Patentti- ja rekisterihallitus
Patent- och registerstyrelsen

(71) Hercules Incorporated, Hercules Plaza, Wilmington, Del., USA(US)
(72) Raymond Walter Goss, Newark, Del., USA(US)
(74) Oy Heinänen Ab

(54) Seos tuftattuja mattoja varten, seosta sisältävä kuumasulallina sekä menetelmän seoksen valmistamiseksi - Komposition för plysade mattor, varmsmiltaadesionsmedel som innehåller kompositionen samt förfarande för framställning av kompositionen.

(57) TIIVISTELMÄ
Keksintö koskee esipinnoiteseosta, joka oleellisesti ottaen sisältää (1) low density-polyeteniä, jonka sulaindeksi on noin 70 - noin 425; (2) typipipitoista sillanmuodon suojasiilaihdyttetää; (3) hartsia, jonka Ring & Ball-pehmenemispiste on noin 50 - noin 115°C; (4) hiilivyvahaa; ja (5) mahdollisesti naftenöljyä. Seosta voidaan käyttää tuftattujen mattojen valmistuksiessa.

(57) SAMMANDRAG
Uppfinningen beträffar en förbeläggningsmedel, som i det väsentliga innehåller (1) en low density polyeten med småtindex på ca. 70 - ca. 425; (2) en kväveinnehållande silanförnämningsförening, (3) en harts med Ring & Ball-mjukningspunkt vid ca. 50 - ca. 115°C; (4) en kolväteväx; och (5) eventuellt en naftenoilja. Kompositionen kan användas vid tillverkning av plysade mattor.
SEOS TUFTATTUJA MATTOJA VARTEN, SEOSTA SISÄLTÄVÄ
KUUMASULALIIMA SEKÄ MENETELMÄ SEOKSEN VALMISTAMISEKSI -
KOMPOSITION FÖR PLYSADE MATTOR, VARMSMÄLTADHESIONSMEDEL
SOM INNEHÄLLER KOMPOSITIONEN SAMT FÖRFARANDE FÖR
FRAMSTÄLLNING AV KOMPOSITIONEN

Keksinnön kohtena on seos, joka on tarkoitettu
levitettäväksi maton tuftatun primäärisen pohjakankaan
alapintaan, ja joka sisältää noin 65 – 85 % hiilivetypoly-
lymeriä, joka on saatu polymeroimalla C₅-C₉-petrolia ja
jonka Ring & Ball-phemeneispiste on välillä noin 50
– 115°C; noin 5 – 7 % hiilivetyvahaa; ja mahdollisesti
korkeintaan noin 30 % naafeniöljyä.

Tuftatut tekstiiliototteet valmistetaan työntämällä
lukuisat langalla varustetut, edestakaisin kulkevat neu-
lat liikkuvan primäärisen pohjakankaaseen niin, että
muodostuu lankatupsuja. Koukut, jotka toimiva tahdissa
neulojen liikkeen kanssa, sijaitsevat primäärisen pohja-
kankaan alla niin, että ne ovat aivan neulansilmän ylä-
puolelle, kun neulat ovat alimmassa asennossaan. Kun neu-
lat saavuttavat alimmanksentonsa, koukut poimivat langan
neuloista ja pidätävät sitä hetken. Kun neulat vetäyty-
vät takaisin pohjakankaan läpi, muodostuu lankasilmukoita
tai lankatupsuja. Tämä tapahtuma toistetaan sen jälkeen,
kun silmukat ovat siirtyneet pois koukuista pohjakankaan
edetessä.

Silmukat voidaan leikata tuftauksen kulussa niin,
että saadaan leikattua eikä silmukkaista nokkakangasta.
Jos halutaan leikattua nukkakangasta, käytetään tuftauks-
sessa koukku-leikkuriyhdistelmää.

Tuftattujen tuotteiden valmistuksesta löytyy lisä-
tietoa teoksesta Rose, Stanley H., "Tufted Materials",
Man-Made Textile Encyclopedia, Chap. IX, Textile Book

Kun tuftattu tuote on matto, on primääriinen pohja-
kangas tavallisesti luonnonkuidusta tai syntetetisestä
kuidusta tehtyä kudottua kangasta tai kuitukangasta,
kuten juuttia, villaa, raionia, polyamidia, polyestereitä, polypropyreenia tai polyeteneitä, tai synteeettistä materiaalia olevasta kalvosta, kuten polypropyreenista tai polyeteneistä tai näiden sekapolyymeereistä tehtyä.

Tuftauksessa tehdyt lankatupsut pysyvät tavallisesti paikoillaan langan kiertymättömyyden vuoksi, johon liittyvän pohjakankaan kutistumimen, Kuitenkin, jos kyseessä on tufattu matto, voidaan pohjakankaan takoaasa pinnoittaa pohjapinnoitteella, kuten lateksilla tai luonnollisena synteeettisen kumin emulsiolla tai synteeet sellä hartsilla tai kuumasulaliimalla niin, että tupsut kiinnittyvät paremmin pohjmateriaaliin, ja jotta tuftattu matto säilyttäisi paremmin mittasuhteensa, ja jotta matto on kestävämpi ja vähemmän luisuva.

Tavallisesti tuftattu matto stabiloidaan vielä laminoimalla siihen toinen pohjamateriaali, joka voi olla esim. juuttia tai polypropyreenista, polyeteneistä tai näiden jostakin sekapolyymeeristä tehtyä kudottua kangasta tai kuitukangasta. Kun pohjapinnoite on kuumasulaliima, auttaa tämä liima primääristä pohjakangasta sitoutumaan sekundääriseen pohjakankaaseen.

Kuumasulaliimalla sidotuissa matoissa käytetään yleensä esipinnoitetta, joka voi sisältää hartsia, vahaa ja mahdollisesti nafteenioljyä, ja joka levitetään primäriselle pohjakankaalle ennenkuin pohjakankaaseen levitetään pohjapinnoitteeksi kuumasulaliima. Esipinnoitetta levitetään sellainen määrä, että se riittää tunkeutumaan yksittäisiin tupsuihin nän lisäen tupsujen vastustuskykyä irtivedon suhteen, mikä tunnetaan tupsun sitoutumislujuuteena, ja parantaa pohjapinnoitteen kiinnittymistä primääriseen pohjakankaaseen. Se esipinnoitemäärä, joka tarvitaan tunkeutumaan yksittäisiin tupsuihin, riippuu maton lankatiheydestä ja esipinnoitteen tehokkuudesta.

Nyt on löydetty esipinnoiteseos, joka parantaa tupsujen sitoutumislujuutta, kaventaa tupsujen sitoutumisarvojen tilastollista vaihtelua ja lisää maton kestävyyttä. Tämän keksinnön mukaisen ainutlaatuisen ja odotta-
mattoman mekanismin uskoa taan tapahtuvan siksi, että typ-
pipitoineen silanmuodostajasilaaniyhdiste, erityisesti
typippitoineen ryhmä, sitoutuu ensin low density-poly-
eteeniin. Sitten silaanipitoinen osa sitoutuu formulla-
tion aineosiin, primäristeen pohjakankaaseen, sekundää-
riseen pohjakankaaseen kuumasulaliimaa olevan pohjapin-
noitteena mahdollisesti täyteaineisiin tai näiden yhdistel-
mään esipinnoltetta matolle levitetäessä tai levittä-
misen jälkeen sen seurauskensa, että ennen kuivausta mat-
toon tuotu höyry tai ilmasta varastoinnin aikana absor-
boitunut kosteus reagoi. Tämä parantaa sitoutumislujuut-
ta ja maton kestävyyttä käytössä erityisesti kosteassa
ilmastossa.

Keksinnön mukaiselle seokselle on tunnusomaista se, että
se sisältää edellä esitettyjen komponenttien ohella noin
1 - 19 % low density-polyeteniiä, jonka sulaindeksi on
välillä noin 70 - 425; sekä noin 0,1 - 5 % typippitoista
sillanmuodostajasilaaniyhdistettä, jonka yleinen kaava
on
\[X_3-Si-R-Z \]

jossa R on kaksiarvoinen hiilivetyradikaali, X on
hydroksi-, aryyliksi-, orgaaninen oksikarbonyyli-, atsido-
tai amido-ryhmä ja Z on
\[
\begin{array}{c}
O \quad R' \\
\quad \ classrooms...
Keksinnön toisen toteutustavan mukaan voidaan esipinnoiteseosta käyttää sellaisten kuumasulaliimamateriaalien valmistuksessa, joita käytetään tuftatun primäärisen pohjakankaan pohjapinnoittamiseen ennen laminoointia sekundäärisellä pohjakankaalla. Tavallisesti täällä liimat perustuvat eteeni-vinyyliasetaattisekopolymeerien tai propeenin amorfiseen homopolymeriin tai sekapolymeriin tai näiden seokiin. Yleensä eteeni-vinyyliasetaattisekopolymeerin polymerointuneen vinyyliasetaatin pitoisuus sekapolymeriin painona laskettuna on noin 18 - 33 %, miehellään noin 18 - 28 %. Tavallisesti propeenin amorfisen homopolymerien ja sekapolymerien Ring & Ball-phemennemispiste on välillä noin 105°C - 155°C. Yleensä kuumasulaliima sisältää noin 15 - 40 % polymereimateriaalia, noin 20 - 60 % hartsimateriaalia ja korkeintaan 65 % mineraalitäytteainetta.

Keksintö kohdistuu täällä tavoin aikaansaatuunin kuumasulaliimoihin, joihin käytetään edellä esitetyä keksinnön mukaista esipinnoiteseosta, siten, kuin jäljempänä esitetyissä patenttivaatimuksissa 5 ja 6 on määritelty.

Kaikki tässä selityksessä esitetyt paino-osat ja prosentit on laskettu koko seoksen perusteella, ellei toisin mainita.

Tämän keksinnön mukaiseen esipinnoiteseokseen kuuluvaan low density- tai linearisen low density-polyetyleenin sulaindeksi on miehellään välillä noin 100 - 200.

Keksinnön mukaiseen esipinnoiteseokseen kuuluvaltaa typipipitoisessa silaaniyhdisteessä, jonka kaava on X₃-Si-R-Z, hiilivetyradikaali R voi olla hiilivetyryhmä, halogeeniilla substituointu hiilivetyryhmä, hiilivetyöksihiilivetyryhmä, hiilivety-tiohiilivetyryhmä tai hiilivety-sulfonyylihiilivetyryhmä, jotka ryhmät ovat
kaksivalenssisia ja voivat olla substituoituja muilla funktionaalisilla ryhmillä, jotka ovat oleellisesti ottaen inerttejä reaktioille ja reaktio-olosuhteille, joissa näitä yhdisteitä käytetään, kuten esterit, sulfonaattiesterit, amidit, sulfamidit, uretaanit, tms. Tämän keksinnön edullisessa toteutustavassa R on kaksivalenssinen orgaaninen ryhmä, joka voidaan suorittaa seuraavista: alkyleenirymät, kuten suora- ja haaraketjuiset C₁-C₂₀-alkyleenirymät, joita ovat esim. metyleeni, etyleeni, trimetyyleeni, tetrametyyleeni, pentametyyleeni, heksametyyleeni, oktametyyleeni, dekametyyleeni, dodekametyyleeni, oktadekametyyleeni jne.; sykloalkyleenirymät, kuten C₃-C₂₀-sykloalkyleenirymät, joita ovat esim. sykloheksyleeni, syklopentyleeni, sykoloktyyleeni, syklobutyleeni jne.; aryleenirymät, kuten o-, m- ja p-fenyleeni, naftaleeni, bifenyleeni jne.; aryleeni-dialkyleenirymät, kuten o-, m- ja p-ksylyleeni-diyyleeni, o-, m- ja p-fenyleenidiyyleeni jne.; alkyleeni-diarylenirymät, kuten metyleeni-bis(o-, m- ja p-fenyleeni), etyleeni-bis(o-, m- ja p-fenyleeni) jne.; sykloalkyleeni-dialkyleenirymät, kuten 1,2-, 1,3- ja 1,4-sykloheksaani-dimetyleeni, 1,2- ja 1,3-syklopentaani-dimetyleeni jne.; ja alkyleenioksi-alkyleenirymät, aryleenioksi-aryleenirymät, alkaryleenioksi-aryleenirymät, alkaryleenioksi-alkaryleenirymät, aralkyleenioksi-alkarylleenirymät, aralkyleenioksi-aralkyleenirymät jne. sekä vastaavat tio- ja sulfonylirymät, joista erityis-esimerkkejä ovat mm. etyleenioksi-etyleeni, propyleenioksi-butyleeni, fenyleenioksi-fenyleeni, metyleenifeneenioksi-fenyleenimetyyleeni, fenyleenimetylenioksi-metyyleenifenyleeni, etyleenitio-etyleeni, fenyleenitio-fenyleeni, fenyleenimetylenitio-metyyleenifenyleeni, butyleenisulfonyyl-butyleeni jne.
Edullisimpia ryhmiä R' ovat alkyyli-, sykoalkyyli-
ja aryyliryhmät, kuten metyyli, etyyli, propyyli, butyy-
li, isobutyyl, sykloheksyyli, sykloheptyyl, fenyyli, to-
lyyl jne. Tavallisia ryhmiä R" ovat metyyli, etyyli,
propyyl, butyyl, isobutyyl, sykloheksyyli, syklohep-
tyyl, fenyyli, tolyyl jne.

Typpipitoisen sillanmuodostajasilaninhuudiste on
mielessään atsidosulfonlysililaani. Sopivia atsido-
sulfonlysililaaneja ovat mm. 4-(atsidosulfonlyli)-
4'-(trialkoksisilyli)propyyli-difenyylietteri, kuten
4-(atsidosulfonlyli)-4'-(trialtokiaisilyli)propyyli-difenyy-
lietteri; atsidosulfonlylialkyyli(trialkoksisi)
silaani,
kuten atsidosulfonlyli-heksyyli(trialkoki)silaani; ja
trialkoksisilyllialkyylibentseenisulfonlyliatsidi,
kuten trimetoksisililietyylibentseenisulfonlyliatsidi.

Typpipitoiset silaanit voidaan valmistaa millä ta-
hansa US patentitulkaisussa no. 3 697 551 kuvatuista me-
etelmistä tai saattamalla diaryyl(alkyyl)etterisulfo-
nyylikloridi reagioimaan substituoidun alkyltrialkoksis-
silaanin kanssa ja suorittamalla sen jälkeen muuntaminen
atsidosilaaniksi tunnetuilla menetelmillä.

Yleensä X voi olla hydroksi tai jokin hydrolisyoituva
ryhmä. Mahdollisia hydrolisyoituvia ryhmiä ovat
arylioksiriryhmät, kuten fenoks jne.; orgaaniset
oksikarbonyliryhmät, kuten alifaattiset oksikarbonyl-
ryhmät, joita ovat esim. asetoks, propionylyks,
stearooylyks jne.; sykloalifaattiset oksikarbonyl-
ryhmät, kuten sykloheksylylkarbonylykioks jne.;
aromaattiset oksikarbonyliryhmät, kuten bentsoylyks,
ksylylyks jne.; atsidoryhmä; ja amidiryhmät, kuten
formamidi; asetamidi, trifluoriosetamidi, bentsamidi
jne.
Keksinnön mukaiseen esipinnoiteseokseen kuuluva hiilivetypolymeeri on valmistettu polymeroimallaöljynjalostamon viisi - yhdeksän hiiltä sisältävästävırnrasta, jota tavallisesti nimitetään C₅-C₉-virraksi. Nämä ollen tästä virrasta valmistettuja hartseja nimitetään tavallisesti C₅-C₉-hartseiksi. C₅-C₉-virran aineosat ovat alifaattisia ja aromaattisia hiilivetyyhdisteitä, jotka voivat olla suoria tai haaratuneita, ja joiden hiiliometrien lukumäärä ei ylitä yhdeksää.

Keksinnön mukaiseen esipinnoiteseokseen kuuluva hiilivetyvaha on sopivasti vaha, jonka sulamispiste on välillä noin 105 - 125°C, mielellään välillä 108 - 118°C, ja molekyylipaino välillä 500 - noin 8000, mielellään välillä 1500 - 2500. Tähän tarkoituksen sopivia vahjoja ovat syntetiset vahat, kuten eteenin homopolymerit, joiden viskositeetti on välillä noin 30 - 80 cP 149°C:ssa.

Keksinnön mukaiseen esipinnoiteseokseen kuuluva nafteeniöljy sisältää suurimolekyylisiä hiilivytyjä ja se on raskasta, viskoosista, läpinäkyvää, hajutonta nestettä, jolla on pieni haihtuvuus, ja jonka ominaispaino on välillä noin 0,8990 - 0,9315 ja Saybolt Universal-viskositeetti 38°C:ssa välillä noin 40 - 2000 sekuntia, mielellään välillä 400 - 600 sekuntia.

Keksinnön mukainen esipinnoiteseos sisältää mielellään 10 - 30% nafteeniöljyä, 3 - 12% low density-polyeteneiä, ja 0,5 - 3% typpipitoista sillanmuodostajasilaaniyhdistettä, jolloin seoksen Brookfield-viskositeetti on 70 - 240 cP 150°C:ssa.

Seoksen voidaan lisäksi sisällyttää tavanoisaisa lisäaineita, kuten antioksidantteja, täyteaineita tms.
Keksinnön kohteena on edelleen menetelmän edellä esitetyn mukaisen seoksen valmistamiseksi sekä edellä esitettyä keksinnön mukaista kuumasulaliimaa käyttäen aikaansaatu matto. Näiden johdosta viitataan jäljempänä oleviin patenttivaatimuksiin 7 ja 8.

Esimerkki 1

Tämä esimerkki edustaa tämän keksinnön mukaisen seoksen valmistamista edullisen toteutustavan mukaisesti.

Rumpuviivuriin sijoitetaan 9 % low density-polyeteeniä pelletteinä, joiden sulaindeksi on 150, ja 2 % atsidosulfonyliheksyli(trietotki)silaanin ("silaani") 50 % metyleenikloridiliuosta ja rumpukuivataan ympäristön lämpötilassa noin 2 tuntia tai siihen asti, kun kaikki metyleenikloridi on haihtunut, jolloin saadaan 10 % kuivaa, silaanilla pinnoitetua polyeenimateriaalia.

Tämä 10 % kuivattua, silaanilla pinnoitetta polyeenimateriaalia sijoitetaan ekstruuderin syöttösuppiloon ja sekoitetaan sulana noin 131\degree C:ssa ensimmäistä ekstruuderiläpäisyytä varten. Sulana sekoitettu materiaali otetaan talteen ekstruuderin ukkosta ja sijoitetaan uudestaan ekstruuderin syöttösuppiloon toista ekstruuderin läpäisyä varten 160\degree C:ssa. Sitten näin saatu materiaali pelletoidaan käyttämällä ilmakuivauslaitteita eikä tavallaisesti vesihaudetta polymeerin kiteyttämiseksi. Vesihautteen käyttöä vältetään, koska halutaan estää ennen- aikainen, kosteuden alkuunpanema, silyyllisyhmän kautta tapahtuva sitoutuminen.

Sekoittimella varustetussa säiliössä, joka on kuumen-
nettun höyryllä noin 150°C:een, valmistetaan hartsiseos sekottamalla 70,2% C_5-C$_9$-hartsia, jonka Ring & Ball pehmenemispiste on 60°C; 5,4% polyteenivahaa, jonka sulamispiste on 115°C ja molekyylipaino 2000; ja 14,4% nafteeniöljyyä, jonka ominaispaino on 0,9000 ja S.U.-viskositeetti 38°C:ssa 500 sekuntia.

Sitten hartsiseoksen sisältävään säiliöön lisätään silaanilla sidotut polyteenipelletit (10%) ja sekoitetaan, kunnes saadaan homogeeninen seos.

Esimerkki 2

Tämä esimerkki valaisee toista tämän keksinnön erityistä toteutustapaa. Seos valmistetaan esimerkin 1 mukaisesti.

Seoksen koostumus on esitetty taulukossa I

Taulukko I

<table>
<thead>
<tr>
<th>Aineosat</th>
<th>Prosenttia</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-(atsidosulfonyyli)-4’-(trietoksisilyyli)-propyylidifenylietterillä sidottu low density-polyeteeni, jonka sulaindeksi on 150</td>
<td>10,0</td>
</tr>
<tr>
<td>C_5-hartsi (Ring & Ball pehmenemispiste 95°C)</td>
<td>70,4</td>
</tr>
<tr>
<td>nafteeniöljy (ominaispaino 0,9000; S.U.-viskositeetti 38°C:ssa 500 sekuntia)</td>
<td>14,2</td>
</tr>
<tr>
<td>Polyteenivaha (sp. 115°C)</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Esimerkki 3

Tämä esimerkki valaisee vielä erästä keksinnön toteutustapaa. Seos valmistetaan esimerkin 1 mukaisesti, mutta atsidosulfonyyliheksyyli(trietoki)silaanin tilalla käytetään 3-(metyylidimetoksisilyyli)propyyliaatsidoformiaattia.
Esimerkki 4

Tämä esimerkki valaisee vielä erästä keksinnön toteutustapaa. Seos valmistetaan esimerkin 1 mukaisesti käyttämällä taulukon I mukaista koostumusta, mutta 4-(atsidosulfonyyl)-4’-(trioksisilylyli)propvylidifenyylieteterin tilalla käytetään 3-(metyylidimetoksisilylyli)-propvylidiidoformiaattia.

Esimerkki 5

Tämä esimerkki valaisee vielä erästä tämän keksinnön toteutustapaa. Seos valmistetaan esimerkin 1 mukaisesti, mutta atsidosulfonyylheksylyli(triokksi)silaanin tilalla käytetään 3-(trimetoksisilylyli)propvylidiatsoaetaattia.

Esimerkki 6

Tämä esimerkki valaisee vielä erästä tämän keksinnön toteutustapaa. Seos valmistetaan esimerkin 1 mukaisesti käyttämällä taulukon I mukaista koostumusta, mutta 4-(atsidosulfonylyli)-4’-(trioksisilylyli)propvylidifenyylieteterin tilalla käytetään 3-(trimetoksisilylyli)propvylidiidatsoaetaattia.

Esimerkki 7

Tämä esimerkki valaisee vielä erästä keksinnön toteutustapaa valmistuksen kannalta.

48 % esimerkin 1 mukaista esipinnoiteseosta ja 22 % eteenivinyliaisetattisekapolymeeriä, jonka vinyylisetaattipitoisuus on 19 % sekapolymeerin painosta, sekoitetaan sulana säiliössä ilmamastamalla 160°C:ssa. Sitten sulassa seokseen lisättään 30 % kalsiumkarbonaattitäyteainetta niin, että saadaan kuumasulaliima.

Esimerkki 8

Tämä esimerkki kuvaa valmiiden mattojen tupsujen si-
toutumisljuututta, kun matoissa on tämän keksinnön mukainen esipinnoiteseos ja pohjapinnoitteena eteeni-vinyly-asetaattisekapolymeriin perustuva kuumasulaliima, joka sisältää tämän keksinnön mukaista esipinnoiteseosta.

Mattonäytteet valmistettiin ANSI/ASTM D1335-67-menetelmällä käyttämällä esipinnoitteen 350 g/m² (10 oz/yd²) esimerkin 1 mukaista esipinnoitetta 155°C:ssa ja levittämällä sen jälkeen pohjapinnoitteeksi 840 g/m² (24 oz/yd²) esimerkin 7 mukaista kuumasulaliimaa (koe-näyte 1) ja vertailunäyte valmistettiin käyttämällä esipinnoitteen 350 g/m² (10 oz/yd²) esimerkin 1 mukaista seosta ja levittämällä pohjapinnoitteeksi 840 g/m² (24 oz/yd²) esimerkin 7 mukaista kuumasulaliimaa, joista kummastakin puuttui 10% määrä silaanilla päälystettyä polyeteenimateriaalia (koe-näyte 2). Mattonäytteet kiinnitettiin ja testattiin tupsujen kiinnittymisljuuoden suhteen ANSI/ASTM D1335-67-menetelmällä. Periaatteessa mittana käytetään sitä voimaa, joka tarvitaan irroittamaan erilliset nuokkalangat matosta. Koetulokset on esitetty seuraavassa taulukossa:

<table>
<thead>
<tr>
<th></th>
<th>näyte 1</th>
<th>näyte 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tupsun sitoutumisljuus</td>
<td>kg (lb)</td>
<td>kg (lb)</td>
</tr>
<tr>
<td>alussa</td>
<td>8,1 (17,9)</td>
<td>6,8 (15,0)</td>
</tr>
<tr>
<td>7 vrk:n kuluttua</td>
<td>9,2 (20,2)</td>
<td>8,2 (18,1)</td>
</tr>
<tr>
<td>14 vrk:n kuluttua</td>
<td>10,5 (23,1)</td>
<td>7,8 (17,2)</td>
</tr>
</tbody>
</table>

Säilytys 23°C:ssa 50% suhteellisessa kosteudessa

Esimerkki 9

Tämä esimerkki valaisee vielä erästä keksinnön toteutustapaa. Kuumasulaliima valmistetaan esimerkin 7 mukaisesti käyttämällä 25% esimerkin 1 mukaista esipinnoiteseosta sillä muutoksella, että käytetään C₅ hartsia C₅-C₉-hartsin tilalla, 45% amorfista propeenipolymeriä, jonka Ring & Ball pehmenemispiste on 150°C ja 30 % kalsiumkarbonaatti-täyteaineita.
Esimerkki 10

Tämä esimerkki kuvaa valmiiden mattojen sitoutumislujuutta, kun matot ovat valmistettu käyttämällä tämän keksinnön mukaista esipinnoiteseosta ja pohjapinoitteena amorfiseen propeeniin perustuvaa kuumasulaliimaa, jossa on tämän keksinnön mukaista esipinnoiteseosta.

Mattonäytteet valmistetaan ANSI/ASTM D1335-67-menetelmällä käyttämällä esipinnoitteenä 350 g/m² (10 oz/yd²) esimerkin 2 mukaista seosta ja levittämällä sen jälkeen pohjapinnoitteeksi 840 g/m² (24 oz/yd²) esimerkin 9 mukaista kuumasulaliimaa (näyte 3) ja vertailunäyte valmistettiin käyttämällä esipinnoitteenä 350 g/m² (10 oz/yd²) esimerkin 2 mukaista esipinnoiteseosta ja levittämällä sen jälkeen pohjapinnoitteeksi 840 g/m² (24 oz/yd²) esimerkin 9 mukaista kuumasulaliimaa, joista kummastakin puuttui 10 % määrä silaanilla päällystettyä polyetyeenimateriaalia (näyte 4). Mattonäytteet kiinnitettiin ja tutkittiin tupsujen sitoutumisen suhteen ANSI/ASTM D1335-67-menetelmällä. Koetulokset on esitetty seuraavassa taulukossa.

<table>
<thead>
<tr>
<th>Tupsun sitoutumislujuus</th>
<th>kg (lb)</th>
<th>kg (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alussa</td>
<td>7,8 (17,1)</td>
<td>6,8 (15,0)</td>
</tr>
<tr>
<td>7 vrk:n kuluttua</td>
<td>10,0 (22,1)</td>
<td>8,2 (18,1)</td>
</tr>
<tr>
<td>14 vrk:n kuluttua</td>
<td>10,9 (24,1)</td>
<td>7,8 (17,2)</td>
</tr>
</tbody>
</table>

Luettuaan edelläolevan selostuksen voivat alaan perhehtyneet helposti keksiä muita piirteitä, etuja ja erityisiä toteutustapoja tälle keksinnölle. Tällaiset erityiset toteutustavarat kuuluvat tämän keksinnön kattamaan alaan. Lisäksi, vaikka erityisiä toteutustapoja onkin kuvattu huomattavan yksityiskohtaisesti, ei keksintö rajoitu niihin, vaan löytyy monenlaisia muunnelmia poikkeamatta silti keksinnön hengestä ja alasta.
PATENTTIVAATIMUKSET

1. Seos, joka on tarkoitettu levitetettäväksi maton tuftatun primäärisen pohjakankaan alapintaan, ja joka sisältää noin 65 - 85 % hiilivetypolymeeriä, joka on saatavissa polymeroimalla C₅-C₉-petrolia ja jonka Ring & Ball-pehmenemispiste on välillä noin 50 - 115°C; noin 5 - 7 % hiilivetyvahaa; ja mahdollisesti korkeintaan noin 30 % nafteeinöljyä, tunnettu siitä, että se sisältää myös noin 1 - 19 % low density-polyeteeniä, jonka sulaindeksi on välillä noin 70 - 425; sekä noin 0,1 - 5 % typpipitoista sillanmuodostajasilaaniyhdistettä, jonka yleinen kaava on

\[X_3\text{-Si-R-Z} \]

jossa R on kaksiarvoinen hiilivetyradikaali, X on hydroksi-, arylioksi-, orgaaninen oksikarbondiisili-, atsido- tai amidoryhmä ja Z on

\[
\begin{align*}
 &\text{O} &\text{R'} &\text{O} \\
 \text{O} &\text{-C-CN}_2, &\text{-OCN}_3 &\text{tai -SO}_2\text{N}_3
\end{align*}
\]

joissa R' on vety, alkyyli-, sykloalkyyli-, aryli- tai -COOR'-ryhmä, jossa R'' on alkyyli-, sykloalkyyli- tai aryliryhmä, ja että sen Brookfield-viskositeetti on noin 25 - 500 cP noin 150°C:ssa.

2. Patenttivaatimuksen 1 mukainen seos, tunnettu siitä, että typpipitoista sillanmuodostajasilaaniyhdistettä on 0,5 - 3 % ja low density-polyeteeniä on 3 - 12 %.

3. Patenttivaatimuksen 1 tai 2 mukainen seos, tunnettu siitä, että sen Brookfield-viskositeetti on 70 - 240 cP 150°C:ssa.
4. Jonkin edellisen patenttivaatimuksen mukainen seos, t u n n e t t u s i i t ä, että se sisältää 10 - 30 % nafteeniöljyä, 3 - 12 % low density-polyeneeniä, ja 0,5 - 3 % typpipitoista sillinmuodostajasilaaniyhdistettä, ja että seoksen Brookfieldviskositeetti on 70 - 240 cP 150°C:ssä.

5. Pääasiallisena aineosanaan eteeni-vinyliäsetaattisekapolymeriä sisältävä kuumasalaliima, joka on tarkoitettu käyttettäväksi tuftatun maton pohjapinnoitteena, t u n n e t t u s i i t ä, että liima sisältää lisäksi noin 30 - 60 % patenttivaatimuksen 1 tai 3 mukaista seosta.

6. Pääasiallisena aineosanaan amorfista propaneipolymeriä tai -sekapolymeriä sisältävä kuumasalaliima, joka on tarkoitettu käyttettäväksi tuftatun maton pohjapinnoitteena, t u n n e t t u s i i t ä, että liima sisältää lisäksi noin 10 - 40 % patenttivaatimuksen 1 tai 3 mukaista seosta.

7. Menetelmä sellaisen seoksen valmistamiseksi, jonka Brookfield-viskositeetti on noin 25 - 500 cP noin 150°C:ssa, t u n n e t t u s i i t ä, että (a) rumpuuvataan tuotteeksi (i) noin 1 - 19 % low density-polyeneeniä, jonka sulaindeksi on noin 70 - 425, ja (ii) noin 0,1 - 5 % typpipitoista sillinmuodostajasilaaniyhdistettä, jonka yleinen kaava on

$$X_3{-}\text{Si}{-}R{-}Z$$

joissa R on kaksiarvoinen hiilivetyradikaali, X on hydroksi-, aryylioksi-, organinen oksikarbonyli-, atsido- tai amidoryhmä ja Z on

$$\begin{align*}
\text{O} & \text{R'} \quad \text{O} \\
\mid & \mid \\
\text{-O-C-CN}_2 & \text{-OCN}_3 \text{ tai } \text{-SO}_2\text{N}_3
\end{align*}$$

jossa R' on vety, alkyli-, sykloalkyyli-, aryyli- tai -COOR'-'-ryhmä, jossa R'' on alkyli-, sykloalkyyli- tai aryyliiryhmä; (b) sekoitetaan keskenään (i) noin 65 - 85 % hiilivetypolymeriä, joka on saatu polymeroimalla C_5-C_9-petrolivirtausta ja jonka Ring & Ball-peekememispiste on noin 50 - 115°C, (ii)
mahdollisesti korkeintaan noin 30 % nafteeniöljyä, ja (iii) noin 5 - 7 % hiilivyvahaa seokseksi; (c) lisätään tuote (a) seokseen (b); ja (d) sekoitetaan.

8. Matto, tunneta siitä, että (a) siinä on primääriinen pohjakangas, jonka etupuolelle on tehty tuftattu rakenne lankasilmukoita opelemalla; että (b) primäärisen pohjakankaan alapuoli on pinnoitetu patenttivaatimuksen 1 mukaisella seoksella; että (c) seoksen päälle on levitetty patenttivaatimuksen 5 tai 6 mukainen kuumasulaliima; ja että (d) kuumasulaliiman päälle on tiukasti kiinnitetty sekundääriinen pohjakanga.
PATENTKRAV

1. Komposition, som är avsedd för att utbredas på baksidan av en plysad primär bottenväv för matta och innehåller ca. 65 - 85 % av en kolvätepolymer som har erhållits genom polymerisering av C₅-C₉-petroleum och har en Ring & Ball-mjukningspunkt vid ca. 50 - 115°C; ca. 5 - 7 % av en kolvätewax; och eventuellt högst ca. 30 % av en naftenolja; kännetecknas därför, att den innehåller också ca. 1 - 19 % av low density polyeten med småntindex på ca. 70 - 425; samt ca. 0,1 - 5 % av en kväveinnehållande silanförnätningsförening, vars generella formel är

\[X_3-\text{Si-R-Z} \]

vari R är en tvåvärdfig kolväteradikal, X är hydroxi-, en arylox-, organisk oxikarbonyl-, azido- eller amidgrupp och Z är

\[\begin{align*}
\text{O} & \quad \text{O} \\
\mid & \quad \mid \\
-\text{O-C-CN}_2 & , \quad -\text{OCN}_3 \quad \text{eller} \quad -\text{SO}_2\text{N}_3
\end{align*} \]

vari R' är väte, en alkyl-, cykloalkyl-, aryl- eller -COOR'-grupp, vari R'' är en alkyl-, cykloalkyl- eller arylgrupp, och har Brookfield viskositet på ca. 25 - 500 cP vid ca. 150°C.

2. Komposition enligt krav 1, kännetecknas därför, att mängden kväveinnehållande silanförnätningsförening är 0,5 - 3 % och mängden low density polyeten är 3 - 12 %.
3. Komposition enligt krav 1 eller 2, kännetecknad därav, att dess Brookfield-viskositet är 70 - 240 cP vid 150°C.

4. Komposition enligt något av de föreläggande patentkraven, kännetecknad därav, att den innehåller 10 - 30 % av en naftenolja, 3 - 12 % av low density polyeten och 0,5 - 3 % av en kväveinnehållande silanförnättningsförening och att kompositionens Brookfield-viskositet är 70 - 240 cP vid 150°C.

5. Varmsmältadhesionsmedel som innehåller en eten-vinylasetat-sampolymer som huvudingrediens och är avsett för användning som bottenbeläggning för en plysad matta, kännetecknad därav, att medlet även innehåller ca. 30 - 60 % av komposition enligt patentkrav 1 eller 3.

6. Varmsmältadhesionsmedel som innehåller en amorfisk propenpolymer eller -sampolymer som huvudingrediens och är avsett för användning som bottenbeläggning för en plysad matta, kännetecknad därav, att medlet även innehåller ca. 10 - 40 % av komposition enligt patentkrav 1 eller 3.

7. Förfarande för framställning av en komposition med Brookfield-viskositet på ca. 25 - 500 cP vid ca. 150°C, kännetecknad därav, att man (a) trumtorkar till en produkt (i) ca. 1 - 19 % av en low density polyeten med smålindex på ca. 70 - 425 och (ii) ca. 0,1 - 5 % av en kväveinnehållande silanförnättningsförening med den generella formeln

$$X_3\text{-Si-R-Z}$$

R(210,786),(581,862)

vari R är en tvåvärdig kolväteradikal, X är hydroxi-, en aryloxi-, organisk oxikarbonyl-, azido- eller amidgrupp och Z är

$$\begin{align*}
\text{O R'} & \quad \text{O} \\
\text{||} & \quad \text{||} \\
\text{-O-C-CN}_2 & \quad \text{-OCN}_3 \quad \text{eller} \quad \text{-SO}_2\text{N}_3
\end{align*}$$
vari R' är väte, en alkyl-, cykloalkyl-, aryl- eller -COOR'- grupp, vari R'' är en alkyl-, cykloalkyl- eller arylgrupp; (b) blandar till en blandning (i) ca. 65 - 85 % av en kolvätepolymer som har erhållits genom polymerisering av C₅-C₉-petroleum och har en Ring & Ball-mjukningspunkt vid ca. 50 - 115°C, (ii) eventuellt högst ca. 30 % av en naftenolja och (iii) ca. 5 - 7 % av en kolvätewax; (c) tillsätter produkten (a) i blandningen (b); och (d) blandar ihop.

8. Matta, kännetecknad därav, att den omfattar (a) en primär bottenväv, vilkens framsida har plysats genom att man har sytt garnöglor; att (b) den primära bottenvävens baksida har belagts med en komposition enligt krav 1, att (c) ett varmsmältadhesinommedel enligt krav 5 eller 6 har utbretts på kompositionen; och att (d) en sekundär bottenväv har tätt fästats vid varmsmältadhesionsmedlet.

Viitejulkaisuja-Anförda publikationer

Patenttijulkaisuja:-Patentskrifter: USA(US) 3 615 106 (C 08 f 43/08), 4 133 789 (C 08 L 93/00).