(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

A OO

(43) International Publication Date (10) International Publication Number
22 February 2001 (22.02.2001) PCT WO 01/13590 A1l
(51) International Patent Classification’: HO4L 12/56, (74) Agents: SETTER, Michael, J.; Duft, Graziano & Forest,
HO04Q 11/04 P.C., P.O. Box 270930, Louisville, CO 80027 et al. (US).

(21) International Application Number: PCT/US00/22431 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH,CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,

HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

(25) Filing Language: English NO,NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 16 August 2000 (16.08.2000)

(26) Publication Langunage: English
(84) Designated States (regional): ARIPO patent (GH, GM,
patent (AM, AZ, BY,KG, KZ,MD, RU, TJ, TM), European
60/149,376 17 August 1999 (17.08.1999) US patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
(71) Applicant: CONEXANT SYSTEMS, INC. [US/US]; CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
4311 Jamboree Road, Newport Beach, CA 92660 (US).
Published:
(72) Inventors: LUSSIER, Daniel, J.; 10 Harness Lane, — With international search report.
Holliston, MA 01746 (US). TOMPKINS, Joseph, B.;
35 Georgetown Drive, Apt. 12, Framingham, MA 01702 For two-letter codes and other abbreviations, refer to the "Guid-
(US). SNYDER, Wilson, P., II; 127 White Pond Road, arnce Notes on Codes and Abbreviations” appearing at the begin-
Hudson, MA 01749 (US). ning of each regular issue of the PCT Gazette.

(54) Title: INTEGRATED CIRCUIT WITH A CORE PROCESSOR AND A CO-PROCESSOR TO PROVIDE TRAFFIC
STREAM PROCESSING

CORE
PROGESSOR || SCHEDULER
106 105
coM RECEIVE l PROGRRs0! TRANSMIT ooM
R
SYSTEM INTERFACE e INTERFACE SYSTEM
101 106 102

——1
%
§ 2

0 0000 0 OO0 0

INTERFAGE PROCESSING
100 WTEGRATED
= CIROUT

100
MEMORY

Al

103

& (57) Abstract: An integrated circuit (100) comprises co-processor circuitry (107) and a core processor (104). The co-processor

=2 circuitry (107) comprises context buffers (315) and data buffers (316). The co-processor circuitry (107) receives and stores one of
the communication packets in one of the data buffers (314). The co-processor circuitry (107) correlates the one communication
packet with one of a plurality of channel descriptors. The co-processor circuitry (107) associates the one data buffer with one of the

~~ context buffers (315) holding the one channel descriptor to maintain the correlation between the one communication packet and the
one channel descriptor. The co-processor circuitry (107) determines a prioritized processing order for the communication packet
relative to the other communication packets. The core processor (104) executes a packet processing software application that directs
the core processor (104) to process the one communication packet in the one data buffer based on the one channel descriptor in the
one context buffer and based on the prioritized processing order. The co-processor circuitry (107) is configured to operate in parallel
with the core processor (104).

WO 01/13590 PCT/US00/22431

INTEGRATED CIRCUIT WITH A CORE PROCESSOR AND A CO-PROCESSOR TO PROVIDE TRAFFIC
STREAM PROCESSING

10

15

20

25

Related Cases
This application is related to United States provisional patent application
60/149,376, entitled "HIGH SPEED COMMUNICATIONS PROCESSING DEVICE
FOR INTERNET PROTOCOL, ASYNCHRONOUS TRANSFER MODE, FRAME
RELAY, AND SONET COMMUNICATIONS", filed on August 17, 1999, and which is

hereby incorporated by reference.

Background of the invention
1. Field of the Invention
The invention is related to the field of communications, and in particular, to

integrated circuits that process communication packets.

2. Statement of the Problem

Communications systems transfer information in packet streams. The
packets in the streams each contain a header and a payload. The header contains
control information, such as addressing or channel information, that indicate how the
packet should be handied. The payload contains the information that is being
transferred. Some packets are broken into segments for processing. The term
“‘packet” is intended to include packet segments. Some examples of packets
include, Asynchronous Transfer Mode (ATM) cells, Internet Protocol (IP) packets,

frame relay packets, Ethernet packets, or some other packet-like information block.

10

15

20

WO 01/13590 PCT/US00/22431

An integrated circuit known as a stream processor has been developed
recently to address the special needs of packet communication networking. Traffic
stream processors are designed to apply robust functionality to extremely high-
speed packet streams. This dual design requirement is often in conflict because the
high-speeds limit the level of functionality that can be applied to the packet stream.

Robust functionality is critical with today's diverse but converging
communication systems. Stream processors must handle multiple protocols and
interwork between streams of different protocols. Stream processors must also
ensure that quality-of- service constraints are met with respect to bandwidth and
priority. Each stream should receive the bandwidth allocation and priority that is
defined in corresponding service level agreements. This functionality must be
applied differently to different streams — possibly thousands of different streams.

To provide such functionality, a RISC-based core processor was developed
with its own network-oriented instruction set. The instruction set is designed to
accomplish common networking tasks in the fewest cycles. The core processor
executes software applications built from the instruction set to apply the robust
functionality to high-speed packet streams.

To determine how the packets should be handled, the core processor
constantly correlates packets with their respective context information. The core
processor then retrieves the correlated context information from off-chip memory.
Typically, expensive off-chip memory systems are required to speed up this process.
When handling multiple packets, the core processor must maintain the coherency of
the context information as the context information changes in a pipe-lined processing
environment. Given the high-speeds of the packet streams, this function places a

heavy burden on the core processor and expends critical processing capacity.

10

15

20

25

WO 01/13590 PCT/US00/22431
Instead of providing additional quality-of-service processing, the core processor
spends time correlating packets with context information, retrieving the correlated
context information, and maintaining the coherency of the context information.

Unfortunately, the core processor must constantly determine which packet
stream to handle next. Given the high-speeds of the packet streams, this function
places a heavy burden on the core processor and expends critical processing
capacity. Instead of providing additional quality-of-service processing, the core
processor spends time deciding which packets to process.

The buffers that store the communication packets externally to the stream
processor integrated circuit are segregated into multiple classes. To avoid
fragmentation where packets undesirably cross external buffer boundaries, each
external buffer is sized to hold a single packet. In high-speed systems, this requires
thousands of external buffers that are separated into several different classes.

To store a packet in an external memory, the core processor must first
allocate an external buffer in the memory. In addition to allocation, the core
processor must manage buffer conditions, such as buffer exhaustion. This buffer
allocation and management consumes bandwidth between the stream processor
and the external memory. These tasks are dramatically increased when they are
applied differently across multiple buffer classes. Given the high-speeds of the
packet streams, these tasks place a heavy burden on the core processor and
expend critical processing capacity. They also consume significant bandwidth that
may require additional pins or silicon.

A primary task of the core processor is managing a packet transmission
schedule. The schedule must attempt to maintain various bandwidth guarantees

across multiple streams of traffic. For example, real time traffic is a higher priority

10

15

20

25

WO 01/13590 PCT/US00/22431
than non-real time traffic, and e-mail traffic is a higher priority than system back-up
traffic. Unfortunately, scheduling of this complex nature requires significant core
processing capacity. This use of processing capacity for prioritized scheduling
diminishes the level of functionality provided by the stream processor.

Scheduling is often implemented through a complex prioritization scheme and
requires the execution of scheduling algorithms, such as a guaranteed cell rate
algorithm. To assist the core processor, scheduling circuitry has been developed.
Unfortunately, such circuitry is inadequate because it is not effectively programmable
from a cache memory that stores scheduling parameters for each given packet. This
scheduling circuitry is too static and non-responsive with respect to complex

scheduling tasks.

Summary of the Solution

The invention helps solve the above problems with an integrated circuit that
performs as a traffic stream processor. The integrated circuit uses co-processor
circuitry to correlate packets with respective context information and transfer the
correlated context information to an on-chip context buffer. Cheaper off-chip
memory systems can be used for context information because the latency of context
retrieval is hidden from the core processor. The co-processor circuitry maintains the
coherency of the context information by preventing multiple copies from existing.

The co-processor circuitry also establishes a prioritized work queue for the
core processor. The core processor can simply process packets from the work
queue and avoid expending capacity to determine a prioritized processing order.
The capacity savings provided by the co-processor can be used by the core

processor to handle higher-speed streams or increase the available functionality.

10

15

20

25

WO 01/13590 PCT/US00/22431

The integrated circuit has a buffer management engine that relieves the core
processor of significant external buffer management. The buffer management
engine also reduces the bandwidth between the integrated circuit and external
memory that is required for external buffer management. Advantageously, the buffer
management engine allows the use of relatively small packet-sized external buffers if
desired.

The integrated circuit has scheduling circuitry. The scheduling circuitry
executes scheduling algorithms to schedule packet transmissions. Advantageously,
cached scheduling parameters that are retrieved from a context buffer for the packet
are used in the algorithm. Thus, the scheduling circuitry is highly programmable,
and also conserves important core processor capacity for other services.

The integrated circuit comprises co-processor circuitry and a core processor.
The co-processor circuitry comprises context buffers and data buffers. The co-
processor circuitry receives and stores one of the communication packets in one of
the data buffers. The co-processor circuitry correlates the one communication packet
with one of a plurality of channel descriptors. The co-processor circuitry associates
the one data buffer with one of the context buffers holding the one channel descriptor
to maintain the correlation between the one communication packet and the one
channel descriptor. The co-processor circuitry determines a prioritized processing
order for the communication packet relative to the other communication packets.

The core processor executes a packet processing software application that directs
the processor to process the one communication packet in the one data buffer based
on the one channel descriptor in the one context buffer and based on the prioritized
processing order. The co-processor circuitry is configured to operate in parallel with

the core processor

10

15

20

25

WO 01/13590 PCT/US00/22431

In some examples of the invention, the co-processor circuitry prevents
multiple valid copies of the one channel descriptor from existing in the context
buffers by tracking a number of the data buffers associated with the one context
buffer. In some examples of the invention, the co-processor circuitry determines the
prioritized processing order based on an availability of resources required by the
core processor to process the communication packet.

In some examples of the invention, the integrated circuit further comprises a
pointer cache and control logic. The pointer cache stores pointers that correspond to
external buffers. The external buffers store the communication packets externally to
the integrated circuit. The external buffers and the pointers to the external buffers
are distributed among a plurality of classes. The control logic allocates the external
buffers as the corresponding pointers are read from the pointer cache. The control
logic de-allocates the external buffers as the corresponding pointers are written back
to the pointer cache. The control logic tracks a number of the pointers to the de-
aliocated external buffers for at least one of the classes.

In some examples of the invention, the integrated circuit further comprises
scheduling circuitry. The scheduling circuitry comprises multiple scheduling boards
wherein at least some of the scheduling boards have multiple priority levels. The
scheduling circuitry retrieves scheduling parameters cached in the one context buffer
and executes an algorithm based on the scheduling parameters to schedule
subsequent transmission of the communication packet. The scheduling circuitry
processes one of the scheduling boards to schedule and subsequently initiate

transmission of the communication packet.

Description of the Drawings

10

15

20

25

WO 01/13590 PCT/US00/22431

The same reference number represents the same element on all drawings.

FIG. 1 is a block diagram that illustrates a packet processing integrated circuit
in an example of the invention.

FIG. 2 is a block diagram that illustrates packet processing stages and pipe-
lining in an example of the invention.

FIG. 3 is a block diagram that illustrates co-processor circuitry in an example
of the invention.

FIG. 4 is a flow diagram that illustrates buffer correlation and in-use counts in
an example of the invention.

FIG. 5 is a block diagram that illustrates buffer management circuitry in an
example of the invention.

FIG. 6 is a table that illustrates buffer classes in an example of the invention.

FIG. 7 is a block diagram that illustrates scheduler circuitry in an example of
the invention.

FIG. 8 is block diagram that illustrates a scheduling board in an example of
the invention.

FIG. 9 is block diagram that illustrates a scheduling board in an example of

the invention.

Detailed Description of the Invention

Packet Processing Integrated Circuit -- FIG. 1

FIG. 1 depicts a specific example of an integrated circuit in accord with the
present invention. Those skilled in the art will appreciate numerous variations from
this example that do not depart from the scope of the invention. Those skilled in the

art will also appreciate that various features could be combined to form multiple

10

15

20

25

WO 01/13590 PCT/US00/22431
variations of the invention. Those skilled in the art will appreciate that some
conventional aspects of FIG. 1 have been simplified or omitted for clarity. Various
aspects of packet processing integrated circuits are discussed in United States
patent 5,748,630, entitled "ASYNCHRONOUS TRANSFER MODE CELL
PROCESSING WITH LOAD MULTIPLE INSTRUCTION AND MEMORY WRITE-
BACK", filed May 9, 1996, and which is hereby incorporated by reference into this
application.

FIG. 1 is a block diagram that illustrates packet processing integrated circuit
100 in an example of the invention. Integrated circuit 100 comprises core processor
104, scheduler 105, receive interface 106, co-processor circuitry 107, transmit
interface 108, and memory interface 109. These components may be
interconnected through a memory crossbar or some other type of internal interface.
Receive interface 106 is coupled to communication system 101. Transmit interface
108 is coupled to communication system 102. Memory interface is coupled to
memory 103.

Communication system 101 could be any device that supplies communication
packets with one example being the switching fabric in an Asynchronous Transfer
Mode (ATM) switch. Communication system 101 could be any device that receives
communication packets with one example being the physical line interface in the
ATM switch. Memory 103 could be any memory device with one example being
Random Access Memory (RAM) integrated circuits. Receive interface 106 could be
any circuitry configured to receive packets with some examples including UTOPIA
interfaces or Peripheral Component Interconnect (PCI) interfaces. Transmit
interface 108 could be any circuitry configured to transfer packets with some

examples including UTOPIA interfaces or PCI interfaces.

10

15

20

25

WO 01/13590 PCT/US00/22431

Core processor 104 is a micro-processor that executes networking application
software. Core-processor 104 supports an instruction set that has been tuned for
networking operations — especially context switching. In some examples of the
invention, core processor 104 has the following characteristics: 132 MHz, pipelined
single-cycle operation, RISC-based design, 32-bit instruction and register set, 4K
instruction cache, 8 KB zero-latency scratchpad memory, interrupt/trap/halt support,
and C compiler readiness.

Scheduler 105 comprises circuitry configured to schedule and initiate packet
processing that typically results in packet transmissions from integrated circuit 100,
although scheduler 105 may also schedule and initiate other activities. Scheduler
105 schedules upcoming events, and as time passes, selects scheduled events for
processing and re-schedules unprocessed events. Scheduler 105 transfers
processing requests for selected events to co-processor circuitry 107. Scheduler
105 can handle multiple independent schedules to provide prioritized scheduling
across multiple traffic streams. To provide scheduling, scheduler 105 may execute a
guaranteed cell rate algorithm to implement a leaky bucket or a token bucket
scheduling system. The guaranteed cell rate algorithm is implemented through a
cache that holds algorithm parameters. Scheduler 105 is described in detail with
respect to FIGS 7-9.

Co-processor circuitry 107 receives communication packets from receive
interface 106 and memory interface 109 and stores the packets in internal data
buffers. Co-processor circuitry 107 correlates each packet to context information
describing how the packet should be handled. Co-processor circuitry 107 stores the
correlated context information in internal context buffers and associates individual

data buffers with individual context buffers to maintain the correlation between

10

15

20

25

WO 01/13590 PCT/US00/22431
individual packets and context information. Importantly, co-processor circuitry 107
ensures that only one copy of the correlated context information is present the
context buffers to maintain coherency. Multiple data buffers are associated with a
single context buffer to maintain the correlation between the multiple packets and the
single copy the context information.

Co-processor circuitry 107 also determines a prioritized processing order for
core processor 104. The prioritized processing order controls the sequence in which
core processor 104 handles the communication packets. The prioritized processing
order is typically based on the availability of all of the resources and information that
are required by core processor 104 to process a given communication packet.
Resource state bits are set when resources become available, so co-processor
circuitry 107 may determine when all of these resources are available by processing
the resource state bits. If desired, the prioritized processing order may be based on
information in packet handling requests. Co-processor circuitry 107 selects
scheduling algorithms based on an internal scheduling state bits and uses the
selected scheduling algorithms to determine the prioritized processing order. The
algorithms could be round robin, service-to-completion, weighted fair queuing, simple
fairness, first-come first-serve, allocation through priority promotion, software
override, or some other arbitration scheme. Thus, the prioritization technique used
by co-processor circuitry 107 is externally controllable. Co-processor circuitry 107 is
described in more detail with respect to FIGS. 2-4.

Memory interface 109 comprises circuitry configured to exchange packets
with external buffers in memory 103. Memory interface 109 maintains a pointer
cache that holds pointers to the external buffers. Memory interface 109 allocates the

external buffers when entities, such as core processor 104 or co-processor circuitry

10

10

15

20

WO 01/13590 PCT/US00/22431
107, read pointers from the pointer cache. Memory interface 109 de-allocates the
external buffers when the entities write the pointers to the pointer cache.
Advantageously, external buffer allocation and de-allocation is available through an
on-chip cache read/write. Memory interface 109 also manages various external
buffer classes, and handles conditions such as external buffer exhaustion. Memory
interface 109 is described in detail with respect to FIGS 5-6.

In operation, receive interface 106 receives new packets from communication
system 101, and scheduler 105 initiates transmissions of previously received
packets that are typically stored in memory 103. To initiate packet handling, receive
interface 106 and scheduler 105 transfer requests to co-processor circuitry 107.
Under software control, core processor 104 may also request packet handling from
co-processor circuitry 107. Co-processor circuitry 107 fields the requests, correlates
the packets with their respective context information, and creates a prioritized work
queue for core processor 104. Core processor 104 processes the packets and
context information in order from the prioritized work queue. Advantageously, co-
processor circuitry 107 operates in parallel with core processor 104 to offload the
context correlation and prioritization tasks to conserve important core processing
capacity.

In response to packet handiing, core processor 104 typically initiates packet
transfers to either memory 103 or communication system 102. If the packet is
transferred to memory 103, then core processor instructs scheduler 105 to schedule
and initiate future packet transmission or processing. Advantageously, scheduler
105 operates in parallel with core processor 104 to offioad scheduling tasks and

conserve important core processing capacity.

11

10

15

20

25

WO 01/13590 PCT/US00/22431
Various data paths are used in response to core processor 104 packet
transfer instructions. Co-processor circuitry 107 transfers packets directly to
communication system 102 through transmit interface 108. Co-processor circuitry
107 transfers packets to memory 103 through memory interface 109 with an on-chip
pointer cache. Memory interface 109 transfers packets from memory 103 to
communication system 102 through transmit interface 108. Co-processor circuitry
107 transfers context information from a context buffer through memory interface
109 to memory 103 if there are no packets in the data buffers that are correlated with
the context information in the context buffer. Advantageously, memory interface 109
operates in parallel with core processor 104 to offload external memory management

tasks and conserve important core processing capacity.

Co-processor Circuitry -- FIGS. 24

FIGS. 2-4 depict a specific example of co-processor circuitry in accord with
the present invention. Those skilled in the art will appreciate numerous variations
from this example that do not depart from the scope of the invention. Those skilled
in the art will also appreciate that various features could be combined to form
multiple variations of the invention. Those skilled in the art will appreciate that some
conventional aspects of FIGS. 2-4 have been simplified or omitted for clarity.

FIG. 2 demonstrates how co-processor circuitry 107 provides pipe-lined
operation. FIG. 2 is vertically separated by dashed lines that indicate five packet
processing stages: 1) context resolution, 2) context fetching, 3) priority queuing, 4)
software application, and 5) context flushing. Co-processor circuitry 107 handles
stages 1-3 to provide hardware acceleration. Core processor 104 handles stage 4 to

provide software control with optimized efficiency due to stages 1-3. Co-processor

12

10

15

20

WO 01/13590 PCT/US00/22431

circuitry 107 also handles stage 5. Co-processor circuitry 107 has eight pipelines
through stages 1-3 and 5 to concurrently process multiple packet streams.

In stage 1, requests to handle packets are resolved to a context for each
packet in the internal data buffers. The requests are generated by receive interface
106, scheduler 105, and core processor 104 in response to incoming packets,
scheduled transmissions, and application software instructions. The context
information includes a channel descriptor that has information regarding how packets
in one of 64,000 different channels are to be handled. For example, a channel
descriptor may indicate service address information, traffic management parameters,
channel status, stream queue information, and thread status. Thus, 64,000 channels
with different characteristics are available to support a wide array of service
differentiation. Channel descriptors are identified by channel identifiers. Channel
identifiers may be indicated by the request. A map may be used to translate
selected bits from the packet header to a channel identifier. A hardware engine may
also perform a sophisticated search for the channel identifier based on various
information. Different algorithms that calculate the channel identifier from the various
information may be selected by setting correlation state bits in co-processor circuitry
107. Thus, the technique used for context resolution is externally controllable.

In stage 2, context information is fetched, if necessary, by using the channel
identifiers to transfer the channel descriptors to internal context buffers. Prior to the
transfer, the context buffers are first checked for a matching channel identifier and
validity bit. If a match is found, then the context buffer with the existing channel
descriptor is associated with the corresponding internal data buffer holding the

packet.

13

10

15

20

25

WO 01/13590 PCT/US00/22431

In stage 3, requests with available context are prioritized and arbitrated for
core processor 104 handling. The priority may be indicated by the request — and it
may be the source of the request. The priority queues 1-8 are 16 entries deep.
Priority queues 1-8 are also ranked in a priority order by queue number. The priority
for each request is determined, and when the context and data buffers for the
request are valid, an entry for the request is placed in one of the priority queues that
corresponds to the determined priority. The entries in the priority queues point to a
pending request state RAM that contains state information for each data buffer. The
state information includes a data buffer pointer, a context pointer, context validity bit,
requester indicator, port status, a channel descriptor loaded indicator.

The work queue indicates the selected priority queue entry that core
processor 104 should handle next. To get to the work queue, the requests in priority
queues are arbitrated using one of various algorithms such as round robin, service-
to-completion, weighted fair queuing, simple fairness, first-come first-serve,
allocation through priority promotion, and software override. The aigorithms may be
selected through scheduling state bits in co-processor circuitry 107. Thus, the
technique used for prioritization is externally controllable. Co-processor circuitry 107
loads core processor 104 registers with the channel descriptor information for the
next entry in the work queue.

In stage 4, core processor 104 executes the software application to process
the next entry in the work queue which points to a portion of the pending state
request RAM that identifies the data buffer and context buffer. The context buffer
indicates one or more service addresses that direct the core processor to the proper
functions within the software application. One such function of the software

application is traffic shaping to conform to service level agreements. Other functions

14

10

15

20

WO 01/13590 PCT/US00/22431
include header manipulation and translation, queuing algorithms, statistical
accounting, buffer management, interworking, header encapsulation or stripping,
cyclic redundancy checking, segmentation and reassembly, frame relay formatting,
multicasting, and routing. Any context information changes made by the core
processor are linked back to the context buffer in real time.

In stage 5, context is flushed. Typically, core processor 104 instructs co-
processor circuitry 107 to transfer packets to off-chip memory 103 or transmit
interface 108. If no other data buffers are currently associated with the pertinent
context information, then co-processor circuitry 107 transfers the context information
to off-chip memory 103.

FIG. 3 is a block diagram that illustrates co-processor circuitry 107 in an
example of the invention. Co-processor circuitry 107 comprises a hardware engine
that is firmware-programmabile in that it operates in response to state bits and
register content. In contrast, core processor 104 is a micro-processor that executes
application software. Co-processor circuitry 107 operates in parallel with core
processor 104 to conserve core processor capacity by off-loading numerous tasks
from the core processor.

Co-processor circuitry 107 comprises context resolution 310, control 311,
arbiter 312, priority queues 313, data buffers 314, context buffers 315, context DMA
316, and data DMA 317. Data buffers 314 hold packets and context buffers 315 hold
context information, such as a channel descriptor. Data buffers 314 are relatively
small and of a fixed size, such as 64 bytes, so if the packets are ATM cells, each
data buffer holds only a single ATM cell and ATM cells do not cross data buffer

boundaries.

15

10

15

20

25

WO 01/13590 PCT/US00/22431

Individual data buffers 314 are associated with individual context buffers 315
as indicated by the downward arrows. Priority queues 313 hold entries that
represent individual data buffers 314 as indicated by the upward arrows. Thus, a
packet in one of the data buffers is associated with its context information in an
associated one of the context buffers 315 and with an entry in priority queues 313.
Arbiter 312 presents a next entry from priority queues 313 to core processor 104
which handies the associated packet in the order determined by arbiter 312.

Context DMA 316 exchanges context information between memory 103 and
context buffers 315 through memory interface 109. Context DMA automatically
updates queue pointers in the context information. Data DMA 317 exchanges
packets between data buffers 314 and memory 103 through memory interface 109.
Data DMA 317 also transfers packets from memory 103 to transmit interface 108
through memory interface 109. Data DMA 317 signals context DMA 316 when
transferring packets off-chip, and context DMA 316 determines if the associated
context should be transferred to off-chip memory 103. Both DMAs 316-317 may be
configured to perform CRC calculations.

For a new packet from communication system 101, control 311 receives the
new packet and a request to handle the new packet from receive interface 106.
Control 311 receives and places the packet in one of the data buffers 314 and
transfers the packet header to context resolution 310. Based on gap state bits, a
gap in the packet may be created between the header and the payload in the data
buffer, so core processor 104 can subsequently write encapsulation information to
the gap without having to create the gap. Context resolution 310 processes the
packet header to correlate the packet with a channel descriptor — although in some

cases, receive interface 106 may have already performed this context resolution.

16

10

15

20

25

WO 01/13590 PCT/US00/22431
The channel descriptor comprises information regarding packet transfer over a
channel.

Control 311 determines if the channel descriptor that has been correlated with
the packet is already in one of the context buffers 315 and is valid. If so, control 311
does not request the channel descriptor from off-chip memory 103. Instead, control
311 associates the particular data buffer 314 holding the new packet with the
particular context buffer 315 that already holds the correlated channel descriptor.
This prevents multiple copies of the channel descriptor from existing in context
buffers 314. Control 311 then increments an in-use count for the channel descriptor
to track the number of data buffers 314 that are associated with the same channel
descriptor.

If the correlated channel descriptor is not in context buffers 315, then control
311 requests the channel descriptor from context DMA 316. Context DMA 316
transfers the requested channel descriptor from off-chip memory 103 to one of the
context buffers 315 using the channel descriptor identifier, which may be an address,
that was determined during context resolution. Control 311 associates the context
buffer 315 holding the transferred channel descriptor with the data buffer 314 holding
the new packet to maintain the correlation between the new packet and the channel
descriptor. Control 311 also sets the in-use count for the transferred channel
descriptor to one and sets the validity bit to indicate context information validity.

Control 311 also determines a priority for the new packet. The priority may be
determined by the source of the new packet, header information, or channel
descriptor. Control 311 places an entry in one of priority queues 313 based on the
priority. The entry indicates the data buffer 314 that has the new packet. Arbiter 312

implements an arbitration scheme to select the next entry for core processor 104.

17

10

15

20

WO 01/13590 PCT/US00/22431
Core processor 104 reads the next entry and processes the associated packet and
channel descriptor in the particular data buffer 314 and context buffer 315 indicated
in the next entry.

Each priority queue has a service-to-completion bit and a sleep bit. When the
service-to-completion bit is set, the priority queue has a higher priority that any
priority queues without the service-to-completion bit set. When the sleep bit is set,
the priority queues is not processed until the sleep bit is cleared. The ranking of the
priority queue number breaks priority ties. Each priority queue has a weight from 0-
15 to ensure a certain percentage of core processor handling. After an entry from a
priority queue is handled, its weight is decremented by one if the service-to-
completion bit is not set. The weights are re-initialized to a default value after 128
requests have been handled or if all weights are zero. Each priority queue has a
high and low watermark. When outstanding requests that are entered in a priority
queue exceed its high watermark, the service-to-completion bit is set. When the
outstanding requests fall to the low watermark, the service-to-completion bit is
cleared. The high watermark is typically set at the number of data buffers allocated
to the priority queue.

Core processor 104 may instruct control 311 to transfer the packet to off-chip
memory 103 through data DMA 317. Control 311 decrements the context buffer in-
use count, and if the in-use count is zero (no data buffers 314 are associated with
the context buffer 315 holding the channel descriptor), then control 311 instructs
context DMA 316 to transfer the channel descriptor to off-chip memory 103. Control
311 also clears the validity bit. This same general procedure is followed when

scheduler 105 requests packet transmission, except that in response to the request

18

10

15

20

25

WO 01/13590 PCT/US00/22431
from scheduler 105, control 311 instructs data DMA 317 to transfer the packet from
memory 103 to one of data buffers 314.

FIG. 4 is a flow diagram that illustrates the operation of co-processor circuitry
107 when correlating buffers in an example of the invention. Co-processor circuitry
107 has eight pipelines to concurrently process multiple packet streams in accord
with FIG. 3. First, a packet is stored in a data buffer, and the packet is correlated to
a channel descriptor as identified by a channel identifier. The channel descriptor
comprises the context information regarding how packets in one of 64,000 different
channels are to be handied.

Next, context buffers 314 are checked for a valid version of the correlated
channel descriptor. This entails matching the correlated channel identifier with a
channel identifier in a context buffer that is valid. If the correlated channel descriptor
is not in a context buffer that is valid, then the channel descriptor is retrieved from
memory 103 and stored in a context buffer using the channel identifier. The data
buffer holding the packet is associated with the context buffer holding the transferred
channel descriptor. An in-use count for the context buffer holding the channel
descriptor is set to one. A validity bit for the context buffer is set to indicate that the
channel descriptor in the context buffer is valid. If the correlated channel descriptor
is already in a context buffer that is valid, then the data buffer holding the packet is
associated with the context buffer already holding the channel descriptor. The in-
use count for the context buffer holding the channel descriptor is incremented.

Typically, core processor 104 instructs co-processor circuitry 107 to transfer
packets to off-chip memory 103 or transmit interface 108. Data DMA 317 transfers
the packet and signals context DMA 316 when finished. Context DMA 316

decrements the in-use count for the context buffer holding the channel descriptor,

19

10

15

20

25

WO 01/13590 PCT/US00/22431
and if the decremented in-use count equals zero, then context DMA 316 transfers
the channel descriptor to memory 103 and clears the validity bit for the context

buffer.

Memory Interface 109 -- FIGS. 5-6

FIGS. 5-6 depict a specific example of memory interface circuitry in accord

with the present invention. Those skilled in the art will appreciate numerous

-variations from this example that do not depart from the scope of the invention.

Those skilied in the art will also appreciate that various features could be combined
to form multipie variations of the invention. Those skilled in the art will appreciate
that some conventional aspects of FIGS. 5-6 have been simplified or omitted for
clarity.

FIG. 5 is a block diagram that illustrates memory interface 109 in an example
of the invention. Memory interface 109 comprises a hardware circuitry engine that is
firmware-programmable in that it operates in response to state bits and register
content. In contrast, core processor 104 is a micro-processor that executes
application software. Memory interface 109 operates in parallel with core processor
104 to conserve core processor capacity by off-loading numerous tasks from the
core processor.

From FIG. 1, FIG. 5 shows memory 103, core processor 104, co-processor
circuitry 107, transmit interface 108, and memory interface 109. Memory 103
comprises Static RAM (SRAM) 525 and Synchronous Dynamic RAM (SDRAM) 526,
although other memory systems could be used in other examples of the invention.
SDRAM 526 comprises pointer stack 527 and external buffers 528. Memory

interface 109 comprises buffer management engine 520, SRAM interface 521, and

20

10

15

20

25

WO 01/13590 PCT/US00/22431

SDRAM interface 522. Buffer management engine 520 comprises pointer cache 523
and control logic 524.

Conventional components could be used for SRAM interface 521, SDRAM
interface 522, SRAM 525, and SDRAM 526. SRAM interface 521 exchanges
context information between SRAM 525 and co-processor circuitry 107. External
buffers 528 use a linked list mechanism to store communication packets externally to
integrated circuit 100. Pointer stack 527 is a cache of pointers to free external
buffers 528 that is initially built by core processor 104. Pointer cache 523 stores
pointers that were transferred from pointer stack 527 and correspond to external
buffers 528. Sets of pointers may be periodically exchanged between pointer stack
527 and pointer cache 523. Typically, the exchange from stack 527 to cache 523
operates on a first-in/first-out basis.

In operation, core processor 104 writes pointers to free external buffers 528 to
pointer stack 527 in SDRAM 526. Through SDRAM interface 522, control logic 524
transfers a subset of these pointers to pointer cache 523. When an entity, such as
core processor 104, co-processor circuitry 107, or an external system, needs to store
a packet in memory 103, the entity reads a pointer from pointer cache 523 and uses
the pointer to transfer the packet to external buffers 528 through SDRAM interface
522. Control logic 524 allocates the external buffer as the corresponding pointer is
read from pointer cache 523. SDRAM stores the packet in the external buffer
indicated by the pointer. Allocation means to reserve the buffer, so other entities do
not improperly write to it while it is allocated.

When the entity no longer needs the external buffer — for example, the packet
is transferred from memory 103 through SDRAM interface 522 to co-processor

circuitry 107 or transmit interface 108 — then the entity writes the pointer to pointer

21

10

15

20

25

WO 01/13590 PCT/US00/22431

cache 523. Control logic 524 de-allocates the external buffer as the corresponding
pointer is written to pointer cache 523. De-allocation means to release the buffer, so
other entities may reserve it. The allocation and de-allocation process is repeated
for other external buffers 528.

Control logic 524 tracks the number of the pointers in pointer cache 523 that
point to de-allocated external buffers 528. If the number reaches a minimum
threshold, then control logic 524 transfers additional pointers from pointer stack 527
to pointer cache 523. Control logic 524 may also transfer an exhaustion signal to
core processor 104 in this situation. If the number reaches a maximum threshold,
then control logic 524 transfers an excess portion of the pointers from pointer cache
523 to pointer stack 527.

FIG. 5 is a table that illustrates buffer classes in an example of the invention.
In the example of FIG. 3, there are 16 classes with 500 external buffers each for a
total of 8,000 external buffers. Each class has a type: static, exclusive, or shared.
Static classes use their own external buffers without sharing. Exclusive classes use
their own external buffers first, and then borrow external buffers from the fail-over
classes. De-allocated external buffers from a given exclusive class are credited to
the associated fail-over class until the number of borrowed external buffers is zero.
Shared classes use their own external buffers and comprise the fail-over external
buffers for the exclusive classes.

Buffer classes are used to differentiate services among traffic streams by
assigning different streams to different classes of external buffers. Traffic streams
offering a higher quality-of-service are typically provided with greater access to
external buffers. Bursty traffic may need an elastic exclusive/shared class

arrangement. A class may be associated with only one type of traffic, such as

22

10

15

20

25

WO 01/13590 PCT/US00/22431
Constant Bit Rate (CBR), Available Bit Rate (ABR), Variable Bit Rate (VBR), or
Unspecified Bit Rate (UBR). CBR traffic without bursts typically uses static classes.
ABR traffic uses exclusive and shared external buffer classes to respectively handle
minimum cell rates and bursts. VBR and UBR traffic typically use shared buffer
classes.

The external buffers are separated into two separately managed pools A and
B. Pools can be used for service differentiation. Pools are also helpful when the
external buffers are located in separate memory devices, so each device may have
its own independently managed pool.

For each class, control logic 524 tracks the number of pointers in pointer
cache 523 that point to the de-allocated external buffers and the number of pointers
in pointer cache 523 that point to the allocated external buffers. If the number of
pointers to the de-allocated external buffers in one of the classes reaches a
minimum threshold for that class, control logic 524 transfers an exhaustion signal for
that class to core processor 104. If the class is exclusive, control logic 524 may also
borrow pointers from the corresponding fail-over class for use by the exclusive class,
although conditions and thresholds may be used to limit the amount of borrowing.
Control logic 524 tracks the number of pointers distributed to each class and may re-
distribute pointers from one class to another based on certain conditions, such as

traffic loads. In addition, more ABR traffic may require more exclusive buffers at the

expense of shared buffers where more UBR traffic has the opposite effect.

Scheduler Circuitry -- FIGS. 7-9

FIGS. 7-9 depict a specific example of scheduler circuitry in accord with the

present invention. Those skilled in the art will appreciate numerous variations from

23

10

15

20

25

WO 01/13590 PCT/US00/22431
this example that do not depart from the scope of the invention. Those skilled in the
art will also appreciate that various features could be combined to form multiple
variations of the invention. Those skilled in the art will appreciate that some
conventional aspects of FIGS. 7-9 have been simplified or omitted for clarity.

FIG. 7 is a block diagram that illustrates scheduler 105 in an example of the
invention. Scheduler 105 comprises a hardware circuitry engine that is firmware-
programmable in that it operates in response to state bits and register content. In
contrast, core processor 104 is a micro-processor that executes application software.
Scheduler 105 operates in parallel with core processor 104 to conserve core
processor capacity by off-loading numerous tasks from the core processor.

Scheduler 105 comprises control logic 730, scheduling boards 731-732, and
context RAM 735. Board 731 is vertically separated into time periods 741-745 where
a "1" indicates a reservation at that time period and a "0" indicates no reservation at
that time period. Board 731 is horizontally separated into priority levels 7561-754 that
are ranked from high at priority level #1 to low at priority level #4. Board 732 is
similar to board 731, but has two priority levels and ten time periods. Control logic
730 process boards 731-732 independently of one another.

Context RAM 735 has entries 736 that each hold one of thousands of possible
channel descriptor identifiers. The channel descriptors that correspond to these
identifiers describe how packet transmission should be handled for a channel. For
example, a channel descriptor indicates where packets for the channel are stored
and how frequently they should be transmitted. Boards 731-732 are each
associated with a different portion of context RAM 735. As indicated by the arrows,
each time period at each priority level on each board is associated with its own one

of the context RAM entries 736, and thus, with a possibly unique channel descriptor.

24

10

15

20

25

WO 01/13590 PCT/US00/22431
To serve a reservation, control logic 730 sends a request that identifies the
corresponding channel descriptor to co-processor circuitry 107.

In some examples of the invention, there are 64,000 channel descriptors, and
thus, 64,000 corresponding board time periods. The 64,000 time periods can be
distributed among boards in various combinations of 2,000, 4,000, 8,000, 16,000,
32,000, or 64,000 time periods per board. Boards can be separated into 1, 2, or, 4
priority levels that run concurrently in time. Each priority level uses up time periods,
so an 8,000 time period board with four priority levels has 2,000 time periods per
priority level that run concurrently. The minimum number of reservations in a given
priority level is 512.

FIGS. 8-9 are block diagrams that illustrate scheduling board 731 in an
example of the invention. Board 731 includes five time periods 741-745 and four
priority levels 751-754. Fence 860 indicates the time period that control logic 730 is
currently processing in each priority level. Control logic 730 processes board 731 to
serve reservations and initiate packet transmissions at regular time intervals. At
each time interval, referred to as a "GET", control logic 730 gets one reservation and
advances fence 860. At a GET, fence 860 may advance in some priority levels but
not others. As a result, fence 860 may be at different time periods in different priority
levels.

At a GET, control logic 730 serves the highest priority reservation at fence
860. Control logic 860 then advances fence 860 to the next time period in the
priority level that is served. Control logic 860 also advances fence 860 to the next
time period in other priority levels that did not have a reservation at fence 860.
Control logic 860 does not advance fence 860 at priority levels that had an un-served

reservation at fence 860.

25

10

15

20

25

WO 01/13590 PCT/US00/22431

On FIG. 8, fence 860 is at time period 3 for all priority levels, and priority level
1 is served, priority level 2 is un-served, and priority levels 3 and 4 are not reserved.
As a result and as shown on FIG. 9, fence 860 is advanced to time period 4 at
priority levels 1, 3, and 4, but not at priority level 2. Priority level 2 will have the
highest priority reservation at the next GET, because fence 860 remains at time
period 3 in priority level 2, and priority level 1 has no reservation at time period 4.

The various scheduling boards and priority levels provide a robust mechanism
for differentiating services between traffic streams based on service level
agreements. For example, the highest priority level of board 732 could be traffic with
a guaranteed bandwidth rate, and the lower priority level could be traffic without any
bandwidth guarantee. Board 731 has four priority levels and may have Constant Bit
Rate (CBR) traffic at the highest priority, real time Variable Bit Rate (VBR) traffic at
the second-highest priority, non-real-time VBR traffic at the third-highest priority
level, and Available Bit Rate (ABR) traffic at the fourth and lowest priority level.
Traffic can also be allocated among boards to provide expensive high-quality service
from one board, and cheap moderate-quality service from another board.
Prioritization circuitry within co-processor circuitry 107 can assign channels on the
high-quality board to the highest priority queue to core processor 104 and assign
channels on the moderate-quality board to the highest priority queue to core
processor 104.

A board stall occurs when a higher priority level starves a lower priority level,
and a reservation at the lower priority level will never get served. In a board stall,
control logic 730 does not advance fence 860 until the stali is cured. If a force option
is selected, the indicated priority level is serviced at the next GET. If a scan option is

selected, the above-described board processing is modified. All reservations in the

26

10

15

20

WO 01/13590 PCT/US00/22431
highest priority level are serviced before any lower priority levels are serviced. In
lower priority levels during this time, fence 860 is advanced at a GET if the time
period is not reserved. The scan process repeats for the next highest priority level
down through the lowest priority level.

Control logic 730 schedules a reservation in response to a "PUT" generated
by core processor 104 or scheduler 105. Control logic 730 schedules the
reservation by determining a start position. The start position is a number of time
periods from the current fence location where the search starts for an available time
period for the reservation. The start position may be specified in the PUT, or it may
be calculated by control logic 730.

To calculate the start position, control logic 730 first retrieves scheduling
parameters from the proper context buffer in co-processor circuitry 107 using a
pointer in the PUT. Control logic 730 also increments the in-use count for the
context buffer. Control logic 730 then executes dual Guaranteed Cell Rate (GCR)
scheduling algorithms based on the scheduling parameters to determine the start
position.

The scheduling parameters include a scheduling board indicator, first choice
priority level, and second choice priority level that is a higher priority than the first
choice. If the first priority level does not work for some reason, then the second
priority level is attempted in a priority promotion. In a priority promotion, the control
logic 730 tries to find a reservation based on the Minimum Cell Rate (MCR), and if
nothing is available, then control logic 730 tries to find a reservation based on the

Peak Cell Rate (PCR).

27

10

15

20

25

30

35

WO 01/13590 PCT/US00/22431
The scheduling parameters also include usage values that determine how the
dual algorithms are used. Based on the usage values, algorithm 1 and algorithm 2
are respectively be used for:
PCR / nothing
MCR / PCR, or
Sustained Cell Rate (SCR)/ PCR.
For algorithm 1 and algorithm 2, the scheduling parameters respectively include:
Theoretical Arrival Times (TAT1 / TAT2),
Inter-Cell Intervals (IC11 /1Ci2), and
limits (L1 /L2).
The TATs are the expected arrival times, and the ICls are the transmit frequencies.
TATSs are re-initialized if a reservation has been inactive for a long time (about one
second).

The two scheduling algorithms are specified by the following psuedocode
where PT, is the present time, TAT 1.1, TAT2.4 are old times read from the context

buffer, and TAT1,, TAT2, are new times written to the context buffer.

if (PUT w/ no update instruction) {

ICI1=0
ICI2=0
PIPELAT =0

} /] else PUT with update; use the ICls as provided

TAT2; = max (TAT2¢4 + ICI2, PT; + ICI2)
if (ALG==MCR/PCR)

TAT st = max (PTi- L1, min (TAT1q + ICH1, PT + L1))
else TAT 15t = max (TAT 14 +1ICH, PT + ICI1)

if (ALG==PCR/none) {
start position = max (0, TAT1;— L1 - PTy)
} else if (ALG==SCR/PCR) {
start position = max (0, TAT2,— L2 - PT, , TAT1;— L1 -PTy)
} else if (ALG==MCR/PCR) {
start position = max (0, TAT2;—- L2 — PTy)
}

28

10

15

20

25

30

WO 01/13590 PCT/US00/22431
TAT2; = max (TAT2gar , landing position + PTy)
if (ALG==MCR/PCR) TAT1 = TAT1start
else TAT1; = max (TAT1swrt , landing position + PTy)

if (PUT with write instruction) {
write TAT1:, TATZ2;, back to context buffer
}

decrement in-use count.

In addition to determining the starting position, control logic 730 determines
the board configuration, fence location, and the oldest reservation at the fence in
each priority level. Control logic 730 locates the start position from the fence at the
selected priority level and on the selected scheduling board. Control logic 730 then
searches for an available reservation time period. If the time period at the start time
is already reserved, then the next available time period is reserved.

The number of time periods between the fence and the reserved time period
is referred to as the landing position. The landing position must be smaller than the
board to avoid wrapping around the board and reserving a time period that is
improperly close to the fence. It may be the case that the priority level is full and
reservations only open up as the fence is advanced. In this situation, any PUT will
be reserved just behind the advancing fence.

Once the reservation is made, the applicable channel descriptor identifier is
placed in the corresponding entry in context RAM 735. The scheduling parameters
may also be updated and written back to the context buffer. The in-use count for the
context buffer is decremented.

Those skilled in the art will appreciate variations of the above-described
embodiments that fall within the scope of the invention. As a result, the invention is
not limited to the specific examples and illustrations discussed above, but only by the

following claims and their equivalents.

29

10

15

20

25

WO 01/13590 PCT/US00/22431

What is claimed is:
1. An integrated circuit (100) that processes communication packets, the integrated
circuit (100) comprising:

co-processor circuitry (107) comprising context buffers (315) and data buffers
(314) and configured to receive and store one of the communication packets in one
of the data buffers (314), correlate the one communication packet with one of a
plurality of channel descriptors, associate the one data buffer with one of the context
buffers (315) holding the one channel descriptor to maintain the correlation between
the one communication packet and the one channel descriptor, and determine a
prioritized processing order for the communication packet relative to the other
communication packets; and

a core processor (104) configured to execute a packet processing software
application that directs the core processor (104) to process the one communication
packet in the one data buffer based on the one channel descriptor in the one context
buffer and based on the prioritized processing order; and wherein

the co-processor circuitry (107) is configured to operate in parallel with the

core processor (104).

2. The integrated circuit (100) of claim 1 wherein the co-processor circuitry (107) is
configured to and prevent multiple valid copies of the one channel descriptor from
existing in the context buffers (315) by tracking a number of the data buffers (314)

associated with the one context buffer.

3. The integrated circuit (100) of claim 1 wherein the co-processor circuitry (107) is

configured to determine the prioritized processing order based on an availability of

30

10

15

20

WO 01/13590 PCT/US00/22431

resources required by the core processor (104) to process the communication

packet.

4. The integrated circuit (100) of claim 1 further comprising:

a pointer cache (523) configured to store pointers that correspond to external
buffers (528) configured to store the communication packets externally to the
integrated circuit (100) and wherein the external buffers (528) and the pointers to the
external buffers (528) are distributed among a plurality of classes; and

control logic (524) configured to allocate the external buffers (528) as the
corresponding pointers are read from the pointer cache (523), de-allocate the
external buffers (528) as the corresponding pointers are written back to the pointer
cache (523), and track a number of the pointers to the de-allocated external buffers

(528) for at least one of the classes

5. The integrated circuit (100) of claim 1 further comprising scheduling circuitry (105)
comprising multiple scheduling boards (731, 732) wherein at least some of the
scheduling boards (731, 732) have multiple priority levels (751-754), and wherein the
scheduling circuitry (105) is configured to retrieve scheduling parameters cached in
the one context buffer and execute an algorithm based on the scheduling
parameters to schedule subsequent transmission of the communication packet and
to process one of the scheduling boards (731, 732) to schedule and subsequently

initiate transmission of the communication packet.

31

WO 01/13590 PCT/US00/22431
6. A method of operating an integrated circuit (100) that processes communication
packets, the method comprising:
in co-processor circuitry (107) comprising context buffers (315) and data
buffers (314):
5 receiving and storing one of the communication packets in one
of the data buffers (314);
correlating the one communication packet with one of a plurality
of channel descriptors;
associating the one data buffer with one of the context buffers
10 (315) holding the one channel descriptor to maintain the correlation
between the one communication packet and the one channel
descriptor; and
determining a prioritized processing order for the communication
packet relative to the other communication packets; and
15 in a core processor (104):
executing a packet processing software application that directs
the core processor (104) to process the one communication packet in
the one data buffer based on the one channel descriptor in the one
context buffer and based on the prioritized processing order; and
20 wherein
the co-processor circuitry (107)is configured to operate in parallel with the

core processor (104).

32

10

15

20

25

WO 01/13590 PCT/US00/22431
7. The method of claim 6 further comprising, in the co-processor circuitry (107),
preventing multiple valid copies of the one channel descriptor from existing in the
context buffers (315) by tracking a number of the data buffers (314) associated with

the one context buffer.

8. The method of claim 6 wherein determining the prioritized processing order
comprises determining the prioritized processing order based on an availability of
resources required by the core processor (104) to process the communication

packet.

9. The method of claim 6 further comprising:
in a pointer cache (523):
storing pointers that correspond to external buffers (528)
configured to store the communication packets externally to the
integrated circuit (100) and wherein the external buffers (528) and the
pointers to the external buffers (528) are distributed among a plurality
of classes; and
in control logic (524):
allocating the external buffers (528) as the corresponding
pointers are read from the pointer cache (523),
de-allocating the external buffers (528) as the corresponding
pointers are written back to the pointer cache (523); and
tracking a number of the pointers to the de-allocated external

buffers (528) for at least one of the classes.

33

WO 01/13590 PCT/US00/22431

10. The method of claim 6 further comprising:

in scheduling circuitry (105) comprising multiple scheduling boards (731, 732)

wherein at least some of the scheduling boards (731, 732) have multiple priority

5 levels (751-754):

retrieving scheduling parameters cached in the one context buffer;
executing an algorithm based on the scheduling parameters to
schedule subsequent transmission of the communication packet; and

processing one of the scheduling boards (731, 732) to schedule and

10 subsequently initiate transmission of the communication packet.

34

PCT/US00/22431

WO 01/13590

1/9

2ol
W3LSAS
WoJ

L OI4

€01
AHOWIW
001
LINDHID S
Q3LvYHOIINI 60}
ONISSIO0Hd
30V4H3INI
13%9vd Honan L
801 201 a0l
JOVHHILNI AGLINOHID 71 3ov4WalNI
1INSNYHL HOSS3304d JAI303Y
-09
SO1 vol
HOSSIN0Hd
H3INAIHIS 0D

101

W3LSAS
WOJ

SUBSTITUTE SHEET (RULE 26)

PCT/US00/22431

B#
HSNT4

A

IX3INOD

2/9

c#

¢ Old

_
|
|
|
|
1303

HSN4
1X3INOD

A

8

ONISS3004d

JHVML40S

4

HSNT4
1X31NOD

A

WO 01/13590

ONIHSN14
1X3INOD
G# 3OVIS

NOILLYOIddY
FHYMLH0S
b# JOVLS

_
_
_
|
_
_
_

153N03d

_
|
_
_
_

153N03d

|
_
_
_
g# | 8# 8#
NIND |« HOL3d |<«——| NOILNTOS3H
ALIHOIMd | 1X3LINOD 1X3INOD
|
[] _ L] []
. _ L] L 3
” | ”)
_
3N3AND . 2 _ o o
MHOM adv INAND |e4H HOL3d |« NOILNI0S3H
ALIHOIHd || 1x3INoD 1X3INOD
h
_
|
T _ T L4
ININD |- HOLAd |« NOILNIOS3IY
ALIHOIHd 1| 1XaINOD 1X3INOD
_
ONI3NAND _ HO134 NOILN10S3Y
ALIHOIYd | 1X3INOD 1X3INOD
¢4 JOVIS 2# 3OVIS 1# 3OVIS

|
_
_
_

SUBSTITUTE SHEET (RULE 26)

PCT/US00/22431

WO 01/13590

3/9

£ Old

801 JOV4HILINI _

601 3OV4HILNI AHOW3W OL

A

A

Y

Y

LINSNVHLOL ~

L01
AHLINOHIO
HOSS300Hd-00
L Te ¥0} HOSS300Hd
T 3HOO ANY
> < » G0} H31NAIHOS
T0HLINOD '901 JOV4HILNI
JNFOTH OL
A
\4
- oTE
NOILN10S3H
1X3INOD

oIe Lig -
VNG 1X3INOD VWA viva
4 A
\ 4

T I I |] T —
| 1 | | I | SlE
(LX3LNOD, LX3INOD, LXILNOD, LXILNOD, LXIINOD, SHI44Ng
_ : _ | | . 1X3INOD

A A A
" | " “ “ . FIE
L LMoV | 13MOVd | L3N0V | 13MOVd |, LINOVd |, SH3ddng
1 | 1 /_] I <._.<O

v / v
1 I 1 § I I —
| | ! 1 | | €le
{ SIHINT STIHINT STIHINT SIHINI ,STHINI, SININD
_ _ | | _ . ALIHOMYd

cile H3iliauy

Y
| AHINALXIN |

|

01 HOSS300Hd 3400 OL

SUBSTITUTE SHEET (RULE 26)

WO 01/13590

FIG. 4

PCT/US00/22431

STORE PACKET IN DATA
BUFFER AND CORRELATE TO
CHANNEL DESCRIPTOR.

'

VALID

\4

IN A CONTEXT

BUFFER
?

ASSOCIATE DATA BUFFER WITH
CONTEXT BUFFER. INCREMENT
IN-USE COUNT.

YES ~CHANNEL DESCRIPTOR-NO

\ 4

RETRIEVE CHANNEL DESCRIPTOR
AND STORE IN CONTEXT BUFFER.
ASSOCIATE DATA BUFFER WITH
CONTEXT BUFFER. SET IN-USE
COUNT TO ONE. SET VALIDITY BIT.

\4

TRANSFER PACKET FROM DATA

BUFFER. DECREMENT
IN-USE COUNT.

YES

NO

TRANSFER CHANNEL
DESCRIPTOR TO MEMORY.
CLEAR VALIDITY BIT.

4
END

SUBSTITUTE SHEET (RULE 26)

PCT/US00/22431

WO 01/13590

5/9

— €0t
9¢S WVHQS AHOWIW
82s 128 Ges
SH344ng YOVLS
L EEINE H3LNIOd WYHS
— 601
02S
JOV4H3UNI
ANIONT LNIWIOYNYW H344nG HONTN
22s ves €25 125
30V443LNI 21901 JHOVO J0V4H3LNI
WYHAS JOHINOD HILNIOd WYHS
l
801 201 Ol
JOV4HILNI m%mw_mwm_m& HOSS3O0Hd
LINSNYHL 09 JH0D

G Old

SUBSTITUTE SHEET (RULE 26)

WO 01/13590

6/9

PCT/US00/22431

SUBSTITUTE SHEET (RULE 26)

CLASS | BUrrems | PooL | Te | JAL
: 1-500 A STATIC :
2| 501-1000 | A EXCL. 3
3 |1001-1500| A | SHARED :
4 |1501-2000| A EXCL. 6
5 |2001-2500| A EXCL. 6
6 |2501-300| A | SHARED :
7 |a01-3s00| A STATIC -
8 |3501-4000| A STATIC -
9 | 4001-4500| B STATIC -
10 |4501-500| B EXCL 1
11 |5001-5500| B | SHARED :
12 |5501-6000| B EXCL 14
13 |6001-6500| B EXCL. 14
14 |es01-7000| B | SHARED | -
5 | 7001-7500| B STATIC :
16 | 7501-8000| B STATIC :

FIG. 6

Gel WvH 1X3INOD 9g/

PCT/US00/22431

ANAARNRDNAARAANAARNARNAARNARAARARNARAARNANARARNANRNDNAARNANG \/\/\/\/\/\/\7\/\/\ N

7/9

% ﬁpmm

Leiefrfojofefi]r]ofo] [1JoJoT+To] fvss

roT oo o]_}ese

Llefofofr[r]ofofe]t]

1
___ __ -2G.
% N [ooTTo[0}-
01907 [
T081NOD ___o_ _ _o ;\s:k

WO 01/13590

\ //

S

VNXRL mvmﬁm#n e
-‘ .Q\ ‘

SUBSTITUTE SHEET (RULE 26)

PCT/US00/22431

8 ‘Ol4

8/9

098 J
3 0 0 3 0 v# ALIHOIHd |} —¥S.
0 3 0 0 0 E# ALIHOIHd | __+—€S.
0 0 3 0 0 ¢# ALIHOIdd [__}—ess
3 0 3 0 3 I ALIHOIHd | | 152
G 14 € [b dold3d JNIL
/ f ﬁ / / 1€ QHv0d

WO 01/13590

! 1 ! 1 |
Sv. vpL €v. <oyl WL

SUBSTITUTE SHEET (RULE 26)

PCT/US00/22431

WO 01/13590

9/9

6 Ol4

! 0 v# ALIHOIHd
0 0 E# ALIHOIHd
0 0 ¢# ALIHOIHd
0 b I ALIHOIHd
4 b doly3d INiL

1€ Qyvog

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intert. .nal Application No

PCT/US 00/22431

A. CLASSIFICATION OF SPBJECT MATTER
IPC 7 HO4L12/56 H04Q11/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 HOAL HO4Q

Minimum documentation searched (classification system followed by classification symbois)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and. where practical. search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document. with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 920 561 A (NATTKEMPER DIETER ET AL) 1,4,6,9
6 July 1999 (1999-07-06)
figures 2,4-7,9
column 6, line 8 - line 65
column 11, Tine 64 -column 12, line 57
column 13, line 23 - line 24
column 13, line 63 -column 14, line 59
column 15, line 24 - line 44
cotumn 21, Tine 22 -column 23, line 56
A EP 0 710 046 A (IBM) 1-10
1 May 1996 (1996-05-01)
abstract
figures 1,3,4
column 2, line 46 - line 47
column 4, line 21 - line 36
Sy

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered 1o be of particular relevance

E earlier document but published on or after the international
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

'T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
inthe art.

‘&' document member of the same patent family

Date of the actual completion of the international search

17 November 2000

Date of mailing of the internationai search report

27/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Lamadie, S

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

intern .nal Application No

PCT/US 00/22431

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A US 5 748 630 A (BERGANTINO PAUL V ET AL)
5 May 1998 (1998-05-05)
figures 1A,2
column 19, Tine 32 - line 39
column 24, line 11 - line 20

1-10

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inten nal Application No

PCT/US 00/22431

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5920561 A 06-07-1999 NONE
EP 0710046 A 01-05-1996 us 5533020 A 02-07-1996
JP 8214042 A 20-08-1996
US 5748630 A 05-05-1998 AU 3130497 A 26-11-1997
WO 9742736 A 13-11-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

