
(19) United States
US 20070079 120A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0079120 A1
Bade et al. (43) Pub. Date: Apr. 5, 2007

(54) DYNAMIC CREATION AND HIERARCHICAL
ORGANIZATION OF TRUSTED PLATFORM
MODULES

(76) Inventors: Steven A. Bade, Georgetown, TX (US);
Stefan Berger, New York, NY (US);
Kenneth Alan Goldman, Norwalk, CT
(US); Ronald Perez, Mount Kisco, NY
(US); Reiner Sailer, Scarsdale, NY
(US); Leendert Peter Van Doorn,
Valhalla, NY (US)

Correspondence Address:
IBM CORP (YA)
CFO YEE & ASSOCATES PC
P.O. BOX 802.333
DALLAS, TX 75380 (US)

(21) Appl. No.: 11/242,673

(22) Filed: Oct. 3, 2005

414 420

Publication Classification

(51) Int. Cl.
H04L 9/00 (2006.01)

(52) U.S. Cl. .. 713/166

(57) ABSTRACT

A trusted platform module is presented that is capable of
creating, dynamically, multiple virtual trusted platform
modules in a hierarchical organization. A trusted platform
module domain is created. The trusted platform module
creates virtual trusted platform modules, as needed, in the
trusted platform module domain. The virtual trusted plat
form modules can inherit the permissions of a parent trusted
platform module to have the ability to create virtual trusted
platform modules themselves. Each virtual trusted platform
module is associated with a specific partition. Each partition
is associated with an individual operating system. The
hierarchy of created operating systems and their privilege of
spawning new operating systems is reflected in the hierarchy
of trusted platform modules and the privileges each of the
trusted platform modules has.

426 432

DOM-TPM

406

HYPERVISOR

Patent Application Publication Apr. 5, 2007 Sheet 1 of 9 US 2007/00791 20 A1

206-NPROCESSING
UNIT 200

210 202 208 1. 216 236

CD NB/MCH KCD AUDIO

204
240 238

BUS BUS
SB/ICH

NETWORK
DSK CD-ROM ADAPTER

226 230 212 232 234 220 222 224

FIG. 2

KEYBOARD
PC/PCle AND
DEVICES MOUSE

ADAPTER

USBAND
MODEM OTHER

PORTS

Patent Application Publication Apr. 5, 2007 Sheet 2 of 9 US 2007/0079120 A1

300
APPLICATION /
SOFTWARE

310 NETWORKACCESS
SOFTWARE

APPLICATION 308
PROGRAMMING

INTERFACE

306

COMMUNICATIONSOFTWARE

304

OPERATING SYSTEM

302

HYPERVISOR 312 FIG. 3

414 420 426 432

i

Patent Application Publication Apr. 5, 2007 Sheet 3 of 9 US 2007/00791 20 A1

516 526 536 546 510 52O 530 540

DOM-TPM
506

HYPERVISOR

16 626 636 646 610 620 630 640 6

HYPERVISOR

Patent Application Publication Apr. 5, 2007 Sheet 4 of 9 US 2007/0079120 A1

FROM FIGS. 8,9,10,11

702 WAIT FOR COMMAND

S'CREATE
TPM INSTANCE
COMMAND?

706 TO FIG. 8

S'DELETE
TPM INSTANCE
COMMAND?

YES

TO FIG. 9

IS'SETUP
TPM INSTANCE
COMMAND2

YES

708
TO FIG. 10

ISROUTE
EMBEDDED COMMAND
TOTPMINSTANCE

COMMAND?

TO FIG. 11

VERIFY VALIDITY OF
COMMAND AND

PROCESS ASA NORMAL
TPM COMMAND

712

FIG. 7

Patent Application Publication Apr. 5, 2007 Sheet 5 of 9

802

810

812

RECEIVE REQUEST TO CREATE TPM
INSTANCE AS CHILD OF INSTANCEP

RETURNINSTANCE
HANDLEH TO CALLER

FROM FIG. 7

804
IS USER

AUTHENTICATION
FOR THIS COMMAND

VALID?

IS PA
DESCENDANT OF
THE PROCESSING

TPM?

IS INSTANCE
P A PRIVILEGED
INSTANCE2

CREATE TPM INSTANCE AS CHILD
OF P WITH REQUESTED PRIVLEGES

AND INHERIT PROPERTIES OF
PARENT INSTANCE. CREATE

INSTANCE WITH UNIQUE HANDLEH

TO FIG. 7

SEND APPROPRIATE
ERROR CODE AS
RESULT VALUE

US 2007/0079120 A1

814

FIG. 8

Patent Application Publication Apr. 5, 2007 Sheet 6 of 9

902

910

912

FROM FIG. 7

RECEIVE REQUEST TO DELETETPM
INSTANCE WITH UNIQUE HANDLEH

904
IS USER

AUTHENTICATION
FOR THIS COMMAND

VALID?

906
IS INSTANCE

H A DESCENDANT OF
PROCESSING INSTANCE

P?

DOES
INSTANCEH

HAVE DESCENDENTS

DELETE ALLDATA ASSOCIATED
WITH INSTANCEH

DELETEREFERENCE TO INSTANCEH
FROM ITS PARENT INSTANCEP

TO FIG. 7

SEND APPROPRIATE
ERROR CODEAS
RESULT VALUE

US 2007/0079120 A1

914

FIG. 9

Patent Application Publication Apr. 5, 2007 Sheet 7 of 9 US 2007/0079120 A1

FROM FIG. 7

RECEIVE REOUEST TO SETUPTPM
INSTANCE WITH UNIOUE HANDLEH

IS
USER AUTHENTICATION
FOR THIS COMMAND

VALID?

1002

DOES
INSTANCEH

EXIST?

IS INSTANCE
H A DESCENDANT OF
THE PROCESSING

INSTANCE2

PROCESS THOSE ACTIONS
REQUESTED BY USER, RUNTPM
STARTUP COMMAND, ENABLE,

ACTIVATE TPM INSTANCE

SEND APPROPRIATE
ERROR CODE AS
RESULT VALUE 1014

1010

PROCESS LIST OF PCR REGISTER
INDEX VALUES AND EXTEND PCR
REGISTERS WITH HASHVALUES 1012

TO FIG. 7

Patent Application Publication Apr. 5, 2007 Sheet 8 of 9 US 2007/0079120 A1

FROM FIG. 7

RECEIVE REQUEST TO ROUTE
EMBEDDED COMMAND TOTPM

INSTANCE WITHUNIQUE HANDLEH

IS USER
AUTHENTICATION FOR

THIS COMMAND
VALIO2 FIG. I. I

RETRIEVE EMBEDDED
COMMAND

IS SIZE
INDICATOR OF COMMAND

IS INSTANCE VALID?
HADESCENDANT OF 1112
THE PROCESSING

INSTANCE 2

1110
DOES

INSTANCE HEXIST
?

ISEMBEDDED
COMMAND ALLOWED TO

BEEMBEDDED?
SEND APPROPRIATE
ERROR CODE AS
RESULT VALUE

1114

PROCESS THE
EMBEDDED COMMAND

EMBED THE RESPONSE
MESSAGE OF THE EMBEDDED
COMMAND IN THE RESPONSE

1120

1116

1118

TO FIG. 7

Patent Application Publication Apr. 5, 2007 Sheet 9 of 9 US 2007/0079 120 A1

TPMINSTANCEO
(PRIVILEGED)

1204

TPMINSTANCE 2
(PRIVILEGED)

1206

TPMINSTANCE 3
(NON-PRIVILEGED)

1202

TPM INSTANCE 1
(NON-PRIVILEGED)

1208 1210

TPM NSTANCE 4 TPM INSTANCE 5
(PRIVILEGED) (NON-PRIVILEGED)

FIG. I2

TPM INSTANCEO
(PRIVILEGED)

TPM NSTANCE 2
(PRIVILEGED)

TPM INSTANCE 4 TPM INSTANCE 5
(PRIVILEGED) (NON-PRIVILEGED)

FIG. I.3

1306

TPM INSTANCE 3
(NON-PRIVILEGED)

1310

1302

PM NSTANCE
(NON-PRIVILEGED)

1308

US 2007/0079 120 A1

DYNAMIC CREATION AND HERARCHICAL
ORGANIZATION OF TRUSTED PLATFORM

MODULES

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention relates generally to a data
processing system. Specifically, the present invention pro
vides a method, an apparatus and a computer program
product for the dynamic creation and hierarchical organiza
tion of trusted platform modules.
0003 2. Description of the Related Art
0004 The Trusted Computing Group has defined the
functionality and protocol for a hardware module called the
Trusted Platform Module (TPM). This piece of hardware
offers security and cryptographic functionality to computer
systems such as, for example, asymmetric key generation,
decryption, encryption, signing, sealing and binding of data
to the state of the TPM, migration of keys between TPMs.
random number generation and hashing functionality. A
TPM also implements a rather complex state machine which
allows some of its operations to only be performed when a
sequence of certain commands has been sent to the TPM
before. One example of this is that a TPM owner can only
be set if an endorsement key has been created previously.
0005. Many hardware vendors ship their computing sys
tems equipped with a TPM soldered to the motherboard,
which allows widespread usage of the TPM by operating
systems such as Linux(R) or Windows(R). It is expected that
future versions of the Windows(R operating system will
support trusted computing with the TPM, and use it, for
example, for securely booting a system.
0006 The interest in support for trusted computing on
virtualizeable systems is growing as hardware virtualization
becomes available for more hardware. Being able to run
multiple operating systems on one machine will not remain
an area only for high-end servers but will become widely
available soon. Also, there are already several hypervisors in
use today that were built for hardware that has been virtu
alizeable for many years. A hypervisor is a layer of software
running on a platform that allows multiple instances of
operating systems. Trusted computing is of interest for
building operating system architectures and improving their
security. Currently, TPMs are not available for virtualizeable
platforms.

SUMMARY OF THE INVENTION

0007. The present invention provides a method, system,
and computer program product for the dynamic creation and
hierarchical organization of trusted platform modules. A
trusted platform module domain is created. The trusted
platform module may dynamically create virtual trusted
platform modules, as needed, in the trusted platform module
domain. The created virtual platform modules are called
child trusted platform modules and the creating trusted
platform module is known as a parent module. Each virtual
trusted platform module is associated with a specific parti
tion. Each partition is associated with an individual operat
ing System.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention

Apr. 5, 2007

itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood
by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:
0009 FIG. 1 is a pictorial representation of a network of
data processing systems in which exemplary aspects of the
present invention may be implemented;
0010 FIG. 2 is a block diagram of a data processing
system in which exemplary aspects of the present invention
may be implemented;
0011 FIG. 3 is a block diagram showing typical software
architecture for a server-client system in accordance with a
preferred embodiment of the present invention;
0012 FIG. 4 is a block diagram depicting an example of
an architecture for implementing a virtual TPM in accor
dance with an exemplary embodiment of the present inven
tion;
0013 FIG. 5 is a block diagram depicting an example of
an architecture that has a TPM on the motherboard and the
virtual TPM functionality as software in the TPM domain in
accordance with an exemplary embodiment of the present
invention;
0014 FIG. 6 is a block diagram depicting an example of
an architecture with a TPM on the motherboard and the
virtual TPM functionality as software in the domain 0 in
accordance with an exemplary embodiment of the present
invention;
0.015 FIG. 7 is a flowchart illustrating a method for
handling TPM commands in accordance with an exemplary
embodiment of the present invention;
0016 FIG. 8 is a flowchart illustrating a method for
handling a create TPM instance command in accordance
with an exemplary embodiment of the present invention;
0017 FIG. 9 is a flowchart illustrating a method for
handling a delete TPM instance command in accordance
with an exemplary embodiment of the present invention;
0018 FIG. 10 is a flowchart illustrating a method for
handling a setup TPM instance command in accordance with
an exemplary embodiment of the present invention;
0.019 FIG. 11 is a flowchart illustrating a method for
handling a route embedded command to TPM instance
command in accordance with an exemplary embodiment of
the present invention;
0020 FIG. 12 is a block diagram illustrating a commu
nication path among a hierarchical set of virtual TPMs in
accordance with an exemplary embodiment of the present
invention; and
0021 FIG. 13 is a block diagram illustrating an alterna
tive communication path among a hierarchical set of virtual
TPMs in accordance with an exemplary embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0022 FIGS. 1-2 are provided as exemplary diagrams of
data processing environments in which embodiments of the

US 2007/0079 120 A1

present invention may be implemented. It should be appre
ciated that FIGS. 1-2 are only exemplary and are not
intended to assert or imply any limitation with regard to the
environments in which aspects or embodiments of the
present invention may be implemented. Many modifications
to the depicted environments may be made without depart
ing from the spirit and scope of the present invention.
0023. With reference now to the figures, FIG. 1 depicts a
pictorial representation of a network of data processing
systems in which aspects of the present invention may be
implemented. Network data processing system 100 is a
network of computers in which embodiments of the present
invention may be implemented. Network data processing
system 100 contains network 102, which is the medium used
to provide communications links between various devices
and computers connected together within network data
processing system 100. Network 102 may include connec
tions, such as wire, wireless communication links, or fiber
optic cables.
0024. In the depicted example, server 104 and server 106
connect to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 connect to network 102.
These clients 110, 112, and 114 may be, for example,
personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files,
operating system images, and applications to clients 110.
112, and 114. Clients 110, 112, and 114 are clients to server
104 in this example. Network data processing system 100
may include additional servers, clients, and other devices not
shown.

0025. In the depicted example, network data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
Suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput
ers, consisting of thousands of commercial, government,
educational and other computer systems that route data and
messages. Of course, network data processing system 100
also may be implemented as a number of different types of
networks. Such as for example, an intranet, a local area
network (LAN), or a wide area network (WAN). FIG. 1 is
intended as an example, and not as an architectural limita
tion for different embodiments of the present invention.
0026. With reference now to FIG. 2, a block diagram of
a data processing system is shown in which aspects of the
present invention may be implemented. Data processing
system 200 is an example of a computer, such as server 104
or client 110 in FIG. 1, in which computer usable code or
instructions implementing the processes for embodiments of
the present invention may be located.
0027. In the depicted example, data processing system
200 employs a hub architecture including north bridge and
memory controller hub (MCH) 202 and south bridge and
input/output (I/O) controller hub (ICH) 204. Processing unit
206, main memory 208, and graphics processor 210 are
connected to north bridge and memory controller hub 202.
Graphics processor 210 may be connected to north bridge
and memory controller hub 202 through an accelerated
graphics port (AGP).
0028. In the depicted example, LAN adapter 212 con
nects to south bridge and I/O controller hub 204. Audio

Apr. 5, 2007

adapter 216, keyboard and mouse adapter 220, modem 222,
read only memory (ROM) 224, hard disk drive (HDD) 226,
CD-ROM drive 230, universal serial bus (USB) ports and
other communications ports 232, and PCI/PCIe devices 234
connect to south bridge and I/O controller hub 204 through
bus 238 and bus 240. PCI/PCIe devices may include, for
example, Ethernet adapters, add-in cards and PC cards for
notebook computers. PCI uses a card bus controller, while
PCIe does not. ROM 224 may be, for example, a flash binary
input/output system (BIOS).

0029 Hard disk drive 226 and CD-ROM drive 230
connect to south bridge and I/O controller hub 204 through
bus 240. Hard disk drive 226 and CD-ROM drive 230 may
use, for example, an integrated drive electronics (IDE) or
serial advanced technology attachment (SATA) interface.
Super I/O (SIO) device 236 may be connected to south
bridge and I/O controller hub 204.
0030. An operating system runs on processing unit 206
and coordinates and provides control of various components
within data processing system 200 in FIG. 2. As a client, the
operating system may be a commercially available operating
system such as Microsoft(R) Windows(R XP (Microsoft and
Windows are trademarks of Microsoft Corporation in the
United States, other countries, or both). An object-oriented
programming system, Such as the JavaTM programming
system, may run in conjunction with the operating system
and provides calls to the operating system from Java pro
grams or applications executing on data processing system
200 (Java is a trademark of Sun Microsystems, Inc. in the
United States, other countries, or both).
0031. As a server, data processing system 200 may be, for
example, an IBM eServer'TM pSeries(R) computer system,
running the Advanced Interactive Executive (AIX(R) oper
ating system or LINUX operating system (eServer, pSeries
and AIX are trademarks of International Business Machines
Corporation in the United States, other countries, or both
while Linux is a trademark of Linus Torvalds in the United
States, other countries, or both). Data processing system 200
may be a symmetric multiprocessor (SMP) system including
a plurality of processors in processing unit 206. Alterna
tively, a single processor system may be employed.

0032. Instructions for the operating system, the object
oriented programming system, and applications or programs
are located on Storage devices, such as hard disk drive 226,
and may be loaded into main memory 208 for execution by
processing unit 206. The processes for embodiments of the
present invention are performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, read
only memory 224, or in one or more peripheral devices 226
and 230.

0033. Those of ordinary skill in the art will appreciate
that the hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
Also, the processes of the present invention may be applied
to a multiprocessor data processing system.

0034. In some illustrative examples, data processing sys
tem 200 may be a personal digital assistant (PDA), which is

US 2007/0079 120 A1

configured with flash memory to provide non-volatile
memory for storing operating system files and/or user
generated data.
0035) A bus system may be comprised of one or more
buses, such as bus 238 or bus 240 as shown in FIG. 2. Of
course the bus system may be implemented using any type
of communications fabric or architecture that provides for a
transfer of data between different components or devices
attached to the fabric or architecture. A communications unit
may include one or more devices used to transmit and
receive data, such as modem 222 or network adapter 212 of
FIG. 2. A memory may be, for example, main memory 208,
read only memory 224, or a cache Such as found in north
bridge and memory controller hub 202 in FIG. 2. The
depicted examples in FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations.
For example, data processing system 200 also may be a
tablet computer, laptop computer, or telephone device in
addition to taking the form of a PDA.
0.036 Turning to FIG. 3, typical software architecture,
generally designated by reference number 300, for a server
client system is depicted in accordance with a preferred
embodiment of the present invention. At the lowest level,
operating system 302 is utilized to provide high-level func
tionality to the user and to other Software. Operating system
302 may be implemented in server 104 or client 110 in FIG.
1, in which computer usable code or instructions implement
ing the processes for embodiments of the present invention
may be located. Such an operating system typically includes
BIOS. Communication software 304 provides communica
tions through an external port to a network Such as the
Internet via a physical communications link by either
directly invoking operating system functionality or indi
rectly bypassing the operating system to access the hardware
for communications over the network.

0037 Application programming interface (API) 306
allows the user of the system, an individual, or a software
routine, to invoke system capabilities using a standard
consistent interface without concern for how the particular
functionality is implemented. Network access software 308
represents any Software available for allowing the system to
access a network. This access may be to a network, Such as
a LAN, WAN, or the Internet. With the Internet, this
Software may include programs, such as Web browsers.
0038 Application software 310 represents any number of
Software applications designed to react to data through a
communications port to provide the desired functionality the
user seeks. Applications at this level may include those
necessary to handle data, video, graphics, photos or text,
which can be accessed by users of the Internet. Hypervisor
312 is a layer of software running on a platform that allows
multiple instances of operating systems.

0039. One of the most interesting areas of usage for the
TPM is the realization of a trusted computing architecture
within an operating system. The purpose of a trusted com
puting architecture is for a system to be able to establish trust
into another system by learning about the Software that has
been started on that system. The trusted computing archi
tecture implements the concept of attestation, where attes
tation is based on the process of measuring all executables,
libraries and script files by calculating their individual hash
values, and accumulating those in Platform Configuration

Apr. 5, 2007

Registers (PCRs) of the TPM. Using the accumulated hash
values along with the list of started programs and their
individual measurements, other systems can determine
which version of software has been started on a particular
system. Attestation itself is performed by a system reporting
the current values of the system’s PCR registers and pro
viding a signature over the reported values using a system
specific key. The knowledge about running Software can be
used to establish trust into this system by comparing the
individual hash values of the applications with previously
measured values stored in a database as well as accumulat
ing the hash values and comparing the results to the values
of the reported PCR registers. The fact that measurements
initially are taken at the earliest point through the BIOS,
followed by the bootloader and the operating system and the
fact that the PCR register values are signed, prevents a
system from cheating about the list of software that has been
started.

0040. The usage and functionality of the TPM is defined
through the TPM command protocol, which defines the
command set a TPM needs to implement and what param
eters are passed in each command. The TPM protocol is
strictly request/response-based and a TPM processes one
command after another in strict sequence.
0041. The TPM supports around 120 different commands
which have been put into more than 30 functional groups.
Some of the most important functionality of the TPM is the
Support of storage functions, where encrypted information
can be tied to the state of a TPM and can only be decrypted
once the TPM has been set into that state again, for example
after a reboot of the platform. Other functionality comprises
the creation of keys and means to migrate keys from one
TPM to another. The execution time that Some of the TPM
commands need greatly varies from one command type to
another. Key creation, for example, can be regarded as a
command that takes a long time, whereas, for example, the
calculation of a hash value completes rather quickly. Since
the TPM executes all commands in sequence, no other
commands can complete while, for example, a key is
created. This is important for multitasking/multiprocessing
environments where possibly multiple processes might want
to use the system's TPM at one specific instance.
0042 Computer systems that have the capability of run
ning multiple operating systems at the same time will also
desire to extend Support for trusted computing in a similar
way as it has been made available for single operating
system environments. In such a case, each partition needs to
have access to its own virtual TPM instance.

0043. For the startup of the first operating system domain
running on top of the hypervisor, measurements are handled
in the same manner as in the case where an operating system
is not running on top of a hypervisor. In this case, the BIOS
is regarded as a trusted root and starts taking the measure
ments. Specifically, the BIOS measures the BIOS code, the
contents of the Master Boot Record, and the first stage of the
boot loader and accumulates the measurements into several
dedicated PCR registers. The bootloadergrub is modified to
measure the kernel and initial random access memory
(RAM) disks, which are provided as parameters in a script
file that the bootloader grub reads when the system is
booted. Once the operating system starts, all measurements
that are made there for libraries, scripting files and
executables are accumulated in TPM PCR registers.

US 2007/0079 120 A1

0044) Every TPM holds state, which consists of volatile
and non-volatile data. This includes the endorsement key
pair, the storage root key and all other private keys that are
held inside the TPM. Also associated with a TPM are a
particular owner and the owner's password. In the model of
a single operating system on a machine, different machines
with their own TPMs are likely to have different owners.
Transferring this association between ownership and TPMs
to platforms with multiple operating systems means that one
instance of a TPM should be associated with one particular
partition. Since partitions can be stopped and started, it is
necessary to maintain the association between each partition
and each instance of a TPM over the lifetime of a TPM or
partition configuration.
0045. The measurements that each operating system pro
duces are treated in a similar way as those treated on a
single-operating system. The difference is that measure
ments taken by the bootloader do not exist for any partition
other than the one that is started first. Since on many systems
the first partition will be involved in starting other partitions,
it is this partition’s responsibility to take any possible
measurements and prepare the TPM to reflect them. This
means, for example, measuring the kernel image and the
initial RAM disk if a LinuxOR kernel is to be started.

0046) A virtual TPM allows for the collection of mea
Surements of multiple operating systems. Each operating
system is offered its own instance of a TPM where it can
create an endorsement key, storage root key, take ownership
of the TPM and apply its own owner password. In an
exemplary embodiment of the present invention, the normal
command set that a TPM understands is expanded to allow
management of additional instances of a TPM, Such as, for
example, creating new instances, deleting the new instances,
preparing the new instances for usage by a partition, and
sending commands to new instances indirectly through
forwarding messages from other instances. Further, the
extension of the command set enables the download of the
complete state of a TPM, including non-volatile RAM
(NVRAM) areas, and internally held keys into a file and
recreating the TPM state in another multi-instance capable
TPM and resume operation there.
0047. In an exemplary embodiment, a virtual TPM runs
on a piece of hardware other than current TPMs that are
soldered to the motherboard. One such piece of hardware,
for example, could be a microprocessor similar to a current
single instance TPM with the difference that the hardware
should be faster in order to provide enough speed for
concurrent processing of TPM requests.
0.048 FIG. 4 is a block diagram depicting an example of
an architecture for implementing a virtual TPM in accor
dance with an exemplary embodiment of the present inven
tion. In the case of FIG. 4, hardware 400 provides the only
TPM functionality in the system, TPM 402. In the present
example, the hardware is the IBM XCryptoTM card. In this
case, all attestations from the BIOS, bootloader, and the first
started domain, here the TPM domain, DOM-TPM 406, is
recorded in instance 0. Instance 0 exists in virtual TPM,
vTPM 402 of hardware 400 and is always present. DOM
TPM 406 is a dedicated TPM domain with a minimum of
applications running. Therefore, DOM-TPM 406 only
handles functions related to the TPM. This reduces the
chance of errors occurring, increases reliability and
improves the trusted computing base.

Apr. 5, 2007

0049 DOM-TPM406 contains the back-end driver TPM
BE 408. TPM BE 408 communicates with the front-end
drivers of the other domains, TPM FE 412, 418, 424 and
430. The back-end driver is aware of which partition a
request is coming from since a unique interrupt number has
been assigned to each instance of the back-end driver for
each front-end communication partner.
0050 Instance 0 records the measurements taken by the
BIOS, bootloader and TPM domain. Instance 1 records the
measurements for domain 0, DOM-0410, which is started as
the second domain. Instance 1 also resides in VTPM 402 of
hardware 400. Further instances, all of which will reside in
vTPM 402 of hardware 400, are created as needed when
additional domains are created. DOM-0410, DOM-U 416,
DOM-U 422 and DOM-U 428 are additional domains all of
which are running separate operating systems in their vir
tualized partition. In the example depicted, each domain has
multiple applications, 414, 420, 426 and 432 running. DOM
0410, DOM-U 416, DOM-U 422 and DOM-U 428 commu
nicate with DOM-TPM 406 through exchange of data over
a channel provided by the hypervisor 404. DOM-TPM 406
then communicates with VTPM 402.

0051 FIG. 5 is a block diagram depicting an example of
an architecture that has a TPM on the motherboard and the
virtual TPM functionality as software in the TPM domain in
accordance with an exemplary embodiment of the present
invention. In an exemplary embodiment of the present
invention, TPM 502 is a TPM located on a motherboard.
Similar to the architecture of FIG. 4, attestations from the
BIOS, bootloader and the TPM domain, DOM-TPM 506,
are recorded in TPM 502. DOM-TPM 506 is a dedicated
TPM domain with a minimum of applications running.
Therefore, DOM-TPM506 only handles functions related to
the TPM. This reduces the chance of errors occurring,
increases reliability and improves the trusted computing
base.

0.052) DOM-TPM506 contains back-end driver TPM BE
508. TPMBE 508 communicates with the front-end drivers
of the other domains, TPM FE 514,524, 534 and 544. The
back-end driver is aware of which partition a request is
coming from since a unique interrupt number has been
assigned to each instance of the back-end driver for each
front-end communication partner.
0053. However, unlike FIG. 4, future instances and all
virtual TPMs, vTPM 510,520, 530, and 540 are created and
exist in DOM-TPM 506. Instance O of the VTPM 510
records the measurements for domain 0, DOM-0512, which
is started as the second domain. Further instances and virtual
TPMs, vTPM 520, 530 and 540 are created as need when
additional domains, such as DOM-U 522, DOM-U 532, and
DOM-U 542, are created. Each virtual TPM corresponds to
one specific domain. In the present example vTPM 510
corresponds to DOM-0512, VTPM 520 corresponds to
DOM-U 522, VTPM 530 corresponds to DOM-U 532, and
vTPM 540 corresponds to DOM-U 542. In the example
depicted, each domain has multiple applications, 516, 526,
536, and 546 running. DOM-0512, DOM-U 522, DOM-U
532, and DOM-U 542 communicate with DOM-TPM 506,
and their respective virtual TPMs through exchange of data
over a channel provided by the hypervisor 504.

0054) The architectures illustrated in FIGS. 4 and 5 both
have in common that the TPM domain effectively provides

US 2007/0079 120 A1

proxy functionality for TPM services, with the difference
being that of where the processing of the TPM requests is
happening. The final processing or TPM requests in FIG. 4
happens in the external XcryptotM card, whereas in FIG. 5
all TPM requests are processed by the TPM software imple
mentation in the vTPM instances 510, 520, 530, and 540.
The architecture depicted in FIG. 4 may also be considered
as more secure, since all TPM functionality is provided by
the hardware.

0.055 FIG. 6 is a block diagram depicting an example of
an architecture with a TPM on the motherboard and the
virtual TPM functionality as software in the domain 0 in
accordance with an exemplary embodiment of the present
invention. In an exemplary embodiment of the present
invention, TPM 602 is a TPM located on a motherboard.
Unlike the architectures of FIGS. 4 and 5, hypervisor 604
always boots domain 0, DOM-0606, as the first domain,
which forces all virtual TPM functionality into domain 0.
DOM-0606 is not a dedicated TPM domain. DOM-0606 has
other functionality besides handling TPM functions. For
example, DOM-0606 also handles the creation of the other
domains, DOM-U 612, DOM-U 622, DOM-U 632, and
DOM-U 642.

0056 Attestations from the BIOS, bootloader and DOM
0606, are recorded in TPM 602. DOM-0606 contains back
end driver TPM BE 608. TPM BE 608 communicates with
the front-end drivers of the other domains, TPM FE 614,
624, 634 and 644. The back-end driver is aware of which
partition a request is coming from since a unique interrupt
number has been assigned to each instance of the back-end
driver for each front-end communication partner.
0057. Further instances and virtual TPMs, vTPM 610,
620, 630, and 640 are created as needed when user domains,
such as DOM-U 612, DOM-U 622, DOM-U 632, and
DOM-U 642 are created. Each virtual TPM corresponds to
one specific domain. In the present example vTPM 610
corresponds to DOM-U 612, VTPM 620 corresponds to
DOM-U 622, VTPM 630 corresponds to DOM-U 632, and
vTPM 640 corresponds to DOM-U 642. In the example
depicted, each domain has multiple applications, 616, 626,
636 and 646, running. DOM-U 612, DOM-U 622, DOM-U
632, and DOM-U 642 communicate with DOM-0606, and
their respective virtual TPMs through exchange of data over
a channel provided by the hypervisor 604.
0.058. One of the issues with the dynamicity of the virtual
TPM is the handling of the endorsement key of each created
instance. For today's TPMs that are soldered to the com
puter's motherboard, the platform manufacturer establishes
the endorsement key pair when the machine is built and
issues a certificate for the public key part of the endorsement
key. The owner of the machine can use the certificate to
prove ownership of the machine. The certificate also indi
cates that the device in which the private key is stored is, in
fact, a TPM device which hides the private key from its
OW.

0059 Since the virtual TPM creates TPMs dynamically,
the platform manufacturer can not know the public key parts
of all created endorsement keys. However, the manufacturer
can certify the public key part of the endorsement key of
instance 0 and provide the certificate to the platform owner.
Then, to create certificates of individual instances of the
TPM, the TPM instance 0 can be used to certify the

Apr. 5, 2007

endorsement keys of its TPM child instances by effectively
creating a certificate chain. To realize this in a simple way,
the public key part of the endorsement key of every TPM
instance can be certified through instance 0 issuing a sig
nature over that endorsement key using its own endorsement
key, or attestation identity key (AIK) for signing.
0060 Since multiple operating systems will submit their
measurements to a multi-instance TPM, it is apparent that
strict sequential processing of all individual TPM requests
will not allow an operating systems to run efficiently. For
example, individual partitions would be blocked until
another partition’s request is completed. An exemplary
embodiment of the present invention solves this problem by
creating a pool of threads at the lowest level of the TPM. The
pool of threads allows concurrent processing of multiple
requests. At any given time only one thread is waiting for a
TPM request in the driver. Once it has received a TPM
request, it leaves the kernel driver and starts processing that
request inside the targeted TPM instance while the next
thread has been released to wait for the next request. In an
exemplary embodiment of the present invention, this feature
is achieved through the usage of thread locks. In another
exemplary embodiment of the present invention, through a
similar way of using locking mechanisms, only one thread
is allowed to write a response to the driver.
0061. In an exemplary embodiment of the present inven
tion, the demultiplexing of TPM requests to be able to route
them to their intended instance is solved through proper
setup of the TPM back-end driver that is located under the
virtual TPM. Through domain configuration files, known as
virtual machine configuration files, a declaration of what
instance of the TPM will be associated with which partition
is made. This is configuration information that applies only
to the back-end driver and allows the back-end driver to
prepend a 4-byte instance number to the TPM request before
the TPM request is passed to the TPM running in the user
level. The instance number is made available to the back-end
driver when the back-end and front-end are setup for com
munication during partition bootup time. The back-end
driver is aware of which partition a request is coming from
through the unique interrupt number that has been assigned
to the back-end driver for each front-end communication
partner. Therefore, as prepending the instance number may
be handled more securely on the back end-side, in an
exemplary embodiment of the present invention, the
instance number is not prepended in the front-end side.
Additionally, this prevents accidentally forging the source of
a request.

0062. In an exemplary embodiment of the present inven
tion, the same kind of channel that is used for a user partition
to communicate with a TPM instance may also exist for
communication between the privileged domain 0 and the
TPM domain. One reason for this is that the extended
command set uses the same layout for TPM commands as all
the existing TPM commands do. Therefore, this channel can
deliver those commands to the TPM. Additionally, down
loading the state of a TPM requires a fair amount of byte
transfer towards the privileged domain, which can, at least
in Some architecture, not be accommodated through event
channels. The setup procedure of the TPM back-end and
front-end drivers serves as an establishment phase for a
channel, but not necessarily as an instantiation request for a
TPM instance. In an exemplary embodiment of the present

US 2007/0079 120 A1

invention, an instantiation request for TPMS occur on a
higher layer through the exchange of commands using the
established channel.

0063. Depending on the availability of hardware capable
of supporting a virtual TPM, the TPM domain may provide
two different sets of functionality. One case is where there is
no hardware available to support a virtual TPM. In this case,
a Software TPM would be hosted in the TPM domain or
domain 0 and process the requests from all other domains,
as shown in FIGS. 5 and 6 respectively. In the second case,
where a hardware TPM is available, on the PCI bus for
example, the TPM domain becomes a pure proxy domain for
transferring data from the back-end driver to the PCI device
driver and vice versa, as shown in FIG. 4. A user-level
application would not be necessary in this case.
0064. In an exemplary embodiment of the present inven
tion, a higher level tool exists that knows throughout the
lifetime of a system which partition is associated with which
instance of a TPM. Whenever a new partition is created, a
TPM instance should automatically be created and that
association established for as long as the partition's defini
tion is kept on the system. When a partition is Suspended, the
TPM's state could also be suspended and the instance be
deleted until either the partition is migrated to a new system
or restarted on the local system. In both cases a new instance
of a TPM should be created, the TPM state be restored and
the partition configuration file updated accordingly. The
higher level tool should hide the peculiarities of the partition
configuration files from the user.

0065. On a broad level, the additional TPM commands
can be grouped into two different groups: (i) Virtual TPM
Management functions and (ii) Virtual TPM Migration Sup
port functions.
0.066 The first group of functions enables a user to create
and delete virtual TPM instances inside a TPM as well as
prepare the virtual TPM instances for immediate submission
of measurements when a partition starts up. The TPM’s PCR
registers may be pre-loaded with some initial values from
measurements taken about the kernel and the initial RAM
disk (initrd). In an exemplary embodiment of the present
invention, a virtual TPM has been implemented in such a
way that the first instance, the one that is always available,
allows the creation of additional virtual TPM instances. The
additional TPM instances themselves may be created as
privileged instances which may inherit the ability to create
additional instances. Using this functionality, a user may
effectively build a tree of TPM instances.
0067. The second group of TPM functions enables a user
to download state information from the TPM and store it into
a file and later on recreate the TPM on a different system.
The state of the TPM is comprised of NVRAM, keys,
Volatile and non-volatile flags, established session, and
counters. The availability of instances of each type are
queried and downloaded, one after another, and their content
are stored into a file. When recreating an instance, the
contents of the file are read and uploaded to the new
instance.

0068. In an exemplary embodiment of the present inven
tion, the extended commands are designed such that they
pick up on the philosophy of existing TPM commands for
authorization using nonces, which are unique session iden

Apr. 5, 2007

tifiers, and password-keyed hashes, such as the keyed-hash
message authentication code (HMAC), for single or double
authorization of the owner or keys. This additional security
is not a burden on processing power, since the calculation of
SHA-1 hashes, which is the most commonly used function
in the secure hash algorithm (SHA) family, is comparatively
inexpensive, and the additional authorization adds a level of
security.

0069. Typically, an application using virtual TPM com
mands will build and send a request to the virtual TPM. The
virtual TPM receives the request, processes the request,
builds a response and then sends a response to the applica
tion. In FIGS. 5 and 6, the request for the virtual TPM is
communicated from the front-end driver to the back-end
driver through the hypervisor. The back-end driver then
routes the request to the proper virtual TPM, as the back-end
driver and the virtual TPMs reside in the same domain,
DOM-TPM 506 in FIG. 5 or DOM-0606 in FIG. 6. How
ever, in the architecture illustrated in FIG. 4, the back-end
driver passes the request onto the hardware device. The
software on the hardware device, which is where the virtual
TPMs reside in FIG. 4, directs the requests to the proper
Virtual TPMS.

0070 FIG. 7 is a flowchart illustrating a method for
handling TPM commands in accordance with an exemplary
embodiment of the present invention. The operation begins
with the TPM waiting to receive a command (step 702).
Once a command is received, the TPM determines if the
command is a “create TPM instance’ command (step 704).
If the command is the create TPM instance command (a yes
output to step 704), then create the TPM instance as
explained in greater detail in FIG. 8. If the command is not
the create TPM instance command (a no output to step 704),
then the TPM determines if the command is a “delete TPM
instance' command (step 706).

0071. If the command is the delete TPM instance com
mand (a yes output to step 706), then delete the TPM
instance as explained in greater detail in FIG. 9. If the
command is not the create TPM instance command (a no
output to step 706), then the TPM determines if the com
mand is a “setup TPM instance' command (step 708).

0072) If the command is the setup TPM instance com
mand (a yes output to step 708), then setup the TPM instance
as explained in greater detail in FIG. 10. If the command is
not the setup TPM instance command (a no output to step
708), then the TPM determines if the command is a “route
embedded command to TPM instance' command (step 710).
0073. If the command is the route embedded command to
TPM instance command (a yes output to step 710), then
route the embedded command to the TPM instance as
explained in greater detail in FIG. 11. If the command is not
the route embedded command to TPM instance command (a
no output to step 710), then the TPM verifies the validity of
the command (step 712) and processes it as a normal TPM
command, eventually returning to step 702.

0074 FIG. 8 is a flowchart illustrating a method for
handling a create TPM instance command in accordance
with an exemplary embodiment of the present invention.
The operation begins by receiving a command to create a
TPM instance as the child of instance P, where instance P is
the parent instance (step 802). Next the operation verifies if

US 2007/0079 120 A1

user authentication for the command is valid (step 804). If
the user authentication for the command is not valid (a no
output to step 804), the appropriate error code is sent as the
result value (step 814) and the operation returns to step 702
of FIG. 7 to wait for a new command to process. If the user
authentication for the command is valid (a yes output to step
804), the operation determines if instance P is a descendant
of the processing TPM (step 806).
0075). If instance P is not a descendant of the processing
TPM (a no output to step 806), the appropriate error code is
sent as the result value (step 814) and the operation returns
to step 702 of FIG. 7 to wait for a new command to process.
If instance P is a descendant of the processing TPM (a yes
output to step 806), the operation determines if instance P is
a privileged instance (step 808). A privileged instance is an
instance with permission to create other, child instances.
0.076 If instance P is not a privileged instance (a no
output to step 808), the appropriate error code is sent as the
result value (step 814) and the operation returns to step 702
of FIG. 7 to wait for a new command to process. If instance
P is a privileged instance (a yes output to step 808), the
operation creates a TPM instance as the child of instance P
with all the requested privileges (step 810). The child TPM
instance inherits the properties of parent instance P. The
child TPM is assigned a unique instance handle H. Unique
instance handle H is returned to the caller (step 812) and the
operation returns to step 702 of FIG. 7 to wait for a new
command to process.
0077 FIG. 9 is a flowchart illustrating a method for
handling a delete TPM instance command in accordance
with an exemplary embodiment of the present invention.
The operation begins by receiving a command to delete a
TPM instance with the unique instance handle H (step 902).
Next the operation verifies if user authentication for the
command is valid (step 904). If the user authentication for
the command is not valid (a no output to step 904), the
appropriate error code is sent as the result value (step 914)
and the operation returns to step 702 of FIG. 7 to wait for a
new command to process. If the user authentication for the
command is valid (a yes output to step 904), the operation
determines if instance H is a descendant of the processing
instance P (step 906).
0078 If instance H is not a descendant of the processing
TPM (a no output to step 906), the appropriate error code is
sent as the result value (step 914) and the operation returns
to step 702 of FIG. 7 to wait for a new command to process.
If instance H is a descendant of the processing TPM (a yes
output to step 906), the operation determines if instance H
has descendants (step 908).
0079 An instance may only be deleted if it does not have
any children instances that are dependent upon it. If instance
H has any descendants (a yes output to step 908), the
appropriate error code is sent as the result value (step 914)
and the operation returns to step 702 of FIG. 7 to wait for a
new command to process. If instance H does not have any
descendants (a no output to step 908), the operation deletes
all data associated with instance H (step 910). The operation
deletes all references to instance H from the parent instance
P (step 912) and the operation returns to step 702 of FIG. 7
to wait for a new command to process.
0080 FIG. 10 is a flowchart illustrating a method for
handling a setup TPM instance command in accordance with

Apr. 5, 2007

an exemplary embodiment of the present invention. To setup
a TPM instance means to prepare the instance for usage. In
an exemplary embodiment of the present invention, an
application in domain 0 sends a sequence of commands to a
privileged TPM instance to prepare the virtual TPM instance
to accept commands from the operating system, which has
a similar effect to the commands that usually the BIOS is
sending to the hardware TPM to prepare it for accepting
commands from the operating system. In addition to that the
application is providing an array of PCR register indices and
hash values along with String identifiers. For this command
to work, the virtual TPM instance must have been created
prior to this step and is uniquely identified through its unique
instance handle H. The operation begins by receiving a
command to setup a TPM instance with the unique instance
handle H (step 1002). Next the operation verifies if user
authentication for the command is valid (step 1004). If the
user authentication for the command is not valid (a no output
to step 1004), the appropriate error code is sent as the result
value (step 1014) and the operation returns to step 702 of
FIG. 7 to wait for a new command to process. If the user
authentication for the command is valid (a yes output to step
1004), the operation determines if instance H exists (step
1006).
0081. If instance H does not exist (a no output to step
1006), the appropriate error code is sent as the result value
(step 1014) and the operation returns to step 702 of FIG. 7
to wait for a new command to process. If instance H does
exist (a yes output to step 1006), the operation determines if
instance H is a descendant of the processing instance P (step
1008).
0082 If instance H is not a descendant of the processing
instance P (a no output to step 1008), the appropriate error
code is sent as the result value (step 1014) and the operation
returns to step 702 of FIG. 7 to wait for a new command to
process. If instance H is a descendant of the processing
instance P (a yes output to step 1008), the operation pro
cesses those actions requested (step 1010). Such processes
include running the TPM startup command and enabling and
activating the TPM instance H. The operation processes the
list of PCR register index values and extends PCR registers
with the given hash values (step 1012). The operation
returns to step 702 of FIG. 7 to wait for a new command to
process.

0.083 FIG. 11 is a flowchart illustrating a method for
handling to route an embedded command to a virtual TPM
instance command in accordance with an exemplary
embodiment of the present invention. The operation begins
by a privileged TPM receiving a command and determining
that this command routes an embedded command to a TPM
instance with the unique instance handle H (step 1102). Next
the operation verifies if user authentication for the command
is valid (step 1104). If the user authentication for the
command is not valid (a no output to step 1104), the
appropriate error code is sent as the result value (step 1120)
and the operation returns to step 702 of FIG. 7 to wait for a
new command to process. If the user authentication for the
command is valid (a yes output to step 1104), the operation
determines if instance H exists (step 1106).

0084. If instance H does not exist (a no output to step
1106), the appropriate error code is sent as the result value
(step 1120) and the operation returns to step 702 of FIG. 7

US 2007/0079 120 A1

to wait for a new command to process. If instance H does
exist (a yes output to step 1106), the operation determines if
instance H is a descendant of the processing instance P (step
1108).
0085. If instance H is not a descendant of the processing
instance P (a no output to step 1108), the appropriate error
code is sent as the result value (step 1120) and the operation
returns to step 702 of FIG. 7 to wait for a new command to
process. If instance H is a descendant of the processing
instance P (a yes output to step 1108), the operation retrieves
the embedded command (step 1110). Next the operation
determines if the size indicator of the command is valid (step
1112).
0.086 If the size indicator of the command is not valid (a
no output to step 1112), the appropriate error code is sent as
the result value (step 1120) and the operation returns to step
702 of FIG. 7 to wait for a new command to process. If the
size indicator of the command is valid (a yes output to step
1112), the operation determines if the embedded command
is allowed to be embedded (step 1114).
0087. If the embedded command is not allowed to be
embedded (a no output to step 1114), the appropriate error
code is sent as the result value (step 1120) and the operation
returns to step 702 of FIG. 7 to wait for a new command to
process. If the embedded command is allowed to be embed
ded (a yes output to step 1114), the operation processes the
embedded command in the target virtual TPM instance as if
the command has been sent to it directly (step 1116), which
can include recursive handling of the command and deter
mining that yet another layer of embedded command is to be
processed, repeating steps 1102 through 1116 until no new
embedded commands are found. The operation embeds the
response message to the embedded command in the
response (step 1118). The operation returns to step 702 of
FIG. 7 to wait for a new command to process.
0088 FIG. 12 is a block diagram illustrating the com
munication path among a hierarchical set of virtual TPMs in
accordance with an exemplary embodiment of the present
invention. In a hierarchical set of virtual TPMs, allowed
communication paths strictly follow the parent-child rela
tionship. The parent always initiates communication with
the child and then the child responds. The child never
initiates communication to a parent. Only a predecessor may
create or delete a child TPM or send a message to a child
TPM.

0089 TPM instance 0 is the initial TPM instance and it
is a privileged instance, meaning it has permission to create,
delete and set-up child TPMs. TPM instance 1, TPM
instance 2, and TPM instance 3 are child TPM instances of
TPM instance 0. TPM instance 4 and TPM instance 5 are
child TPM instances of TPM instance 2, which is a privi
leged TPM instance. Of TPM instance 0’s three childTPMs,
TPM instance 1 and TPM instance 3 are non-privileged,
meaning that the permission of parent TPM instance 0 were
not passed onto those TPMS and they cannot create, delete
or send messages to childTPM instances. TPM instance 2 is
privileged and inherited the permission of TPM instance 0.
TPM instance 2 created two child instances of its own, TPM
instance 4 and TPM instance 5. TPM instance 5 is non
privileged. TPM instance 4 is privileged and inherited the
permissions of TPM instance 2, which inherited the permis
sions of TPM instance 0. Lines 1202, 1204 and 1206 show

Apr. 5, 2007

the communication that TPM instance 0 can have. TPM
instance 0 can only communicate with TPM instance 1,
TPM instance 2 or TPM instance 3. Lines 1208 and 1210
show the communication that TPM instance 2 can have.
TPM instance 2 can only communicate with TPM instance
4 or TPM instance 5.

0090 FIG. 13 is a block diagram illustrating an alterna
tive communication path among a hierarchical set of virtual
TPMs in accordance with an exemplary embodiment of the
present invention. In another exemplary embodiment of the
present invention, any predecessor may create or delete a
child and make the child a child of a given parent and send
messages to the child. TPM instance 0 is the initial TPM
instance and it is a privileged instance, meaning it has
permission to create, delete and set-up child TPMs. TPM
instance 1, TPM instance 2, and TPM instance 3 are child
TPM instances of TPM instance 0. TPM instance 4 and TPM
instance 5 are child TPM instances of TPM instance 2,
which is a privileged TPM instance. Of TPM instance 0’s
three child TPMS, TPM instance 1 and TPM instance 3 are
non-privileged, meaning that the permission of parent TPM
instance 0 were not passed onto those TPMS and they cannot
create, delete or communicate with child TPM instances.
TPM instance 2 is privileged and inherited the permission of
TPM instance 0. TPM instance 2 created two child instances
of its own, TPM instance 4 and TPM instance 5. TPM
instance 5 is non-privileged. TPM instance 4 is privileged
and inherited the permissions of TPM instance 2, which
inherited the permissions of TPM instance 0.
0.091 Lines 1302, 1304, 1306, 1308 and 1310 show the
communication that TPM instance 0 can have. As in FIG. 12,
TPM instance 0 can communicate with TPM instance 1,
TPM instance 2 or TPM instance 3. However, unlike the
architecture shown in FIG. 12, TPM instance 0 may also
communicate with TPM instance 4 and TPM instance 5, the
child TPMs of TPM instance 0’s child TPM, TPM instance
2. TPM instance 0 may treat TPM instance 4 and TPM
instance 5 as its own child TPMs and communicate directly
with them and delete them. Lines 1312 and 1314 show the
communication that TPM instance 2 can have. TPM instance
2 can only communicate with TPM instance 4 or TPM
instance 5.

0092. Thus the present invention provides a method, an
apparatus and a computer program product for the dynamic
creation and hierarchical organization of trusted platform
modules.

0093. The invention can take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software
elements. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.

0094) Furthermore, the invention can take the form of a
computer program product accessible from a computer
usable or computer-readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer readable
medium can be any apparatus that can contain, store, com
municate, propagate, or transport the program for use by or
in connection with the instruction execution system, appa
ratus, or device.

US 2007/0079 120 A1

0.095 The medium can be an electronic, magnetic, opti
cal, electromagnetic, infrared, or semiconductor System (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
Solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk
read only memory (CD-ROM), compact disk read/write
(CD-R/W) and DVD.
0096. A data processing system suitable for storing and/
or executing program code will include at least one proces
Sor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which
provide temporary storage of at least Some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.
0097. Input/output or I/O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.

0.098 Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modem and Ethernet cards are just
a few of the currently available types of network adapters.
0099. The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli
cation, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with
various modifications as are Suited to the particular use
contemplated.

What is claimed is:
1. A computer implemented method for the dynamic

creation and hierarchical organization of trusted platform
modules, the computer implemented method comprising:

creating a trusted platform module domain, wherein a
privileged trusted platform module may dynamically
create one or more virtual trusted platform modules in
the trusted platform module domain.

2. The computer implemented method of claim 1, wherein
each virtual trusted platform module is associated with a
specific partition of a plurality of partitions, wherein each
partition of the plurality of partitions is associated with an
individual operating system.

3. The computer implemented method of claim 1, wherein
the trusted platform module domain is a dedicated domain.

4. The computer implemented method of claim3, wherein
creating virtual trusted platform modules is implemented as
software in the trusted platform module domain.

5. The computer implemented method of claim 1, further
comprising:

Apr. 5, 2007

creating an endorsement key associated with each virtual
trusted platform module.

6. The computer implemented method of claim 2, wherein
virtual machine configuration files determine which virtual
trusted platform module is associated with a particular
partition.

7. The computer implemented method of claim 1, wherein
at least one virtual trusted platform module comprises a
privileged trusted platform module which may create other
virtual trusted platforms modules; and

wherein a virtual trusted platform module comprises a
child trusted platform module and wherein either a
privileged trusted platform module or a virtual trusted
platform module may comprise a parent trusted plat
form module that may create child trusted platform
modules.

8. The computer implemented method of claim 7, wherein
a child trusted platform module inherits permissions of a
parent trusted platform module.

9. The computer implemented method of claim 7, wherein
only an immediately preceding parent trusted platform mod
ule may communicate with, delete, set up, or create a child
trusted platform module.

10. The computer implemented method of claim 1, further
comprising:

deleting a virtual trusted platform module.
11. The computer implemented method of claim 10,

wherein a virtual trusted platform module may only be
deleted if the virtual trusted platform module does not have
any child trusted platform modules.

12. The computer implemented method of claim 1, further
comprising:

setting up a virtual trusted platform module for use.
13. The computer implemented method of claim 12,

wherein setting up a virtual trusted platform module for use
comprises:

sending an array of PCR register indices and hash values
of the virtual trusted platform module to a creating
trusted platform module, which may either be a virtual
trusted platform module or a trusted platform module:
and

wherein each hash value of the hash values is used to
extend the PCR registers that are referenced through
the indices.

14. The computer implemented method of claim 13,
further comprising:

storing string identifiers and the array of PCR register
indices and hash values in the virtual trusted platform
module to form stored information, wherein the stored
information is made available to an operating system
associated with the virtual trusted platform module.

15. The computer implemented method of claim 1, further
comprising:

routing embedded commands to a virtual trusted platform
module.

16. The computer implemented method of claim 1,
wherein the trusted platform module certifies a public key
part of an endorsement key of a virtual trusted platform
module by signing over the endorsement key of the virtual

US 2007/0079 120 A1

trusted platform module using the trusted platform modules
own endorsement key, attestation identity key or a general
signing key.

17. The computer implemented method of claim 1, further
comprising:

creating a plurality of threads, wherein the plurality of
threads allow concurrent processing of multiple
requests received by the trusted platform module.

18. A computer program product comprising a computer
usable medium including computer usable program code for
the dynamic creation and hierarchical organization of trusted
platform modules, said computer program product compris
1ng:

computer usable program code for creating a trusted
platform module domain, wherein a privileged trusted

Apr. 5, 2007

platform module may dynamically create one or more
virtual trusted platform modules in the trusted platform
module domain.

19. A data processing system for the dynamic creation and
hierarchical organization of trusted platform modules, said
data processing system comprising:

a storage device, wherein the storage device stores com
puter usable program code; and

a processor, wherein the processor executes the computer
usable program code to create a trusted platform mod
ule domain, wherein a privileged trusted platform mod
ule may dynamically create one or more virtual trusted
platform modules in the trusted platform module
domain.

