loads and stores. The physical address partition
between AHB and AXI may be configured at the MSM level.

[0038] Clearly, the presented architecture for DSP 40 may evolve and change
over time. For example, the number of instruction caches that DSP 40 may use could
change from six to one, or other numbers of caches. Superscalar dispatch, L1 data at
TCM 100, and other architectural aspects may change. However, the present subject
matter may have continued relevance in a wide variety of configurations and for a large
family of modifications of DSP 40.

[0039] ISDB 82, through JTAG interface 84, provides a hardware debugging
process for DSP 40. ISDB 82 provides software debug features through JTAG interface
84 by sharing system or supervisor-only registers, that are divided into supervisor
control registers 80 on a per thread basis, as well as global control registers 106 between
all threads. The system control registers are used for per thread interrupt and exception
control and per thread memory management activities. Global registers allow interacting
with the ISDB 82 for debugging operations.

[0040] ISDB 82 enables software developers to debug their software while DSP
40 operates. ISDB 82 hardware, in combination with a software debugging process
program operating in ISDB 82, may be used to debug the DSP 40 operating system
software. ISDB 82 supports debugging hardware threads individually. Users may
suspend thread execution, view and alter thread registers, view and alter instruction and
data memory, single step threads, stuff instructions to threads, and resume thread
execution.

[0041] ISDB 82 may interface with a debugging process interface card to
communicate with ISDB 82 debugging software residing on a program counter, yet all
through JTAG interface 84. Host debugging process software may interact with the
ISDB 82 by reading and writing ISDB control registers. Communication, for example,
may be through a 40-bit packet which identifies the ISDB register to which read/write is
to occur, as well as a 32-bit data payload. A packet format supporting this operation
may be up to 64 control registers which may be 32 bits wide each.

[0042] FIGURE 4 presents a diagram of the micro-architecture 110 for DSP 40
including control unit (CU) 112, which performs many of the control functions for

processor pipeline 46. CU 112 schedules and issues instructions to three execution units,

WO 2008/061105 PCT/US2007/084587
10

shift-type unit(SU) 116, multiply-type unit (MU) 118, and load/store unit (DU) 120. CU
112 also performs superscalar dependency checks. Bus interface unit (BIU 114) 122
interfaces IU 114 and DU 120 to a system bus (not shown). SLOTO0 and SLOT1
pipelines are in DU 120, SLOT?2 is in MU 118, and SLOT3 is in SU 116. CU 112
provides source operands and control buses to pipelines SLOT0:SLOT3 and handles
GRF and CRF file updates. CU 112 accepts external inputs such as interrupts and reset,
and supports ISDB/ETM 122. CU 112 also handles exceptions due to protection
violations occurring during address translations.

[0043] ISDB 82 interfaces with three domains: host debugging software through
JTAG 84, DSP 40 core through IU 114 and CU 112, and other cores present in the
system through a Multi-Core Debug (MCD) signal interface. The primary interface
between the host debugging software and DSP 40 core is a set of JTAG accessible
registers referred to as ISDB 82 registers. The host debugging software performs
various debugging process tasks by executing a sequence of ISDB 82 register reads and
writes.

[0044] ISDB 82 communicates with the test environment (in this case a POD or
debugging process interface card communicating with the debugging process software
residing on a PC) through JTAG interface 84. The host debugging process software
interacts with the ISDB by reading and writing ISDB control registers. Communication
occurs through a 40-bit packet which identifies the ISDB register in which to read
and/of write and a 32-bit data payload for the various ISBD command, including the
present instruction stuffing process.

[0045] FIGURE 5 shows important aspects of ISDB/JTAG interface 110
between the debugging mechanism and the core processor of the disclosed subject
matter. In association with DSP 40 core architecture 70, ISDB 82 communicates with
JTAG 84 via path JTAG interface path 112, from ISDB JTAG circuit 114. ISDB JTAG
circuit 114 processes data flows between JTAG 84 and ISDB 82. ISDB JTAG circuit
114 further interfaces ISDB JTAGSync circuit 116. ISDB JTAGSync circuit 116
communicates further with ISDB controller 118, IU 114 and CU 112. Particularly,
ISDB JTAGSync circuit 136 interfaces IU 114, ISDB logic circuit 144, and CU ISDB
Controller 146 of CU 112. CU ISDB controller 146 communicates with CU ISDB logic
circuit 148, as well as ISDB controller 138. Control outputs from ISDB controller 138
include ISDB data output 154, ISDB reset signal 150, and ISDB interrupt 152. Further

WO 2008/061105 PCT/US2007/084587

11

interfaces to ISDB controller 138 include MCD interface 156 and ETM break trigger
158.

[0046] ISDB 82 provides hookups for multi-core debug at the MSM level
through MCD interface 156. The MCD interface 156 consists of a pair of input signals
which trigger break or resume of core processor 70 and a pair of output signals which
indicate that core processor 70 is entering a debugging process or resuming program
execution. The MCD break triggers may follow an edge-based protocol such that when
a rising edge is detected on an external breakpoint trigger, the threads indicated in
external breakpoint thread number mask suspend execution and enter debug mode.
Similarly, when a rising edge is detected on the MCD external resume trigger, the
threads indicated in external resume thread number mask, if in debug mode, resume
normal program execution.

[0047] ISDB 82 control logic is spread across two blocks: ISDB controller 138
in ISDB 82 and CU ISDB controller 146 in CU 112. ISDB controller 138 handles the
tasks of implementing ISDB enable, ISDB version, and ISDB general purpose register
registers. MCD external break and resume triggers 156 and ETM break trigger 158 are
synchornized to the core processor 70 clock before they are forwarded to CU 112 for
further processing. ISDB controller 138 also generates MCD break trigger and the MCD
resume trigger based on debug mode status of core processor 70. ISDB controller 138
adds a pipeline stage for signals sent out to DSP 40, such as an ISDB interrupt, break
event, and other signals. The rest of the control logic which includes breakpoint
processing, micro-command generator, mailbox and status logic is handled by CU ISDB
controller 146.

[0048] CU 112 includes circuitry and instructions capable of handling the tasks
such as (a) processing breakpoints and generating break triggers to each thread; (b)
generating micro-break and micro-resume commands; (c) maintaining ISDB 82 status
and mailbox registers; and (d) implementing the certain ISDB 82 registers. CU 112
includes a breakpoint processing logic (BPL) block as appears in FIGURE 8 for
processing all the breakpoints and generating a macro break request to a micro-
command generator of CU ISDB controller 126. The micro-command generator
processes the macro break request along with instruction stuff commands, instruction
step and resume commands and issues micro-break and resume commands to CU 112

for pipeline control.

WO 2008/061105 PCT/US2007/084587
12
[0049] CU ISDB controller 128 maintains the statc of ISDB 82 based on the

break and resume acknowledge signals received back. The mailbox functions of CU
ISDB controller 146 maintain mailbox registers used for communication between the
host debug software and the DSP 40 core processor. These mailbox functions also
contain ISDB 82 status registers.

[0050] To demonstrate illustrative circuitry for performing the presently
disclosed instruction stuffing operations in association with non-intrusive debugging
operations, FIGURE 6 includes ISDB JTAGSync circuit 160. ISDB JTAGSync circuit
160 includes an ISDB test data register 162 which DSP 40 may use to read and write the
ISDB control registers. ISDB JTAGSync circuit 160 provides the synchronization logic
between the ISDB test data register 162 operating on DB _tck and the ISDB control
registers 164 operating in the DSP 40 clock domain. By reading and writing the ISDB
control registers, DSP 40 performs various debugging process tasks as may be
supported by the ISDB 82, including the presently disclosed instruction stuffing
operations.

[0051] In the implementation of FIGURE 6, ISDB JTAGSync circuit 160
receives JTAG isdb_chain_in signal 164 into ISDB Test Data Register 204 to generate
JTAG isdb_chain_out signal 166. ISDB Test Data Register 162 includes read/write
(R/W) bits 167, Address bits [6:0] 168, and Data bits [31:0] 170. Values in R/W bits
167 go to AND gate 172, as do Sync circuit output 174 and CU 112_trustedDebug input
176. JTAG isdb_chain update tkl signal 178 and ISDB_CLK signal 180 control the
operation of Sync circuit 174. Address information from Address bits 168 may be
received by Address Decode circuit 176, which feeds ISDB Registers 184. ISDB
Registers 184 transfer data with Data bits [31:0] in response to a write enable signal 186
from AND gate 172.

[0052] ISDB JTAGSync circuit 130 acts as the synchronization bridge between
the TAP controller running on JTAG TCK in DB_JTAG block and ISDB registers 184
running on DSP 40 core clock distributed in ISDB controller 138, CU 112_ISDBCtrl
146 and IU 114. The ISDB controller 138 and CU ISDB controller 146 contain the
control logic of ISDB 82 which consists of a micro-command generator, breakpoint
processing logic and various ISDB registers 184 (configuration, mailbox, command
etc.). These blocks execute different debugging process tasks initiated by host
debugging software on the DSP 40 core. The ISDB interrupt signal is sent out to the

WO 2008/061105 PCT/US2007/084587

13

DSP subsystem where it is merged with other interrupt sources and sent back to the
DSP core 70. Similarly an ISDB 82 reset is merged with other reset sources (power-on
reset, software reset etc.) to trigger a reset to the core. ISDB 82 interfaces with external
systems (e.g., an MSM system external to DSP 40) through an MCD signal interface.
Two pairs of break and resume triggers are provided to support simultancous debugging
of DSP 40 and other cores in external system.

[0053] FIGURE 7 presents a processing mode diagram 190 for the various
mode control aspects of DSP 40, including operations of ISDB 82 during debugging
processes. In FIGURE 7, DSP 40 supports processing modes that are both global to all
threads and local to individual threads. Each DSP 40 hardware thread individually
supports two execution modes, USER mode 192 and SUPERVISOR mode 194, and
three non-processing modes of WAIT mode 196, OFF mode 198, and DEBUG mode
200, all as may appear in FIGURE 7. The mode of a thread is independent of other
threads, for example one thread may be in WAIT mode 196 while another is in USER
mode 192, and so on.

[0054] The per-thread mode state diagram of FIGURE 7 is supported by
various instructions or events. These include “Except” or internal exception event, an
“Int” or external interrupt event, an “RTE” or software return instruction from exception
mode, and “SSR” or update to SSR register instruction, a “Stop” or software stop
instruction that may be entered from any mode, a “Start” or software Start Instruction
that also may be entered from any mode, a “trap” or software Trap Instruction, a “Wait”
or software wait Instruction, a “Resume” or software Resume Instruction, a “DE” or
Debug Event, and a “DR” or Debug Instruction. While the functions in different
implementations of the claimed subject matter may vary slightly from those here
presented, the meanings of “Start,” “Wait,” “Resume,” “DE,” and/or “DR” may be
given their broadest interpretations consistent with the scope of the claimed subject
matter.

[0055] Registers are available in DSP 40 in both USER mode 192 and
SUPERVISOR mode 194. The user-mode registers are divided into a set of general
registers and a set of control registers. General registers are used for all general purpose
computation including address generation, scalar and vector arithmetic. Control
registers support special-purpose functionality such as hardware loops, predicates, etc.

General purpose registers are 32 bits wide and may be accessed as single registers or as

WO 2008/061105 PCT/US2007/084587

14

aligned pairs of two registers. The general register file provides all operands for
instructions, including addresses for load/store, data operands for numeric instructions,
and vector operands for vector instructions.

[0056] DEBUG mode 200 provides a special state where the thread is waiting
for commands from ISDB 82. Whenever an ISDB Debug Event occurs, such as by the
execution of a software breakpoint instruction, a break command from ISDB 82, or
occurrence of a hardware breakpoint, indicated threads may enter DEBUG mode 200.
While in DEBUG mode 200, the core is controlled by ISDB 82 via commands from
JTAG interface 84. When the ISDB 82 releases the thread due to execution of a resume
command, the thread may resume operation according to their current mode settings.
When a thread is in DEBUG mode 200, it is controlled by ISDB 82 and cannot be
controlled by other threads. Such control may include the execution of various
instructions as may be provided through the presently disclosed instruction stuffing
operations. A Wait, Resume, Start, or Stop instruction from a running thread, targeting a
thread in DEBUG mode 200, may be ignored. Similarly, a Non-Maskable Interrupt
(NMI) may be ignored by threads in DEBUG mode 200.

[0057] A HARDWARE RESET mode (not shown in FIGURE 7) and DEBUG
mode 200 are global to all threads. Whenever the hardware reset pin is asserted,
regardless of any thread’s processing state, DSP 40 may enter HARDWARE RESET
Mode. In HARDWARE RESET mode, all registers are set to their reset values. No
processing may occur until the hardware reset pin is de-asserted. When the reset pin is
asserted, the processor may transition into reset mode and all registers may be reset to
their HARDWARE RESET values. After the reset pin is de-asserted, thread TO may be
given a soft reset interrupt. This may cause thread TO to enter SUPERVISOR mode 194
and begin executing at the reset vector location. All other threads may remain off. At
this point, the software is free to control mode transitions for each thread individually.
[0058] In FIGURE 8, it is seen that BPL circuit 210 of CU ISDB controller 146
includes break triggers from six different sources, including hardware breakpoints 0/1
(HWBKPTO0 212 and HWBKPT1 214), software breakpoint (SWBKPT 216), JTAG
interface 84 breakpoint JTAGBKPT 218), ETM (embedded trace macro) breakpoint
(ETMBKPT 220), and external breakpoint (EXTBKPT 222). Break trigger 212 through
222 and debug mode status input 214 go to encode break encoder 216 to cause DSP 40
to operate in DEBUG mode 200. Output from encoder 226 includes three (3) breakpoint

WO 2008/061105 PCT/US2007/084587

15

information bits 228 and a breakpoint valid bit 230. Breakpoint information data 228
enters breakpoint information circuit 232 to cause a breakpoint information JTAG
interface command 234. Breakpoint bit 230 also generates OR gate input 236 and reset
circuit 238 input. Reset circuit 238 receives either a UCG resume thread number or a
reset input 242 to generate reset control output 244 into OR gate 246. Either valid bit
236 or reset output 244 may cause OR gate 246 to generate BPL breakpoint output 248.
[0059] The break triggers in BPL circuit 210 are processed along with the
corresponding thread number mask to generate macro break trigger to each of the
threads. The macro break trigger 248, bpl_breakTnum_ANY[0], is maintained until the
corresponding thread is resumed. The number of pipeline stages that may be used in
BPL circuit 210 is driven by hardware breakpoints which are precise breakpoints, i.¢.,
the instruction that triggers hardware breakpoint match must not be executed. The
thread switches to debug mode after executing the program until that instruction. The
disclosed embodiment provides a macro break trigger one cycle after the break triggers
arrive. For that reason the breakValid input 226 is logically OR’ed with its latched
version input 242 to generate bpl breakTnum_ ANY/[0] output 248.

[0060] Through the use of breakpoints, the six threads of DSP 40 may
individually enter and exit DEBUG mode 200. A breakpoint trigger may come from
five sources which correspond to the five different types of breakpoints supported in
ISDB 82. Upon hitting a breakpoint, a thread transitions from its current mode (e.g.,
WAIT/RUN) to DEBUG mode 200. In DEBUG mode 200, the thread waits for
commands from ISDB 82. A thread in OFF mode 198 is powered down and may not
accept any commands from ISDB 82. The latency of entering DEBUG mode 200 is
implementation defined, such as in the present disclosure as relating to the event a
power collapse. For example, an implementation may choose to complete a given
operation, for example finish an outstanding load request, before entering DEBUG
mode 200. In one embodiment, a thread identifier register contains an 8-bit read/write
field and is used for holding a software thread identifier. This field is used by the
hardware debugging process to match breakpoints.

[0061] ISDB 82, therefore, has four operations: break, resume, stuff instruction,
single step. From the micro-architecture point of view, there are two basic operations:
break and resume. The micro-break command and micro-resume command to refer to

operations of break, stuff instruction and single step. For example, the stuff instruction

WO 2008/061105 PCT/US2007/084587

16

operation may be viewed as a micro-break command followed by micro-resume
command after the stuff instruction operations. Breakpoint operations may be triggered
from five sources, as herein described. Each break source may break multiple threads as
specified in its corresponding tread number mask value.

[0062] FIGURE 9 illustrates the ISDB command register contents for one
embodiment of the disclosed subject matter. These ISDB control registers may be used
by the host system to configure ISDB 82 to perform different debugging process tasks
and communicate with the processor. These registers are accessible through the JTAG
interface. The ISDB status register (ISDBST) indicates the current status of ISDB,
including the stuff command status bits for which a “0” values indicates a stuff
instruction is successful, whereas a “1” value indicates the stuff instruction caused an
exception. The host system may use the ISDB configuration registers 0 and 1
(ISDBCFGO, ISDBCFG1) register to enable or disable various features of the ISDB 82.
The breakpoint info register (BRKPTINFO) indicates, for the threads in debug mode,
which trigger caused the breakpoint. The breakpoint PC register 0 and 1(BRKPTPCO,
BRKPTPC1) is identical to BRKPTPCO, control hardware breakpoint 0 and 1,
respectively. The breakpoint configuration registers (BRKPTCFGO and BRKPTCFG1)
are used to configure breakpoint 0 and 1, respectively. The stuff instruction register
(STFINST) allows for a 32-bit stuff instruction. The ISDB mail box registers
(ISDBMBXIN and ISDBMBXOUT) are used to exchange data between the ISDB and
core processor 70. The ISDB command register (ISDBCMD) is used by DSP 40 to issue
various commands to the ISDB 82. This ISDB enable register (ISDBEN) enables ISDB
operations and allows checking the status of the “security” ISDB enable bit and the
ISDB clock. The ISDB version register (ISDBVER) reads the version of the ISDB
design present in the chip. ISDB general purpose register ISDBGPR) provides storage
for general functions associated with ISDB 82.

[0063] The ISDB command register provides, in the disclosed embodiment, a
32-bit register whose value is output into DSP 40. The ISDB command register may be
used to control external hardware, and in an MSM-specific manner. The ISDB control
registers are accessed by the debugging process host software via JTAG interface 84
and are distributed across three units: ISDB 82, IU 114 and CU 112. Instead of placing
all the registers in ISDB 82, the registers are placed locally in the unit where the register

values are used primarily.

WO 2008/061105 PCT/US2007/084587
17

[0064] The ISDB registers of FIGURE 9 are distributed among ISDB 82, ITU
114 and CU 112 the following way: ISDB 82 includes the ISDB enable register; ISDB
version register; and ISDB general purpose register. The CU 112, wherein are the ISDB
control mailbox, breakpoint logic, and micro-command generator blocks, includes ISDB
configuration registers (ISDBCFGO0 & ISDBCFG1), the command register
(ISDBCMD), breakpoint configuration registers (BRKPTCFG0O & BRKPTCFG1),
breakpoint information register (BRKPTINFO), breakpoint status register (ISDBST),
breakpoint mailbox in register ISDBMBXIN, ISDBMBXOUT). The IU 114 112
register block includes breakpoint command registers (BRKPTPCO, BRKPTPC1),
breakpoint configuration registers (BRKPTCFG0, BRKPTCFG1), and, as is relevant to
the present disclosure, the stuff instruction register (STFINST).

[0065] Instruction stuffing, as here disclosed, provides a method and system for
ISDB 82 to execute instructions on the core. Instructions are stuffed for various reasons.
These may include for the reasons of reading and/or writing core registers and memory,
as well as for debugging process operations abstracted for the user and user-entered
instructions. To stuff an instruction, the user first programs the STFINST register of the
ISDB command register with the 32-bit instruction to be executed. The ISDB command
register is then written, beginning with setting the command field to the STUFF code.
Then, the process sets the thread number field to the thread to receive the instruction.
Preferably, one bit in the thread number field may be set. The selected thread must be in
DEBUG mode 200 before the instruction may be stuffed. If more than one bit in thread
number is set or the selected thread is not in debug mode, the results are undefined.
Then, the instruction stuffing process includes setting the privilege level of the stuffed
instructions (either for use in USER mode 192 or SUPERVISOR mode 194). After
issuing the STUFF command, the instruction may be executed on the chosen thread
with the chosen privilege level. During instruction stuffing, the program counter (PC)
does not advance. Stuffed instructions which use the PC for branches, or instructions
that cause an exception may use the current PC value for the thread on which the stuffed
instructions execute.

[0066] In the case that a stuffed instruction causes an exception, the ISDB status
register, ISDBST, may indicate that an exception occurred. The thread may remain in
debug mode. The architected registers for the specific may reflect the exception state.

For example, if a LOAD instruction is stuffed that causes a TLB miss exception, then an

WO 2008/061105 PCT/US2007/084587

18

exception register (ELR) may be set to the current PC, the PC may be changed to
exception vector, and a status register (SSR) may hold the correct cause code and status
information. The debugging process software may query the ISDBST after stuffing an
instruction that could cause an exception to see if an exception occurred. If it did, then
the SSR register may be read, via stuffing a control register transfer instruction, to
determine the exception cause.

[0067] Once an exception has been recognized, the debugging process has a
number of choices as to how to handle the situation. For example, the debugging
process may choose to program a software or hardware breakpoint at the exception
return point and resume the thread in order to run the handler. Also, the debugging
process could redirect a thread to an operating system “helper” function, as well as to
step through the handler using a single-step function. Furthermore, the debugging
process may manually fix the problem (e.g., reload the TLB). The exact strategy is left
to the operating system and/or debugging process implementation.

[0068] Registers, cache, and memory may be accessed by stuffing the
appropriate instruction sequences. The debugging process software may read/write
thread registers by stuffing the appropriate control register transfer instruction to move
data between a core register and the ISDB mailbox. This instruction may be stuffed
using supervisor privilege level to ensure no exception occurs. Cache contents (data and
cache tag value) may be read and/or written by stuffing the appropriate cache
maintenance and load instructions.

[0069] Memory may be read/written by stuffing the appropriate LOAD/STORE
instruction. When the MMU is enabled, Loads and Stores always execute using a virtual
address. The MMU provides the information may be stored in a cache memory, such as
signaling as cacheable, uncacheable, etc. If it is desired to access memory from a
particular source, for example, to read from a device in uncached memory, then the
debugging process software ensures that the MMU is properly configured for this
access. For certain debug scenarios, the debugging process software may engage the
help of the operating system to configure a specific scenario.

[0070] Cache contents are affected as if the stuffed instruction came from
normal program flow. For example, a cacheable load that misses in the data cache may
cause a line replacement. In the case that one thread is in debug mode and others are

running, the cache contents may change accordingly. In the case of a load that misses in

WO 2008/061105 PCT/US2007/084587

19

the cache or an uncached load, the stuff command may not be reported as complete in
the ISDB status register until the load data returns and the operations completes
normally.

[0071] To read instruction memory, a similar procedure as reading data memory
may take place. To write instruction memory, for example to set software breakpoints,
the debugging process software may first stuff a STORE instruction to write the
instruction memory. Then, the process includes stuffing a data cache clean address
instruction to force the data into external memory, stuffing a barrier instruction to
ensure that the change is observable in external memory, and an instruction cache
invalidate address instruction to remove the old entry from the instruction cache.

[0072] Instruction stuffing, as herein disclosed, may also be of use in association
with resetting DSP 40. Note that executing an ISDB RESET command forces a
hardware reset and causes the entire DSP 40, i.¢., all threads, to reset. This may set all
registers to initial values, power off threads T0:T5 and send a reset interrupt to thread
TO. If, on the other hand, it is desired to reset just certain threads, this can be done using
instruction stuffing. The steps include stuffing a “START” instruction with appropriate
mask settings. This may cause a reset interrupt to be pending to the indicated threads.
Then, the sequence includes executing an ISDB RESUME instruction on the desired
threads. Performing such a sequence, therefore, makes possible an advantageous process
of thread-selective resetting, without resetting all of DSP 40.

[0073] FIGURE 10 presents a processing timing cycle chart for depicting the
disclosed process for instruction stuffing in the disclosed non-intrusive debugging
process. The signal behavior during a stuff operation on a particular thread, as depicted
by FIGURE 10, shows the sequence of events on a single thread of DSP 40. Similar
behavior may be seen by each thread in their corresponding pipeline stages. The stuffed
instruction is provided by writing to the STFINST register of the ISDB command
registers. To execute the stuffed instruction, debug software writes to the ISDB
command register with the stuff command. The command also provides the specific
thread for the stuffed instruction to execute. ISDB control register 138 issues a micro-
resume command in the EX3 stage of thread pipeline processing for the thread on which
the stuff instruction is to execute. At this point, the CU ISDB micro-resume type EX3
register is set to “0x2.” This indicates that the issued micro-resume command is to

perform a stuff operation. CU 112 asserts a CU debugging exception instruction at the

WO 2008/061105 PCT/US2007/084587

20

WB stage of the following cycle. Upon receiving the CU debugging exception
instruction, IU 114 clears off the old instruction buffer state and prepares to fetch from a
new location similar to regular exception.

[0074] CU 112 sends a stuff instruction request to IU 114 in the following RF
stage and asserts a CU next issue pointer instruction in the WB stage. Upon receiving
the CU next issue point instruction, IU 114 provides the stuffed instruction to CU 112 in
a similar way as an UC instruction. It may be multiplexed with BU return data inside U
114 once, instead of multiplexing on a per-thread basis. This feature saves multiplexing
cost, as well as routes congestion over and instruction cache. The micro-resume
command is associated with a side-band signal to indicate the privilege level of the
stuffed instruction. This permits executing in either USER mode 192 or SUPERVISOR
mode 194.

[0075] While the stuffed instruction is being executed, CU 112 sends another
instruction request to IU 114 to restore the instruction buffer with the regular program
instruction. When the stuffed instruction is committed, CU 112 needs to return micro-
resume status in the WB processing stage, whether the resume status is success or not,
along with an acknowledgement. ISDB controller 138 then issues a micro-break
command in the following RF stage to prevent CU 112 from executing the next
instruction. If the resume status is not success, CU 112 may instruction IU 114 to handle
the exception in normal ways. Note, however, that the only reason is that the stuffed
instruction causes an exception. The current program counter may be pushed to ELR
and then updated to the except handler entry point. The thread may be stopped due to
the micro-break command. After receiving micro-break command acknowledge, stuff
instruction may be complete. Accordingly, the micro-break command status may be
always success in this case.

[0076] In summary, the disclosed subject matter provides a method and system
for stuffing instructions into a processing pipeline of a multi-threaded digital signal
processor for improved software instruction debugging operations. The method and
system provide for writing a stuff instruction into the debugging process registry. The
disclosure includes writing a stuff command in a debugging process command register
for executing the stuffed instruction. A predetermined thread of the multi-threaded
digital signal processor in which the execution of the stuff instruction is to be executed

is identified by the stuff instruction. The process and system issue a CU 112 debugging

WO 2008/061105 PCT/US2007/084587

21

process control resume command during a predetermined stage, i.¢., the EX3 stage, of
executing the thread on the multi-threaded digital signal processor and set the CU 112
debugging process resume type to the predetermined stage of executing the thread for
indicating that the issued resume command is to perform a stuff operation. The present
disclosure also asserts a CU 112 exception command in the WB stage of following
cycle and clears off the old instruction buffer state upon assertion of the CU 112
exception command. Then, the method and system prepare to fetch from a new location
similar to a regular exception, while maintaining ELR notwithstanding a debugging
process exception.

[0077] Also, the present embodiment sends a stuff request from the CU 112 to
IU 114 in a subsequent processing stage and asserts a CU 112 next issue pointer the
following cycle. The stuffed instruction is provided to the CU 112 upon receiving the
CU 112 next issue pointer, whereupon U 114 provides the stuffed instruction to CU
112 in a similar way as an UC instruction. The stuffed instruction is then multiplexed
with BU return data inside the IU 114 only once, instead of on a per thread basis. The
micro-resume command is associated with a side-band signal to indicate the privilege
level of the stuffed instruction (execute in user/supervisor mode). While the stuffed
instruction is being executed, CU 112 sends another instruction request to IU 114 to
restore the instruction buffer with the regular program instruction. Then, when the
stuffed instruction is committed, CU 112 needs to return micro-resume status in WB,
whether the resume status is success or not, along with an acknowledgement. The CU
ISDB controller then issues a micro-break command in the following RF stage to
prevent CU 112 from executing the next instruction. If the resume status is not success
(i.e., when the stuffed instruction causes an exception), the CU 112 may control the TU
114 to handle the exception in normal ways. Then, the current PC may be stored in the
ELR register of DSP 40 and the PC may be updated to the except handler entry point.
The thread may then be stopped due to the micro-break command. After receiving
micro-break command acknowledge, the stuff instruction is complete.

[0078] The processing features and functions described herein for instruction
stuffing operations in association with non-intrusive, thread-selective, debugging in a
multi-threaded digital signal processor may be implemented in various manners. For
example, not only may DSP 40 perform the above-described operations, but also the

present embodiments may be implemented in an application specific integrated circuit

WO 2008/061105 PCT/US2007/084587

22

(ASIC), a microcontroller, a digital signal processor, or other electronic circuits
designed to perform the functions described herein. Moreover, the process and features
here described may be stored in magnetic, optical, or other recording media for reading
and execution by such various signal and instruction processing systems. The foregoing
description of the preferred embodiments, therefore, is provided to enable any person
skilled in the art to make or use the claimed subject matter. Various modifications to
these embodiments will be readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other embodiments without the use of the
innovative faculty. Thus, the claimed subject matter is not intended to be limited to the
embodiments shown herein but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

WO 2008/061105 PCT/US2007/084587
23
WHAT IS CLAIMED IS:

CLAIMS

1. A method for stuffing instructions in a processing pipeline of a multi-threaded
digital signal processor for improved software instruction debugging operations,
comprising:

writing a stuff instruction into a debugging process registry associated with a
debugging process;

issuing from a core processor a debugging process control resume command
during a predetermined stage of executing on a predetermined thread;

providing the stuff instruction to the core processor;

indicating to the core processor to execute the stuff instruction during the
debugging process; and

executing the stuff instruction in association with the core processor process and

the debugging process.

2. The method of Claim 1, further comprising writing a stuff command in a
debugging process command register associated with the debugging process registry in
response to the stuff instruction, the stuff command comprising identification of a
predetermined thread of the multi-threaded digital signal processor in which to execute

the stuff instruction.

3. The method of Claim 1, further comprising executing the stuff instruction in a

user mode of operation.

4. The method of Claim 1, further comprising executing the stuff instruction in a

supervisor mode of operation.

5. The method of Claim 1, further comprising writing a stuff command in a
debugging process command register associated with the debugging process registry in
response to the stuff instruction, the stuff command comprising identification of a
plurality of predetermined threads of the multi-threaded digital signal processor in

which to execute the stuff instruction.

WO 2008/061105 PCT/US2007/084587

24

6. The method of Claim 1, further comprising writing the stuff instruction as a
branch instruction and using a current program counter value for the predetermined

thread.

7. The method of Claim 1, further comprising writing the stuff instruction as

start/resume instruction for selectively resetting the predetermined thread.

8. The method of Claim 1, further comprising writing the stuff instruction as a
load instruction into the debugging process registry associated with the debugging

Proccess.

9. The method of Claim 1, further comprising writing the stuff instruction as a
register read instruction into the debugging process registry associated with the

debugging process.

10. The method of Claim 1, further comprising writing the stuff instruction as a
cache read/write instruction into the debugging process registry associated with the

debugging process.

11. The method of Claim 1, further comprising writing the stuff instruction as a
memory read/write instruction into the debugging process registry associated with the

debugging process.

12. A digital signal processor debugging system comprising circuitry and
instructions for stuffing instructions in a processing pipeline of a multi-threaded digital
signal processor comprising:

a debugging process registry associated with a debugging process for receiving a
stuff instruction;

a debugging process control resume command for issuing from a core processor
during a predetermined stage of executing on a predetermined thread;

means for providing the stuff instruction to the core processor;

WO 2008/061105 PCT/US2007/084587

25

indicating means for indicating to the core processor to execute the stuff
instruction during the debugging process; and
means for executing the stuff instruction in association with the core processor

process and the debugging process.

13. The digital signal processor debugging system of Claim 12, further
comprising a debugging process command register associated with the debugging
process registry for receiving a stuff command in response to the stuff instruction, the
stuff command comprising identification of a predetermined thread of the multi-

threaded digital signal processor in which to execute the stuff instruction.

14. The digital signal processor debugging system of Claim 12, further
comprising circuitry and instructions for performing the instruction stuffing method in a

user mode of operation.

15. The digital signal processor debugging system of Claim 12, further
comprising means for executing the stuffed instruction in a supervisor mode of

operation.

16. The digital signal processor debugging system of Claim 12, further
comprising means for writing the stuff instruction as a branch instruction and using a

current program counter value for the predetermined thread.

17. The digital signal processor debugging system of Claim 12, further
comprising means for writing the stuff instruction as start/resume instruction for

selectively resetting the predetermined thread.

18. The digital signal processor debugging system of Claim 12, further
comprising means for writing a stuff instruction as a load instruction into the debugging

process registry associated with the debugging process.

WO 2008/061105 PCT/US2007/084587

26

19. The digital signal processor debugging system of Claim 12, further
comprising means for writing a stuff instruction as a register read instruction into the

debugging process registry associated with the debugging process.

20. The digital signal processor debugging system of Claim 12, further
comprising means for writing a stuff instruction as a cache read/write instruction into

the debugging process registry associated with the debugging process.

21. The digital signal processor debugging system of Claim 12, further
comprising means for writing a stuff instruction as a memory read/write instruction into

the debugging process registry associated with the debugging process.

22. A digital signal processor for operation in support of a personal electronics
device, the digital signal processor comprising;:

means for instruction stuffing operations during non-intrusive digital signal
processor debugging operations of the digital signal processor;

means for writing a stuff instruction into a debugging process registry associated
with the debugging process;

means for issuing from a core processor a debugging process control resume
command during a predetermined stage of executing on a predetermined thread;

means for indicating to the core processor to perform the stuff instruction during
the debugging process;

means for providing the stuff instruction to the core processor; and

means for executing the stuff instruction in association with the core processor

process and the debugging process.

23. The digital signal processor of Claim 22, further comprising means for
writing a stuff command in a debugging process command register associated with the
debugging process registry in response to the stuff instruction, the stuff command
comprising identification of a predetermined thread of the multi-threaded digital signal

processor in which to execute the stuff instruction.

WO 2008/061105 PCT/US2007/084587

27

24. The digital signal processor of Claim 22, further comprising means for

executing the stuff instruction in a user mode of operation.

25. The digital signal processor of Claim 22, further comprising means for

executing the stuff instruction in a supervisor mode of operation.

26. The digital signal processor of Claim 22, further comprising means for
writing a stuff command in the debugging process command register associated with the
debugging process registry in response to the stuff instruction, the stuff command
comprising identification of a plurality of predetermined threads of the multi-threaded

digital signal processor in which to execute the stuff instruction.

27. The digital signal processor of Claim 22, further comprising means for
writing the stuff instruction as a branch instruction and using a current program counter

value for the predetermined thread.

28. The digital signal processor of Claim 22, further comprising means for
writing the stuff instruction as start/resume instruction for selectively resetting the

predetermined thread.

29. The digital signal processor of Claim 22, further comprising means for
writing a stuff instruction as a load instruction into the debugging process registry

associated with the debugging process.

30. The digital signal processor of Claim 22, further comprising means for
writing a stuff instruction as a register read instruction into the debugging process

registry associated with the debugging process.

31. The digital signal processor of Claim 22, further comprising means for
writing a stuff instruction as a cache read/write instruction into the debugging process

registry associated with the debugging process.

WO 2008/061105 PCT/US2007/084587

28

32. The digital signal processor of Claim 22, further comprising means for
writing a stuff instruction as a memory read/write instruction into the debugging process

registry associated with the debugging process.

33. A computer usable medium having computer readable program code means
embodied therein for processing instructions on a digital signal processor for computer
readable program code means for instruction stuffing operations during non-intrusive
digital signal processor debugging operations of the digital signal processor, the
computer usable medium comprising:

computer readable program code means for writing a stuff instruction into a
debugging process registry associated with a debugging process;

computer readable program code means for issuing from a core processor a
debugging process control resume command during a predetermined stage of executing
on a predetermined thread;

computer readable program code means for providing the stuff instruction to the
COre processor;

computer readable program code means for indicating to the core processor to
execute the stuff instruction during the debugging process; and

computer readable program code means for executing the stuff instruction in

association with the core processor process and the debugging process.

34. The computer usable medium of Claim 33, further comprising computer
readable program code means for writing a stuff command in a debugging process
command register associated with the debugging process registry in response to the stuff
instruction, the stuff command comprising identification of a predetermined thread of

the multi-threaded digital signal processor in which to execute the stuff instruction.

35. The computer usable medium of Claim 33, further comprising computer
readable program code means for writing the stuff instruction as start/resume instruction

for selectively resetting the predetermined thread.

PCT/US2007/084587

WO 2008/061105

1/10

SINIS MOSSANOUd
VIvVd vivaxy | dADY
0c N 97~
\\ 14

C

[OId

AOSSAD0NUd A0¥UN0S
dLAL VLV XI viva
81/ 91/ p1-
0z //

4!

WO 2008/061105 PCT/US2007/084587

2/10

40

S v/

TO|ET1|T2|T3|T4|T5
INSTRUCTION CACHE ACCESS

INSTRUCTION STEERING
INSTRUCTION PREDECODE T54

2 [laa]a|a|]| =
| | | | |
INSTRUCTION QUEUE T

el el

e
2N

ISSUE LOGIC 58
VLIW/2-WAY SUPERSCALAR

b ¥y '
1
1
[[| |
REGISTER FILE READ 60 |
32, 32-BIT REGISTERS :
I I I i
1
SLOTOy SLOTI1y ySLOT2 y ySLOT3
162

Y S

1
I

10 [tT1 | T2 | T3 | T4 TSJr
{REGISTER FILE WRITE 64
1

FIG. 2

PCT/US2007/084587

WO 2008/061105

3/10

¢ DIA

SYALSIONY
. Ny TOYINOD ¥dSN
- ‘|
. <— adal aast K —= > OVil~+3
-/
SYALSIDAY TVIaANAD 00 8-
> ddide Al_
=
- 88 MIONANOAIS
> ddids [«
b6~ 98— YA AN
SYALSIONT
1S/a1 atl TOUINOD
TVEIOTO
~ HOLAd
901
aH 1vVd d94vH
VI VIV VHS SHdLSIDAY AHOVD
TO4LNOD NOLLONYLSNI L b01
001 J HJOSIAYAdNS ATIVHS
08~ = AW
> 41snd

i

WOIL/HHOVD SNd mDm

'1'TVNO

[LdO 9HV

86~ ._ /E

<01

SLAMITYALINI
TVIANAD €

0L

PCT/US2007/084587

WO 2008/061105

4/10

!

v OId

na AJ «|v na
pz1- 071 H
ns i <+ (114
no
911~ w1 H
811~ i pr1-

PCT/US2007/084587

WO 2008/061105

5/10

¢ 'DIA

A A
TST s 051
dnzoyur ggsIt 19891 sl 2100 94SAD
[T mm e -
—_— |
opo a00 | § *OIAASIH)
WEM @----J[00[0 9109
-
dATTIOULINOD J -
MATIOUINOD |« - 861 19331 yea1q LA
€asIno - ps1 | moweaids gasr
A -
91~ no - 1T AW
- 8€1- H
a---- [0 9109 <---3]0) eyl
..... y . ----30) eyl
== == 1 oBo| SN e — SuASOV L €ASI L] ovar |
Yoo Q100 |} T Co ddasI m A/1 DVLL
e el
nr 951~ per- aasl
A pi1- 4

0¢I

PCT/US2007/084587

WO 2008/061105

6/10

123! U 43! U
I~ - - - lae— 7 T T T T
| — |
_ _
| SYAISIOAd 9asl [e— mmwmmwww _
| — |
| _“”_ _
I — — — ¢ L — —
13 + - T Wﬂ%mm&
b oﬁ 3ngagpaisny 0D QLT
—— ; ONAS fe———
J[qeud Aum b1
cL1 owﬁ\
ﬂ -_—-—-TTrTeT,aee———1r// =M. _——— "
_ < _
991 _ | 991
-— _ [0:1€] vIVa [0:0laav | md je—————
O UIEYd QST DV | ~ - | UL ureyds qpst DVLL
0L1 891 _
|

YALSIDHY VIvVAd LSHL 9dSI

[¥o1 orepdn ureqo qpst DV L[

091

WO 2008/061105 PCT/US2007/084587

7/10

SUPERVISOR

STOP

198 FIG. 7

PCT/US2007/084587

WO 2008/061105

8/10

8 DId

3P I
Iy : -
[0]JANV wnupyearq [dq

-

[0:2]O ojundyiq

LdAGOVLL
81T

LdAIMS

4

8€CT vﬁ
N we
\4 Rsaryo B
SolI Almlﬁog ANV Wnujouwnsar 3on
T 0T
b 198 AL.
3 97T
10
IEC _ 0£C
Y o« .
u
[olpeAYIq[OdNI
per | rdaniE | sce AVHEH
A Lo, AA0ONA
U .@ [\m
cer” [0:7]a oyundyiq

1444
[0]JANV se1SapojN3ngap

\€U
=
T

91¢

vic
0LdIMH

cle

01¢

PCT/US2007/084587

WO 2008/061105

9/10

6 ‘Ol T4V IIVAYV SI ANVININOD LdNYIALNI GHL AINO ,

HAOW AIL1SNALINN NI HTLISIA 99V 0% SLIEF AINO

A0 ¥dSN NI $40D FHL WOYA AIMOTTV SI SSHOOV ON,

M/ ANON M/ d%0 2SO Dwm%wwwmvw@ aasi ddD 9asl

ANON d d axo NOISYHA ddsI NOISYTA ddsI

ANON M/ M/ DX(JT9VNA 9dsI Nd ddsI

ANON M M qax0 ANVININOD 9dsI ANDIdsI

M d d VX0 (ddsI<-—-ad40D) NI XOdTIVIA LNOXNAASI

d M M 6X0 (TIOD<--dAsD NI XOdTIVIN NIXINEAsI

ANON ANON M 8x() NOILLDNYLSNI 44NLS LSNIALS

ANON ANON M LX0 DLINOD 1 INIOIIVHI I [ONILLIIE

ANON ANON M 9%() SSHYAAV 1 INIOdIVIId TONLLIYd

ANON ANON M $x() DLINOD 0 INIOIIVHI I ODNILIIE

ANON ANON M X0 SSHIAAV 0 INIOdIVIId 0DNILISYE

ANON ANON d €X() OANI INIOISIVAId OANILLIYE

ANON ANON M/ X0 [DLINOD ddsI 10104dsI

ANON ANON M/ X0 0 DLINOD 9asI 00404ddsI

d qd d 0%0 SNLVLS 9dsI LS4adsI
2AAON SSHODV SSHDDV

mo%mmmmmbm Qm&mmww% Qm%mmﬁ mwwwmmw NOLLAIIOSAA m%ﬁmﬁm

05z

PCT/US2007/084587

WO 2008/061105

10/10

Ol DIA "'SASOdMNd NOLLVILSNTII
MO4d AASN STYNDIS «
BEE=al Rl EENTAN R Be==
] | |
€X() €X() X £X(| €X(£X()
| | | |
471d1 Mdadn STAN 0dgd

I
gM TXd dd4 d9M TXH

JUILRRRRRERERRRERRRERE

\ eXal rxal dal ekal ikal dal ekal rkal da ekal

dd

I
M TXd d4 d9M TXH

a\ 4
14

EEEEEEEEEEEEE&EEEEE

a
S|

d40.LS

L«(Wnsur Judum)

«(W)Dd waLmy

Q)eIgon

MIdSSBXU D
2gbagIsqpsT NO
dgbaynsur N
gmangagoexd ND

(W ANV SMeISOpoNSNqap 1)
M SLISOWNSINGPST 1)
GMIOVOWNSAINGPST N
¢xodA 1 ownsaINgpst 191
EXIPWDIWNSIYNIPST [10]
EXANOVIRAIQNQPST 1D
AIPWDNedIqNGPST 11T
GMITHOYE1q NT

4 :6%0
q :7X0
d :€X0
D :TX0

q -1X0
V -0X0

<+ d

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings

