20167105861 A1 |1 000 OO0 RO 0

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

30 June 2016 (30.06.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/105861 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 21/83 (2013.01) GO6F 9/455 (2006.01)

International Application Number:
PCT/US2015/062854

International Filing Date:
28 November 2015 (28.11.2015)

English
English

Filing Language:
Publication Language:

Priority Data:
14/582,173 23 December 2014 (23.12.2014) Us

Applicant: MCAFEE, INC. [US/US]; 2821 Mission Col-
lege Boulevard, Santa Clara, CA 95054-1838 (US).

Inventors: RUBAKHA, Dmitri; 3610 Flora Vista Aven-
ue, Apt. 133, Santa Clara, CA 95051 (US). BRINKLEY,
Matthew, D.; 525 NE Laurelhurst Place, Portland, OR
97232 (US).

Agent: CRANDALL, Sean, C.; Patent Capital Group, c/o
CPA Global, 900 Second Avenue South, Minneapolis, MN
55402 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84)

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: INPUT VERIFICATION

242 \{ PERIPHERALS |
40~L ID/API LAYER
180
\ MANIFEST
APPLICATION | |
REPGSITORY INPUT N
TRUSTED ENCLAVE VERIFIGATION 470
420 o ENGINE CERTIFICATE
BINARY 11 230 ER
OBJECT = < 52
40 ,Jil 430
AND/OR.
CERTIFICATE PRIVATE KEY J
AUTHORITY TRUSTED BINARY W
‘ BINARY TRANSLATION
184 OBJECT ENGINE
UNSIGNED NATIVE BINARY
i / e
420 224 v
FIG. 4A

(57) Abstract: In an example, a computing device may have an input verification engine (IVE) that provides input verification ser-
vices within a trusted execution environment (TEE), including a memory enclave. Taking a Java-based Android application as an ex -
ample, the IVE securely verities and validates user inputs for sensitive computing applications, without exposing the inputs to ex -
ternal applications. The IVE may be implemented in native C/C++ or similar, or may provide instructions to dynamically provision
an enclave and import a minimal Java Virtual Machine (JVM) into the enclave so that the IVE can run in Java. The IVE may also
contain binary analysis tools to analyze an input binary to identify and tag portions that receive user input, so that in a binary transla -

tion,

those portions can be run within the enclave.

WO 2016/105861 PCT/US2015/062854

INPUT VERIFICATION

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of and priority to U.S. Non-Provisional
Patent Application No. 14/582,173 filed 23 December 2014 entitled “INPUT VERIFICATION”,

which is incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] This application relates to the field of computer security, and more
particularly to a system and method for performing input verification within a trusted

execution environment.

BACKGROUND

[0003] Computer security is an ever-evolving arms race between malicious actors on
the one hand, and computer security firms and users on the other hand. One useful tool on
the security side of this race is the “trusted execution environment” (TEE). A TEE is a
combination of hardware, software, and firmware that provides an environment for
executing signed and verified binaries or other executable objects. A TEE may include a
processor with suitable extension instructions, such as the Intel® secure guard extension
(SGX) instructions, a security coprocessor, appropriate firmware and drivers, and/or a special
memory “enclave.” An enclave includes a special memory page or partition that can only be
accessed and referenced via special TEE instructions. In particular, a program may write to or
read from memory locations within the enclave, or execute instructions within the enclave,
only by way of special instructions like Intel® SGX instructions. Any attempt to enter the
enclave with other (nonsecure) instructions may result in an error such as a page fault.

[0004] In one example, a TEE is configured to execute only objects that are verified
and signed, such as by a certificate authority. This helps to ensure that malware and other
malicious objects are not executed within the TEE. In some examples, the TEE is given
exclusive access to certain sensitive or important resources, such as important operating
system files, sensitive data, or other protected resources. An enclave may be used to isolate
trusted code, operating on confidential data, from the rest of a computing device, which may

run untrusted code.

WO 2016/105861 PCT/US2015/062854

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present disclosure is best understood from the following detailed
description when read with the accompanying figures. It is emphasized that, in accordance
with the standard practice in the industry, various features are not drawn to scale and are
used for illustration purposes only. In fact, the dimensions of the various features may be
arbitrarily increased or reduced for clarity of discussion.

[0006] FIGURE 1 is a block diagram of a security-enabled network according to one
or more examples of the present Specification.

[0007] FIGURE 2 is a block diagram of a computing device according to one or more
examples of the present Specification.

[0008] FIGURE 3 is a block diagram of a server according to one or more examples
of the present Specification.

[0009] FIGURES 4A and 4B are functional block diagrams of an enclave according to
one or more examples of the present Specification.

[0010] FIGURE 5 is a functional block diagram of interchange of signed binaries by a
pair of enclaves according to one or more examples of the present Specification.

[0011] FIGURE 6 is a functional block diagram of an enclave according to one or more
examples of the present Specification.

[0012] FIGURE 7 is a functional block diagram of an input verification engine
according to one or more examples of the present Specification.

[0013] FIGURE 8 is a flow diagram of a method of performing binary translation
according to one or more examples of the present Specification.

[0014] FIGURE 9 is a flow diagram of a method of performing input verification
according to one or more examples of the present Specification.

[0015] FIGURE 10 is a block diagram of an interactive method between IVE 460 and

BTE 224 according to one or more examples of the present Specification.

DETAILED DESCRIPTION OF THE EMBODIMENTS

OVERVIEW
[0016] In an example, a computing device may have an input verification engine

(IVE) that provides input verification services within a trusted execution environment (TEE),

WO 2016/105861 PCT/US2015/062854

including a memory enclave. Taking a Java-based Android application as an example, the IVE
securely verifies and validates user inputs for sensitive computing applications, without
exposing the inputs to external applications. The IVE may be implemented in native C/C++ or
similar, or may provide instructions to dynamically provision an enclave and import a minimal
Java Virtual Machine (JVM) into the enclave so that the IVE can run in Java. The IVE may also
contain binary analysis tools to analyze an input binary to identify and tag portions that
receive user input, so that in a binary translation, those portions can be run within the

enclave.

EXAMPLE EMBODIMENTS OF THE DISCLOSURE

[0017] The following disclosure provides many different embodiments, or examples,
for implementing different features of the present disclosure. Specific examples of
components and arrangements are described below to simplify the present disclosure. These
are, of course, merely examples and are not intended to be limiting. Further, the present
disclosure may repeat reference numerals and/or letters in the various examples. This
repetition is for the purpose of simplicity and clarity and does not in itself dictate a
relationship between the various embodiments and/or configurations discussed. Different
embodiments many have different advantages, and no particular advantage is necessarily
required of any embodiment.

[0018] Code signing and verification are fundamental building block in certain
secure computing architectures. They help to verify that code or a binary built by a developer
or independent software vendor (ISV) hasn't been tampered with on its way to its consumer,
thus guaranteeing software integrity and building a trusted channel between them. This
channel, however, typically only extends up to software installation time. Sophisticated TEES
may go one step further and verify the software integrity up to the point of execution.
However, they may not extend to use cases when the code/binary has to be legitimately
modified, like binary translation, just-in-time compilation or when managed runtimes come
into play.

[0019] In an example of the present specification, a TEE may include one or both of

a binary translation engine (BTE) and input verification engine (IVE). The BTE and IVE may

WO 2016/105861 PCT/US2015/062854

4

operate independently of one another to perform their specific functions, or may work
cooperatively to provide joint functions.

[0020] The BTE may be configured to receive a first object called a trusted binary,
which may be for example, a binary object, a text file, a script, a macro, or any other suitable
object that has been previously analyzed and validated. The trusted binary may appear on a
white list for the TEE, meaning that the trusted binary is permitted to execute within the TEE.
The trusted binary may have a certificate signed by a certificate authority, including a public
key, which can be verified by a private key. However, the trusted binary may not be suitable
for use in its original form on a target system. In one nonlimiting example, the trusted binary
is a Java byte code binary, which can be executed only by a Java virtual machine.

[0021] The increasing use of mobile devices and mobile operating systems
complicates the security posture for such trusted binaries. For example, the Java byte code
may not be suitable for use on a particular architecture, or it may be desirable to convert the
Java byte code to a new form that is suitable for use on a mobile device. In one embodiment,
the Java byte code is to be compiled to native instructions for suitable mobile devices.
However, the compilation may include several target devices on different architectures, such
as Intel x86-based architectures, ARM architectures, or others. Using these binaries on a
mobile device may require compiling the byte code into each separate native format, and
then individually signing the output of each compilation. While this is possible, it may be
cumbersome.

[0022] In another example, binary translation does not occur until after the first
object arrives on a target device. For example, the BTE may be a just in time (JIT) compiler,
which compiles the Java byte code on-the-fly into a native binary format. In that case, the
binary cannot be signed by a certificate authority beforehand. In an embodiment where the
TEE will execute only signed and verified binaries, this means that the output of the JIT
compiler must be run outside of the TEE. This may defeat the security purposes of the TEE, or
render the binary completely useless.

[0023] In one example of the present specification, a system and method are
described wherein the BTE itself is trusted binary that can be run in whole or in part within
the TEE. When the TEE receives a first signed object in a first format, the BTE may translate

the first signed object into a second object in a second format. For example, the second

WO 2016/105861 PCT/US2015/062854

format may be a native binary format for the host platform. Because the first signed object
and the BTE are both signed and verified, it is reasonable to assume that the output of the
BTE (processing the first signed object as an input) can also be treated as a trusted binary.
Thus, the TEE itself may sign the second object, which is the output of the BTE. Signing the
second object may include signing it with the same key that was used to sign the first signed
object, or with a second key that is different from the first key, but has the same provenance
as the first key. The second binary is then suitable for execution within the TEE on the host
system.

[0024] Furthermore, the BTE may be configured to export the second object from
the TEE in a signed and encrypted form. Because the second object has now been signed by
the first key, or by a second key having the same provenance as the first key, it can be
provided to another machine with a TEE, and the other machine can recognize the certificate
of the second object as valid. In one example, this may include performing an attestation
between the first machine and second machine.

[0025] This may be particularly useful in an Internet of things (IoT) context, wherein
individual loT devices do not have sufficient processing capabilities to perform on-the-fly
binary translation. In some cases, the devices may not even be able to provide a TEE of their
own. Rather, they may sit behind a gateway that provides a TEE, and that allows instructions
to pass through to the device only if it is a signed and trusted binary. Thus, in that context,
the device itself may be treated as a TEE. This may be further facilitated by trusted boot
mechanisms or other existing security devices.

[0026] In the context of mobile devices, additional complications may be
encountered in the area of input verification. In many cases, the security of an application or
other binary object is only as good as the security of its inputs. Thus, even an application
executing within a TEE may be compromised if proper input verification is not performed.
Furthermore, in some cases, an entire application need not be provided within the TEE. In
one example, the popular Android operating system uses Java as a primary programming
language and platform for apps. In some cases, it may not be necessary to run an entire app
within a TEE on a mobile device, but it may be desirable to run a trusted, verified, and signed

input verification engine (IVE) within the TEE, to ensure that inputs to the app are valid and

WO 2016/105861 PCT/US2015/062854

suitable. Input verification may prevent, for example, common problems such as buffer
overruns and invalid inputs.

[0027] Thus, in one embodiment of the present specification, an IVE is provided, and
may be run within a TEE. The IVE may include such functional blocks as a secure network
stack, a secure graphics engine, a secure human interface device (HID) engine, a secure audio
output engine, a secure image processing engine, a secure telemetry engine, and secure GPS
receiver.

[0028] The various functional blocks of the IVE may be provided to verify, sanitize,
and otherwise condition inputs from the user, from the network, from sensors and devices,
or from other binary objects. Once the inputs are properly verified and/or sanitized, they may
be compiled into a verified input packet. The verified input packet may be encrypted within
the TEE, and signed by the TEE. The verified input packet is then exported out of the TEE, and
provided to a suitable interface, such as the Java native interface (JNI) wrapper. The JNI
wrapper may then provide the encrypted, signed, and verified inputs to an ordinary Java
application. Because the inputs are encrypted, they will not be intercepted by malware or
other malicious objects, and because they have been verified by IVE, they can be trusted by
the application.

[0029] In one example, the IVE may also include an interface to the BTE, so that in
some cases, a trusted binary may be vetted by the IVE before being passed to the BTE.

[0030] Advantageously, while the IVE itself may need to provide native or lower-
level instructions, such as in C, C++, or assembly language, the application ISV may not need
to be familiar with those languages to use the IVE once the functional blocks have been built,
for example by a security firm. Rather, the functional blocks can be provided as a “black box”
implementation, so that the programmer needs only know the appropriate prototypes and
interfaces for calling the functions from his application, such as a Java application.

[0031] In one embodiment, the programmer may use common Java attributes to
inform the TEE of how to verify the inputs. Thus, the programmer may have the flexibility to
configure the input verification without needing to write input verification routines himself.
Also advantageously, the input verification routines are themselves signed and verified
binaries that can execute within the TEE, so the input verification can be performed on a

trusted basis.

WO 2016/105861 PCT/US2015/062854

[0032] A system and method of the present Specification will now be described with
more particular reference to the attached FIGURES

[0033] FIGURE 1 is a network-level diagram of a secured enterprise 100 according to
one or more examples of the present Specification. In the example of FIGURE 1, a plurality of
users 120 operate a plurality of client devices 110. Specifically, user 120-1 operates desktop
computer 110-1. User 120-2 operates laptop computer 110-2. And user 120-3 operates
mobile device 110-3.

[0034] Each computing device may include an appropriate operating system, such
as Microsoft Windows, Linux, Android, Mac OSX, Apple i0OS, Unix, or similar. Some of the
foregoing may be more often used on one type of device than another. For example, desktop
computer 110-1, which in one embodiment may be an engineering workstation, may be more
likely to use one of Microsoft Windows, Linux, Unix, or Mac OSX. Laptop computer 110-2,
which is usually a portable off-the-shelf device with fewer customization options, may be
more likely to run Microsoft Windows or Mac OSX. Mobile device 110-3 may be more likely
to run Android or iOS. However, these examples are not intended to be limiting.

[0035] Client devices 110 may be communicatively coupled to one another and to
other network resources via enterprise network 170. Enterprise network 170 may be any
suitable network or combination of one or more networks operating on one or more suitable
networking protocols, including for example, a local area network, an intranet, a virtual
network, a wide area network, a wireless network, a cellular network, or the Internet
(optionally accessed via a proxy, virtual machine, or other similar security mechanism) by way
of nonlimiting example. Enterprise network 170 may also include one or more servers,
firewalls, routers, switches, security appliances, antivirus servers, or other useful network
devices. In this illustration, enterprise network 170 is shown as a single network for simplicity,
but in some embodiments, enterprise network 170 may include a large number of networks,
such as one or more enterprise intranets connected to the internet. Enterprise network 170
may also provide access to an external network, such as the Internet, via external network
172. External network 172 may similarly be any suitable type of network.

[0036] One or more computing devices configured as an enterprise security

controller (ESC) 140 may also operate on enterprise network 170. ESC 140 may provide a user

WO 2016/105861 PCT/US2015/062854

interface for a security administrator 150 to define enterprise security policies, which ESC 140
may enforce on enterprise network 170 and across client devices 120.

[0037] Secured enterprise 100 may encounter a variety of “security objects” on the
network. A security object may be any object that operates on or interacts with enterprise
network 170 and that has actual or potential security implications. In one example, object
may be broadly divided into hardware objects, including any physical device that
communicates with or operates via the network, and software objects. Software objects may
be further subdivided as “executable objects” and “static objects.” Executable objects include
any object that can actively execute code or operate autonomously, such as applications,
drivers, programs, executables, libraries, processes, runtimes, scripts, macros, binaries,
interpreters, interpreted language files, configuration files with inline code, embedded code,
and firmware instructions by way of non-limiting example. A static object may be broadly
designated as any object that is not an executable object or that cannot execute, such as
documents, pictures, music files, text files, configuration files without inline code, videos, and
drawings by way of non-limiting example. In some cases, hybrid software objects may also be
provided, such as for example a word processing document with built-in macros or an
animation with inline code. For security purposes, these may be considered as a separate
class of software object, or may simply be treated as executable objects.

[0038] Enterprise security policies may include authentication policies, network
usage policies, network resource quotas, antivirus policies, and restrictions on executable
objects on client devices 110 by way of non-limiting example. Various network servers may
provide substantive services such as routing, networking, enterprise data services, and
enterprise applications.

[0039] Secure enterprise 100 may communicate across enterprise boundary 104
with external network 172. Enterprise boundary 104 may represent a physical, logical, or
other boundary. External network 172 may include, for example, websites, servers, network
protocols, and other network-based services. In one example, an application repository 160
is available via external network 172, and an attacker 180 (or other similar malicious or
negligent actor) also connects to external network 172.

[0040] It may be a goal of users 120 and secure enterprise 100 to successfully

operate client devices 110 without interference from attacker 180 or from unwanted security

WO 2016/105861 PCT/US2015/062854

objects. In one example, attacker 180 is a malware author whose goal or purpose is to cause
malicious harm or mischief. The malicious harm or mischief may take the form of installing
root kits or other malware on client devices 110 to tamper with the system, installing spyware
or adware to collect personal and commercial data, defacing websites, operating a botnet
such as a spam server, or simply to annoy and harass users 120. Thus, one aim of attacker 180
may be to install his malware on one or more client devices 110. As used throughout this
Specification, malicious software (“malware”) includes any security object configured to
provide unwanted results or do unwanted work. In many cases, malware objects will be
executable objects, including by way of non-limiting examples, viruses, trojans, zombies,
rootkits, backdoors, worms, spyware, adware, ransomware, dialers, payloads, malicious
browser helper objects, tracking cookies, loggers, or similar objects designed to take a
potentially-unwanted action, including by way of non-limiting example data destruction,
covert data collection, browser hijacking, network proxy or redirection, covert tracking, data
logging, keylogging, excessive or deliberate barriers to removal, contact harvesting, and
unauthorized self-propagation.

[0041] Attacker 180 may also want to commit industrial or other espionage against
secured enterprise 100, such as stealing classified or proprietary data, stealing identities, or
gaining unauthorized access to enterprise resources. Thus, attacker 180’s strategy may also
include trying to gain physical access to one or more client devices 110 and operating them
without authorization, so that an effective security policy may also include provisions for
preventing such access.

[0042] In another example, a software developer may not explicitly have malicious
intent, but may develop software that poses a security risk. For example, a well-known and
often-exploited security flaw is the so-called buffer overrun, in which a malicious user is able
to enter an overlong string into an input form and thus gain the ability to execute arbitrary
instructions or operate with elevated privileges on a client device 110. Buffer overruns may
be the result, for example, of poor input validation or use of insecure libraries, and in many
cases arise in nonobvious contexts. Thus, although not malicious himself, a developer
contributing software to application repository 160 may inadvertently provide attack vectors
for attacker 180. Poorly-written applications may also cause inherent problems, such as

crashes, data loss, or other undesirable behavior. Because such software may be desirable

WO 2016/105861 PCT/US2015/062854

10

itself, it may be beneficial for ISVs to occasionally provide updates or patches that repair
vulnerabilities as they become known. However, from a security perspective, these updates
and patches are essentially new

[0043] Application repository 160 may represent a Windows or Apple “app store” or
update service, a Unix-like repository or ports collection, or other network service providing
users 120 the ability to interactively or automatically download and install applications on
client devices 110. If application repository 160 has security measures in place that make it
difficult for attacker 190 to distribute overtly malicious software, attacker 190 may instead
stealthily insert vulnerabilities into apparently-beneficial applications.

[0044] In some cases, secured enterprise 100 may provide policy directives that
restrict the types of applications that can be installed from application repository 160. Thus,
application repository 160 may include software that is not negligently developed and is not
malware, but that is nevertheless against policy. For example, some enterprises restrict
installation of entertainment software like media players and games. Thus, even a secure
media player or game may be unsuitable for an enterprise computer. Security administrator
150 may be responsible for distributing a computing policy consistent with such restrictions
and enforcing it on client devices 120.

[0045] Secured enterprise 100 may also contract with or subscribe to a security
services provider 190, which may provide security services, updates, antivirus definitions,
patches, products, and services. McAfee®, Inc. is a non-limiting example of such a security
services provider that offers comprehensive security and antivirus solutions.

[0046] Various computing devices may also interoperate with a certificate authority
184, which may be a trusted third party. Certificate authority 184 may issue digital certificates
for signing parties. A software package, for example, may be accompanied by a signature or
assertion made by a private key that corresponds to a certified public key. This may be used
to verify the identity of an ISV, and to verify that a binary object has not been tampered with.

[0047] In another example, secured enterprise 100 may simply be a family, with
parents assuming the role of security administrator 150. The parents may wish to protect
their children from undesirable content, such as pornography, adware, spyware, age-

inappropriate content, advocacy for certain political, religious, or social movements, or

WO 2016/105861 PCT/US2015/062854

11

forums for discussing illegal or dangerous activities, by way of non-limiting example. In this
case, the parent may perform some or all of the duties of security administrator 150.

[0048] Collectively, any object that is or can be designated as belonging to any of the
foregoing classes of undesirable objects may be classified as a malicious object. When an
unknown object is encountered within secured enterprise 100, it may be initially classified as
a “candidate malicious object.” This designation may be to ensure that it is not granted full
network privileges until the object is further analyzed. Thus, it is a goal of users 120 and
security administrator 150 to configure and operate client devices 110 and enterprise
network 170 so as to exclude all malicious objects, and to promptly and accurately classify
candidate malicious objects.

[0049] One purpose of using a TEE is that it is very difficult for a candidate malicious
object to pass security validation and get signed as a trusted binary. Thus, an object executed
within a TEE need not be treated as a candidate malicious object, while objects encountered
outside of the TEE may be treated as candidate malicious objects by default until they have
been validated or cleared.

[0050] FIGURE 2 is a block diagram of client device 110 according to one or more
examples of the present Specification. Client device 110 may be any suitable computing
device. In various embodiments, a “computing device” may be or comprise, by way of non-
limiting example, a computer, workstation, server, mainframe, embedded computer,
embedded controller, embedded sensor, personal digital assistant, laptop computer, cellular
telephone, IP telephone, smart phone, tablet computer, convertible tablet computer,
computing appliance, network appliance, receiver, wearable computer, handheld calculator,
or any other electronic, microelectronic, or microelectromechanical device for processing and
communicating data

[0051] Client device 110 includes a processor 210 connected to a memory 220,
having stored therein executable instructions for providing an operating system 222 and at
least software portions of a BTE 224 and IVE 460. Other components of client device 110
include a storage 250, network interface 260, and peripheral interface 240. This architecture
is provided by way of example only, and is intended to be non-exclusive and non-limiting.
Furthermore, the various parts disclosed are intended to be logical divisions only, and need

not necessarily represent physically separate hardware and/or software components. Certain

WO 2016/105861 PCT/US2015/062854

12

computing devices provide main memory 220 and storage 250, for example, in a single
physical memory device, and in other cases, memory 220 and/or storage 250 are functionally
distributed across many physical devices. In the case of virtual machines or hypervisors, all or
part of a function may be provided in the form of software or firmware running over a
virtualization layer to provide the disclosed logical function. In other examples, a device such
as a network interface 260 may provide only the minimum hardware interfaces necessary to
perform its logical operation, and may rely on a software driver to provide additional
necessary logic. Thus, each logical block disclosed herein is broadly intended to include one
or more logic elements configured and operable for providing the disclosed logical operation
of that block. As used throughout this Specification, “logic elements” may include hardware,
external hardware (digital, analog, or mixed-signal), software, reciprocating software,
services, drivers, interfaces, components, modules, algorithms, sensors, components,
firmware, microcode, programmable logic, or objects that can coordinate to achieve a logical
operation.

[0052] Inanexample, processor 210 is communicatively coupled to memory 220 via
memory bus 270-3, which may be for example a direct memory access (DMA) bus by way of
example, though other memory architectures are possible, including ones in which memory
220 communicates with processor 210 via system bus 270-1 or some other bus. Processor
210 may be communicatively coupled to other devices via a system bus 270-1. As used
throughout this Specification, a “bus” includes any wired or wireless interconnection line,
network, connection, bundle, single bus, multiple buses, crossbar network, single-stage
network, multistage network or other conduction medium operable to carry data, signals, or
power between parts of a computing device, or between computing devices. It should be
noted that these uses are disclosed by way of non-limiting example only, and that some
embodiments may omit one or more of the foregoing buses, while others may employ
additional or different buses.

[0053] In one example, an enclave 230 is defined within memory 220 to provide a
TEE as described herein. In one example, enclave 230 includes a BTE 224 and IVE 460.

[0054] In various examples, a “processor” may include any combination of logic
elements, including by way of non-limiting example a microprocessor, digital signal processor,

field-programmable gate array, graphics processing unit, programmable logic array,

WO 2016/105861 PCT/US2015/062854

13

application-specific integrated circuit, or virtual machine processor. In certain architectures,
a multi-core processor may be provided, in which case processor 210 may be treated as only
one core of a multi-core processor, or may be treated as the entire multi-core processor, as
appropriate. In some embodiments, one or more co-processor may also be provided for
specialized or support functions.

[0055] Processor 210 may be connected to memory 220 in a DMA configuration via
DMA bus 270-3. To simplify this disclosure, memory 220 is disclosed as a single logical block,
but in a physical embodiment may include one or more blocks of any suitable volatile or non-
volatile memory technology or technologies, including for example DDR RAM, SRAM, DRAM,
cache, L1 or L2 memory, on-chip memory, registers, flash, ROM, optical media, virtual
memory regions, magnetic or tape memory, or similar. In certain embodiments, memory 220
may comprise a relatively low-latency volatile main memory, while storage 250 may comprise
a relatively higher-latency non-volatile memory. However, memory 220 and storage 250 need
not be physically separate devices, and in some examples may represent simply a logical
separation of function. It should also be noted that although DMA is disclosed by way of non-
limiting example, DMA is not the only protocol consistent with this Specification, and that
other memory architectures are available.

[0056] Storage 250 may be any species of memory 220, or may be a separate device.
Storage 250 may include one or more non-transitory computer-readable mediums, including
by way of non-limiting example, a hard drive, solid-state drive, external storage, redundant
array of independent disks (RAID), network-attached storage, optical storage, tape drive,
backup system, cloud storage, or any combination of the foregoing. Storage 250 may be, or
may include therein, a database or databases or data stored in other configurations, and may
include a stored copy of operational software such as operating system 222 and software
portions of security engine 224. Many other configurations are also possible, and are intended
to be encompassed within the broad scope of this Specification.

[0057] Network interface 260 may be provided to communicatively couple client
device 110 to a wired or wireless network. A “network,” as used throughout this Specification,
may include any communicative platform operable to exchange data or information within or
between computing devices, including by way of non-limiting example, an ad-hoc local

network, an internet architecture providing computing devices with the ability to

WO 2016/105861 PCT/US2015/062854

14

electronically interact, a plain old telephone system (POTS), which computing devices could
use to perform transactions in which they may be assisted by human operators or in which
they may manually key data into a telephone or other suitable electronic equipment, any
packet data network (PDN) offering a communications interface or exchange between any
two nodes in a system, or any local area network (LAN), metropolitan area network (MAN),
wide area network (WAN), wireless local area network (WLAN), virtual private network (VPN),
intranet, or any other appropriate architecture or system that facilitates communications in
a network or telephonic environment.

[0058] BTE 224 and IVE 460, in one example, are operable to carry out computer-
implemented methods according to this Specification. BTE 224 and IVE 460 may include one
or more non-transitory computer-readable mediums having stored thereon executable
instructions operable to instruct a processor to provide suitable functions. As used
throughout this Specification, an “engine” includes any combination of one or more logic
elements, of similar or dissimilar species, operable for and configured to perform one or more
methods provided by the engine. Thus, security engine 224 may comprise one or more logic
elements configured to provide security engine methods as disclosed in this Specification. In
some cases, an engine may include a special integrated circuit designed to carry out a method
or a part thereof, and may also include software instructions operable to instruct a processor
to perform the method. In some cases, an engine may run as a “daemon” process. A
“daemon” may include any program or series of executable instructions, whether
implemented in hardware, software, firmware, or any combination thereof, that runs as a
background process, a terminate-and-stay-resident program, a service, system extension,
control panel, bootup procedure, BIOS subroutine, or any similar program that operates
without direct user interaction. In certain embodiments, daemon processes may run with
elevated privileges in a “driver space,” or in ring 0, 1, or 2 in a protection ring architecture. It
should also be noted that engines may also include other hardware and software, including
configuration files, registry entries, and interactive or user-mode software by way of non-
limiting example.

[0059] In one example, BTE 224 and IVE 460 include executable instructions stored
on a non-transitory medium operable to perform a method according to this Specification. At

an appropriate time, such as upon booting client device 110 or upon a command from

WO 2016/105861 PCT/US2015/062854

15

operating system 222 or a user 120, processor 210 may retrieve a copy of the appropriate
engine (or software portions thereof) from storage 250 and load it into memory 220.
Processor 210 may then iteratively execute the instructions of the engine to provide the
desired method.

[0060] Peripheral interface 240 may be configured to interface with any auxiliary
device that connects to client device 110 but that is not necessarily a part of the core
architecture of client device 110. A peripheral may be operable to provide extended
functionality to client device 110, and may or may not be wholly dependent on client device
110. In some cases, a peripheral may be a computing device in its own right. Peripherals may
include input and output devices such as displays, terminals, printers, keyboards, mice,
modems, network controllers, sensors, transducers, actuators, controllers, data acquisition
buses, cameras, microphones, speakers, or external storage by way of non-limiting example.

[0061] FIGURE 3 is a block diagram of server 140 according to one or more examples
of the present Specification. Server 140 may be any suitable computing device, as described
in connection with FIGURE 2. In general, the definitions and examples of FIGURE 2 may be
considered as equally applicable to FIGURE 3, unless specifically stated otherwise. Server 140
is described herein separately to illustrate that in certain embodiments, logical operations
according to this Specification may be divided along a client-server model, wherein client
device 110 provides certain localized tasks, while server 140 provides certain other
centralized tasks.

[0062] Server 140 includes a processor 310 connected to a memory 320, having
stored therein executable instructions for providing an operating system 322 and at least
software portions of a server engine 324. Other components of server 140 include a storage
350, network interface 360, and peripheral interface 340. As described in FIGURE 2, each
logical block may be provided by one or more similar or dissimilar logic elements.

[0063] Processor 310 may be any suitable processor. In certain embodiments,
processor 310 may be a server-class processor or processing array, comprising multiple cores
and/or multiple processors. In an example, processor 310 is communicatively coupled to
memory 320 via memory bus 370-3, which may be for example a direct memory access (DMA)
bus. Processor 310 may be communicatively coupled to other devices via a system bus 370-

1.

WO 2016/105861 PCT/US2015/062854

16

[0064] Processor 310 may be connected to memory 320 in a DMA configuration via
DMA bus 370-3, or via any other suitable memory configuration. As discussed in FIGURE 2,
memory 320 may include one or more logic elements of any suitable type.

[0065] Storage 350 may be any species of memory 320, or may be a separate device,
as described in connection with storage 250 of FIGURE 2. Storage 350 may be, or may include
therein, a database or databases or data stored in other configurations, and may include a
stored copy of operational software such as operating system 322 and software portions of
server engine 324,

[0066] Network interface 360 may be provided to communicatively couple server
140 to a wired or wireless network, and may include one or more logic elements as described
in FIGURE 2.

[0067] Server engine 324 is an engine as described in FIGURE 2 and, in one example,
includes one or more logic elements operable to carry out computer-implemented methods,
including providing security functions for secured enterprise 100. This may include initial
vetting and validation of binaries, which may be signed and provided as trusted binaries to
client devices 110. Software portions of server engine 324 may run as a daemon process.

[0068] Server engine 324 may include one or more non-transitory computer-
readable mediums having stored thereon executable instructions operable to instruct a
processor to provide a security engine. At an appropriate time, such as upon booting server
140 or upon a command from operating system 222 or a user 120 or security administrator
150, processor 310 may retrieve a copy of server engine 324 (or software portions thereof)
from storage 350 and load it into memory 320. Processor 310 may then iteratively execute
the instructions of server engine 324 to provide the desired method.

[0069] Peripheral interface 340 may be configured to interface with any auxiliary
device that connects to server 140 but that is not necessarily a part of the core architecture
of server 140. A peripheral may be operable to provide extended functionality to server 140,
and may or may not be wholly dependent on server 140. Peripherals may include, by way of
non-limiting examples, any of the peripherals disclosed in FIGURE 2.

[0070] FIGURE 4A is a functional block diagram of selected elements of the present

specification.

WO 2016/105861 PCT/US2015/062854

17

[0071] In summary, binary translation such as compilation, interpretation, or
translation may be performed on a client device 110 within a TEE provisioned with ISV's public
key. The TEE may then use the public key, or a key with the same provenance, to sign the
derived code produced.

[0072] Thus, a trusted channel is provided that guarantees software integrity by
code signing and verification in a TEE, and by validation mechanisms such as remote
attestation.

[0073] This may be accomplished by a three-phase method, in which the second
phase bridges the first and third phase, as follows:

[0074] The ISV or developer compiles and signs the code into an intermediate
representation (trusted binary object 420), which is delivered to client device 110.

[0075] On client device 110, an enclave 230 is provisioned to perform the methods
of this Specification. Within enclave 230, the ISV's signature is verified. Trusted binary object
420 is then compiled, translated, or otherwise modified by BTE 224 to produce a second
object in a second format. Depending on the ISV's preference for propagating the chain of
trust for the signature, a key specified in trusted binary object 420, a key securely provisioned
on demand, or a new locally generated key may be obtained. The TEE signs the second object
with this second key.

[0076] The TEE verifies the integrity of the derived code by verifying the signature
before executing it.

[0077] Options for signing the second binary in phase 2 above may include the
following:

[0078] When the ISV compiles and signs the code with the first key, he may bundle
or include a second key to be used for signing the second object. Since the key for trusted
binary object 420 is trusted and verified, the second key may also be trusted.

[0079] The ISV may provision the second signing key to enclave 230. There may be
variations in this implementation. Enclave 230 could periodically query, for example, security
services provider 190 or enterprise security controller 140 to pull in second keys for various
ISVs and store them locally (using secure storage capabilities of SGX or similar technology). It

could alternatively look up the key for the ISV whose code/binary it is about to process. It

WO 2016/105861 PCT/US2015/062854

18

could do this look up at either a central service that has this assembled or it could look up the
ISV's service directly at a pre-determined location.

[0080] A new key-pair may be generated locally, specifically for the purpose of
signing the derived code. Enclave 230 may upload the new key-pair to a service (either a
central service such as certificate authority 184 or one operated by the ISV) if it wants to
enable remote signature verification. Otherwise, it could update its local signature database
to provide verification.

[0081] The first two examples above use the remote attestation capabilities of
enclaves whenever there is any communication with a central service or an ISV- owned
service. They may also use local attestation capabilities of enclaves for communication locally
across enclaves, e.g., when adding a locally generated key to a local key-store of enclave 230.

[0082] There may also be provided a revocation path or key rotation process that
automatically refreshes the signing key or notifies certificate authority 184 to refresh the key.
For example, BTE 224 may consult a revocation or expiration list before signing the binary.

[0083] In certain embodiments, phase 2 above could be repeated one or more times
with variations in tools/technologies before proceeding to phase 3. The simplest case is that
a single key is used for all iterations of phase 2. Alternatively, device-specific, tool-specific, or
application-specific keys may be propagated down, or new key-pairs may be generated and
uploaded with a certificate signing request to certificate authority 184, or an ISV verification
service.

[0084] This may extend back to source control as well, such that the chain of trust
could extend all the way from a specific signed versioning system tag (such as a Git tag) down
to a platform-specific dynamically-signed binary. At each translation layer the newly signed
binary may include an attestation of the entity that did the translation (e.g. BTE 224 of enclave
230) so that both the origin of the code and the toolchain entities involved in generating
trusted binary object 420 may be verified.

[0085] In one example, application repository 160 and/or certificate authority 184
may provide a trusted binary object 420. For example, an ISV may provide an application via
application repository 160, and the application may be signed and verified by certificate
authority 184. Application repository 160 then provides trusted binary object 420 to a client
device 110.

WO 2016/105861 PCT/US2015/062854

19

[0086] Trusted binary object 420 is provided to enclave 230. Enclave 230 may be
provided in any suitable client device 110, or in certain embodiments in enterprise security
controller 140. It should be noted also that enclave 230 is only one part of a TEE as described
herein.

[0087] In one example, enclave 230 includes an interface definition (ID) and
application programming interface (API) layer 410. ID and APl layer 410 may provide
appropriate interfaces for communicatively coupling to peripherals 242.

[0088] Enclave 230 also includes BTE 224 and IVE 460. In this example, IVE 460 is
communicatively coupled to BTE 224, so that BTE 224 can receive signed and validated inputs
from peripherals 242. Enclave 230 may also include a manifest 470, certificate 450 (which
may include a public key that was used to sign trusted binary object 420), and a private key
452.

[0089] In certain embodiments, code validation performs an integrity check on code
loaded into a TEE. Manifest 470 may be a whitelist describing acceptable code or a blacklist
describing unacceptable code. The Manifest may be signed by a trusted domain (such as an
enterprise IT department, or original equipment manufacturer) using a key that was
provisioned by the domain.

[0090] The Manifest and Code Validation operations may be applied when the TEE
initializes, at boot time, at TEE software/firmware update time or when a new code object is
added to or removed from a TEE. In some example, “Trusted Boot” and “Secure Boot” are
industry terms that refer to at least some of the above initialization steps.

[0091] In one example, the binary translation engine is part of the image loaded into
the TEE and therefore is subject to trusted boot policies that may detect attacks on BTE and
IVE components.

[0092] It should be noted that in some cases, particularly in loT, sensors, actuators,
or wearable device contexts, an entire device may be considered a TEE after a secure boot
operation.

[0093] It may be necessary to translate trusted binary object 420 from a first format
into a second format. For example, trusted binary object 420 may be Java byte code, which
needs to be compiled into a native binary format by an ahead of time compiler. In another

example, trusted binary object 420 may be a Java byte code program that will be compiled by

WO 2016/105861 PCT/US2015/062854

20

a just-in-time compiler. In yet other examples, BTE may be any of a runtime engine, an
interpreter, a just-in-time compiler, ahead-of-time compiler, a virtual machine (such as the
Java Virtual Machine (JVM)), a compiler, a linker, and a toolchain utility by way of non-limiting
example. One purpose of BTE 224 may be either to provide a binary object for real-time use
within enclave 230 to be stored, for example on storage 250 of FIGURE 2, or to be provided
to another computing device.

[0094] In one example, BTE 224 receives trusted binary object 420, as well as any
necessary input from IVE 460, and produces a signed native binary 430. Signed native binary
430 may be signed by private key 452, which may have the same provenance as the key that
was used to sign trusted binary object 420. In another example, private key 452 may be the
same key that was used to sign trusted binary object 420. This is possible only if trusted binary
object 420 carries the key itself with it.

[0095] Because BTE 224 is also a sighed and trusted binary executing within enclave
230, and because trusted binary object 420 is also a signed and verified object, it is reasonable
to assume that signed native binary 430 can also be treated as a binary. Therefore, signed
native binary 430 may be treated as a trusted binary object, similar to trusted binary object
420. Thus, signed native binary 430 may be used within enclave 230, or may be provided to
some other computing device with a TEE capability.

[0096] Unsigned native binary 440 may also be produced, and may include the exact
same binary object as signed native binary 430. However, unsigned native binary 440 is not
signed by private key 452. Unsigned native binary 440 may be provided to computing devices
that do not have TEE capabilities. For example, in an loT context, unsigned native binary 440
may be provided to an Internet capable device or sensor, which may not have TEE capabilities.
However, in some cases, |oT devices may have secure boot capabilities, so that the entire
device can be treated as a TEE. In other examples, loT devices without TEE capabilities may
be placed behind a Gateway with TEE capabilities, which may verify signed native binary 430,
strip out TEE attributes thereof, and provide unsigned native binary 440 to the loT device.
Many other possibilities are also available.

[0097] FIGURE 4B is a second functional block diagram of selected elements of the
present specification. In the example of FIGURE 4B, enclave 230 is again provided, with the

same elements as enclave 230 of FIGURE 4A. However, in this case, trusted binary object 420

WO 2016/105861 PCT/US2015/062854

21

is not provided directly to BTE 224. Rather, trusted binary object 420 is provided to IVE 460,
which treats trusted binary object 420 as an input, similar to inputs from other sources. IVE
460 may then analyze trusted binary object 420 and tag appropriate portions for execution
within enclave 230, as is described in more detail in FIGURE 6. IVE 460 may then provide
validated input packets to BTE 224. BTE 224 may then perform its binary translation function,
including designating tagged portions for execution within enclave 230, and provide one or
both of signed native binary 430, and unsigned native binary 440.

[0098] FIGURE 5 is a functional block diagram of selected elements of the present
specification. In this case, a first computing device includes enclave 230-1, while a second
computing device includes enclave 230-2. In this example, enclave 230-1 first receives trusted
binary object 420. Enclave 230-1 may be configured as shown in FIGURE 4A, as shown in
FIGURE 4B, or in any other suitable configuration. As before, BTE 224 generates signed native
binary 430. This may be signed in one example by a public key provided with certificate 450.

[0099] Enclave 230-1 may provide signed native binary 430 to enclave 230-2 via
network 170. In this example, enclave 230-2 is provided on other device 500.

[0100] Other device 500 may wish to use signed native binary 430, and may thus
engage in a remote attestation 520 with enclave 230-1. With remote attestation 520, other
device 500 may verify that certificate 450 is a valid certificate generated or provided by
enclave 230-1. Thus, other device 500 may then treat signed native binary 430 as a trusted
binary, and in particular, signed native binary 430 may become a trusted binary object 420
for other device 500.

[0101] FIGURE 6 is a functional block diagram of selected elements of the present
specification. FIGURE 6 describes an IVE 460 with more particularity.

[0102] In summary, a TEE may provide an APl to allow userspace applications to
interact with enclave 230. For example, the Intel® SGX software development kit (SDK)
provides a C/C++ API to instantiate an enclave 230 and provide native C/C++ software within
enclave 230.

[0103] An Android application may need to access sensitive data and perform input
validation, such as verify that valid characters were entered by a user into fields like birth
date, email address, phone, or social security number. Input validation may require

communicating with an appropriately configured server (such as enterprise security

WO 2016/105861 PCT/US2015/062854

22

controller 140), thus potentially exposing sensitive data to malicious eyes, or instantiating an
enclave 230, thus requiring the ISV to be skilled in input validation.

[0104] However, Android applications are commonly written in Java code. So to
secure parts of an Android application with SGX, the ISV may reimplement the protected part
of the application in C/C++, wrap it in the Java Native Interface (JNI) wrapper, and call the JNI
interface from the Android application.

[0105] In one example, a different ISV, such as security services provider 190, may
provide a number of pre-built native C/C++ input verification modules as part of an IVE 460.
These may be built to take advantage of enclave 230 and to operate within a TEE to provide
trusted input verification.

[0106] Thus, an Android ISV, for example, may be able to build an app using the input
verification modules as building-blocks to perform common tasks such as communicate with
a web-server using a secured network stack, output data to a screen using a secure graphics
engine, and receive an input from a user using a secured touch screen input engine.

[0107] When sensitive data leave the protected boundaries of enclave 230, they
may be encrypted. These secure data will thus not be exposed in plain form outside to other
applications. This allows the Android app to run in a potentially malicious environment
(including many candidate malicious objects) without risking sensitive data.

[0108] In another example, an IVE 460 of the present Specification may allow
Android I1SVs, for example, to designate a part of their application code to access sensitive
data coming from a protected input (such as a touch screen), and to validate the input without
compromising the data. In one example, IVE 460 may run in an auto- generated enclave 230
that uses a JVM to execute the Java code. The ISV may thus perform input validation on
sensitive data using the same tools and language that he uses to create the Android
application itself.

[0109] In another example, IVE 420 may analyze a binary object such as trusted
binary object 420 or another binary object, and annotate variables that receive sensitive data.
IVE 420 may then trace all code that accesses those variables, and require that code to run
inside enclave 230. This may include a “pseudo-compilation” to ensure that marked Java code

does not perform any prohibited calls or operations that are not permitted within enclave

WO 2016/105861 PCT/US2015/062854

23

230, such as accessing the file system or performing system calls. Any such attempt may be
flagged with an error code, which can be provided to the ISV so that he can fix the problem.

[0110] The ISV may also markup application source code with a special tag, including
specific classes, functions, or variables that access sensitive data. ISV 460 may then
automatically mark all relevant code, and run that Java code inside a JVM 680 within enclave
230. The relevant inputs may then be communicated seamlessly to Java application 610 as
signed verified inputs 630.

[0111] Thus, the ISV may be able to define which parts of the Android application
should access sensitive data and thus run inside an enclave, using the same tools he uses to
develop the Android app itself, and the protected code may still be a Java code. This allows
ISVs to implement their own input data validation functionality using Java code without the
pitfalls of C/C++, which they may not be as familiar with, and which provide them substantially
more rope with which to hang themselves.

[0112] In one example, IVE 460 includes a pre-compiler that auto-generates enclave
230, including JVM 680. This may be, in one example, a limited or trimmed JVM, providing
only basic functionality to process and verify inputs. Annotated Java code may generate JNI
wrappers, parameter converters, and other tools to enable enclave calls and callbacks.

[0113] In one example, enclave 230 may receive certain user or network inputs 640
from peripherals 242 via ID/API layer 410. Those inputs may then be provided to IVE 460. In
this example, IVE 460 also receives trusted binary object 420. In one example, IVE 460 may
engage in an attestation exchange, such as remote attestation 520 of FIGURE 5 to validate
trusted binary object 420. IVE 460 may then “pseudo-compile” trusted binary object 420 and
insert appropriate tags into classes, functions, or variables that perform protected input
operations. Thus, when BTE 224 creates a new binary, only a portion of the new binary may
be configured to run within enclave 230.

[0114] In this example, a Java application 610 is also provided. Java application 610
may be configured to operate on sensitive data, or may otherwise be security critical. Thus, it
is desirable to validate inputs for Java application 610.

[0115] It may be advantageous to provide for the ISV of Java application 610 an IVE
460, which may support several validation methods. This allows Java application 610 to

perform input validation, either by providing a customized Java routine that runs in JVM 680

WO 2016/105861 PCT/US2015/062854

24

of enclave 230, or by using one of several pre-built C/C++ input validation tools provided by
IVE 460.

[0116] JNI wrapper 620 isa standard Java wrapper that enables Java application 610
to interface with methods provided in IVE 460. It should also be noted that JNI wrapper 620,
Java application 610, JVM 680, and other Java-specific elements are provided by way of
nonlimiting example only. In a more general sense, JNI wrapper 620 may be any suitable
wrapper or interface that enables code in a first programming language to interoperate with
code from a second programming language. JVM 680 may be any suitable interpreter engine,
such as a virtual machine, scripted interpreter, scripting engine, translator, or similar.

[0117] Inone example, IVE 460 receives user or network inputs 640 from peripherals
242. IVE 460 may also receive trusted binary object 420, and tag trusted binary object 420
appropriately.

[0118] IVE 460 may then provide signed and verified inputs 630 for use with Java
application 610. JNI wrapper 620 enables Java application 610 to receive signed verified
inputs 630 from IVE 460. Java application 610 may then act on signed and verified inputs 630
with confidence that the inputs are valid and not malicious.

[0119] FIGURE 7 is a functional block diagram of an IVE 260. In the example of
FIGURE 7, certain functional blocks are shown by way of non-limiting example. IVE 260 may
have zero or more of the blocks shown, and may have zero or more additional blocks to
provide other functions.

[0120] In this example, IVE 260 provides a secure network stack 710, a secure
graphics engine 720, a secure human input device (HID) interface engine 730, a secure audio
engine 740, a secure image processing engine 750, a secure telemetry engine 760, a secure
GPS receiver 770, and a binary input analyzer 780.

[0121] In one example, secure network stack 710 may provide secure
communication over a number of different channels. Communication may be over an IP
network, a telephony network, a Wi-Fi network, a Bluetooth network, a local wired or wireless
network, or any other suitable network. In one example, secure network stack 710 may
provide encrypted communication, for example over HTTPS. Secure network stack 710 may

also perform validation of packets sent over or received from the network.

WO 2016/105861 PCT/US2015/062854

25

[0122] Secure graphics engine 720 may securely drive outputs to a screen or other
display device.

[0123] Secure HID interface engine 730 may handle and validate human inputs. This
may include, for example, touchscreen inputs on a smart device, hybrid tablet, or other
touchscreen enabled device. This may also include validation and verification of input forms.
For example, secure HID interface engine 730 may ensure that input strings are not overlong,
that they are in the correct format, and that they are usable by application 610.

[0124] Secure audio engine 740 may securely handle communication with a speaker
and/or microphone. This may enable application 610 to both receive audio inputs from a user,
and to provide audio outputs on speakers.

[0125] Secure image processing engine 750 may handle, for example, inputs
received from a built-in camera on a client device 110.

[0126] Secure telemetry engine 760 may be provided to interface with various
sensors and actuators on a device. For example, telemetry devices may include an
accelerometer, thermometer, compass, or other environmental sensor. In cases where a
computing device 110 is an loT device, the sensor providing telemetry to secure telemetry
engine 760 may in fact be the primary purpose of the device. In this context, the telemetry
device could be any type of device that provides an environmental measurement.

[0127] Secure GPS receiver 770 may provide secure communication with a GPS
satellite, and may receive global positioning coordinates for the device.

[0128] Finally, binary input analyzer 780 may receive and validate a binary object
such as trusted binary object 420 or other binary object. Validation of the object may include
verifying that it has a good signature and or verifying the identity of the publisher. Binary
input analyzer 780 may also analyzer the binary object by pseudo-compiling it and identifying
functions, classes, or variables that handle secure inputs and tagging them for running within
enclave 230.

[0129] Any of these functional blocks may provide signed and verified inputs 630 in
an encrypted form to Java application 610.

[0130] FIGURE 8 is a flow diagram of a method 800 performed by a BTE 224

according to one or more examples of the present specification.

WO 2016/105861 PCT/US2015/062854

26

[0131] In block 810, enclave 230 receives a trusted binary object in a first form that
is to be translated into a second binary object in a second form.

[0132] In block 820, the trusted binary object is passed to the BTE 224.

[0133] In block 830, BTE 224 translates the trusted binary object into the second
binary object in the second form.

[0134] In block 850, BTE 224 signs the new second binary object, for example with
the same key that the original trusted binary was signed with, or with a key that has the same
provenance as that key.

[0135] Inblock 870, as appropriate or necessary, BTE 224 may export the new signed
native binary 430 out of enclave 230.

[0136] In block 890, the method is done.

[0137] FIGURE 9 is a flow chart of a method 900 performed by an IVE 460 according
to one or more examples of the present specification.

[0138] In block 910, IVE 460 receives an unvalidated input.

[0139] In block 920, an appropriate functional block of IVE 460 may verify and
validate the new input.

[0140] Inblock 930, the appropriate functional block may generate a validated input
packet.

[0141] In block 950, IVE 460 encrypts the validated input packet.

[0142] In block 970, IVE 460 signs the validated input packet.

[0143] In block 980, IVE 460 may export the signed and validated input packet, for
example to JNI wrapper 620.

[0144] In block 990, the method is done.

[0145] FIGURE 10 is a block diagram of an interactive method between IVE 460 and
BTE 224 according to one or more examples of the present Specification.

[0146] In block 1010, IVE 460 receives a binary object, such as trusted binary object
420.

[0147] In block 1020, IVE 460 may pseudo-compile the binary object to identify
functions, classes, and/or variables that access protected inputs and outputs.

[0148] In block 1030, IVE 460 tags those functions, classes, and/or variables for

executing within enclave 230.

WO 2016/105861 PCT/US2015/062854

27

[0149] In decision block 1040, IVE 460 determines whether there are restricted
operations within the tagged portions of the binary. This may include, for example,
attempting to write to or read from the file system, or perform another operation that is
restricted from within enclave 230.

[0150] In block 1050, if a restricted operation is found, then the ISV may be notified
of the error.

[0151] Returning to block 1040, if there are no restricted operations, then in block
1070, IVE 460 may pass the newly-tagged binary to BTE 224 for binary translation.

[0152] In block 1080, BTE 224 translates the binary according to methods described
in this Specification.

[0153] The foregoing outlines features of several embodiments so that those skilled
in the art may better understand the aspects of the present disclosure. Those skilled in the
art should appreciate that they may readily use the present disclosure as a basis for designing
or modifying other processes and structures for carrying out the same purposes and/or
achieving the same advantages of the embodiments introduced herein. Those skilled in the
art should also realize that such equivalent constructions do not depart from the spirit and
scope of the present disclosure, and that they may make various changes, substitutions, and
alterations herein without departing from the spirit and scope of the present disclosure.

[0154] The particular embodiments of the present disclosure may readily include a
system on chip (SOC) central processing unit (CPU) package. An SOC represents an integrated
circuit (IC) that integrates components of a computer or other electronic system into a single
chip. It may contain digital, analog, mixed-signal, and radio frequency functions: all of which
may be provided on a single chip substrate. Other embodiments may include a multi-chip-
module (MCM), with a plurality of chips located within a single electronic package and
configured to interact closely with each other through the electronic package. In various other
embodiments, the digital signal processing functionalities may be implemented in one or
more silicon cores in Application Specific Integrated Circuits (ASICs), Field Programmable Gate
Arrays (FPGAs), and other semiconductor chips.

[0155] Additionally, some of the components associated with described
microprocessors may be removed, or otherwise consolidated. In a general sense, the

arrangements depicted in the figures may be more logical in their representations, whereas

WO 2016/105861 PCT/US2015/062854

28

a physical architecture may include various permutations, combinations, and/or hybrids of
these elements. It is imperative to note that countless possible design configurations can be
used to achieve the operational objectives outlined herein. Accordingly, the associated
infrastructure has a myriad of substitute arrangements, design choices, device possibilities,
hardware configurations, software implementations, equipment options, etc.

[0156] Any suitably-configured processor component can execute any type of
instructions associated with the data to achieve the operations detailed herein. Any processor
disclosed herein could transform an element or an article (for example, data) from one state
or thing to another state or thing. In another example, some activities outlined herein may be
implemented with fixed logic or programmable logic (for example, software and/or computer
instructions executed by a processor) and the elements identified herein could be some type
of a programmable processor, programmable digital logic (for example, a field programmable
gate array (FPGA), an erasable programmable read only memory (EPROM), an electrically
erasable programmable read only memory (EEPROM)), an ASIC that includes digital logic,
software, code, electronic instructions, flash memory, optical disks, CD-ROMs, DVD ROMs,
magnetic or optical cards, other types of machine-readable mediums suitable for storing
electronic instructions, or any suitable combination thereof. In operation, processors may
store information in any suitable type of non-transitory storage medium (for example,
random access memory (RAM), read only memory (ROM), field programmable gate array
(FPGA), erasable programmable read only memory (EPROM), electrically erasable
programmable ROM (EEPROM), etc.), software, hardware, or in any other suitable
component, device, element, or object where appropriate and based on particular needs.
Further, the information being tracked, sent, received, or stored in a processor could be
provided in any database, register, table, cache, queue, control list, or storage structure,
based on particular needs and implementations, all of which could be referenced in any
suitable timeframe. Any of the memory items discussed herein should be construed as being
encompassed within the broad term ‘memory.’

[0157] Computer program logic implementing all or part of the functionality
described herein is embodied in various forms, including, but in no way limited to, a source
code form, a computer executable form, and various intermediate forms (for example, forms

generated by an assembler, compiler, linker, or locator). In an example, source code includes

WO 2016/105861 PCT/US2015/062854

29

a series of computer program instructions implemented in various programming languages,
such as an object code, an assembly language, or a high-level language such as OpenCL,
Fortran, C, C++, JAVA, or HTML for use with various operating systems or operating
environments. The source code may define and use various data structures and
communication messages. The source code may be in a computer executable form (e.g., via
an interpreter), or the source code may be converted (e.g., via a translator, assembler, or
compiler) into a computer executable form.

[0158] In one example embodiment, any number of electrical circuits of the FIGURES
may be implemented on a board of an associated electronic device. The board can be a
general circuit board that can hold various components of the internal electronic system of
the electronic device and, further, provide connectors for other peripherals. More
specifically, the board can provide the electrical connections by which the other components
of the system can communicate electrically. Any suitable processors (inclusive of digital signal
processors, microprocessors, supporting chipsets, etc.), memory elements, etc. can be
suitably coupled to the board based on particular configuration needs, processing demands,
computer designs, etc. Other components such as external storage, additional sensors,
controllers for audio/video display, and peripheral devices may be attached to the board as
plug-in cards, via cables, or integrated into the board itself. In another example embodiment,
the electrical circuits of the FIGURES may be implemented as stand-alone modules (e.g., a
device with associated components and circuitry configured to perform a specific application
or function) or implemented as plug-in modules into application specific hardware of
electronic devices.

[0159] Note that with the numerous examples provided herein, interaction may be
described in terms of two, three, four, or more electrical components. However, this has
been done for purposes of clarity and example only. It should be appreciated that the system
can be consolidated in any suitable manner. Along similar design alternatives, any of the
illustrated components, modules, and elements of the FIGURES may be combined in various
possible configurations, all of which are clearly within the broad scope of this Specification.
In certain cases, it may be easier to describe one or more of the functionalities of a given set
of flows by only referencing a limited number of electrical elements. It should be appreciated

that the electrical circuits of the FIGURES and its teachings are readily scalable and can

WO 2016/105861 PCT/US2015/062854

30

accommodate a large number of components, as well as more complicated/sophisticated
arrangements and configurations. Accordingly, the examples provided should not limit the
scope or inhibit the broad teachings of the electrical circuits as potentially applied to a myriad
of other architectures.

[0160] Numerous other changes, substitutions, variations, alterations, and
modifications may be ascertained to one skilled in the art and it is intended that the present
disclosure encompass all such changes, substitutions, variations, alterations, and
modifications as falling within the scope of the appended claims. In order to assist the United
States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent
issued on this application in interpreting the claims appended hereto, Applicant wishes to
note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph
six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words
“means for” or “steps for” are specifically used in the particular claims; and (b) does not
intend, by any statement in the specification, to limit this disclosure in any way that is not

otherwise reflected in the appended claims.

EXAMPLE IMPLEMENTATIONS

[0161] Thereis disclosed in an example 1, a computing apparatus comprising:

a trusted execution environment (TEE); and one or more logic elements comprising an
input verification engine (IVE) for operating within the TEE, and operable for: receiving an
input; validating the input; and exporting the input to an application outside of the TEE.

[0162] There is disclosed in an example 2, the computing apparatus of example 1,
wherein exporting the input further comprises encrypting the input.

[0163] There is disclosed in an example 3, the computing apparatus of example 1,
wherein exporting the input further comprises signing the input with a key of the TEE.

[0164] There is disclosed in an example 4, the computing apparatus of example 1,
wherein the IVE is further operable for provisioning an enclave within the TEE.

[0165] There is disclosed in an example 5, the computing apparatus of example 4,

wherein the IVE is further operable for provisioning a binary translator within the enclave.

WO 2016/105861 PCT/US2015/062854

31

[0166] There is disclosed in an example 6, the computing apparatus of example 5,
wherein the binary translator is a Java Virtual Machine, and wherein the IVE is implemented
at least partly in Java.

[0167] There is disclosed in an example 7, the computing apparatus of example 6,
wherein exporting the input comprises exporting the input to a java native interface wrapper.

[0168] There is disclosed in an example 8, the computing apparatus of example 1,
wherein the IVE is further operable for analyzing a binary input object.

[0169] There is disclosed in an example 9, the computing apparatus of example 8,
wherein the binary input object is an executable object.

[0170] There is disclosed in an example 10, the computing apparatus of example 8,
wherein analyzing the binary input object comprises identifying portions of the object
configured to perform input/output operations.

[0171] Thereis disclosed in an example 11, the computing apparatus of example 10,
wherein analyzing the binary input object further comprises tagging the portions.

[0172] Thereis disclosed in an example 12, the computing apparatus of example 10,
wherein analyzing the binary input object further comprises identifying within the portions
instructions to perform operations not legal within an enclave.

[0173] There is disclosed in an example 13, the computing apparatus of example 1,
wherein the IVE comprises a module selected from the group consisting of a secure network
stack, a secure graphics engine, a secure human input device interface engine, a secure audio
engine, a secure image processing engine, a secure telemetry engine, a secure global
positioning system receiver, and a binary input analyzer.

[0174] Thereis disclosed in an example 14, one or more computer-readable storage
mediums having stored thereon instructions that, when executed, instruct a processor to
provide an input verification engine (IVE) within a trusted execution environment (TEE), the
IVE operable for: receiving an input; validating the input; and exporting the input to an
application outside of the TEE.

[0175] There is disclosed in an example 15, the one or more computer-readable

mediums of example 14, wherein exporting the input further comprises encrypting the input.

WO 2016/105861 PCT/US2015/062854

32

[0176] There is disclosed in an example 16, the one or more computer-readable
mediums of example 14, wherein exporting the input further comprises signing the input with
a key of the TEE.

[0177] There is disclosed in an example 17, the one or more computer-readable
mediums of example 14, wherein the IVE is further operable for provisioning an enclave
within the TEE.

[0178] There is disclosed in an example 18, the one or more computer-readable
mediums of example 17, wherein the IVE is further operable for provisioning a binary
translator within the enclave.

[0179] There is disclosed in an example 19, the one or more computer-readable
mediums of example 14, wherein the IVE is further operable for analyzing a binary input
object.

[0180] There is disclosed in an example 20, the one or more computer-readable
mediums of example 19, wherein the binary input object is an executable object.

[0181] There is disclosed in an example 21, the one or more computer-readable
mediums of example 19, wherein analyzing the binary input object comprises identifying
portions of the object configured to perform input/output operations.

[0182] There is disclosed in an example 22, the one or more computer-readable
mediums of example 21, wherein analyzing the binary input object further comprises tagging
the portions.

[0183] There is disclosed in an example 23, the one or more computer-readable
mediums of example 21, wherein analyzing the binary input object further comprises
identifying within the portions instructions to perform operations not legal within an enclave.

[0184] There is disclosed in an example 24, a method of providing an input
verification engine (IVE) within a trusted execution environment (TEE), comprising: receiving
an input; validating the input; and exporting the input to an application outside of the TEE.

[0185] There is disclosed in an example 25, he method of example 24, further
comprising analyzing a binary input object, comprising: identifying portions of the binary
input object configured to perform input/output operations; and tagging the portions.

[0186] Thereis disclosed in an example 26, a method comprising the performing the

instructions disclosed in any of examples 14 — 23.

WO 2016/105861 PCT/US2015/062854

33

[0187] There is disclosed in example 27, an apparatus comprising means for
performing the method of example 26.

[0188] There is disclosed in example 28, the apparatus of claim 27, wherein the
apparatus comprises a processor and memory.

[0189] There is disclosed in example 29, the apparatus of claim 28, wherein the
apparatus further comprises a computer-readable medium having stored thereon software

instructions for performing the method of example 26.

WO 2016/105861 PCT/US2015/062854

34

CLAIMS:

1. A computing apparatus comprising:
a trusted execution environment (TEE); and
one or more logic elements comprising an input verification engine (IVE) for
operating within the TEE, and operable for:
receiving an input;
validating the input; and
exporting the input to an application outside of the TEE.
2. The computing apparatus of claim 1, wherein exporting the input further comprises
encrypting the input.
3. The computing apparatus of claim 1, wherein exporting the input further comprises
signing the input with a key of the TEE.
4. The computing apparatus of claim 1, wherein the IVE is further operable for
provisioning an enclave within the TEE.
5. The computing apparatus of claim 4, wherein the IVE is further operable for
provisioning a binary translator within the enclave.
6. The computing apparatus of claim 5, wherein the binary translator is a Java Virtual
Machine, and wherein the IVE is implemented at least partly in Java.
7. The computing apparatus of claim 6, wherein exporting the input comprises exporting
the input to a java native interface wrapper.
8. The computing apparatus of any of claims 1 — 7, wherein the IVE is further operable
for analyzing a binary input object.
9. The computing apparatus of claim 8, wherein the binary input object is an executable

object.

WO 2016/105861 PCT/US2015/062854

35

10. The computing apparatus of claim 8, wherein analyzing the binary input object
comprises identifying portions of the object configured to perform input/output operations.

11. The computing apparatus of claim 10, wherein analyzing the binary input object
further comprises tagging the portions.

12. The computing apparatus of claim 10, wherein analyzing the binary input object
further comprises identifying within the portions instructions to perform operations not legal
within an enclave.

13. The computing apparatus of any of claims 1 — 7, wherein the IVE comprises a module
selected from the group consisting of a secure network stack, a secure graphics engine, a
secure human input device interface engine, a secure audio engine, a secure image processing
engine, a secure telemetry engine, a secure global positioning system receiver, and a binary
input analyzer.

14. One or more computer-readable storage mediums having stored thereon instructions
that, when executed, instruct a processor to provide an input verification engine (IVE) within
a trusted execution environment (TEE), the IVE operable for:

receiving an input;
validating the input; and
exporting the input to an application outside of the TEE.

15. The one or more computer-readable mediums of claim 14, wherein exporting the
input further comprises encrypting the input.

16. The one or more computer-readable mediums of claim 14, wherein exporting the

input further comprises signing the input with a key of the TEE.

WO 2016/105861 PCT/US2015/062854

36

17. The one or more computer-readable mediums of claim 14, wherein the IVE is further
operable for provisioning an enclave within the TEE.

18. The one or more computer-readable mediums of claim 17, wherein the IVE is further
operable for provisioning a binary translator within the enclave.

19. The one or more computer-readable mediums of any of claims 14 — 18, wherein the
IVE is further operable for analyzing a binary input object.

20. The one or more computer-readable mediums of claim 19, wherein the binary input
object is an executable object.

21. The one or more computer-readable mediums of claim 19, wherein analyzing the
binary input object comprises identifying portions of the object configured to perform
input/output operations.

22. The one or more computer-readable mediums of claim 21, wherein analyzing the
binary input object further comprises tagging the portions.

23. The one or more computer-readable mediums of claim 21, wherein analyzing the
binary input object further comprises identifying within the portions instructions to perform
operations not legal within an enclave.

24. A method of providing an input verification engine (IVE) within a trusted execution
environment (TEE), comprising:

receiving an input;
validating the input; and
exporting the input to an application outside of the TEE.
25. The method of claim 24, further comprising analyzing a binary input object,

comprising:

WO 2016/105861 PCT/US2015/062854

37
identifying portions of the binary input object configured to perform input/output
operations; and

tagging the portions.

WO 2016/105861

PCT/US2015/062854

SECURED

|—|_ ————————————————— =1 | ENTERPRISE
ENTERPRISE ENTERPRISE : e 100
SECURITY BOUNDARY
CONTROLLER
140 104 APPLICATION
\ REPOSITORY
= 160
==

—

I
I
|
I
I
I
|
I
|
|
: 170
: |
I ENTERPRISE
I SECURITY NETWORK
: ADMINISTRATOR
: MOBILE
| DEVICE
| 1108~ |
5 DESKTOP
:USER _ = 110-1
|
I
I
[
|1
I
|
L 1102
| LAPTOP
|1
I
i 120-2
I
I
I

|
|
I
|
|
I
|
]
I
|
I
I
|
|

=

ATTACKER
%' 180
'V

172

EXTERNAL
NETWORK

ooaog
ooo

oon
o0o

ooo
|_”’| ooo
N

180
SECURITY SERVICES
PROVIDER

oo o

FIG. 1

WO 2016/105861

PCT/US2015/062854

COMPUTING 2/9
DEVICE MEMORY
110 220~ >
“ OPERATING | -~222
MEMORY SYSTEM
BUS
PROCESSOR 27/0'3 230 ENCLAVE
T 9 9 210
BINARY
260~] NETWORK TRANSLATION |~ 224
< < >
270-1 PERIPHERAL
SYSTEM BUS P B
240 INTERFAGE PERIPHERALS o0
250 -] STORAGE
FI1G. 2
SERVER
148\ '3/20
MEE';EOSRY MEMORY
370-3 OPERATING SYSTEM
PROCESSOR J v
o 9 9 310 w2 5
360~ N_I?'IE'WORK SERVER ENGINE
INTERFACE
S !
< N >
370-1
PERIPHERAL
SYSTEMBUS INTERFACE [340

350

STORAGE

FIG. 3

PCT/US2015/062854

WO 2016/105861

3/9

AHYNIE JALLYN GINDISNN

Vv DIA

AHYNIE SAILYN G3ANDIS

7
0544

yee 0zZp
/
3NIONT 193r€0 oL
NOLLYISNYYL previ ¢
ANVNIE
qaLsndl ALIMOHLAV
JIVOIILH3D
AT mzﬂ_m_n_ vOLL
05¥ 09¥ |
\ & \ 557 103rg0
ik AMVNIE
JLYOILLYED e .
0l NOLLYII¥3A IAVIONS
N 1ndNI AMOLISOd3Y
NOLLYOITddV
LSTINVIY d
_ 081
NIAYT v/l I
STVHIHANT

™2V

PCT/US2015/062854

WO 2016/105861

4/9

AHYNIE JALLYN GINDISNN

dv DId

AHYNIE SAILYN G3ANDIS

7
0544

¥ec
\
INIONT 0cz
zo_MM@wﬂ_Mm L JAVIONI
AN FLYARMd
0S¥ N 0zZv
v Z6Y 09%
A \ Z
F1IVOIdILY3D INIONT 19340
0iv NOILYOIdId3A AHYNIE
\ 1ndNI aaLsnyl
LS34INVIN

val
/

ALRICHLNY
AIV3I4ILHE3D
HO/ONY

153r80
AMVNIE
aaisnul | 0Cv

AHOLISOd3Y
NOILYOITddY

)
09t

H3AYT IdY/NOILINIAZQ JOV4HILNI

™-0LY

STVHIHdRId

~-Zve

PCT/US2015/062854

WO 2016/105861

5/9

¢ "DId

057~ 31voian
/l.ll\\lll/
AdYNIE
ocp—| ALV
QanNsIS

3AVIONT 2-0¢¢

006"

F0IA30 Y3HLO

~-0L¥

¥ie _
#1574 / ocy
0} T |
AUYNIE ANIDNI 1ndLno
; . JALLYN NOILYTISNYHL ANYNIE
HHOMIIN QanNoIs AHVNIE galsnyl
08y
02s AT ALVAR N
N N INIONI o0
T NOIVISILV . | ow«. 720 NOILVDIRIZA 0F
JLONTY 1NdNI JAVIONT
(A 2nand)
ILYOIILYED
HIAAVT Idv/al
STVHIHdINAd

A

PCT/US2015/062854

WO 2016/105861

6/9

9 "DId

/lll.\.\} .
A ALvAd |57
133r80 | gy
AYYNIE
QaLsnyl AuvouLN0 057
aNenNa |- 09% [sinan | -0€8
NOILYDI4IIA EIENEN
LNdNI ganoIs
~ SIndNl 0cz
HHOMLAN 019 _
3SN JAVIONS

VIVl OLY

STVHIHdRIAd

‘
eve

NOLLYOINddVY
YAVTP

N
029
H3ddVHM INP

S
019

PCT/US2015/062854

WO 2016/105861

7/9

L "DIA

094 Q¢
INONT P, P,
NOILYOIdl3A 092 INIONT INIDNT 30VAILNI
1NdNI AMLINITAL IHRDIS aH 34n93s
INIINT DNISSID0Ud INISNT
FOVAH3INI 3L IOVl IHN03S SOHAYHO JMND3S
/ N N
084 08 021
NETOERE INIONT YOV1S
S$d9 JUNOIS o1any NS MHOMLIN THNOIS
/ N N
0L Ovi OLL

WO 2016/105861

&8/9

0~ G

PCT/US2015/062854

810~ RECEIVE TRUSTED NON-EXECUTABLE
OR NON-NATIVE BINARY
820~] PASS TRUSTED NON-EXECUTABLE
OR NON-NATIVE BINARY TO TEE
¥
RENDER NATIVE BINARY IN BINARY
8301 TRANSLATION ENGINE OF TEE
SIGN NATIVE BINARY (KEY
a50| HAS SAME PROVENANCE AS
- CERTIFICATE FOR ORIGINAL BINARY)
— EXPORT NATIVE BINARY
m
FI1G. 8 (START) 900
RECEIVE UNVALIDATEDINPUT 910
VERIFY AND/OR VALIDATE INPUT | 920
GENERATE VALIDATED INPUT PACKET |~ 930
ENCRYPT VALIDATED INPUT PACKET |_ g
SIGN VALIDATED INPUT PACKET _g70
¥
EXPORT SIGNED AND VALIDATED |
INPUT PACKET TO.JNIWRAPPER | ™-980

k
@ggo
FI1G. 9

WO 2016/105861

9/9

PCT/US2015/062854

1010~ RECEIVE BINARY OBJECT
1020~ PSEUDO-COMPILE BINARY OBJECT
| Y
1030~J" 1AG PROTECTED INPUT/OUTPUT OPERATIONS
RESTRICTED _YES
OPERATIONS? _
¥
NOTIFY ISV
10701 PASS TO BTE FOR TRANSLATION OF ERROR [™1050
i
1080~ TRANSLATE BINARY
ol
¥
1090 _END.

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2015/062854

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 21/83(2013.01)i, GOGF 9/455(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOOGF 21/83; HO4L 9/00; GOGF 9/45; GOGF 21/00; GO6F 9/455

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: trusted execution environment, input, sign, key, binary translator, provisioning, and similar
terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005-0091530 A1 (IDAN AVRAHAM et al.) 28 April 2005 1-2,13-15,24
See paragraphs [0013], [0057], [0062]; claims 3, 29-30; and figures 5-6.
Y 3-12,16-23,25
Y N. ASOKAN et al., “Mobile Trusted Computing™, In: proceedings of the IEEE, 3-7,16-18

Vol. 102, No. 8, August 2014, pp. 1189-1206.
See page 1199.

Y US 2006-0294508 A1 (SION BERKOWITS et al.) 28 December 2006 5-12,18-23,25
See paragraphs [0021], [0028]-[0029]; claims 12, 20; and figure 1.

A US 2014-0317686 A1 (ORACLE INTERNATIONAL CORPORATION) 23 October 2014 1-25
See paragraphs [0034]-[0050]; and figure 4.

A US 2012-0331550 A1 (HIMANSHU RAJ et al.) 27 December 2012 1-25
See paragraphs [0034]-[0039], [0062]; and figures 2, 5.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
22 April 2016 (22.04.2016) 25 April 2016 (25.04.2016)
Name and mailing address of the [SA/KR Authorized officer

International Application Division
¢ Korean Intellectual Property Office CHIN, Sang Bum
Y 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

inb;imile No. +82-42-481-8578 Telephone No. +82-42-481-8398

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2015/062854
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005-0091530 Al 28/04/2005 AT 386971 T 15/03/2008
AU 2004-216665 Al 12/05/2005
AU 2004-216665 B2 18/03/2010
BR P10404021 A 21/06/2005
CA 2482078 Al 24/04/2005
CA 2482078 C 25/10/2011
CN 100565457 C 02/12/2009
CN 1609811 A 27/04/2005
DE 602004011871 T2 05/03/2009
EP 1526426 A2 27/04/2005
EP 1526426 A3 20/07/2005
EP 1526426 Bl 20/02/2008
JP 04607529 B2 05/01/2011
JP 2005-129035 A 19/05/2005
KR 10-1099324 Bl 26/12/2011
KR 10-2005-0039542 A 29/04/2005
MX PA04010156 A 28/04/2005
RU 2004131023 A 10/04/2006
RU 2365988 C2 27/08/2009
US 2009-0083862 Al 26/03/2009
US 7464412 B2 09/12/2008
US 7882566 B2 01/02/2011
US 2006-0294508 Al 28/12/2006 CN 101208661 A 25/06/2008
CN 101208661 B 21/12/2011
EP 1899809 Al 19/03/2008
JP 04814937 B2 16/11/2011
JP 2008-546121 A 18/12/2008
JP 2011-070694 A 07/04/2011
KR 10-1196963 Bl 05/11/2012
KR 10-2008-0011447 A 04/02/2008
KR 10-2011-0014679 A 11/02/2011
KR 10-2012-0059620 A 08/06/2012
US 7363471 B2 22/04/2008
WO 2007-002809 Al 04/01/2007
US 2014-0317686 Al 23/10/2014 US 8935746 B2 13/01/2015
US 2012-0331550 Al 27/12/2012 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - wo-search-report
	Page 49 - wo-search-report

