

US00RE34935E

United States Patent [19]

Rossey et al.

[11] E

Patent Number: Re. 34,935

[45] Reissued Date of Patent: May 9, 1995

[54] **METHOD FOR PREPARING
(+)-(2S,3S)-3-HYDROXY-2-(4-METHOXY-
PHENYL)-2,3-DIHYDRO-5H-1,5-BENZO-
THIAZEPINE-4-ONE AND CHLORINATED
DERIVATIVES THEREOF**

[75] Inventors: Guy Rossey, Voisins-Le-Bretonneux; Isaac Chekroun, Epinay; Antonio Ugolini, Le Pecq; Alexander Wick, St. Nom La Breteche; Bernard Gerin; Andre Bourbon, both of Mantes La Jolie; Jean-Baptiste Graux, Mantes La Ville, all of France

[73] Assignee: Synthelabo, Robinson, France

[21] Appl. No.: 53,855

[22] Filed: Apr. 29, 1993

Related U.S. Patent Documents**Reissue of:**

[64] Patent No.: 5,102,998
Issued: Apr. 7, 1992
Appl. No.: 426,285
Filed: Oct. 24, 1989

U.S. Applications:

[63] Continuation-in-part of Ser. No. 408,042, Sep. 14, 1989, Pat. No. 5,013,835.

[30] Foreign Application Priority Data

Jan. 11, 1989 [FR] France 89 00246

[51] Int. Cl.⁶ C07D 267/02
[52] U.S. Cl. 540/491
[58] Field of Search 540/491

[56]

References Cited**U.S. PATENT DOCUMENTS**

4,416,819 11/1983 Nagao et al. 260/293.3 B
4,420,628 12/1983 Inoue et al. 560/17
4,438,035 3/1984 Gaino et al. 260/239.3 B
4,552,695 11/1985 Igarashi et al. 260/239.3 B
4,885,375 5/1989 Wynberg et al. 549/557
5,008,434 4/1991 Rossey et al. 560/17
5,013,835 5/1991 Rossey et al. 560/491

FOREIGN PATENT DOCUMENTS

0154838 9/1985 European Pat. Off. .
61-145159 7/1986 Japan .
61-145160 7/1986 Japan .
61-145174 7/1986 Japan .

OTHER PUBLICATIONS

Kugita et al, "Synthesis of 1,5-Benzothiazepine Derivatives", Chem. Pharm. Bull, vol. 18, 2028-2037 (1970). Hashiyama et al., "Reaction of 3-Phenylglycidic Esters" Part 2, J. Chem. Soc. Perkin. Trans. 1:421-427, (1985).

Primary Examiner—Nicholas Rizzo

Attorney, Agent, or Firm—Jacobson, Price, Holman & Stern

[57]

ABSTRACT

2-Aminothiophenol is reacted with methyl (—)(2R,3S)-2,3-epoxy-3-(4-methoxyphenyl)propionate, and the intermediate methyl (2S,3S)-3-[(2-aminophenyl)thio]-2-hydroxy-3-(4-methoxyphenyl)propionate is cyclized in the presence of methanesulfonic acid, in the same vessel and without isolating said intermediate product, using e.g. chlorobenzene as a solvent.

6 Claims, No Drawings

METHOD FOR PREPARING
 (+)-(2S,3S)-3-HYDROXY-2-(4-METHOXY-
 PHENYL)-2,3-DIHYDRO-5H-1,5-BENZOTHIAZE-
 PINE-4-ONE AND CHLORINATED DERIVATIVES
 THEREOF

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

This application is a continuation-in-part of application Ser. No. 07/408,042, filed Sep. 14, 1989, now U.S. Pat. No. 5,013,835.

The subject of the present invention is a method for preparing (+)-(2S,3S)-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydro-5H-1,5-benzothiazepine-4-one, bearing optionally a chlorine atom on the aromatic ring.

These optically pure compounds are synthetic intermediates of compounds with therapeutic activities, such as (+)-(2S,3S)-3-acetoxy-5-(2-dimethylaminoethyl)-2-(4-methoxyphenyl)-2,3-dihydro-5H-1,5-benzothiazepine-4-one and its chlorinated derivatives.

The reaction scheme is shown on the following page. In the formulae, X denotes hydrogen or chlorine.

The first step comprises reacting a 2-aminothiophenol derivative of general formula II with methyl (-)-(2R,3S)-2,3-epoxy-3-(4-methoxyphenyl)propionate of formula III. A methyl (2S,3S)-3-[(2-aminophenyl)thio]-2-hydroxy-3-(4-methoxyphenyl)propionate derivative of general formula IV is obtained via opening the epoxide ring.

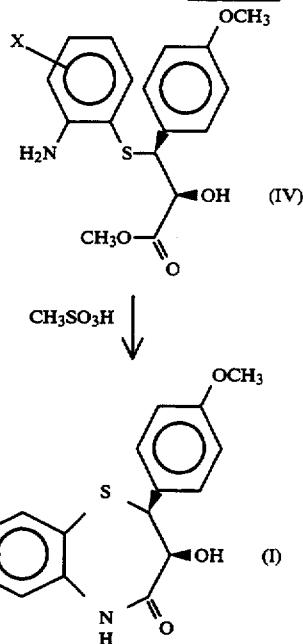
The second step comprises the cyclization of this compound in the presence of an acid.

The reaction principles of each of the two steps are well known.

They are found, for example, in Chem. Pharm. Bull., 18, 2028-2037 (1970), where the ester of formula III is used in racemic form. The first step necessitates several hours of heating to 150°-160° C., and after separation and purification of the ester of formula IV, the second step is performed by hydrolyzing this ester and cyclizing the acid obtained in the presence of sulfuric or acetic acid, in refluxing xylene.

U.S. Pat. No. 4,416,819 describes the first step, where the (racemic) ester of formula III reacts with the amino-thiophenol (II) in toluene after six hours of heating at reflux.

Japanese Patent Application 145160/1986, which describes the synthesis of the optically pure ester of formula III, likewise.


55

The operating conditions of the method according to the invention, which make it possible to attain all the advantages listed above, are described below.

The starting ester of formula III is used in optically pure form. It is described in Japanese Patent Applications 145159/1986, 145160/1986 and 145174/1986.

The possibility of carrying out the two steps of the reaction in the same vessel, without evacuation or intermediate transfer to another vessel, is due to the selection of a unique solvent which is highly suitable for each of the steps.

*-continued
Scheme*

describes the reaction of the latter with aminothiophenol of formula II, under toluene reflux for 10 hours.

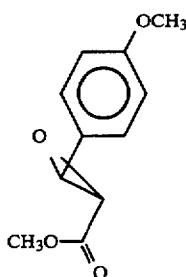
Finally, European Patent Application 0154838 describes among others a method that combines the two steps. The reactions are performed without solvent, requiring 16 hours of heating to 160° C., and furnishing a mixture of optical isomers of the final compound and is intermediate.

Thus it is clear that none of the known methods are suitable for economic industrial manufacture of the compounds of formula I, for various reasons: poor yields, elevated temperatures, the need to purify the intermediate and/or final compounds, and long reaction times.

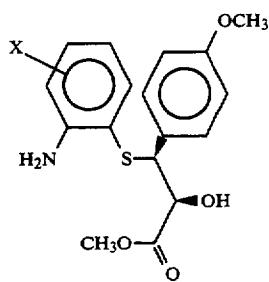
The present invention therefore proposes a method that overcomes the disadvantages of the known art, and affords the following advantages:

the two reaction steps can be performed in the one and same reactor, so that emptying and cleaning it between the two steps, or using a second reactor, is unnecessary (for reasons of convenience, the two steps can be performed in separate reactors, but anyway it is not necessary to isolate the intermediate ester);
 the total yield is high compared with the yields of the known methods;
 energy consumption is reduced, in particular during the first step;
 the reaction times are short; and
 the final compound is pure.

The operating conditions of the method according to the invention, which make it possible to attain all the advantages listed above, are described below.


The starting ester of formula III is used in optically pure form. It is described in Japanese Patent Applications 145159/1986, 145160/1986 and 145174/1986.

The reaction scheme is shown on the following page. In the formulae, X denotes hydrogen or chlorine.


Chemical reaction scheme:

Compound II (2-amino-4-methoxyphenylthiophenol) reacts with Compound III ((-)-(2R,3S)-2,3-epoxy-3-(4-methoxyphenyl)propionate) to form Compound IV ((+)-(2S,3S)-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydro-5H-1,5-benzothiazepine-4-one).

5
(III) 10

(IV)

to obtain an intermediate compound of general formula

(IV)

15 [; and then,] ; and then, without isolating said intermediate, cyclizing the intermediate compound wherein said cyclization is effected in the presence of acid, and wherein said reacting and cyclizing steps are performed in the presence of [a solvent selected from the group consisting of chlorinated organic solvents that have boiling points greater than 70° C] chlorobenzene.

20 2. The method of claim 1, wherein X is hydrogen.

25 [3. The method of claim 1, wherein the solvent is chlorobenzene.] [4. The method of claim 1, wherein the solvent is a dichlorobenzene.]

30 [5. The method of claim 1, wherein the solvent is 1,2,3-trichloropropane.] 6. The method of claim 1, wherein said acid is methane-sulfonic acid.

* * * * *

35

40

45

50

55

60

65