The invention relates to a novel binder system and its use for bonding textile fabrics as well as products containing such bonded textile fabrics. The materials of the invention are suitable for the manufacture of lining materials which can be used in the manufacture of sarking membranes, roofing sheets and water-proof sheetings, in particular of coated sarking membranes, roofing sheets and water-proof sheetings, or in the manufacture of carpets and PVC floorings as a textile backing or as a textile reinforcement.
Background of the Invention

[0001] The invention relates to novel binder systems for consolidating textile fabrics, textile fabrics consolidated therewith, their manufacture as well as products containing the binder system or a textile surface fitted therewith.

[0002] Textile fabrics, in particular those which are used as inserts for the manufacture of coated materials, have to meet various requirements. Examples of such inserts are, among others, textile backings for carpets, textile reinforcements in PVC floorings or roofing sheets.

[0003] When used in the manufacture of roofing sheets, the used inserts or lining materials must have a sufficient mechanical stability, such as good perforation strength and good tensile strength, which appear, for example, during further processing, such as bituminization or laying. In addition, there is a need for high resistance to thermal stress, for example during bituminization, or to radiant heat and spreading fire.

[0004] When used in the manufacture of coated floorings, such as PVC floorings, additional demands are made on such inserts. In this field of application, said inserts not only have to meet the mechanical/thermal requirements but they have to avoid the formation of gaseous substances, since otherwise blistering can be observed during manufacture, for example by the formation of water vapor. Such blistering is very problematic and leads to yield loss and/or poor quality.

[0005] In addition to the aforementioned technical requirements, the environmental compatibility and/or new legal regulations account for the need to replace existing, partly already well-functioning systems by new compliant systems. Examples thereof are new industrial standards, such as the DIN EN 14041, or legal changes, such as the REACH regulation.

[0006] The binder systems used so far for consolidating textile fabrics are based on thermoplastic and/or thermosetting binder systems. Examples thereof are aminoplasts and binders on the basis of acrylates.

[0007] There is hence a great need to provide novel binder systems for consolidating textile fabrics to be used as inserts which, on the one hand, meet the technical requirements and the legal regulations, and on the other hand, are available under economic aspects.

[0008] Binder systems based on starch are known from EP-A-2199333, EP-A-2192153 and EP-A-2231917. The systems are already very well-suited for the consolidation of textile fabrics. Nonetheless, there is a further requirement for binder systems which on the one hand satisfy legal requirements and on the other hand are available in terms of economics.

[0009] It was therefore the object of the present invention to provide novel binder systems for consolidating textile fabrics which, on the one hand, meet the technical requirements and the legal regulations, and on the other hand, are available under economic aspects. Another object is the processability of the binder systems by means of the known and established procedures so that investments can be kept at a low level. The binder systems must optimize a multiplicity of parameters at the same time, satisfactory strength, tear resistance, elongation and thermostability being important, in order to be suitable as a binder for the consolidation of industrial textile fabrics. The parameter tear resistance in particular is important for many industrial applications. Here, there is a particular requirement for improvement which the invention fulfills.

Detailed Description of the Invention

[0010] The subject matter of the present invention is thus a textile fabric which is consolidated by means of a binder system comprising:

[0011] a) 10 to 90% by weight, preferably 30 to 70% by weight of at least one polyvinyl acetate and
[0012] b) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and
[0013] c) 0 to 60% by weight of at least one additive selected from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and
[0014] d) 0 to 10% by weight of additives,

[0015] the information on the proportions by weight referring to the dry mass of the binder system, i.e. without water and the sum of the constituents a) to d) giving 100% by weight.

[0016] In a preferred embodiment of the invention, the binder system of polyvinyl acetate and starch used according to the invention and also the consolidated textile fabric resulting therefrom does not contain any polymers based on polycrylates.

[0017] Another subject matter of the present invention is a textile fabric which is consolidated by means of a binder system comprising:

[0018] a) 10 to 90% by weight, preferably 30 to 70% by weight of polymerizates based on carboxylic acid derivatives and
[0019] b) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and
[0020] c) 0 to 60% by weight of at least one additive selected from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and
[0021] d) 0 to 10% by weight of additives,

[0022] the information on the proportions by weight referring to the dry mass of the binder system, i.e. without water and the sum of the constituents a) to d) giving 100% by weight, and the polymerizates based on carboxylic acid derivatives having been obtained by means of polymerization of monomeric carboxylic acid derivatives which have at least one terminal double bond.

[0023] Another subject matter of the present invention is the binder system used according to the invention, comprising:

[0024] a) 10 to 90% by weight, preferably 30 to 70% by weight of at least one polyvinyl acetate and
[0025] b) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and
[0026] c) 0 to 60% by weight of at least one additive selected from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and
[0027] d) 0 to 10% by weight of additives,
the information on the proportions by weight referring to the dry mass of the binder system, i.e. without water and the sum of the constituents a) to d) giving 100% by weight.

As stated previously, the binder system of polyvinyl acetate and starch used according to the invention and also the consolidated textile fabric resulting therefrom does not contain any polymers based on polyacrylates.

Another subject matter of the present invention is the binder system used according to the invention, comprising:

a) 10 to 90% by weight, preferably 30 to 70% by weight of polymers based on carboxylic acid derivatives and partly neutralized salts thereof, carboxyalkyl cellulose, such as carboxymethyl cellulose and its salts.

b) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and copolymers, polyacrylate copolymers and salts thereof, carboxyalkyl cellulose, such as carboxymethyl cellulose and its salts.

c) 0 to 60% by weight of at least one additive selected from the group of amphoterically hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and their salts.

d) 0 to 10% by weight of additives, the information on the proportions by weight referring to the dry mass of the binder system, i.e. without water and the sum of the constituents a) to d) giving 100% by weight, and the polymerizes based on carboxylic acid derivatives having been obtained by means of polymerization of monomeric carboxylic acid derivatives which have at least one terminal double bond.

The quantity of the binder system of the invention applied to the textile fabric is preferably between 5 and 35% by weight dry binder, in particular 10 and 30% by weight, most preferably 10 and 25% by weight dry binder after drying referring to the total weight of the untreated textile fabric.

If the binder system used according to the invention shall be utilized as an aqueous dispersion or solution, the solids content is preferably between 10 and 40% by weight, in particular between 10 and 30% by weight, most preferably 15 to 25% by weight (determined according to DIN EN ISO 3251).

If the binder system used according to the invention shall be utilized as an aqueous dispersion or solution, the viscosity is preferably 1 to 3000 mPa*s, in particular 2 to 2500 mPa*s, most preferably 5 to 2000 mPa*s (determined according to DIN EN ISO 2555 and 23°C).

If the binder system according to the invention shall be used as an aqueous polymer dispersion, conventional and known emulsifying agents or protective colloids can be added for stabilization. These are known to the person skilled in the art (cf. Houben-Weyl, Methoden der org. Chemie, vol. XIV/1, 1961, Stuttgart). Examples of emulsifying agents are polyglycol ethers, fatty alcohol-polyglycol ethers, phosphoric esters and their salts, sulfonated paraffin hydrocarbons, higher alkyl sulfates (such as laurel sulfate), alkali metal salts of fatty acids, such as sodium stearate or sodium oleate, sulfuric acid semi-ester of ethoxylated fatty acid alcohols, salts of esters and semi-esters of alkyl polyoxyethylene sulfosuccinates, salts of sulfonated alkyl aromatics, such as sodium dodecyl benzene sulfonate, ethoxylated C4-C12-alkyphenols and their sulfonation products such as ester of the sulfosuccinic acid. Examples for protective colloids are alkylhydroxyalkyl celluloses, partly or completely hydrolyzed polyvinyl alcohols and copolymers thereof, acrylic acid, homopolymers and copolymers and partly neutralized salts thereof, acrylamide copolymers, polyacrylate copolymers and salts thereof, carboxyalkyl cellulose, such as carboxymethyl cellulose and its salts.

If the binder system according to the invention shall be utilized as an aqueous polymer dispersion, the pH-value (measured as a 10% by weight solution in water) is between 2 and 10, preferably between 4 and 8 (determined according to DIN EN ISO 976).

The textile fabric consolidated by means of the binder system according to the invention has satisfactory strength and thermostability. Furthermore, the textile fabrics consolidated by means of the binder system according to the invention have an elongation which is at least as good or even improved. Surprisingly, the tear resistance is markedly improved and usually increased by almost 10% by means of the binder system according to the invention however.

Beyond that, the binder system of the invention is only slightly hygroscopic and has a low water suction performance, so that no restrictions on the use of the consolidated textile fabrics as lining materials in the manufacture of PVC floorings, for example by blistering, can be observed.

Likewise surprising is the aging behavior of the consolidated textile fabric which is almost constant even though a person skilled in the art would expect a worsening of the aging behavior.

By means of the partial replacement with starch and polyvinyl acetate or starch and special polymerizes based on carboxylic acid derivatives, considerable cost saving effects are realized, it being possible in addition to starch to also use further additives, for example amphoterically hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures of the same with starch. In addition, a binder system almost completely free of formaldehyde is obtained without being obliged to cut back on the product properties.

The binder system of the invention does not comprise polymerizes produced by polymerization of conjugated aliphatic dienes, in particular butadiene, isoprene, pentadiene-1,3, dimethyl butadiene and/or cyclopentadiene.

The polymerizes based on carboxylic acid derivatives which are used according to the invention are known per se (e.g., they can be seen from the technical data sheets).

The polymerize based on carboxylic acid derivatives used according to the invention is materials which have been obtained by polymerization of monomeric carboxylic acid derivatives which have at least one terminal double bond.

The basic monomers are unsaturated carboxylic acid esters, preferably unsaturated acrylates and/or methacrylates which have been esterified by converting the basic acids and mono- or polyvalent, branched or linear C1 to C6 alcohol. Preferably, the preceding alcohols are methanol, ethanol, propanol, iso-propanol, butanol, 1-butanol, 2-butanol or tert-butanol. Preferably, the preceding unsaturated carboxylic acids are acrylic acid and/or methacrylic acid.

Free unsaturated carboxylic acids may also still be present in the polymerize based on carboxylic acid derivatives used according to the invention, it being possible for the proportion thereof to be up to 30% by weight (with respect to unsaturated carboxylic acid esters present). In this case, up to 30% by weight of an alcohol is added to the binder system according to the invention as cross-linking agent. The degree of consolidation or cross-linking can be set by means of the ratio of free unsaturated carboxylic acid to alcohol.
In addition to the alcohols mentioned, polyols, polyamines, polyalkanolamines or mixtures thereof are also possible as cross-linking agents.

Among the polyols, glycols, glycol ethers, polyester polyols, polyester polyols, polysaccharides, polyvinyl alcohols, or their mixtures are preferred. Trimethylolpropane, pentaerythritol, ethylene glycol, propylene glycol, triethylene glycol, glycerol and sugar alcohols, such as sorbit and inositol, are particularly preferred polyols. Besides the aforementioned polyols, polyvalent alcohols can also be used as cross-linking agents. The term polyvalent alcohols refers to alcohols having at least two hydroxyl groups which can be branched or straight-chained. The alcohols/polyols can also be used as a mixture, i.e., a mixture of two different alcohols or polyols.

Among the polyamines, hexamethylenamine, ethylene-diamine, melamine, diethylenetriamine, triethylene tetramine, ammnonium, ammonium, or their mixtures are preferred. Among the polyalkanolamines, alkanoamines, in particular monoethanolamine, diethanolamine, triethanolamine, or their mixtures are preferred.

The polymerizes based on carboxylic acid derivatives, particularly carboxylic acid esters, used according to the invention, which have been obtained by polymerization of monomeric carboxylic acid derivatives, particularly monomeric carboxylic acid esters, which have at least one terminal double bond, have preferably been polymerized by heating. The polymerization can be controlled by using suitable stabilizers, for example hydroquinone.

The polyvinyl acetates used according to the invention are known per se. Polyvinyl acetates are understood as being homopolymers of the vinyl acetate and co- or terpolymerizes of the vinyl acetate with acrylic acid, acrylates, crotonic acid, vinyl laurate, vinyl chloride or ethylene.

Homopolymers preferably used are those of the polyvinyl acetate which contain up to 5 mole % of further constituents which are derived from other monomers than vinyl acetate.

The glass temperature of the polyvinyl acetate used according to the invention is preferably 18 to 45° C. and depends on the degree of polymerization.

The degree of polymerization of the polyvinyl acetate used according to the invention is preferably 100 to 5000.

The molecular weight (weight-average) of the polyvinyl acetate used according to the invention is preferably between 10,000 and 1,500,000 g/mol.

The polyvinyl acetates used according to the invention are commercially available from Celanese, for example, under the name Mowilith® DN 60 or from Clariant under the name Appretan® TT.FR as an aqueous dispersion or solution.

The starches used according to the invention are not subject to restrictions; however, they must be compatible with the other components.

Suitable starches according to the invention are natural—so-called native—starches and modified starches, such as cationic or anionic starches, or starch derivatives (so-called chemically modified starches). Starches with sufficient solubility in cold and/or hot medium are generally advantageous.

A group of starches that might be used within the scope of the invention comprises starches extracted from vegetable raw materials. These include among others starches from tubers, such as potatoes, manioc, arrowroot, batata, from seeds, such as wheat, maize, rye, rice, barley, millet, oat, sorghum, from fruits, such as chestnuts, acorns, beans, peas, and other pulses, bananas, as well as from plant marrow, e.g. of the sago palm.

The starches usable within the scope of the invention essentially consist of amylose and amylopectin in changing proportions.

The molecular weights of the starches useful according to the invention can vary over a wide range. The starches consisting essentially of a mixture of amylose and amylopectin preferably have molecular weights Mₙ in the range of between 5×10⁶ and 1×10⁷, particularly preferably between 5×10⁶ and 1×10⁷.

Besides starches of native vegetable origin, starches which are chemically modified, have been obtained by fermentation, are of recombinant origin or have been produced by biotransformation (biocatalysis), are also equally preferred.

The term “biotransformation” is interchangeable with the term “biocatalysis”.

“Chemically modified starches” means starches whose properties have been chemically modified compared to the natural properties. This is essentially reached by polymer-analogous reactions during which starch is treated with monofunctional, bifunctional or polyfunctional reagents or oxidizing agents. In this process, preferably the hydroxyl groups of the starch are modified by etherification, esterification or selective oxidation; or the modification is based on a radically initiated graft copolymerization of copolymerizable unsaturated monomers on the starch backbone.

Particular chemically modified starches include, among others, starch esters, such as xanthates, acetates, phosphates, sulfates, nitrates, starch ethers, such as nonionic, anionic or cationic starch ethers, oxidized starches, such as dialdehyde starch, carboxyl starch, persulfate-degraded starches and similar substances.

In the linguistic usage of the invention, “fermentative starches” refers to starches which are extracted in fermentative processes using natural organisms, such as fungi, algae or bacteria, or which may be extracted with the activation and help of fermentative processes. Examples for starches obtained from fermentative processes include among others gum arabic and related polysaccharides (gellan gum, ghatti gum, karaya gum, gum tragacanth), xanthan, emulsan, rhamnan, wellan, schizophyllan, polygalacturonic acids, laminarin, amylose, amylopectin and pectin.

“Starches of recombinant origin” or “recombinant starches” in the invention refers to starches which are extracted in fermentative processes using organisms not occurring in nature, but with the help of natural organisms that are modified by using genetic methods, such as fungi, algae or bacteria, or which may be extracted with the activation and help of fermentative processes. Examples for starches obtained from fermentative, genetically modified processes include, among others, amylose, amylopectin and polyglucans.

For the purposes of the present invention, “starches prepared by biotransformation” means that starches, amylose, amylopectin or polyglucans are produced by a catalytic reaction of monomeric basic components, generally of oligomeric saccharides, in particular of mono- or disaccharides, by using a biocatalyst (or: enzyme) under specific conditions. Examples for starches obtained from biocatalytic processes...
are, among others, polyglucan and modified polyglucans, polyfructan and modified polyfructans.

Furthermore, the invention also comprises derivatives of the starches particularly mentioned. In this context, the terms “derivative of starch” or “starch derivatives” generally refer to modified starches, i.e., such starches in which the natural amylose/amylopectin ratio were modified to change their properties, a pre-gelatinization was carried out, which were subject to a hydrolytic degradation or were chemically derivatized.

Examples of particular derivatives of starches are, among others, oxidized starches, e.g., dialdehyde starch or other oxidation products having carboxyl functions, or native ionic starches (e.g., with phosphate groups) or starches which have been further modified ionically, wherein this term covers both anionic and cationic modifications.

The destructurized starches, which may be used in the context of the invention, comprise those which, for example, were homogenized by means of glycerol such that no more crystalline reflexes occur in the X-ray diffraction and starch grains or double-refracting regions are no longer visible at a thousand-fold magnification in the polarization microscope. In this context, reference is made to DE-A1-3931363 of which the disclosure of destructurized starches is also part of the this description.

The starches used according to the invention are commercially available from Avebe, Cargill, National Starch, Penford Products Co., Parex or Südstone, for example.

Especially advantageous are starches which have a sufficient solubility in cold and/or hot medium. A sufficient solubility is given, if the viscosity of the binder system according to the invention allows a corresponding workability.

The additives used according to the invention selected from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures are basically not subject to any limitation but must be compatible with the other components.

Those hydroxide compounds which are soluble both in an acidic and in an alkaline medium are termed as amphoteric hydroxides in the sense of the present invention.

Technically suitable examples for amphoteric hydroxides are copper (II) hydroxide Cu(OH)$_2$, tin hydroxide Sn(OH)$_4$, or Sn(OH)$_6$, antimony hydroxide Sb(OH)$_3$, or Sb(OH)$_6$, aluminum hydroxide Al(OH)$_3$, chromium (III) hydroxide Cr(OH)$_3$, lead hydroxide Pb(OH)$_2$, and zinc hydroxide: Zn(OH)$_2$; wherein some of the compounds mentioned are technically suitable, however, they cannot be used due to their environmental relevance.

Amphoteric hydroxides of aluminum are particularly preferably used. Precipitated amphoteric aluminum hydroxide Al(OH)$_3$ is very particularly preferably used. It should be noted that the material does not induce dehydration up to a temperature of 200° C. and is not hygroscopic.

The aluminum hydroxides used according to the invention are commercially available from Nabaltex, for example, under the name Appral.

The salts of the first and second main groups of the periodic table are preferably hydroxides, sulfates, hydrogen carbonates and carbonates which must be compatible with the other components. Examples of these are magnesium hydroxide, calcium carbonate, barium sulfate.

Mineral additives, which are of synthetic or natural origin, in the sense of the present invention are preferably marble powder, kaolinite (china clay) and/or kaolinite-containing clays such as kaolin (porcelain clay).

The kaolins used according to the invention are commercially available from Huber, for example, under the name Huber 90.

The kaolins used have to be stable up to a temperature of 200° C., i.e., they must not dehydrate or be hygroscopic.

The carbon blacks are preferably commercially available products.

In a particular embodiment of the present invention, in addition to the starch, the binder system has at least two constituents selected from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof, ratios of 1:10 to 10:1 (proportions by weight) proving particularly preferred.

The binder system used according to the invention may also contain up to 10% by weight of additives. These are commercially available additives such as preservatives, stabilizers, antioxidants, anti-foaming agents, hydrophobizing agents, UV stabilizers, fillers and/or pigments. They are partly contained in the commercial products and serve to stabilize storage and transport or may be added later in order to meet the customer’s specifications.

Within the scope of this description, the term “textile fabric” is to be understood in its widest meaning. It may be used for all structures composed of fibers which have been manufactured according to a surface-forming method. The fiber-forming materials are natural fibers, mineral fibers, glass fibers, fibers composed of synthetic products and/or fibers composed of synthesized polymers. For the purposes of the present invention, textile fabrics are in particular understood as being woven fabrics, yarn sheets, knitted fabrics or non-woven fabrics, in particular non-woven fabrics.

Textile fabrics on the basis of mineral fibers and/or glass fibers are in particular non-woven fabrics on the basis of mineral fibers and/or glass fibers. The aforementioned non-woven fabrics on the basis of mineral fibers and/or glass fibers can also be combined with other textile fabrics, in particular non-woven fabrics.

The employed non-woven fabrics composed of glass fibers or mineral fibers can be manufactured by means of any known method. Non-woven glass fiber fabrics which have been manufactured by means of the wet laid process, the dry laid process or the air laid process are particularly suitable. In the course of the manufacturing process, in particular the wet laid process, these non-woven fabrics may contain small proportions of chemical auxiliary substances as a result
of the process, for example thickening agents, anti-foaming agents, etc. These substances originate from the circulation water in the manufacture of non-woven fabrics.

[0095] The non-woven fabrics composed of mineral fibers and used according to the invention can be consolidated by means of the binder system according to the invention and additionally by mechanical methods, e.g., needling or hydrodynamic needling. They are most preferably carded non-woven fabrics composed of filaments, i.e. endlessly long fibers, or of staple fibers. The average diameter of the mineral fibers is between 8 and 15 μm, preferably between 10 and 12 μm.

[0096] Suitable mineral fibers include aluminosilicate fibers, ceramic fibers, dolomite fibers, or fibers of vulcanite, such as basalt, diabase, melaphyre. These are commonly referred to as palaeobasalts; alternatively, diabase is also often called greenstone.

[0097] The weight per unit area of the non-woven fabrics composed of mineral fibers and used according to the invention is between 20 and 350 g/m², preferably between 25 and 90 g/m². The information given above also applies to the glass non-woven fabrics described below.

[0098] The non-woven fabrics composed of glass fibers and used according to the invention can be consolidated by means of binders or else by mechanical methods, e.g., needling or hydrodynamic needling. The glass fibers may be filaments or finite or cut glass fibers wherein in the latter case, the length of the fibers is between 1 and 40 mm, preferably 4 to 20 mm. The average diameter of the glass fibers is between 6 and 20 μm, preferably between 8 and 15 μm.

[0099] Suitable glass fibers include glass types such as E-glass, S-glass, R-glass or C-glass, wherein E-glass or C-glass is preferred for economic reasons.

[0100] Among the textile fabrics on the basis of synthetic polymers, non-woven fabrics composed of fibers from synthetic polymers, in particular spunbonded fabrics, so-called spunbonds, which are produced by random deposition of freshly melt-spun filaments, are preferred. They consist of continuous synthetic fibers composed of melt-spinnable polymer materials. Suitable polymer materials include, for example, polyamides, such as e.g. polyhexamethylene diadipamide, polycaprolactam, wholly or partly aromatic polyamides ("aramids"), aliphatic polyamides, such as e.g. nylon, partly or wholly aromatic polyesters, polyphthylene sulfide (PPS), polymers having ether and keto groups, such as e.g. polyether ketones (PEKs) and polyether ether ketone (PEEK), polyolefins, such as e.g. polyethylene or polypropylene, or polybenzimidazoles.

[0101] Preferably, the spunbonded fabrics consist of melt-spinnable polyesters. The polyester material can, in principle, be any known type suitable for fiber production. Such polyesters consist predominantly of components derived from aromatic dicarboxylic acids and from aliphatic diols. Commonly used aromatic dicarboxylic acid components are bivalent residues of benzenedicarboxylic acids, especially of the terephthalic acid and the isophthalic acid; commonly used diols have 2 to 4 carbon atoms, wherein ethylene glycol is particularly suitable. Spunbonded fabrics which consist of at least 85 mole % of polyethylene terephthalate are particularly advantageous. The remaining 15 mole % are then comprised of dicarboxylic acid units and glycol units which act as so-called modifiers and allow the person skilled in the art to targetedly influence the physical and chemical properties of the produced filaments. Examples of such dicarboxylic acid units are residues of isophthalic acid or aliphatic dicarboxylic acid, such as e.g. glutaric acid, adipic acid, and sebacic acid; examples of modifying diol residues are those composed of longer-chain diols, e.g. propane diol or butane diol, of diethylene or triethylene glycol or, if present in small quantities, of polyglycol with a molecular weight of ca. 500 to 2000.

[0102] Polymers containing at least 95 mole % of polyethylene terephthalate (PET) are particularly preferred, especially those composed of unmodified PET.

[0103] The individual tiers of the polyester filaments in the spunbonded fabric amount to between 1 and 16 dtex, preferably between 2 and 8 dtex.

[0104] In another embodiment of the invention, the textile fabric of the spunbonded fabric may also be a melt binder-bonded non-woven fabric which contains lining and hot-melt adhesive fibers. The lining and hot-melt adhesive fibers can be derived from any thermoplastic, fiber-forming polymers. Additionally, lining fibers can also be derived from non-fusing filament-forming polymers. Such spunbonded fabrics which have been consolidated by means of a melt binder are described, for example, in EP-A-0,446,822 and EP-A-0,590,629.

[0105] In a preferred embodiment of the invention, the textile fabric was subjected to mechanical and chemical consolidation with the binder system according to the invention. Such a consolidation further improves the application properties of the lining material.

[0106] The textile fabric may have a single-layer or multi-layer structure.

[0107] The weight per unit area of the textile fabric, in particular the spunbonded fabric, is between 20 and 500 g/m², preferably between 40 and 400 g/m², in particular between 90 and 250 g/m².

[0108] In a further embodiment of the invention, such textile fabrics have at least one reinforcement, in particular if they are used as lining materials. They are preferably designed such that the reinforcement absorbs a force so that the reference force in the force-elongation diagram (at 20°C) of the lining material with reinforcement compared to the lining material without reinforcement differs within the range between 0 and 1% of elongation in at least one point by at least 10%.

[0109] In another embodiment, the reinforcement can be incorporated in such a way that, due to the reinforcement, forces are only absorbed at higher elongations.

[0110] Multifilaments and/or monofilaments on the basis of aramids, preferably so-called high-modulus aramids, carbon, glass, glass rovings, mineral fibers (basalt), high-strength polyester monofilaments or multifilaments, high-strength polyamide monofilaments or multifilaments, as well as so-called hybrid multifilament yarns (yarns containing reinforcing fibers and lower-melting binding fibers) or wires (monofilaments) composed of metals or metal alloys, are preferably used as reinforcing filaments.

[0111] For economic reasons, preferred reinforcements consist of glass multifilaments in the form of—essentially—parallel warp sheets or scrims. In most cases, the non-woven fabrics are reinforced in the longitudinal direction by—essentially—parallel warp sheets.

[0112] The reinforcing filaments may be used as such or in the form of a discrete textile fabric, for example as a woven fabric, yarn sheet, knitted fabric or non-woven fabric. Rein-
forancements with reinforcing yarns running parallel to each other, that is warp sheets, as well as scrims or woven fabrics are preferred.

[0113] The measurement of the reference force is carried out in accordance with EN 29073, part 3, on 5 cm wide samples at a restraint length of 200 mm. Here, the numerical value of the pretension, given in centnewton, corresponds to the numerical value of the area mass of the sample, given in gram per square meter.

[0114] The reinforcement may be carried out by the inclusion of the reinforcements in the textile fabric, on at least one face of the textile fabric or else at any location of the lining material, in particular in other textile fabrics differing from the first textile fabric, or as an individual textile fabric.

[0115] The lining materials according to the invention containing the textile fabric consolidated according to the invention may be equipped with further functional layers. This means measures or functional layers which increase the resistance to penetration of roots of the lining material, for example. These are also a subject matter of the invention.

[0116] The lining material according to the invention may have further textile fabrics in addition to the textile fabric according to the invention already described. Preferably, these further textile fabrics differ from the textile fabric first mentioned, i.e., they are made of a different material.

[0117] Insofar as the textile fabric is made up of synthetic polymers, it may be necessary to include further textile fabrics in the lining material according to the invention in order to optimize the application properties.

[0118] It is surprising to the person skilled in the art that the use of the binder system of the invention can improve the properties of the textile fabric, particularly with regard to tear resistance.

[0119] The textile fabric consolidated according to the invention can be used as a lining material itself or in combination with further textile fabrics as a lining material for coated sarking membranes, roofing sheets and water-proof sheetings as well as a textile backing or a textile reinforcement in floorings, in particular carpets and PVC floorings which are also a subject matter of the invention.

[0120] The textile fabric consolidated according to the invention can be used as a lining material itself or in combination with further textile fabrics as a lining material for the manufacture of coated sarking membranes, roofing sheets and water-proof sheetings, preferably for the manufacture of bituminized sarking membranes, roofing sheets and water-proof sheetings. Apart from that, the linings according to the invention may also be used in flooring applications and in the field of filtration.

[0121] Polyethylene or polyvinyl chloride, polyurethanes, EPDM or IPE (polyolefins) are used as coating compounds for floorings or carpet backings. Besides that, bitumen is used for the coated sarking membranes, roofing sheets and water-proof sheetings.

[0122] The bituminized sheets contain at least one—above-described—lining sheet which is embedded in a bitumen matrix, wherein the percentage by weight of the bitumen related to the weight per unit area of the bituminized roofing sheet is preferably 60 to 97% by weight and that of the spunbonded fabric 3 to 40% by weight.

[0123] The manufacture of the textile fabrics used according to the invention is carried out by means of known methods and processes. The manufacture of the consolidated textile fabric according to the invention is carried out by means of the following measures:

[0124] A) formation of a textile fabric and optionally mechanical consolidation thereof,

[0125] B) application of the binder system according to the invention, comprising:

[0126] I) 10 to 90% by weight, preferably 30 to 70% by weight of polymerizes based on carboxylic acid, in particular polycarboxylic acid, which can be cross-linked by means of a cross-linking agent, and

[0127] II) 10 to 90% by weight, preferably 30 to 70% by weight of polyvinyl acetate, and

[0128] III) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and

[0129] IV) 0 to 60% by weight of at least one additive from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and

[0130] V) 0 to 10% by weight of additives,

[0131] C) drying and consolidation of the binder,

[0132] wherein the specified percentages by weight refer to the dry weight of the binder system, i.e., without water.

[0133] The formation of the textile fabric is carried out by means of known measures.

[0134] The implementation of the mechanical consolidation optionally carried out also takes place by means of known methods.

[0135] The inclusion of the optionally present reinforcement is carried out during or after the formation of the textile fabric or before or during the application of the binder system according to the invention. The supply of the reinforcement and optionally any further heat treatment in the manufacturing process preferably takes place under stress, in particular longitudinal stress.

[0136] The supply of further textile fabrics optionally to be included takes place before or during the consolidation of the binder system according to the invention.

[0137] The application of the binder system in step B) is also carried out by means of known methods. The applied layer of binder (after drying) is preferably between 5 and 35% per weight, in particular 10 and 30% by weight, most preferably 10 and 25% by weight dry binder referring to the total weight of the untreated textile fabric.

[0138] Drying or consolidation of the binder is also carried out by means of methods known to the person skilled in the art, wherein temperatures of 160° C. to 210° C. prove to be advantageous. The drying or consolidation process causes among other things the condensation of the cross-linking agent with the carbonic acid with formation of the corresponding condensates.

[0139] The individual procedure measures are known per se, but patentable in the combination or order according to the invention and with the use of the binder system according to the invention.

[0140] Measurement Methods:

[0141] The specific strength is a measure of the influence of the binder on the strength of the non-woven fabric: \(F = \frac{(BW - BW(q)) \cdot G}{q} \)

[0142] The tensile strength BW (lengthwise, crosswise) corresponds to the tear strength which, according to DIN EN
29 073-3, is measured on samples of 5 cm width and 30 cm length. \(G_2 \) corresponds to the weight per unit area with binders in g/m².

[0143] The hot strength is a measure of the longitudinal strength of the non-woven fabric at 200° C. The strength is determined in accordance with DIN EN 29 073-3, wherein the measurement is carried out at 200° C. in a furnace.

[0144] The permeability is measured according to DIN EN ISO 5237 in [ltr/m² · min]; the solids content is measured according to DIN EN ISO 3251.

[0145] The viscosity is measured according to DIN EN ISO 2555 at 23° C.

[0146] The pH value is determined as a 10% by weight solution in water according to DIN ISO 976.

[0147] The tear resistance is determined according to DIN EN ISO 9073-4, the elongation and strength are determined according to DIN EN 29073-3. The determination of the shrinkage takes place at 200° C. for 10 min.

[0148] The water absorption capacity is measured according to DIN 18191.

1. A binder system, comprising:
 a) 10 to 90% by weight, preferably 30 to 70% by weight of at least one polyvinyl acetate and
 b) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and
 c) 0 to 60% by weight of at least one additive selected from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and
 d) 0 to 10% by weight of additives, the information on the proportions by weight referring to the dry mass of the binder system, i.e. without water and
 the sum of the constituents a) to d) giving 100% by weight.

2. The binder system according to claim 1, characterized in that it does not contain any polymers based on polycrylates.

3. The binder system according to claim 1 or 2, characterized in that the polyvinyl acetate is homopolymers of vinyl acetate and co- or terpolymerizations of vinyl acetate.

4. The binder system according to claim 3, characterized in that the homopolymers of the polyvinyl acetate contain up to 5 mole% further constituents which derive from other monomers than vinyl acetate.

5. The binder system according to claims 1 to 4, characterized in that it is a polyvinyl acetate having a glass temperature of 18 to 45° C.

6. The binder system according to claims 1 to 5, characterized in that it is a polyvinyl acetate having a degree of polymerization of between 100 and 5000.

7. The binder system according to claims 1 to 6, characterized in that it is a polyvinyl acetate whose molecular weight (weight average) is between 10000 and 1500000 g/mol.

8. A binder system, comprising:
 a) 10 to 90% by weight, preferably 30 to 70% by weight of polymerizates based on carboxylic acid derivatives and
 b) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and
 c) 0 to 60% by weight of at least one additive selected from
the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and
 d) 0 to 10% by weight of additives, the information on the proportions by weight referring to the dry mass of the binder system, i.e. without water and
 the sum of the constituents a) to d) giving 100% by weight, and the polymerizates based on carboxylic acid derivatives having been obtained by means of polymerization of monomeric carboxylic acid derivatives which have at least one terminal double bond.

9. The binder system according to claim 8, characterized in that the polymerizates based on carboxylic acid derivatives and polycarboxylic acids still have unsaturated constituents and are used as a mixture with unsaturated monomeric carboxylic acid derivatives.

10. The binder system according to claim 8 or 9, characterized in that the monomeric carboxylic acid derivatives, which have at least one terminal double bond, are unsaturated carboxylic acid esters, preferably unsaturated acrylates and/or methacylates which have been esterified by converting the basic acids and/or mono- or polyvalent, branched or linear C₁ to C₄ alcohol.

11. The binder system according to claim 10, characterized in that the C₁ to C₄ alcohol is methanol, ethanol, propanol, iso-propanol, butanol, 1-butanol, 2-butanol or tert-butanol.

12. The binder system according to claims 8 to 10, characterized in that the unsaturated carboxylic acid is acrylic acid and/or methacrylic acid.

13. The binder system according to claims 1 to 12, characterized in that the starch is a natural or modified starch or starch derivatives.

14. The binder system according to claims 1 to 13, characterized in that the starch is from vegetable raw material, in particular from tubers, seeds, fruit, and/or from pith.

15. The binder system according to claims 1 to 14, characterized in that the starch is of native vegetable origin or is chemically modified, enzymatically extracted, of recombinant origin or is manufactured by biotransformation (biocatalysis).

16. The binder system according to claims 1 to 15, characterized in that, in addition to the starch, this has at least two constituents selected from the group of amphoteric hydroxides, salts of the first and second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks, and the ratio is preferably 1:10 to 1:1 (proportions by weight).

17. The binder system according to claims 1 to 16, characterized in that it is a dispersion and that the polymer solids content of the dispersion, in particular the polymer solids content of the dispersions, is between 10 and 40% by weight, in particular between 10 and 30% by weight, particularly preferably 15 to 25% by weight.

18. The binder system according to claims 1 to 17, characterized in that it is a dispersion and the viscosity of the dispersion is preferably 1 to 3000 mPa·s, in particular 2 to 2500 mPa·s, particularly preferably 5 to 2000 mPa·s.

19. Use of the binder system according to one or more of claims 1 to 18 for the consolidation of textile fabrics.

20. A textile fabric which has been consolidated by means of a binder system according to one or more of claims 1 to 17 and comprises:
 a) 10 to 90% by weight, preferably 30 to 70% by weight of at least one polyvinyl acetate and
 b) 90 to 10% by weight, preferably 70 to 30% by weight of one or more starches and
 c) 0 to 60% by weight of at least one additive selected from the group of amphoteric hydroxides, salts of the first and
second main groups of the periodic table, mineral additives which are of synthetic or natural origin, kaolin, carbon blacks or mixtures thereof and
d) 0 to 10% by weight of additives,

the information on the proportions by weight referring to
the dry mass of the binder system, i.e. without water and
the sum of the constituents a) to d) giving 100% by
weight.

21. A textile fabric which has been consolidated by means
of a binder system according to one or more of claims 8 to 18
and comprises

a) 10 to 90% by weight, preferably 30 to 70% by weight of
polymerizates based on carboxylic acid derivatives and
b) 90 to 10% by weight, preferably 70 to 30% by weight of
one or more starches and
c) 0 to 60% by weight of at least one additive selected from
the group of amphoteric hydroxides, salts of the first and
second main groups of the periodic table, mineral additives
which are of synthetic or natural origin, kaolin, carbon
blacks or mixtures thereof and
d) 0 to 10% by weight of additives,

the information on the proportions by weight referring to
the dry mass of the binder system, i.e. without water and
the sum of the constituents a) to d) giving 100% by
weight, and the polymerizates based on carboxylic acid
derivatives having been obtained by means of polymer-
ization of monomeric carboxylic acid derivatives which
have at least one terminal double bond.

22. The textile fabric according to claim 20 or 21, charac-
terized in that the applied quantity of the binder system
is between 5 and 35 wt % of dry binder in relation to the total
weight of the raw textile fabric.

23. The textile fabric according to claims 20 to 22, charac-
terized in that said textile fabric is any structure composed of
fibers which has been manufactured according to a surface
forming method.

24. The textile fabric according to claims 20 to 23, charac-
terized in that it is a textile fabric on the basis of natural fibers,
fibers composed of synthetic products and/or fibers com-
posed of synthesized polymers.

25. The textile fabric according to claims 20 to 24, charac-
terized in that said textile fabric is a woven fabric, a yarn
sheet, a knitted fabric and/or a non-woven fabric.

26. The textile fabric according to claims 20 to 25, charac-
terized in that the textile fabrics are non-wovens made of
synthetic polymer fibers, preferably a spinbonded non-woven.

27. A textile fabric according to claims 20 to 26, charac-
terized in that said textile fabric is a non-woven fabric made of
fibers of glass fibers and/or mineral fibers.

28. The textile fabric according to claim 27, characterized
in that the textile fabric has a weight per unit area of 20 and
500 g/m².

29. Use of the textile fabric according to one or more of
claims 20 to 28 as a lining material, optionally in combination
with at least one further textile fabric, for coated sarking
membranes, roofing sheets and water-proof sheetings as well
as a textile backing or a textile reinforcement in floorings, in
particular in carpets and PVC floorings.

30. A lining material for sarking membranes, roofing
sheets and water-proof sheetings, textile backings or textile
reinforcements in floorings, in particular in carpets and PVC
floorings, comprising at least one textile fabric according to
one or more of claims 20 to 28.

31. The lining material according to claim 30, charac-
terized in that it has at least one additional reinforcement.

32. A lining material according to claim 30 or 31, charac-
terized in that it has at least one further textile fabric besides
the textile fabric according to one or more of claims 20 to 28
which differ from each other.

33. Use of the lining material according to one or more of
claims 30 to 32 for the manufacture of lining materials for
sarking membranes, roofing sheets and water-proof sheet-
ings, in particular for the manufacture of coated sarking mem-
branes, roofing sheets and water-proof sheetings, for the
manufacture of textile backings or as a textile reinforcement
in floorings, in particular in carpets and PVC floorings.

34. A coated sarking membrane, roofing sheet and water-
proof sheeting, comprising at least one coating compound
and at least one textile fabric according to one or more of
claims 20 to 28 or a lining material according to one or more
of claims 30 to 32.

35. A floorings, in particular a carpet or a PVC floorings,
comprising a textile backing or a textile reinforcement com-
prising at least one textile fabric according to one or more of
claims 20 to 28 or a lining material according to one or more
of claims 30 to 32.

* * * * *