
(19) United States
US 20090055584A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0055584A1
Hafner et al. (43) Pub. Date: Feb. 26, 2009

(54) DETECTION AND CORRECTION OF
DROPPED WRITE ERRORS IN ADATA
STORAGE SYSTEM

(75) James L. Hafner, San Jose, CA
(US); Carl E. Jones, Tucson, AZ
(US); David R. Kahler, Tucson, AZ
(US); Robert A. Kubo, Tucson, AZ
(US); David F. Mannenbach,
Tucson, AZ (US); Karl A. Nielsen,
Tucson, AZ (US); James A.
O'Conner, Ulster Park, NY (US);
Krishnakumar R. Surugucchi,
Fremont, CA (US)

Inventors:

Correspondence Address:
LAW FIRM OF DAN SHIFRN
6208 Devinney Circle
ARVADA, CO 80004 (US)

(73) Assignee: IBM CORPORATION, Armonk,
NY (US)

(21) Appl. No.: 11/843,804

St O

(22) Filed: Aug. 23, 2007

Publication Classification

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. 711/114; 711/E12.001

(57) ABSTRACT

Method, system and computer program product are provided
for detecting and correcting dropped writes in a storage sys
tem. Data and a checksum are written to a storage device. Such
as a RAID array. The state of the data is classified as being in
a “new data, unconfirmed state. The state of written data is
periodically checked, such as with a timer. If the data is in the
“new data, unconfirmed state, it is checked for a dropped
write. If a dropped write has occurred, the state of the data is
changed to a 'single dropped write confirmed State and the
dropped write error is preferably corrected. If no dropped
write is detected, the state is changed to a “confirmed good
state. If the data was updated through a read-modified-write
prior to being checked for a dropped write event, its state is
changed to an "unquantifiable' state.

OO

Storage Controller O

Data ite Parity RAF Cotic
iodie Mocie Module

1 2 114 18

Data State Tirning
Wodies Mode

18 120

Processo Memoy

22 124

isk Aray

O D. I. D.

Patent Application Publication

Storage Controller

Data Write
Module

2

Data State
yode

18

Processor

host O

Feb. 26, 2009 Sheet 1 of 3

RAD Corto
Miocule

8

FG.

US 2009/0055584 A1

OO

Patent Application Publication Feb. 26, 2009 Sheet 2 of 3 US 2009/0055584 A1

xxx xxx xxx xxxxx xxxxx xxx xxxx xxx xxxx xxx xxxx xxxx xxx xxx xxx 22

Receive Data for host |-
202 - roo c
- Receive Data from lost

2O4.

Geneate SW Cecks is

Stride. We of
Data aid Checks is

- Classify as "New Unconfirmed
2 Y.
No > check for Y

--(Dropped write N) Now? -
-
Yes

Perfor Check
OMO s al 22

Dropped Write
Detected?

4.
Yes

Read codified Write of
Baia and Checkstars

Classify as "Single
Dropped Write Detected”

Correct for Dropped Write

Classify as "Confirmed
Good ata'

28

Patent Application Publication Feb. 26, 2009 Sheet 3 of 3 US 2009/0055584 A1

380 /N

30

XXXXXXXXXXXXXXXXXXXRead Fustride T
- 304 Regenerate Party Symbols

Compare Parity Symbols
- 308

-

r

Yes Parity. No
Symbols

NSame?

No Dropped Dropped Write
- Write hetected)etected s

30 312

306

FG. 3

US 2009/0055584 A1

DETECTION AND CORRECTION OF
DROPPED WRITE ERRORS IN ADATA

STORAGE SYSTEM

TECHNICAL FIELD

0001. The present invention relates generally to data stor
age systems, and in particular, to detecting and correcting
dropped write errors.

BACKGROUND ART

0002 The basic operation of hard disk drives (HDDs) is
well known in the art. It is also known that HDDs are complex
electromechanical units and, as Such, are subject to a wide
variety of failure mechanisms. Microscopic defects in the
magnetic coding materials used on the platter, contamination
of the platter with dust, dirt or magnetic particles and aging
can all cause data loss. As with all electronics, random failure
can occur from a wide variety of underlying physical pro
cesses or Small defects associated with manufacturing pro
cesses. Moving parts are Subject to friction and wear out over
time which can also cause HDD assemblies to fail.

SUMMARY OF THE INVENTION

0003. The present invention provides a computer program
product having computer-readable code embodied thereinfor
detecting and correcting dropped writes in a data storage
system. The computer-readable code includes instructions for
executing the steps of the present invention. Data, including
first data and at least a first checksum associated with the first
data, are written to a storage device, such as a RAID array, in
a full stride write. The state of the first data is classified as
being in a first “new data, unconfirmed state. The state of
written data is periodically checked, such as may be deter
mined by a timer, to determine whether a dropped write event
has occurred. If a dropped write event is detected during a
periodic check of the first data, its state is changed from the
first state to a second “single dropped write confirmed state.
Preferably, the dropped write will then be corrected and the
state of the first data changed to a third “confirmed good’
state. If no dropped write event is detected, its state is changed
from the first state to the third state.
0004. The present invention also provides a RAID system
having an array of disk storage drives, a RAID array control
ler, a parity generator operable to generate at least a first
checksum associated with first data, a data write module
operable to write data, including the first data and the at least
first parity symbol, to the array in a full stride write, and a
dropped write check module operable to periodically check
the written data to determine whether a dropped write event
has occurred. The system also includes a data state module
operable to classify a state of the first data as being in a first
“new data, unconfirmed' state when the first data is written to
the array, change the state of the first data from the first state
to a second “single dropped write confirmed state if a
dropped write event is detected during a periodic check, and
change the state of the first data from the first state to a third
“confirmed good” state if no dropped write event is detected.
The system may also include a timer by which the periodic
checks may be regulated.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 is a block diagram of a storage system in
which the present invention may be implemented;

Feb. 26, 2009

0006 FIG. 2 is a flowchart of a method of the present
invention; and
0007 FIG. 3 is a flowchart of a dropped write detection
method which may be used with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

0008. Not all HDD failures manifest themselves as a solid
hard failure of the entire hard disk assembly. Some problems
are more subtle and can be difficult to detect. For example, it
is crucial to be able to precisely locate the magnetic read/write
head to the exact position over the platter to ensure that the
data is written to or read from the correct location on the
platter. Slight variations can result in data being written to or
read from the wrong location.
0009. Many techniques have been used and improved over
the years to help ensure that HDD failures do not cause data
loss or data integrity issues due to more subtle failure modes.
Embedded checkers such as error correction codes (ECC) are
used on HDDs to detect bad sectors. Cyclic redundancy
checks (CRCs) and longitudinal redundancy checks (LRCs)
may comprise embedded checkers used by HDD electronics
or disk adapter or they may comprise checkers used by higher
levels of code and applications to detect HDD errors. CRCs
and LRCs are written coincident with data to help detect data
errors. CRCs and LRCs are hashing functions used to produce
a small and Substantially unique bit pattern generated from
the data. When the data is read from the HDD, the checksum
is regenerated and compared to what is stored on the platter.
The signatures must match exactly to ensure the data
retrieved from the magnetic pattern encoded on the disk is
what was originally written to the disk.
0010 Systems of redundant array of independent disks
(RAID) have been developed to improve performance or to
increase the availability of disk storage systems or both.
RAID distributes data across several independent HDDs.
There are many different RAID schemes that have been
developed, each having different characteristics and different
benefits and disadvantages associated with them. Perfor
mance, availability and utilization/efficiency (the percentage
of the disk space that actually holds customer data) are per
haps the most important. The tradeoffs associated with vari
ous schemes have to be carefully considered because
improvements in one attribute can often result in reductions in
another.

0011 RAID-5 is a widely used scheme that achieves a
good balance between performance, availability and utiliza
tion. It uses a single parity field that is the XOR (exclusive
OR) of the data elements across multiple unique HDDs. In the
event of a single HDD failure, the data on the remaining
HDDs is used with the parity field to reconstruct the data from
the failed HDD by XOR-ing the data on the remaining disks
together to recreate the data from the failed disk. As with
many other RAID schemes, RAID-5 has a performance
advantage in that it is not necessary to read the data from all
HDDs in a data stripe (full stride write or FSW) in order to
recalculate the new parity value for the stripe every time a
write occurs. Rather, when writing Small amounts of data to
update a single data element, a technique known as read
modified-write (RMW) is used whereby the old data from a
single HDD is read along with the old parity from another
HDD. The old data is XOR-ed with the new data and old
parity to produce a new parity which is then written to appro

US 2009/0055584 A1

priate disk along with the new data. This may be a consider
able performance improvement, especially with wider (larger
N-N+P) RAID-5 arrays.
0012. However, because an HDD rebuild can often take
several hours to complete, if another disk in the RAID-5 array
fails before the first failed HDD is replaced and the data
rebuilt on the new disk, all of the data associated with the
RAID-5 array will be lost. Thus, RAID-5 can only tolerate a
single HDD failure and there is no way to reconstruct the data
when two HDDS fail.

0013 RAID-6 is an extension to RAID-5 in which a sec
ond independent checksum field is introduced. While
RAID-5 can continue to operate in the presence of a single
HDD failure, RAID-6 can continue to operate in the presence
of two HDD failures. In RAID-6, the second checksum field
may be created using Reed-Solomon coding or using simple
RAID-5-like XORs where no data element of the XOR is
used more than once to generate the check sums.
0014. One HDD failure mode that is particularly trouble
Some is a dropped write which occurs when a disk controller
issues a write command to a HDD and receives a response
back from the HDD indicating the write completed success
fully. However, the write to the HDD did not actually occur.
Although normally rare, there are a variety of failure mecha
nisms that can cause dropped writes. There may have been a
failure in the write pre-amp. A Small piece of metal shaving in
the drive may have shorted out the write head. Other, subtle or
intermittent failure of the write heads can cause a dropped
write. A code problem in the HDD assembly may cause it as
well.
0015. A situation which is comparable to a dropped write
can also occur if the write head is not centered over the correct
track or is located entirely over the incorrect track. In the latter
case, a Subsequent read operation proceeds and the data read
from the track looks valid, but is stale. In the former case, in
which the write was not centered properly, the drive may
generate a bad ECC when it attempts to read the data back
from the center of the track. To compensate, the drive then
offsets the heads slightly one way or the other to attempt to get
good data. If the head is offset one way, it will get the correct
data but if it is offset the other way, it will get stale data. As
used herein, the term “dropped write' error or event will
include both of these conditions as well as the condition
described in the immediately previous paragraph.
0016. Unfortunately, embedded checkers such as ECC
used on HDDs to detect bad sectors as well as CRCs and
LRCs that are used by the disk controller/disk adapter or
higher levels of code and applications may prove ineffective
in detecting dropped write errors. These checkers cannot
always detect a dropped write because the data read from the
disk location is not of a bad content. When a request is made
to the drive to read the sector, valid data is read from the media
but it is not the correct data. Rather, the data is stale; that is, the
data that is read is the data that was present before the last
write and that was not overwritten by new data when it should
have been. Thus, all of the checkers may still be valid for the
old data and provide no indication of an error. It will be
appreciated that when such incorrect data is retrieved from a
drive but the drive does not indicate the presence of an error,
RAID reconstruction techniques are not invoked and cannot
be used to locate and correct the error.
0017 Dropped writes can be difficult to detect and there is
concern that they can potentially cause serious customer data
corruption and restoration issues. Every read-modified-write

Feb. 26, 2009

using bad (including Stale) data from a dropped write serves
to further propagate the data errors to other HDDs in the
RAID array causing migration and expansion of the data
corruption and making it all the more difficult to determine
which HDD originally caused the problem. In fact, in some
scenarios, the propagation of an undetected dropped write can
modify the RAID checksum in such a way that makes it
impossible to detect the condition.
0018 Failure analysis data indicates that dropped writes
typically manifest themselves in a single hard drive in an
array and may propagate. Consequently, it is important to
quickly and accurately identify the drive exhibiting the prob
lem.
0019. As an example of error propagation from a dropped
write condition, consider a RAID-5 array with three data
disks and one parity disk (3+P) is initially in a good state, with
all disks being present and the parity being in Sync with the
data. The array initially resembles the following (where the
+ sign represents the XOR function):

Disk 1 Disk 2 Disk3 Parity Disk

A. B C P = A- B - C

0020 Assume first that the data in A needs to be changed;
the new data for A will be indicated as A. When the new data
is written, the parity must also be updated. First, using the
read-modified-write process, the old data A on Disk 1 and the
old data P on the parity disk are read from the drives. Then the
new parity P' is calculated by XORing the old parity P with
the old data A to remove the old data A from the parity and
then XOR'ing the result with the new data A". Thus, the new
P=P+A+A'=A+B+C+A+A'=A+A+A'+B+C. The two As
cancel leaving P=A+B+C. Finally, the new data A' and parity
P' are written to the disks:

Disk 1 Disk 2 Disk 3 Parity Disk

A. B C P = A- B - C

0021 Next assume that Disk 1 is dropping writes. The
array again initially resembles the following:

Disk 1 Disk 2 Disk3 Parity Disk

A. B C P = A- B - C

0022 First, the old data A on Disk 1 and the old data Pon
the parity disk are read from the drives. Then the new parity P
is calculated. Again, P'-P+A+A'=A+B+C+A'=A+A+A'+B+
C=A+B+C and the new parity is still calculated correctly.
Finally, the new data A' and parity P" are written to their
respective disks. However, this time Disk 1 does not actually
perform the write. The disks thus resemble the following:

Disk 1 Disk 2 Disk 3 Parity Disk

P = A- B - C

US 2009/0055584 A1

0023 Note that Disk 1 still contains the old data A, not the
new data A', but the new parity indicates that the data on Disk
1 should be A'. If the data on Disk 1 was rebuilt or recon
structed at this point, the correct data could still be rebuilt
from A'=B+C+P". If, however, the data on Disk1 is not rebuilt
or reconstructed, the array remains in an “Initial Corrupted
State.” From this state, the corruption can propagate to the
parity in a number of ways, two of which will be described.
0024 First, starting in the initial corrupted state, assume
that a new write of A occurs; designated as A". The data on
Disk 1, still the original A, and the data on the parity disk, now
P", are read from the drives. The new parity is calculated as
P"=P'+A+A"=A+B+C+A+A". Nothing cancels because the
data A read from Disk 1 is not the data A' that was used to
generate the parity P". A" and P" are now written to the disks
and again, Disk 1 drops the write. The disks now resemble the
following:

Disk 1 Disk 2 Disk3 Parity Disk

0025. The parity is corrupted and there is no way to recon
struct correct data A". If it is now detected that Disk 1 is
dropping writes the data is rejected, then the data that will be
generated in the rebuild will be P"+B+C=A+A'+A", clearly
invalid data. If the rest of the members of the array, B and C,
were read instead of the old Ato calculate parity in a full stride
write, then the parity would have been correctly calculated.
However, this is not done is due to its adverse effect on
performance. For arrays wider than 3+P, it takes fewer drive
operations to perform a read-modified-write as described
above.
0026. A second example of the manner in which an error
from a dropped write may propagate starts in the initial cor
rupted State shown above. Assume in this example that we a
write is made to both Band C. The new data will be B' and C
and since these are recorded with a single write, there is only
one update of the parity. In this case, it takes fewer drive
operations to read the rest of the array than it does to read only
the changing data. So the old data A is read from Disk 1 and
there is no need to read the parity P. A new parity P" is
calculated from the data A that was read from Disk 1 and
XORing it with the new data Band C for Disks 2 and 3. The
new parity will be P"=A+B+C". P" is incorrect because the
data for Disk 1 should have been A", not A. The disks will now
resemble the following:

Disk 1 Disk 2 Disk 3 Parity Disk

0027. Although the parity is now consistent with the data
which is actually on the disks, the write of A' has now been
completely lost. It was not part of the generation of the new
parity P" and cannot be recovered.
0028. The present invention may be employed with RAID
codes, such as RAID-5, which rely on a single checksum
process to detect a dropped write. The present invention may
further be employed with multiple checksum RAID codes,
such as RAID-6. With such codes, an additional property

Feb. 26, 2009

becomes available that can be used to both detect and correct
dropped writes. In general, for minimum distance codes like
Reed-Solomon (RS) codes comprised of symbols made up of
m-bit sequences, the erasure correction capability (when the
data error is pinpointed through some independent means) is
determined as:

e-2ted....., sn-k iR

where d is the code minimum distance, n is the total num
ber of code symbols, k is the number of data symbols being
encoded and t is the error correction capability (the capability
of the code to pinpoint and correct an error). For RAID-6,
where there are two checksums:

0029. Either two errors may be corrected when the loca
tion is pinpointed by an independent means or the RAID-6
code may be used to detect a single error, pinpoint its location
and then correct it. The present invention provides method,
apparatus and computer program product for taking advan
tage of this property. Although described in the context of a
RAID-6 environment, the correction aspect of the present
invention may be employed with any multiple checksum
code.
0030 FIG. 1 is a block diagram of a storage system 100 in
which the present invention may be implemented. The system
100 includes a storage controller 110 and an array 130 of hard
disk drives (HDDs) 140. The controller 110 is interconnected
with one or more hosts 10, either directly or through a net
work, and receives requests from the host 10 to write data to
and read data from the array 130. In a RAID-6 environment,
the array 130 includes a number of HDDs Do-D, on which
customer data is stored and HDDs P, P on which parity
checksums are stored. The array 130 illustrated in FIG. 1 is
simplified for clarity; parity in RAID 5 and 6 arrays is rotated
among the drives. Thus, no drive will contain all data or all
parity.
0031. The controller 110 provides a number of functions,
any or all of which may be implemented in hardware, soft
ware, firmware or in any combination and which will be
referred to herein as "modules. A data write module 112
encodes and formats data before it is written to the array 130.
A checksum or parity generator module 114 generates parity
or other checksum for a data stripe during a write operation
and regenerates parity during a read operation. A RAID con
trol module 116 supervises the writing of a data stripe and
parity across the HDDs Do-D, and P. P. The controller 110
also includes a data state module 118 and a timer 120 whose
functions will be described below. The controller 110 further
includes a processor 122 (which may actually comprise mul
tiple processors) and memory 124 (which may comprise one
or more of any type of computer readable, Volatile or non
Volatile medium usable with a programmable computer and
having computer-readable code embodied therein). Any of
the functions performed by the modules may be executed by
the processor from program instructions stored in the
memory 124. For clarity, other, commonly used storage com
ponents are not shown in FIG. 1.
0032. A method of the present invention will be described
with reference to the flowcharts of FIGS. 2 and 3. When the
process is begun (step 200), new data to be written to the array
130 is received from the host 10 by the storage controller 110
(step 202). Full stride write checksums are generated by the

US 2009/0055584 A1

parity module 114 (step 204) and the data and checksums are
written to the array 130 in an FSW operation (step 206).
Because the data has not yet been checked for dropped writes,
it is classified as being in a “new unconfirmed State (step
208).
0033. Next, a determination is made as to whether a check

is to be made of the array 130 for a dropped write event (step
210). For example, the timer 120 may be used to periodically
determine if a predetermined interval has expired. When the
interval has expired, the state of a selected stride of data
previously written to the array 130 is checked (step 300).
Alternatively, or in addition, selected data may be checked for
dropped writes at other times, such as during periods of low
system utilization. If the interval has not yet expired, or if the
system is not in a period of low utilization, the process jumps
to step 220 to determine if a write request is pending.
0034. One method for detecting a dropped write error, a
“parity scrub,” is illustrated in the flowchart of FIG.3. The full
stride of the selected data, including the original checksums,
is read from the array 130 (step 302) and the parity module
114 regenerates the checksums (step 304). The original
checksums read from the array 130 are compared with the
regenerated checksums (steps 306 and 308). If the two sets
match, that is an indication that there is no dropped write error
in the selected data (step 310) and the selected data is classi
fied by the data state module 118 as being in a “good con
firmed state (FIG. 2, step 218). If, on the other hand, the two
sets of checksums are not the same and an independent
checker, such as an ECC or CRC/LRC checker, does not
indicate that an erroris present, it is likely that a dropped write
error is present and needs to be corrected (step 312) and the
process advances to the next step in the process (FIG. 2, Step
214). If the present invention is implemented with a single
checksum code, the single checksum or parity symbol will be
used to detect a dropped write event. A dropped write error
may also be detected through a “read-back' check. The
selected data is readback and compared to a copy saved. Such
as in a buffer or cache, in the storage controller 110. If the two
do not match and an independent checker does not indicate
that an error is present, it is likely that a dropped write erroris
present.
0035. After the check for a dropped write has been per
formed (step 300), a determination is made as to whether a
dropped write event has been detected (step 212). If so, the
selected data is classified by the data state module 118 as
being in a “single dropped write detected state' (step 214).
When the present invention is implemented with a multi
checksum code, the dropped write is preferably corrected
(step 216). For example, if the data on disk D, is stale, the data
on the other disks are read and XOR'ed with the parity sym
bols on the parity disks Po, P. The resulting data will be the
correct data which is then written to disk D. If the correction
is successful, or if no dropped write is detected at step 212, the
selected data is then re-classified by the data state module 118
as being in the “confirmed good data' state (step 218). A
determination is then made as to whether a write request is
pending (step 220). If not, the process returns back to step 210
to determine if a check should be made for a dropped write.
0036) If, on the other hand, a write request is pending at
step 220, the data is received from the host (step 222). A
determination is made as to whether, because the data is
extensive enough, a full stride write is to be performed over
existing data (step 224). If so, FSW checksums are generated
(step 204) whereupon the process described above continues.

Feb. 26, 2009

0037. If an FSW is not to be performed, the data is to be
written to the array 130 in a read modified write operation. A
determination is made as to whether the data to be overwritten
was previously classified by the data state module 118 as
being in a "confirmed good data' state (step 226). If so, a flag
or other indicator is put into a first state. Such as by setting a
bit to a 1 (step 228); otherwise, the flag is put into a second
state, such as by setting the bit to a “0” (step 230). The parity
module 114 then generates RMW checksum symbols (step
232), the data and checksums are written to the array 130 in
an: RMW process (step 234). The data is then classified by the
data state module 118 as being in an “unduantifiable state
(step 236), indicating that a dropped write error may no
longer be reliably detected or corrected and may thereby
propagate errors through the data.
0038. The flag that was set in steps 228 or 230 is checked
(step 238). If the flag indicates that the data received from the
host had not been previously classified as being in the “con
firmed good data' state, a determination is made as to whether
there is a pending write request (step 220). If so, the process
returns to step 222 to receive the data from the host. Ifat step
238 it is determined that the flag indicates that the data was
classified as being in the “confirmed good data' state, the data
is reclassified by the data state module 118 as being in the
“new, unconfirmed state (step 208) and the process contin
US

0039. The present invention ensures acceptable perfor
mance by reducing how often a check is made for dropped
write errors, thereby significantly reducing any adverse
impact on performance. For example, it is possible to execute
one check without impacting performance. However, if sev
eral checks are made in a row, a serious performance problem
may be created. The present invention includes a mechanism
to limit the frequency with which attempts to detect dropped
write errors are made; in the illustrated embodiment, the
limiting mechanism may be the timer 120. More specifically,
but by way of example and not limitation, assume that about
20 ms are required to read a 32K block of data from a single
HDD in the array 130. Assume further that the array 130
consists of 10 HDDs. It would, therefore, take about 200 ms
to perform a parity Scrub (that is, to read an entire stride,
regenerate the checksums and compare the original check
Sums with the regenerated checksums). One-fifth of a second
would add up to a significant amount of time if the parity
scrub was performed frequently. However, if the present
invention is implemented and the predetermined interval of
the timer 120 is set so that a parity scrub is performed only
once each minute, a relatively small and insignificant /300 of
a minute is needed.

0040. In addition to implementing the present invention in
storage systems in actual use in customer facilities, the
present invention may also be used as a stress test as part of a
quality control process following the manufacture of HDDs.
For example, the HDDs may be rigorously exercised and then
the process of the present invention be enabled in such a
manner as to prevent the HDDs from being placed in the
“unduantifiable state.” HDDs which exhibit a tendency to
produce dropped writes could thus be weeded out and not
placed into service. In a similar fashion, the process of the
present invention may be used by service technicians as a field
stress exerciser on unused areas of a customer's HDDs. Inter
mittent and previously undiagnosable errors caused by
dropped writes may thus be identified.

US 2009/0055584 A1

0041. It is important to note that while the present inven
tion has been described in the context of a fully functioning
data processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer read
able medium of instructions and a variety of forms and that
the present invention applies regardless of the particular type
of signal bearing media actually used to carry out the distri
bution. Examples of computer readable media include
recordable-type media Such as a floppy disk, a hard disk drive,
a RAM, and CD-ROMs and transmission-type media such as
digital and analog communication links.
0042. The description of the present invention has been
presented for purposes of illustration and description, but is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
Suited to the particular use contemplated. Moreover, although
described above with respect to methods and systems, the
need in the art may also be met with a computer program
product containing instructions for detecting and correcting
dropped writes in a data storage system.
What is claimed is:
1. A RAID System, comprising:
an array of disk storage drives;
an RAID array controller;
a parity generator operable to generate a first checksum

associated with first data;
a data write module operable to write data, including the

first data and the first checksum, to the array in a full
stride write;

a dropped write check module operable to periodically
check the written data to determine whether a dropped
write event has occurred; and

a data state module operable to:
classify a state of the first data as being in a first “new

data, unconfirmed state when the first data is written
to the array;

change the state of the first data from the first state to a
second “single dropped write confirmed state if a
dropped write event is detected during a periodic
check; and

change the state of the first data from the first state to a
third “confirmed good' state if no dropped write event
is detected during a periodic check.

2. The system of claim 1, wherein the RAID array control
ler comprises a RAID-6 controller.

3. The system of claim 2, wherein the dropped write check
module is further programmed to:

correct the dropped write; and
direct that the data state module change the state of the first

data from the second state to the third state.
4. The system of claim 1, wherein the dropped write check

module is programmed to:
direct that a full stride of the first data and the first check
Sumbe read from the array:

direct that the parity generator regenerate a checksum from
the first data;

compare the regenerated checksum with the first check
Sum,

Feb. 26, 2009

direct that the data state module change the state of the first
data from the first state to the third state if the regener
ated checksum is the same as the first checksum, and

direct that the data state module change the state of the first
data from the first state to the second state if the regen
erated checksum is different from the first checksum.

5. The system of claim 1, further comprising a timer and
wherein the dropped write check module is further operable
tO:

direct that the timer be set to the predetermined interval:
direct that the timer start:
check one stride of the written data upon the expiration of

the predetermined interval; and
direct that the timer be reset to the predetermined interval.
6. A computer program product of a computer readable

medium usable with a programmable computer, the computer
program product having computer-readable code embodied
therein for detecting dropped write events in a data storage
system, the computer-readable code comprising instructions
for:

receiving first data from a host;
writing data, including the first data and at least a first

checksum associated with the first data, to a storage
device in a full stride write;

classifying a state of the first data as being in a first “new
data, unconfirmed State;

periodically checking the written data to determine
whether a dropped write event has occurred;

changing the state of the first data from the first state to a
second “single dropped write confirmed state if a
dropped write event is detected during a periodic check;
and

changing the state of the first data from the first state to a
third “confirmed good” state if no dropped write event is
detected during the periodic check.

7. The computer program product of claim 6, wherein the
instructions for detecting a dropped write event in the first
data comprise instructions for:

reading a full stride of the first data;
regenerating a checksum from the first data;
comparing the regenerated checksum with the first check

Sum,
changing the state of the first data from the first state to the

second state if the regenerated checksum is different
from the first checksum; and

changing the state of the first data from the first state to the
third state if the regenerated checksum is the same as the
first checksum.

8. The computer program product of claim 6, further com
prising instructions for, if the first data is in the second state:

correcting the dropped write; and
changing the state of the first data from the second state to

the third state.
9. The computer program product of claim 6, wherein the

storage device is an array of storage drives and writing the
data comprises writing the data using a multi-checksum
RAID coding.

10. The computer program product of claim 6, wherein the
instructions for periodically checking the written data com
prise instructions for checking the written data no more fre
quently than at a predetermined interval.

11. The computer program product of claim 10, wherein
the instructions for periodically checking the written data
comprise instructions for:

US 2009/0055584 A1

setting a timer to the predetermined interval;
starting the timer;
upon the expiration of the predetermined interval, check

ing one stride of the written data;
resetting the timer to the predetermined interval; and
repeating the starting, checking and resetting steps.
12. The computer program product of claim 6, wherein the

instructions further comprise instructions for:
receiving second data from the host;
if the second data is to be written to the storage device in a

full Stride write, generating at least a second checksum

Feb. 26, 2009

and writing the second data and the at least second
checksum to the storage device in a full stride write:

if the second data is to be written to the storage device in a
read modify write (RMW):
generating at least one RMW checksum and writing the

second data and the at least one RMW checksum to
the storage device in a read modify write; and

changing the state of the second data from the second
state to a fourth “unduantifyable” state.

c c c c c

