US0057178 7OA

United States Patent (i 11 Patent Number: 5,717,870
Dobson 451 Date of Patent: Feb. 10, 1998
[54] SERIAL PORT CONTROLLER FOR 5241,660 8/1993 Michael et al. wooreorecrrremeone 395/250
PREVENTING REPETITIVE, INTERRUPT 5247617 9/1993 Olson 395/250
SIGNALS 5247671 9/1993 AKIDS €L al. woomreooomroomernce 305/650
5,265,255 11/1993 Bonevento et al. e 395733

e . 5278956 1/1994 Thomsen et dl. 3957250

[75] Inventor: William Gordon Keith Dobson, 5280628 171994 Nakayamaeooooeome 395/733

Douglasville, Ga.

Primary Examiner—Robert B. Harrell.
Attorney, Agent, or Firm—Jones & Askew

[57] ABSTRACT

[73] Assignee: Hayes Microcomputer Products, Inc.,
Norcross, Ga.

(211 Appl. No.: 329,728 An improved input/output FIFO buffering device with
[22] Filed: Oct. 26, 1994 expanded buffers for a universal asynchronous receiver/
transmitter (UART) that includes scalable trigger levels for

6

(51] Int. CL GOGF 13/24 generation of an external service request is disclosed. Stan-
[52] US. CL 395/250 dard selectable trigger levels used in a type 16550 UART are
[58] Field of Searchcuuccenecns 364/DIG. 1 MS File, provided as well as expanded scalable trigger levels to

364/DIG. 2 MS File; 395/250 accommodate the larger buffers. The larger scalable trigger
levels may be employed in a manner transparent to an

[56] References Cited application written for 16 byte buffers so as to physical
U.S. PATENT DOCUMENTS a'coommodate higher data rates Withgut rcquixing applica-

tions to know that more buffer space is used. A reinterrupt-

4,453,229 6/1984 Schailecccccmessmmecsessionsassenss 395/250 able timer inhibits gcneraﬁon of an inten'upt service request

4823312 4/1989 Michael et al.
4,949,333 8/1990 Gulick et al.
5,140,679 8/1992 Michael ...coweesrrrenne ... 395/286
5,155,810 10/1992 McNamara, Jr. et al.
5,167,020 11/1992 Kahn etal. ...ceooureeeee
5,179,661 1/1993 Copeland, Il et al. oooeeernrenene 395/250 2 Claims, 6 Drawing Sheets

- 395/250 ypti] a predetermined period of time after the most recent
interrupt request has been serviced. The period of the timer
is selectively programmable.

16
ASYNCHRONOUS
‘ MODIFIED 16550 SERIAL /O
UART (MEGACELL) 30
< _-'1> 8 Tx Rx |
T >
12 BUS - FLow h 14
INTERFACE T conmroL I 8 260
16 e 113 BLOCK |
HOST PC = 1 (a0 45
~ 22 3| T DATA
. » MCA/ Il RxFLOW 8 N MUX
Isa 16 bt o 16, RXFIFO | || conTROL
124BYTE | 1 g1 ocK
I3 . 26c
20 # 100 b los |26b
26 T T
| 1= Tx R; 8 P
MULTIPORT =N ESP COMMAND | INTERFACE
CASCADED a A op - wP
s * INTERFACE \ INTERFACE | INTERFACE bw=== PARALLEL /O
T ‘
INTERNAL Tx 24 INTERNAL Rx { CONTROL/
10 DATA PATH - DATA PATH \\\\ STATUS

U.S. Patent

Feb. 10, 1998 Sheet 1 of 6 5,717,870

5

9
Tx FIFO PARALLEL (\
—_> (16 BYTES) :> TO '
SERIAL

7’) (‘8 -1Q

)
@ 19 SERIAL
DATA \-/) Tx DATA
17
RxFIFO |- SE,“,‘(I)AL - (
(6 BYTES) I\f pARALLEL
21—y
——T4]814 8 \> SERIAL
IRQ = MUX Rx DATA
J _ 25
27
Y /TToa |
PRIOR ART
180
182 < +
181 /} J 132
o o0
TO STATUS] (88 FROM LEVEL
REG oL DETECT
130
134 ﬁ 186
(\ 187
183 (89 | ONE
SHOT L INT ACK
a < 185

191

—

193\> PERIOD SELECT

192 \) T]MER. ENABLE
W /7T 4
y A

5,717,870

Sheet 2 of 6

Feb. 10, 1998

U.S. Patent

C Ary

SALVIS
TOUILNOD

W

HLVd VLVd
X4 TYNYALNI

&

]

ve

P9z

ce

XL TVNYALNI

HLvd V1vd

AIVAULLNI
LAOdLLTNN

. —

02

Vst
VI

Sl

AIDVAUILNI

i

O/1 TATIVEVd =™ muézﬁ.ﬁ . AIVAYAINI
AIVAUALNI e ANVININOD dS3
miA——nv 8 xq XL
AN i II
- i —
09z q92 S0l n 00l
MO I [gy xqpzor
TOUINOD 1) | 6y y o_j
XN 8 MOTAXA i
vivd 10 11
"" 12 ov
[Moo 9]
©92 8 || 10yiNOD | FLAH V0L
\/ €27 I
xH 4] 8
0% (TTIIVHAN) 1HVN
O/ 'TVIIIS 0SSOI AAIIIAON
SNONOYHONASY :
9]

snd

9l

o]}

L

$J1g dSa
= qaavosvo

€l

Jd LSOH

P

el

5,717,870

Sheet 3 0of 6

Feb. 10, 1998

U.S. Patent

SNOLLONNA
€ "O1d) 0414 HNILSIXH g
I£ FOVAYAINI 404 ONILLYD — /7
ANVIAINOD OL v & 7¥g
vL AW,
A HDVdS 3aUA 0414 V-1 99 \ 89 1Ind
b 201 q/ J YALLINSNVY.L
1= 9 -
ALdAH Hv M=V 8v AD01D
YALLIASNVYL A 1+E=v mAM v 0LV h
- dOLv “AVIINOD
AVANOD VK Hv g 6v 1as Lid
0s Jr A " 91MO08
T I FAOW
WAINNOD $9 vs iy
AQVHY VLvd WAINIOZ 4 YAINNOD < ap JOLVEANGD ﬂ
LIANSNVYL S avad : YAINIO — 4Lrm YM LSOH
) 66 ALIIM 1S —11D I
@ *D14) \
0t M%%%Mwuﬂﬁ €L s b v) FI\ vS LOATAS YM/ad
q .
oL 97 (T XA SSAYAAY f\ 0414
9g A_/V ev LS
IS) ALAG
ov M e 25 HOIH
a/Vv v _.II
ALANG 0414 8 AVIEA R
LINSNVIL NI V.LVa 8 XOW 21
8 VY 8 X $701
9t v A HLAE MO'L
ce v/

5,717,870

Sheet 4 of 6

Feb. 10, 1998

U.S. Patent

r—-r—-—"" """ """"—"""—-"—"—""—-—"—"-—"— — — I
| (HOI = |
I ssAAaay) 'nay i
! AAOW L3S 1S3 |
_
' | I a—" 4
1e “ o|l1|2ie|v|s|9]|L _ y 4 Sﬁ
|
| _
i I _
ozl
vS ;b9 avay
10974S _ el 4 YALINIOd avHy NAD avay 8%
mBA , /58
YAINIO ALIYM 4\/ \
m X 1L 001 ¥adang zz) ¢! 91 v
J viva —~ moua :
am wl.\ m>_uw,m__m 1adraq /oLm._
§ ‘g9z 00—k . TIAHT
HOSSA20ud > TOUINOD OdId
Woud ~~d | 110)
09z ~opg | Y 3 ¥13
65! vl NI V.LVd XY
M) N T R
i 9% , Ve poe
VIYAS N tb
HONASY TATIVEVd
. oL oll|2|elv|siale oft|z|e|v|sis|s 8
v TVINES
vl r\ “OFN TTIND OAI4 LIV SNLVLS ANIT LYV
06 — (LSOH O
Oul
LAvN Coe 9¢|

5,717,870

Sheet 5 of 6

Feb. 10, 1998

U.S. Patent

8¢t
ol > csli
d/ 0147 8zl

ﬁ.vn_ IvI HANIL
: LAVA v AOLV 0L
VLivd ymmwm >>r Jaaav -4VdINOD
HONA 0 _qumos_z qzvl “V
, \/L Zel
™
i [I
(& ﬂ lr‘J-l’.v ﬂ — —
og 215, ! Ly
XN 962! | T~
6<l b9 |1
Vol xaw
Pl
pi
XOW | g !
02 b1 v !
(]

1 L
Y-"Obp| ~ -

U.S. Patent Feb. 10, 1998

r\/ FIFOS ACTIVATED
160 & RECEIVE LEVEL SET

SET COMM 1
& COMM2 TO SET
SCALE FACTOR

Sheet 6 of 6

5,717,870

TRIGGER
LEVEL

163

NO

REACHED
9

165

SET TRIGGER LEVEL
- REACHED AND
UART RXDRDY

PASS PREDETERMINE
NUMBER OF BYTES
167 TO HOST

166

—

168

BUFFER
EMPTY
aQ

171

172

READ
NEXT
BYTE

5,717,870

1

SERIAL PORT CONTROLLER FOR
PREVENTING REPETITIVE INTERRUPT
SIGNALS

TECHNICAL FIELD

The present invention is in the field of serial ports for
small general purpose digital computers and more particular
is an improved controller for buffering input and output data
from a high speed serial port and controlling the generation
of central processing unit interrupts in a manner that allows
conventional data communications application programs to
support very high speed serial data rates in a manner that is
backwardly compatible with software written for conven-
tional serial port devices.

BACKGROUND OF THE INVENTION

Bit serial communications have been the most used sys-
tem for communicating between data processing devices
over relatively long distances for the last several decades.
Going back to the days when teletype terminals were
dominant, serial communications have been used over tele-
phone lines to allow remotely situated terminals to send
messages, make inquiries of mainframe computing devices,
and the like. Typically, a serial port is affixed to a piece of
data terminal equipment, which is normally either a terminal
or a computer, is connected to some form of data commu-
nications equipment, normally a modem. The modem modu-
lates the digital data going to and coming from the data
terminal equipment to provide a form that may be transmit-
ted over limited bandwidth voice grade telephone lines.

Since the late 1970’s, there has been an explosive growth
of the use of small computers in homes and offices in the
western world. Computer to computer and computer to
mainframe communications have mostly been conducted via
modems connected to serial ports on the computer devices.
The fundamental building block of a serial port for a
computer or terminal is a universal asynchronous receiver-
transmitter, commonly known by the acronym UART. This
device accepts parallel words or bytes from the data terminal
equipment, generates appropriate timing signals, depending
on the bit rate, and transmits the bytes in bit serial form,
together with appropriate start, stop and parity checking bits.
On the receiver side of the UART, the center of the bit times
are determined, based on the approximate data rate, and
serial data is clocked into a register to form a word or byte
that is then available for reading out in parallel by the data
terminal equipment. The UART responds to and strips start
and stop bits and can give an indication of when a parity
error is detected. Typically, UARTS to have a status register
that includes at least one line to indicate when an incoming
parallel word is captured and is ready to be read out.

In the late 1970’s and very early 1980’s, when 300 and
1200 bits per second were standard serial data communica-
tions speeds for modems, a conventional UART, with a
single parallel holding register for received words and a
second register that could be filled while the first one was
awaiting a read by the data terminal equipment, was suffi-
cient to allow handling of serial data comsnunications. Most
programs and computers that handle serial data communi-
cations are connected to a UART in the serial port so that the
indication of an available word for reading would generate
an interrupt request to the central processor. It is then up to
the applications program to read the word from the register,
clear the interrupt with an interrupt acknowledge signal, and
go about its business until the next interrupt was received.

Developments in the late 1980’s and early 1990°s caused
this typically arrangement to become inadequate. First, data

10

15

20

25

30

35

45

50

55

65

2

communications speeds available through modems
increased dramatically, going from 1200 and 2400 bits per
second in the early 1980’s to speeds in excess of 10 kilobits
per second in the early 1990’s. At the same time, computer
operating systems that supported concurrent processes
became popular and were widely proliferated. This led to
circumstances in which the conventional UART, together
with the typical applications program, could not peacefully
exist in such an environment. The high rate of received data
led to situations in which incoming data overwrites a word
awaiting read-out in a register before the central processor
had an opportunity to retrieve same, leading to lost data.
This occurs when the central processor is busy servicing
other processes within the data communications application
or anothet concurrently running process. Alternately, a con-
dition known as “thrashing” occurred when the data com-
munications process could keep up with the incoming data
in real time, but at the cost of occupying virtually all of the
CPU processing time so that other concurrently running
processes could not be properly serviced.

In response to this, enhanced UARTs were introduced
including the type 16450 and 16550 which were provided
with 16 byte transmit and receive buffers. Such a prior art
enhanced UART is shown as UART 5 in FIG. 1. A parallel
port 6 for receiving data from the data terminal equipment
and sending data to the data terminal equipment is provided.
A 16 byte transmit first in first out (FIFO) buffer 7 is
connected to a conventional parallel to serial converter 8 that
transmit out serial data on line 9. On the receive side, serial
data coming in on line 17 is converted to parallel data by
converter 18 and the parallel bytes are stored in receive
FIFO 19. They are then read out three data port 6 as the
connected data terminal equipment has time to process
same.

One feature of a typical prior art enhanced UART is
selectable interrupt levels based on the fill state of the
receive FIFO. A plurality of lines 21 are connected to the
receive FIFO to determine when the FIFO contains one byte,
four bytes, eight bytes or fourteen bytes. These are multi-
plexed through a muitiplexer 25 that is user setable by a
value in a register to select which one of lines 21 is
connected to an interrupt request line 27. In this way, the
user (i.e., applications programmer) can select the fill level
of the receive buffer that will generate an interrupt request -
to the CPU that is used for servicing receipt of data.

It is known in the art to provide circuitry associated with
central processing units to prioritize interrupts from a num-
ber of devices so as to distribute the servicing of interrupts
in a sensible manner so that one processed is does not
dominant CPU time in a way that causes other processes
operating on the computer to receive inadequate service and
fail. Heretofore, the application of such prior art methods to
a conventional UART attempting to handle high speed data
in a multi processing environment lead to situations in which
data was lost due to overriding of the buffer as the CPU
chose to ignore interrupt requests from the serial port in
favor of smoothing out the distribution of handling inter-
rupts among various other devices. To date, no serial port
apparatus known to the inventor has provided a mechanism
for providing additional buffering so as to prevent data loss,
and internally inhibited the generation of new interrupts
while being controlled by an application written for unbuf-
fered or 16 byte buffered UARTS.

The provision of 16 byte FIFO buffers on the receive and
transmit side is basically adequate for a CPU that is dedi-
cated to running a well written data communications appli-
cation at moderate to high data rates, but proved inadequate

5,717,870

3

in more complex concurrent processing environments in the
presence of high data rates and multiple processes compet-
ing for CPU time. However, much application software
exists that is written for machines with an enhanced UART
such as UART 5 shown in FIG. 1. Therefore, there is a need
in the art for an enhanced serial port device that provides a
UART circuit that allows high speed serial data communi-
cations to be reliably conducted, without data loss, in multi
processing environments, such as a personal computer run-
ning the Microsoft Windows operating system with other
concurrent processes competing for CPU time. Furthermore,
it is highly desirable that such a device be provided in a way
that will backwardly compatible with existing programs
written to support a conventional 16 byte buffered UART
device such as UART 5 shown in FIG. 1 yet will avoid the
condition of thrashing generated by an interrupt driven data
communications program transmitting and receiving data at
high speeds.

SUMMARY OF THE INVENTION

The present invention was designed to meet the above
described need. The present invention is embodied as a part
of an improved serial port circuit that includes the basics of
a type 16550 UART, and multiple enhancements to same
which may be selectively employed or not, depending on the
application running on the computer to which the device is
connected. The overall device is specifically designed to be
backwardly compatible with machines and applications
designed for use with 16550 type UARTs. Furthermore, the
overall device is designed to be cascadable and to have
multiple ones of same resident in the computer simulta-
neously supporting muitiple serial ports.

Basically stated, the present invention, which is embodied
as a part of this device, is a set of expanded of transmit and
receive FIFOs, together with scalable trigger level circuits to
control the generation of service requests for data in the
buffers. In particular, the present invention provides
expanded buffers with scalable trigger levels for generation
of service requests that are likewise expanded to approxi-
mately mimic the conventional selectable trigger levels of
the type 16550 UART. This allows the present invention to
be used with applications and devices that select one of the
conventional trigger levels (i.e., 1,4, 8, or 14 bytes in a 16
byte buffer) to physically select a larger number of bytes as
the trigger level, in a way that will be essentially transparent
to the application running on the computer. Therefore, the
present invention can be used with much higher data rate
modems in concurrent processing environments with respect
to a conventional type 16550 UART, yet reliably handle high
speed incoming and outbound data and servicing interrupts
generated by the received data buffer without the loss of
data.

According to another aspect of the present invention, a
reinterruptable timer is employed to prevent the condition of
thrashing. This timer is particularly useful in situations in
which a low trigger level for a receive buffer service request
has been set by an application, yet the expanded buffer used
in the present invention is available to absorb much more
data before calling on the CPU to empty the buffer and pass
received data on to the application. The reinterruptable timer
is triggered by the clearing of an interrupt request by the
CPU and assures that another interrupt request is not gen-
erated for a predetermined period of time by the CPU and
assures that another interrupt request is not generated for
predetermined period of time after completion of servicing
of the most recent one from the enhanced serial port control
of the present invention.

10

15

20

25

30

35

45

50

55

65

4

The preferred form of the present invention is designed to
be used with the AT bus on a personal computer that defines
the rising edge of the signal on an interrupt request line as
the interrupt request. When the interrupt request is cleared,
i.e. acknowledged, by the CPU, the reinterruptable timer
holds the interrupt request line low for a predetermined
period, even if the setting of the trigger level or other event
internal to the serial port circuit of the present invention
indicates that another interrupt request should be generated.
If another such internal condition is present when the timer
times out, a rising edge on the interrupt request line will be
generated. If no pending interrupt request has been gener-
ated internal to the device, the time out of the timer will
simply enable the interrupt request line to respond to internal
conditions normatly.

In its most preferred form, the reinterruptable timer has a
selectable time out period that is either usable selectable, or
automatically determined by the response the presently used
data rate and average rate of occurrence of interrupt servic-
ing.

Therefore, it is an object of the present invention to
provide an improved serial port device with expanded
buffering capability that is backwardly compatible with
apparatus and application programs written for use with
conventional UARTS.

It is a further object of the present invention to provide a
serial port with expanded receive and/or transmit buffering
with scalable trigger levels for service requests that can
physically allow greater amounts of data to be buffered, by
the applications based on a model that a conventional 16
byte buffer is in use. It is a further object of the present
invention to provide a serial port device that internally
restricts the rate of its own generation of interrupt requests
so as to prevent a thrashing condition in which serial port
servicing occupies an inordinate amount of CPU processing
time.

Tt is a further object of the present invention to provide an
improved serial port device that internally restricts its rate of
interrupt request generation and furthermore provides addi-
tional data absorption capability that prevents the overwrit-
ing of received data while the generation of the new service
request is inhibited.

It is still a further object of the present invention to
provide an improved serial port device that is backwardly
compatible with devices and applications written for con-
ventional UARTS yet provides significantly enhanced capa-
bilities for applications written to take advantage of these
capabilities.

It is still a further object of the present invention to
provide an improved serial port device that will support
modem high speed data communications in a multitasking
environment in a manner that prevents data loss by over-
writing and further prevents excessive occupation of CPU
time by service requests from the serial port.

That the present invention meets these objects and over-
comes the above noted drawbacks of the prior art will be
appreciated from the detailed description of the preferred
embodiment to follow.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a conventional serial port
controller including a universal asynchronous receiver/
transmitter.

FIG. 2 is a block diagram of the preferred enhanced serial
port controller of the present invention.

5,717,870

5

FIG. 3 is a detailed block diagram of the transmit first
in/first out buffers within the preferred enhanced serial port
controller of FIG. 2.

FIG. 4 is a detailed block diagram of the receive first
in/first out buffers within the preferred enhanced serial port
controller of FIG. 2.

FIG. 5 is a detailed circuit diagram of the level detect
circuit for setting scalable interrupts in the preferred
embodiment of the present invention.

FIG. 6 is a flow chart of the preferred steps for receiving
data in the enhanced serial port controller of FIG. 2.

FIG. 7 is a diagram of the re-interruptable timer in the
preferred embodiment of the present invention.

DETAILED DESCRIPTION

Turning next to the figures, in which like numerals
indicate like parts, FIG. 2 is a block diagram of the preferred
enhanced serial port controller 10. The preferred enhanced
serial port controller 10 provides many advantages over
conventional universal asynchronous receiver/transmitter
(UART) circuits, such as the UART 5 shown in FIG. 1.
Specifically, the preferred enhanced serial port controller 10
provides for significantly more capacity for buffering data
during data communications, increased number and adjust-
ability of the scalable trigger levels, and an improved
controller for minimizing interrupts of the host computer 8.

Before describing the preferred embodiment in detail, it is
informative to broadly compare the conventional UART §
shown in FIG. 1 with the enhanced serial port controller 10
shown in FIG. 2. Significantly, the present invention retains
backward compatibility with conventional serial ports
including the UART 5. The enhanced serial port controller
10 includes a UART 30, and further includes large transmit
and receive first inffirst out (FIFO) buffers, 40 and 100, and
transmit and receive control circuits, 45 and 105,
respectively, outside the UART 30. In contrast, the conven-
tional UART 5 includes only sixteen (16) byte receive and
transmit FIFO buffers, 6 and 7 respectively. Furthermore, the
conventional UART 5 includes only four preset scalable
trigger levels: 1, 4, 8 and 14. A scalable trigger level is the
number of bytes of data in a buffer that will cause the device
generate a request for service to empty the buffer. The
enhanced serial port controller 10 includes a greater number
of scalable trigger levels, as is detailed below.

While providing the above listed advantages, the
enhanced serial port controller 10 retains compatibility with
conventional UARTS, such as the 16450/550 UART sold by
Texas Instruments and illustrated in FIG. 1. The UART 30
is in many ways similar to the UART §, but is modified as
set forth below to provide the above-listed advantages.

The transmit side of the enhanced serial port controller 10
will now be described in greater detail. The enhanced serial
port controller 10 is connected to the host computer 8 via the
host personal computer data bus 12 and control bus 13, both
of which are familiar to those skilled in the art. The busses
12 and 13 may each be embodied by one of many different
data and control busses commonly used in computers.

Data and control signals arriving from the host personal
computer 8 pass through a bus interface circuit 20. The bus
interface circuit 20 accepts signals from the control bus 13
and data bus 12 and outputs the data on transmit data bus 22.
The bus interface circuit 20 accepts control signals off the
control bus 13 and outputs the commands on control bus 24.
The bus interface circuit 20 squares up and passes on the
data and control signals in a manner familiar to those skilled
in the art.

10

15

20

25

30

35

45

50

55

65

6

The data on transmit data bus 22 is provided to the UART
30, the transmit HFO buffer 40, and the command interface

50. Commands are written to the command interface 30 to

control the enhanced serial port controller 10 in a manner
described below. Data that is to be transmitted from the
enhanced serial port controller 10 on line 16 is written into
either the UART 30 or transmit FIFO buffer 40. In a
conventional mode of operation, the data can be input by the
host personal computer 8 directly into the UART 30.

Data is input to the UART 30 in parallel, is converted by
the UART 30 to serial, and is output from the UART 30 on
line 16. The enhanced serial port controller 10 provides
asynchronous, serial digital data on line 16. As is familiar to
those skilled in the art, the asynchronous data is typically
sent to a modem for transmission over the public switch
telephone network to other locations.

Turning now to FIG. 3, a detailed block diagram of the
preferred transmit FIFO buffer 40 and control circuitry 45 is
shown. The low and high byte of the data are input from the
host computer 8 (FIG. 2) on data bus 12. The data is
multiplexed in multiplexor 44, using latch 42, onto the eight
(8) bit bus 46 in a manner familiar to those skilled in the art.

The host write signal on line 47 and clock signal on line
48 from the host computer 8 are used to clock the latch 42
and multiplexor 44. The write signal on line 47 emerges
from the write generator circuit 50 on line 51 and is fed to
the write pointer counter 54 and the transmit FIFO buffer 40.
The write signal on line 51 clocks the data on data bus 46
into the transmit FIFO buffer 40. The control signal on line
52 from the write generator circuit 50 selects between the
high and low bytes on the data bus 12.

The mode signal on line 49 is also input to the write
generator circuit §0. The mode signal is set to indicate
whether the data is eight or sixteen bit.

Data bytes written into the transmit HFO buffer 40 are
stored. The write pointer counter 54 is incremented with
each write pulse on line 51 to sequentially store bytes of data
in the transmit FIFQ buffer 40. Those skilled in the art are
familiar with counters such as write pointer counter 54. The
address for storing the bytes of data emerges from the write
pointer counter 54 on address bus 55. The address on bus 55
is passed through the address multiplexor 56 to the transmit
FIFO buffer 40. The address multiplexor 56 selects between
the write address bus 55 and the read address bus 65,
discussed below, based on the FIFO read/write select signal
on line 57. The signal on line 57 is received from the
command interface circuit 31, described below.

Data written into the transmit FIFQ buffer 40 is read from
the buffer for transmission on the asynchronous serial data
output line 16. The data is read under control of the transmit
data ready signal on line 76. The transmit data ready signal
is generated when the UART 30 is ready to transmit data, as.
is familiar to those skilled in the art. Thus, after a byte of
data is passed through the parallel to serial converter in the
UART 30 and out line 16, the next byte of data is passed to
the UART 30.

The transmit data ready signal is nsed to clock the read
pointer counter 64. The read pointer counter 64 sequentially
addresses memory locations in the transmit FIFO buffer 40
to read bytes of data out on bus 23. The read pointer counter
64 is a counter familiar to those skilled in the art.

The read pointer counter 64 outputs the address to be read
on address bus 65. The address bus 65 is multiplexed in
address multiplexor 56 with the write address bus 55,
depending on whether data is being written into or read from
the transmit FIFO buffer 40.

5,717,870

7

The data stored in the transmit FIFO buffer 40 is output
on data bus 23 to the UART 30. As will familiar to those
skilled in the art, the data is converted from parallel to serial
in the UART 30 and output on line 16.

The comparator circuits 66 and 67 support the write and
read operations, respectively, described above. The com-
parator circuit 66 determines if the values on the write
address bus 55 and the read address bus 65 are equal. If the
values are equal, the transmit FIFO buffer 40 is full and
writing further data would write over data that has not been
read. Thus, the transmitter full signal is set on line 68, passed
through OR gate 69 to inhibit writes to the transmit FIFO
buffer 40, and passed to the host computer 8 via the UART
30 to inhibit further writes.

Likewise, the comparator circuit 67 is triggered when the
value in the read address bus 65 equals the value in the write
address bus 55 plus one. This prevents re-reading of data that
would occur if the read address on bus 65 surpasses the write
" address on bus 55. When the value in the read address bus
65 equals the value in the write address bus 55 plus one, the
transmit buffer empty signal on line 72 is set. This signal is
passed through the OR gate 73 to inhibit further reads using
the read pointer counter 64, and is passed to the UART 30.
The UART 30 stops sending data on line 16 and performs
other functions, such as dropping the standard transmit data
ready signal (not shown).

The subtraction circuit 74 subtracts the value on the read
address bus 65 from the value on the write address bus 55,
and subtracts the calculated value from 1024 to provide an
indication of the available space in the transmit FIFO buffer
40. The available space in the transmit FIFO buffer 40 is
output from subtraction circuit 74 on bus 71 to the command
interface 31 for making the information available to an
application that supports the command interface 31. Those
skilled in the art are familiar with circuits that perform the
functions described for the subtraction circuit 74. Therefore,
applications programs writing in contemplation of an
improved serial port device such as that described herein can
selectively read information from command interface 31
indicative of the value on bus 71, i.e. the free buffer space
available. This allows applications to be written that can take
full advantage of the buffering capability of the present
invention, and even those that can rely on polling of the free
buffer space value rather than responding to interrupt service
requests to empty the received buffer. Similarly, it allows an
applications program written in specific contemplation of
the improved serial port device to check the free space in the
buffer upon receipt of an interrupt service request and to
selectively ignore such a request until the free space value is
sufficiently small to indicate that emptying of the buffer is a
high priority task.

Referring back to FIG. 2, the receive side of the enhanced
serial port controller 10 is now described. The enhanced
serial port controller 10 also accepts asynchronous, serial
data on line 14. Asynchronous data received on line 14 is
passed to the UART 50. The data is converted to parallel in
the UART 50. The data may be stored in the UART 50 ina
conventional mode of operation. However, in the preferred
embodiment, the data is passed over receive data bus 26a
and b to the receive FIFO buffer 100. Received data is
passed from the receive FIFO buffer 100 to the host personal
computer 8 via the receive data bus 264, bus interface circuit
20, and data bus 12, as is described in detail below.

Turning to FIG. 4, a detailed block diagram of the receive
first in/first out buffer 100 within the enhanced serial port
controller 10 is set forth. Data arriving at the enhanced serial

10

15

20

25

30

35

55

65

8
port controller 10 on asynchronous serial line 14 (FIG. 2)
and is fed through the serial to parallel converter 90 in the
UART 30. The serial to parallel converter is familiar to those
skilled in the art.

The data is passed from the serial to parallel converter 90
is to the data multiplexor 110 over data bus 26a. When
passing data from the asynchronous line 14 to the host
computer 8, data is simply passed through the data multi-
plexor 110 to the fiow control circuit 12¢ on data bus 265.
The write signal on line 34aq is also passed through the data
multiplexor 110 and to the flow control circuit 120 on line
3c.

The addressing scheme for writing data into and reading
data out of the receive FIFO buffer 100 is identical to the
scheme set forth above in FIG. 3 with regard to the transmit
FIFO buffer 40, with the exception of using the write signal
on line 34 instead of the host write signal on line 47, and
the use of a read generator circuit (not shown) instead of a
write generator circuit 50. Specifically, write and read
pointer counters, 54' and 64’ respectively, are used to track
the path of data into and from the receive FIFO buffer 100
and are identical to the write and read pointer counters, 54
and 64 respectively, used with transmit FIFO buffer 40 (FIG.
3).

The data is clocked into the receive FIFO buffer 100 using
the write signal on line 34a. The write signal on line 34a is
generated by the UART 30 when it has received data that is
ready to be passed on to the receive FIFO buffer 100. The
write pointer is adjusted with each write pulse on line 34c.

The level detect circuit 130 determines when data is to be
written from the receive FIFO buffer 100, as is discussed
below. The level detect circuit 130 is provided with the write
address bus 55' and read address bus 65'. The level detect
circuit 130 outputs receive data ready signal on line 132 to
bit 0 in the UART line status register 134. Bit ¢ in the UART
line status register 134 is passed to the host computer 8 on
line 136 as an interrupt request. The host computer 8
responds to the interrupt request on line 136 by reading data
from the receive HFO buffer 100, as set forth below.

Data is read from the receive FIFO buffer 100 using the
host read signal on line 58. A read generator circuit 121 is
substituted for the write generator circuit 50 in FIG. 3, and
clocks the data out of the receive FIFO buffer 100. A host
read signal, mode select signal, and a clock generate the read
signal on line 122 through the read generator circuit in the
same manner as the write generator circuit 50 was used.

The host read signal is generated by the host computer 8
and passed to the UART 30 and receive FIFO buffer 100
through the bus interface circuit 20 (FIG. 2). The UART 30
sends an interrupt request to the host computer 8 when the
enhanced serial port controller 10 is ready to transfer data to
the host computer 10.

Referring to FIGS. 4 and 5, the apparatus and method for
detecting the level of data in the receive FIFO buffer 100 are
detailed. FIG. 5 is a detailed circuit diagram of the level
detect circuit 130 for setting scalable interrupts in the
preferred embodiment of the present invention.

The command interface circuit 31 in FIG. 4 has an array
of registers, including an enhanced serial mode register 126.
The host computer 8 writes information into the enhanced
serial mode register 126. The register 126 is addressed via
the bus interface circuit 20. The register 126, and other
registers in the command interface circuit 31, accept the
enhanced serial interface commands familiar to those skilled
in the art.

The enhanced serial interface commands typically include
two types of commands, a “Comm 1” and “Comm 2.” The

5,717,870

9

Comm 1 command identifies a column of registers that is to
be written, and the sequence of Comm 2 commands are the
data written into the column of registers. For example, if the
flow control registers were to be adjusted, the command “set
flow levels” would be written to Comm 1, and bytes of
control data are sequentially written to the flow control
registers. Thus, the grouping of registers to be written are
identified by the Comm 1 command, and the registers in the
selected grouping are written to sequentially via the Comm
2 commands.

An enhanced serial interface command is thus written into
the register 126. The trigger levels are scalable up from 1, 4,
8 and 14 to 1, 64, 256 and 512 bytes. If the trigger levels are
scaled, bit 7 in register 126 is set. The scale trigger level
signal on line 128 is fed to a multiplexor 138 in the level
detect circuit 130.

The UART 30 includes a UART FIFO control register
136, (FIG. 4) which has trigger level select bits seven (7) and
six (6). Bits seven and six are fed via bus 139 to the
multiplexors 142a and 1425 in the level detect circuit 130.
The multiplexors 142 and & collectively provide eight
output lines 144a—h representing the scalable trigger values:
1, 4, 8, 14, 1, 64, 256 and 512. The signal on line 128
determines whether the trigger level is selected from the first
four levels on lines 144a— or the last four levels 14de—h set
forth above. Two signals on the lines 14da—h, one each from
lines 144a—d and lines 144e—h, are set by multiplexors 142a
and b. The signal on line 128 selects between the two signals
fed into the multiplexor 146. The multiplexor 146 outputs
the selected value, such as two-hundred and fifty-six, on bus
147.

The value on bus 147 is compared with the number of data
bytes written into the receive FIFO buffer 100, as provided
by the adder circuit 150. The number of bytes written into
the receive FIFO buffer 100 is output on bus 152, and
received in comparator 138. When the number of bytes
written into the receive FIFO buffer 100 equals the selected
scalable trigger level on bus 147, the comparator 138 outputs
the trigger level reached signal on line 132. Referring to
FIG. 4, the trigger level reached signal on line 132 is fed to
the UART 30 to cause the host computer to be interrupted.

FIG. 6 is a flow chart of the preferred steps for receiving
data in the enhanced serial port controller 10 of FIG. 2. It
will be understood that FIG. 6 represents the overall logic
employed by the conventional application when running on
a computer to which an embodiment of the present invention
is attached. At step 160 the application writes commands
into both command interface 31 and registers of the UART
megacell 30 (FIG. 2) to activate the FIFOs. At step 161
commands are written to command interface 31 to set
selection of the scale factor, i.e., to control the writing of bit
7 of register 126 in command interface 31 to control the use
the scalable trigger level of the present invention, and to
write the two higher order bits into register 134 of UART
cell 30 to select a particular one of the scalable interrupt
levels. Thus, a particular value written into the register
controlling the values on lines 139 (FIG. 5) will select from
the set of [1, 4, 8, 14] if conventional levels are used. If bit
7 of register 126 (FIG. 5) is set to the opposite value, one of
the enhanced scalable values taken from the set [1, 64, 256,
512] will be selected.

The process next enters a loop consisting of test step 162
and No branch 163 which determines whether the trigger
level has been reached. While this is logically shown as a
loop, it should be understood that this is logically an entry
point for an interrupt service routine that responds to the

10

15

20

25

30

35

45

50

55

65

10

generation of a receive buffer interrupt service request from
the preferred embodiment of the present invention. A simple
data communications program setting this trigger level to 1
that was not designed for a multitasking environment could
indeed continually test whether the trigger level has been
reached and branch according to that condition,

Irrespective of the particular implementation, when a
condition indicating a request for service of the received
buffer exists, Yes branch 165 will be taken from step 162.
The next step, 166, represents an internal process of the
preferred embodiment. When the trigger level is reached,
line 132 (FIG. 5) becomes asserted and the received data
ready (RXRDY) bit in the UART status register is set
indicating to the host that the receive buffer should be
serviced.

The next steps represent conventional serial communica-
tions programming techniques. Normally, an application
will perform a routine indicated at step 167 to pass a
predetermined number of bytes from the receive buffer back
to application. The predetermined number is normally that
which the application “thinks” it has set as a trigger level for
UART buffer. When this is completed, most applications
will next execute a step such as 168 to determine whether the
buffer is empty, i.e., to check the receive data ready status
bit. If the buffer is not empty, No branch 168 is taken to step
169 at which the next byte is read, and the routine loops to
branch 170 and step 168 that again tests the status of the
buffer. This loop will continuously be executed until the
buffer is empty, at which time Yes branch 171 is taken to exit
point 172.

It should be noted that the practice of including buffer
testing at step 168 after the passing of the expected prede-.
termined number of bytes at 167 is helpful in assuring
backward compatibility of the present invention with exist-
ing applications written for support prior art UARTs. Even
if the application has set the trigger level to a relatively low
value, such as 4 bytes, the entire buffer will be emptied upon
each servicing of an interrupt to empty the received buffer.

This, in conjunction of the reinterruptable timer,
described below in greater detail in cornection with FIG. 7,
allows the present invention to reliably pass relatively large
blocks of data to applications that expect small buffer sizes.
In the absence of the reinterruptable timer, the low trigger
level would continually generate interrupts in spite of the
fact that only a very small percentage of the buffer capacity
was used. The use of the timer to inhibit subsequent gen-
eration of interrupts for a predetermined period of time
allows a significant portion of the buffer capacity to be
utilized, even when the trigger level is set to a low value, and
further allows the CPU time to attend to other processes
before returning to service the next request from the pre-
ferred embodiment to service its received buffer. In this way
the reinterruptable timer and the expanded buffer cooperate
to assist in backward compatibility and prevent thrashing
and data loss.

FIG. 7 shows an embodiment of the reinterruptable timer
of the present invention. The basic input is the internal
indication of the need of service request that appears on line
132 from level detect circuit 130 (FIG. 5). This clocks a
storage device, such as D type flip-flop 180 to set output line
181 high indicating that an interrupt request should be
generated. Line 181 is one input to AND gate 182 the output
of which is provided to status register 134 to generate the
external indication of an interrupt request from the UART.

Assume for the moment, as will normally be the case, that
line 183 is at a logical one and thus the rising edge on line

5,717,870

11

181 is passed through gate 182 to its output. The rising edge
on an interrupt request is recognized by the host CPU as an
interrupt request. According to the convention used with
Intel processors and other processors commonly used in
implementing personal computers, the requesting device
will hold its interrupt request high until it receives an
interrupt acknowledge signal from the CPU acknowledging
the interrupt and indicating that the interrupt request line
should be cleared for subsequent possible interrupt request.
This conventional arrangement precludes a single device
from generating multiple sequential interrupts until at least
the most recent one has been serviced.

An interrupt acknowledge signal from the CPU is pro-
vided on line 185 which is connected to a clear input 186 a
flip-flop 180 and a trigger input 187 of a one shot timer 188.
The asserted output from timer 188 appears on line 189 as
one input to NAND gate 191. The other input to NAND gate
191 is a timer enable signal on line 192. The timer enable
signal on line 192 is a control signal from command inter-
face 31 that determines whether the reinterruptable timer of
the present invention is to be utilized. If the signal on line
192 is not asserted (logical zero) then NAND gate 191 forces
line 183 to a high level thus causing the output written to
status register 134 to respond only to the internal interrupt
request condition on line 181. Thus, negation of the timer
enable signal on line 192 causes the timer circuit to ignore
one shot timer 188. On the assumption that the timer is
enabled, i.e., that line 192 is the logical one, the output on
line 183 will be the inverse of the signal on line 189.

Returning again to the condition in which flip-flop 180
has been set indicating that an interrupt service request has
been generated by the UART, next assume an interrupt
acknowledge is provided on line 188. This clears flip-flop
180 thus internally resetting the interrupt request status in
the preferred embodiment. The same signal is provided to
trigger input 187 and triggers one shot timer 188, taking line
189 high. This forces line 183 low for the period of the timer
and holds the external interrupt request on line 134 low for
the period of timer 188.

If no internal service request is generated on line 132
during the period of timer 188, time out causes line 183 to
go high and an external interrupt service request will be
generated since there is a rising edge on line 181. On the
other hand, the generation of an internal request for service
by a rising edge on line 132 that occurs prior to the time out
of timer 188 will cause line 181 to go high. However, this
will be blocked from status register 134 by the logical zero
that is held on line 183 by a timer 188. This condition will
maintain until timer 188 time out.

Therefore, if an internal request for service is generated,
such as the buffer filling to the selected trigger level, this
interrupt request is not transmitted to the host until the time
out of timer 188 reestablishes a logical one on line 183, thus
causing a rising edge on the output of NAND gate 182 which
generates the next external interrupt request to the host. In
this way timer 188 prevents the occurrence of a subsequent
interrupt request until a predetermined period of time fol-
lowing servicing of the most recent request made by the
enhanced serial port control of the present invention.

The last input to the timer circuit of FIG. 7 is a period
select signal on line 193. This is generically indicated as
controlling the period of timer 188. This can be accom-
plished by selecting resistor values controlling the time
constant of a one shot multivibrator, or by implementation as
multiple lines controlling the scale of a counter timing
device. Tt should be understood that a conventional one shot

10

15

20

25

30

40

50

55

60

65

12

multivibrator such as 188 has been shown to illustrate the
use of a programmable timing device and that scalable
counter and other timing devices that will be recognized as
providing an equivalent timing operation by those skilled in
the art can all be employed, interchangeably, in constructing
embodiments of the present invention. Therefore, in its most
preferred form, the timer of the present invention provides
a selectable predetermined period of time in which to inhibit
the next subsequent interrupt after an occurrence of a most
recent interrupt or interrupt service.

The preferred embodiment of the present invention is
constructed as part of the overall enhanced serial port device
described hereinabove using one micron CMOS cell based
integrated circuit technology. It is preferably packaged in a
144 pin quad flat pack enclosure suitable for surface mount-
ing on the printed circuit board. It should be understood that
the invention described herein forms but a portion of the
overall controller and serial port embodied by the above
described intergrated circuit. Those skill in the art will
recognize that other equivalent structures may be used to
construct embodiments of the present invention including
discrete MSI and LSI integrated circuits, a collection of
memories and registers including an intelligent controller
running under stored program control, and other similar
arrangements.

In view of the foregoing description of the preferred
embodiment in its intended environment, other embodi-
ments of the present invention will suggest themselves to
those skilled in the art. Therefore, the scope of the present
invention is to be limited only by the claims below and
equivalents thereof.

I claim:

1. A controller for use with a serial port in a computer, said
controller being utilized with a conventional universal asyn-
chronous receiver/transmitter (UART), said UART being
associated with said serial port, said UART including
receiver and transmitter buffers, said controller comprising:

an expanded buffer, said expanded buffer being opera-
tionally connected to a predetermined one of: said
transmitter buffer for storing data to be transmitted to
said UART via said serial port, or said receiver buffer
of said UART for storing data received from said
UART via said serial port;

a scalable trigger circuit, said scalable trigger circuit being
associated with said expanded buffer, for detecting
when said data in said expanded buffer is equal to a
predetermined trigger level and producing a service
request signal each time said data in said expanded
buffer is equal to said predetermined trigger level; and

a timer responsive to said service request signal for
providing an interrupt signal to said computer, said
timer resetting said interrupt signal following servicing
of said interrupt signal, said timer having a predeter-
mined time-out period started by said servicing of said
interrupt signal, said timer being non-responsive to a
subsequent said service request signal by not sending a
subsequent interrupt signal until said time-out period
has elapsed.

2. A controller for use with a serial port in a computer, said
controller being utilized with a conventional universal asyn-
chronous receiver/transmitter (UART), said UART being
associated with said serial port, said UART including
receiver and transmitter buffers, said controller comprising:

a first buffer, said first buffer being operationally con-
nected to said transmitter buffer for storing data to be
transmitted to said UART via said serial port;

13

a first scalable trigger circuit, said first scalable trigger
circuit being associated with said first buffer, for detect-
ing when said data in said first buffer is equal to a
predetermined trigger level and producing a service
request signal in response thereto;

a second buffer, said second buffer being operationally
connected to said receiver buffer of said UART for
storing data received from said UART via said serial
port;

a second scalable trigger circuit, said second scalable
trigger circuit being associated with said second buffer,
for detecting when said data in said second buffer is
equal to a predetermined trigger level and producing a
service request signal in response thereto;

5,717,870

10

14

a service request queue buffer for receiving said service
request signals from said first and second scalable
trigger circuits for providing an interrupt signal to said
computer; and

a timer for resetting said interrupt signal following ser-
vicing of said interrupt signal, said timer having a
predetermined time-out period started by said servicing
of said interrupt signal, said timer preventing said
service request queue buffer from providing a said
interrupt signal in response to a subsequent said service
request signal until said time-out period has elapsed.

* ok ok % %

