wo 2015/050681 A 1[I I N0F 000000 OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/050681 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

9 April 2015 (09.04.2015) WIPOIPCT
International Patent Classification:
GO6F 9/52 (2006.01)
International Application Number:
PCT/US2014/054966

International Filing Date:
10 September 2014 (10.09.2014)

Filing Language: English
Publication Language: English
Priority Data:

14/043,562 1 October 2013 (01.10.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: MEI, Chunhui; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US). BOURD, Alexei
Vladimirovich; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US). CHEN, Lin; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Agent: CREERON, Kerry T.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(US).

Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(34

Title: GPU DIVERGENCE BARRIER

AN

L J
Y
100
L J
V-
120
FIG. 4

(57) Abstract: A device includes a memory, and at least one programmable processor configured to determine, for each warp of a
plurality of warps, whether a Boolean expression is true for a corresponding thread ot each warp, pause execution of each warp hav-
ing a corresponding thread for which the expression is true, determine a number of active threads for each of the plurality of warps
for which the expression is true, sort the plurality of warps for which the expression is true based on the number of active threads in
each of the plurality of warps, swap thread data of an active thread of a first warp of the plurality of warps with thread data of an in -
active thread ot a second warp of the plurality of warps, and resume execution of the at least one of the plurality of warps for which
the expression is true.

WO 2015/050681 PCT/US2014/054966

i
GPU DEIVERGERCE BARRIER

TECHNICAL FIELD
(8061} This disclosure relates to graphics processing, and more particularly, to

techniques for managing the execution of threads on a graphics processing unit (GPLU),

BACKGROUND
16062] Receontly there has been a move toward so-called general purpose GPUs
(GPGPUs). Unlike traditional GPUs, which perform graphics rendering, GPGPUS may
be configured to execute a general purpose task or program, often referred to as a
“kernel.” Some types of tasks may be better suited to particular a type of processor,
such as a central processing (CPLU) or GPU. CPUs may be better suited for tasks with
more branches, jumps, and conditional logic, while GPUs may be suited to highly
parallel tasks and/or tasks with many floating point calculations. GPUs may also
include the capability to execute SIMD (Single Instruction nwltiple Data) instructions,
as many GPUs have a SIMD hardware architectire. When a GPU executes a SIMD
mstroction, the GPU may execute the same operation, indicated by the instruction, on
owltiple data values, Typically, a GPU has multipie execution units which are capable

of executing the operations indicated by the SIMD instruction in parallel.

SUMMARY
180631 The techniques of this disclosure provide technigues for reducing divergence
among threads executing on a graphics processing unit (GPU). The GPU may nclade
support for an instruction referred to as a “divergence barrier” nstroction. The
divergence barricr instruction attempts to group divergent threads from multiple warps
into new warps such that the threads are executing the same instruction, thereby
mproving GPU performance.
18604} In one example, this disciosure describes a method comprising determining, for
cach warp of a plurality of warps, whether a Boolean expression is frue for a
corresponding thread of each warp, pausing execution of each warp having a
corresponding thread for which the expression is true, determining a mumber of active
threads for cach of the plurality of warps for which the expression is true, sorting the
plurality of warps for which the expression is truc based on the number of active threads

m each of the plurality of warps, swapping thread data of an active thread of a first warp

WO 2015/050681 PCT/US2014/054966

2
of the phirality of warps with thread data of an inactive thread of a second warp of the
plurality of warps, and resuming execution of the at least one of the plurality of warps
for which the cxpression is true.
{8663} In ancther example, this disclosure describes a device that includes a memaory,
and at least one programunable processor configured to: determine, for each warp of a
plurality of warps, whether a Boolean expression is true for a corresponding thread of
each warp, pause execution of each warp having a corresponding thread for which the
expression is troe, determine a mumber of active threads for cach of the plarality of
waips for which the expression is true, sort the plurality of warps for which the
cxpression is true based on the number of active throads in cach of the plurality of
warps, swap thread data of an active thread of a first warp of the plurality of warps with
thread data of an inactive thread of a second warp of the plurality of warps, and resume
exccution of the at least one of the plurality of warps for which the expression is frue.
[8086] In another example, this disclosure describes an apparatus that fncludes means
for determining, for cach warp of a phurality of warps, whether a Boolean expression is
true for a corresponding thread of cach warp, means for pausing execution of each warp
having a corresponding thread for which the expression is true, means for determining a
number of active threads for each of the plarality of warps for which the expression is
true, means for sorting the phorality of warps for which the expression is true based on
the number of active threads in cach of the plurality of warps, means for swapping
thread data of an active thread of a first warp of the pharality of warps with thread data
of an inactive thread of a second warp of the plurality of warps, and means for resuming

exccution of the at least one of the plorality of warps for which the expression is true.

WO 2015/050681 PCT/US2014/054966

3
(808671 In another example, this disclosure describes a non-transitory computer-readable
storage medivm storing instroctions that, when executed, cause at least one
programomable processor to: determing, for cach warp of the plurality of warps for
which the expression is true, an assoctated divergence barrier of a plurality of
divergence barriers, group each warp of the plurality of warps inte a plurality of
compaction pools based on the associated divergence barrier of cach warp, wherein the
mstructions that cause the at least one processor to sort the plurality of warps comprise
mstructions the at least one processor to sort the plurality of warps belonging o a same
one of the plurality of compaction pools, wherein the first warp and the sccond warp
comprise warps belong to the same one of the plurality of compaction pools, and
wherein the instructions that cause the at least one processor to resume execution of the
at least one of the plurality of warps for which the condition is true comprises resuming
exccution of at least one warp of the sare one compaction pool.
{88881 The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent from the description and drawings, and

from the claims.

BRIEF BESCRIPTION OF DRAWINGS

16649] FIG. | 1s a block diagram illustrating an cxample computing device that may
support execution of a GPU divergence barrier instruction in accordance with the
techniques of this disclosure.

(8018} FIG. 2 is a block diagram illustrating a warp that executes on a plurality of
processing elements in accordance with the techmigues of this disclosure.

18611} FIG. 3 is conceptual diagram illustrating sorting warps based on a number of
active threads within cach warp 1o accordance with the techuiques of this disclosure.
16612} FIG. 4 1s a conceptual diagram ilustrating techniques for swapping active
threads from one warp with inactive threads from another warp.

(8013} FIG. 5 is a conceptual diagram illustrating technigues for handiing maltiple
divergence barrigr instructions in accordance with the techuiques of this disclosure.
(68014} FIG. 6 18 a flow diagram illustrating techniques for executing divergence barrier

instructions in accordance with the techniques of this disclosure.

WO 2015/050681 PCT/US2014/054966

4
DETAILED DESCRIPTION

[8815] This disclosure is directed to techniques for reducing divergence of threads
exccuting on a graphics processing vnit (GPU). A GPU may include multiple execution
units, referred o as processing clements (PEs). A program, referred to as a “kernel,”
may exccute on one or more PEs of the GPU. An spplication may divide the kernel into
multiple threads, which constitute the basic unit of work of the GPU. The GPU
scheduler may further group the threads together into a thread group referred (o as a
“warp.” A warp may include a certain number of threads, for example 32 threads on
some graphics architectures.

[3816] A driver or scheduler for the GPU creates threads to execute the kernel on the
GPU. A thread is the basic unit of data to be processed on the GPU, and should not be
contused with a CPU thread. The Scheduler may assign each thread 1o an execution
unit of the GPUL The execution units, also referred 1o as processing elements (“PHs™) or
shaders, are SIMD units capable of parallel execution of the same instruction on
owltiple data valaes.

{8017} In general, cach thread of 8 warp executes the same Instruction. A program
counter {PC) stores the memory address of the instruction that cach thread is to execute.
Generally, there may be a single PC for cach of the threads of a warp. Having a single
PC for cach warp allows cach of the threads to execute simultancously as long as cach
of the threads do not need to execute different instructions,

[6018] Many GPUs now inclode the ability to execute flow control instructions, ¢.g. to
execute branch, jomp, goto, and other flow control tustructions. Flow control
instructions may alter the flow of program execution in a vumber of ways. In a program
or kernel without flow control instructions, a PE may execute instructions of the kemel
from start to fimish. After a PE finishes executing an instruction, the GPU sets the value
of the PC 1o the address of the next instruction in memory (typically by incrementing
the PC value by one}, and the PE executes the next instruction. The process of
executing the program continues in this fashion a program without flow control
instructions untii the program reaches an exit point, at which point exccution terminates.
(8019} Exccuting a tlow control fnstruction may cause a PE to execute & subscguend
mstruction at an address other than the incremented PC value. Instead of executing a
subscquent instruction at the address of the incremented PC value, a PE that execuies a

flow countrol instruction may cxecute & subsequent instruction that bas a different PC

WO 2015/050681 PCT/US2014/054966

5
address, such as the address of a sebroutine, ctc. Thaos, a flow control mstnction 18 said
to alter the execution “fiow”™ of a program.
186281 Examples of flow control instructions nclude subroutine calls, branches, returns,
jumps, ete. In various examples, the instruction address to which a PE “Jumps,” 1.¢. the
address that is assigned o the PC, may be based on the value of data that varies betwee
threads at run-time. Flow countrol instructions may also be associated with a Boolean
expression that each PE evaluates separately. A Boolean expression is an expression
that produces a Boolean value that cvaluates to either true or false. A Boolean

P11 %L

cxpression may include Boolean operators, such as “and,” “or,

NEL NS

not,

2 4%

exchisive or
(XOR},” etc. A Boolean expression may also inchude arithmetic tesis, such as greater
than, less, than, equal to, not equal to, greater than or equal to, less than or equal to, ete.
The truth or falsity of the Boolean expression may depend on data or values that vary
from one thread to another.

{68021} Thus, it may be possible for one thread to jump to, and exccute a different
mnstruction than another thread within the same warp, However, as stated above, there is
only one PC for the warp. The condition where two or more threads of 8 warp execute
different instructions is referred to as “divergence.” When divergence occurs, some sets
threads may continue to execute the same instructions. However, there may be multiple
sets of threads that execute different instructions, as well.

(8022} As an example of thread divergence, a first thread and a second thread of a warp
may executc a flow control instruction, such as an “if-else” statement ov loop statement.
The subsequent instruction that the first thread executes may be based on the values of
data stored in a register of the first thread. Similarly, the subsequent instruction of the
second thread may be based oun the value of data stored in a register of the second
thread. f the first and sccond threads have different register data, the first and second
thread may pumyp to different subsequent instroctions, which are associated with
different instruction addresses.

(8023} In the casec where warp threads are divergent, threads may take ditferent
branches of control flow blocks such as an “if-else”™ statement. In the case of a loop
statement, warp threads may also exit the loop statement at different times, e.g. after
exccuting difforent numbers of iterations of the loop.

160624} When warp threads become divergent, e.g. due to taking different branches of an

if-else statement, or performing different munbers of iterations of a loop, the GPU

WO 2015/050681 PCT/US2014/054966

6
serializes each of the different execution paths caused by the divergence. That s, the
GPU determines threads that are “active” and are executing the same instruction. The
active threads continue to execute on PEs associated with cach thread, until the threads
finish execution, or reach a barrier, such as a divergence barrier instruction, discussed in
greater detatl below.
[8025] During serialization, the GPU also determines threads that are not currently
exccuting, and sets those inactive threads and their associated PEs to idle. While the
PEs are set to idle, the inactive threads do note execute, which hurts GPU performance,
In some cases, divergent threads may further diverge, i.c. there may be multiple “lovels™
or “nested divergence.” o handic nested divergence, a GPU uses a convergence stack
to track nested branches and loops. The GPU handle the deepest or fnnermost layer of
divergence first, and cxecutes the threads with the decpest level of divergence until
exccution completes ot pauses. The GPU then removes that level of divergence from
the convergence stack, and repeats the process of executing the inmermost remaining
thread on the convergence stack, and removing completed threads from the convergence
stack. Umee a thread finishes executing a branch or loop, the GPU may recombine or
converge the threads back together to form warps that are no longer divergent.
16626} The techniques of this disclosure introduce an instruction which a GPU may
support, referred to as a “divergence barrier” instruction. In various examples, an
application programuning interface (AP} may include support for the divergence barrier
mstruction. Such APIs may inchude the Open Compute Language (OpenCL), Open
Graphics Language (OpenGL), and Microsoft DirectX APIs. When progranuming a
GPU with a particular APL a programmer may insert divergence barrier function calls,
which cause the GPU to execute the divergence barrier instruction, at code points where
divergence is likely to significantly impact performance. A GPYU driver or compiler
may also automatically detect code points where divergence is likely to significantly
impact performance, and may insert divergence barrier instructions at those code points.
[8027] A CPU then transmits the code of a kernel that inclades the divergence barrier
mstructions to the GPU for execution. The GPU then executes the kemel code until it
encounters a divergence barrier instruction. Each divergence barrier instruction causes
the GPU to cvaluate a Boolean expression. [fthe GPU evaluates the Booelean
expression as true, the GPU pauses execution of the warp. The GPU switches to, and

begins execution of ancther warp., The GPU continves the process of executing warps

WO 2015/050681 PCT/US2014/054966

7
until all the warps of the kernel either finish execution, or are paused {e.g. due to
executing a divergence barrier fnstruction). Once all the warps finish execution or are
paused, the GPU aticopts to climinate divergonce amongst the warps that arc currently
paused as a result of executing a divergence barrier instruction,
18628] Wheo a GPU executes the divergence barrier ingtruction and pauses execution of
a warp, the GPU inserts the warp into a queue of warps that are currently paused duc to
having executed the divergence barrier instruction. Upon being placed mto the queae,
the GPU sorts the warps in the queue based on the number of active threads in cach
warp using an msertion sort and sorts each of the paused warps in the queunc using an
insertion sort. After all warped are paused and sorted in queue (or finished), the GPU
then attempts to chminate divergence among threads of warps executing the kernel. The
process of climinating divergence amongst threads of warps 1s referred to as “thread
compaction.”
(88281 During thread compaction, the GPU attempts to form warps having threads that
have no divergence or less divergence by swapping currently active warps having more
inactive threads with inactive threads from warps having more active threads. The GPU
uses a warp sort gueue in order to mintize the data amount of exchanged when
swapping threads from ditferent warps. During GPU thread compaction, which results
in the formation of new warps, the GPU may continue execution of each new warp as
soon as a warp having all active threads is formed. In this manner, a GPU configured to
support a divergence barrier instruction may reduce warp thread divergence, and
improve GPU performance.
18438} FIG. 1 is a block diagram illustrating an example computing device that may
sapport execution of a GPU divergence barrier instruction in accordance with the
techniques of this disclosure. FIG. | includes computing device 2. Computing device 2
may comprise a personal computer, a desktop computer, a laptop computer, a compuier
workstation, a tablet computing device, g video game platform or console, a wireless
commumication device (such as, e.g., 2 mobile telephone, a cellular telephone, 2 satellite
telephone, and/or a mobile telephone handset), a landline telephone, an Internet
telephone, a handheld device such as a portable video game device or a personal digital
assistant (PDA}, a personal music player, a video player, a display device, a television, a
television set-top box, a server, an intermediate network device, a mamnframe computer

or any other type of device that processes and/or displays graphical data.

WO 2015/050681 PCT/US2014/054966

8
(80311 As illustrated in the example of FIG. 1, computing device 2 inchudes a CPU 16,
a system memory 14, a graphics processing unit {GPU) 12, and 3 comapiler / driver 18.
CPU 16 may execute various types of applications. Examples of the applications
inchude web browsers, e~-mail apphcations, spreadsheets, video games, or other
applications that generate viewable objects for display. instructions for execution of the
one or more applications may be stored within system memory 14,
(6032} CPU 16 may also exceute compiler / driver 18, Compiler / driver 18 may
comprise a compiler and/or a driver that controls the interaction of GPU 12, Compiler /
driver 18 may take program code, such as code written in a particular graphics
application programing interface (AP}, and translate the code into kernel 20. Kernel 20
is comprised of native code, ¢.g. binary instructions, that GPU 12 is capable of
executing. Compiler / driver 18 may also manage run-time cxecution of GPU 12, As
described in greater detail below, compiler / driver 18 may insert divergence barrier
mstructions mto kemel! 20 at run-time n accordance with the techniques of this
disclosure. CPU 16 may transmit kernel 20 to GPU 12 for further processing.
18633} GPU 12 may be specialized hardware that allows for massively paralicl
processing, which is well-suited well for processing graphics data. In this way, CPU 16
offloads graphics processing that is better handled by GPU 12, CPU 16 may
communicate with GPU 12 in accordance with a particular application processing
interface (APL). Examples of such APIs include the DirectX ® AP by Microsoft ® and
the OpenGL ® by the Khronos group; however, aspects of this disclosure are not
Hmited to the DirectX and the OpenGL APIs, and may be extended to other types of
APIs that have been developed, are currently being developed, or are to be developed in
the future.
16034} In addition to defining the manner in which GPU 12 is to receive graphics data
from CPU 16, the APIs may define a particular graphics processing pipeline that GPU
12 is to implement. GPU 12, in FIG. |, illustrates the graphics processing pipeline
defined by the Direct3D 11 AP As described in more detail, FIG. 2 Ulustrates the
graphics processing pipeline of the OpenGL 4.x APL
18635] Examples of CPU 16 and GPU 12 include, but are not limited to, a digital signal
processor (DSP), general purpose microprocessor, application specific integrated circuit
{ASIC), field programmable logic array (FPGA), or other equivalent integrated or

discrete logic circuitry. In some examples, GPU 12 may be specialized hardware that

WO 2015/050681 PCT/US2014/054966

9
mclades integrated and/or discrete logie cireaitry that provides GPU 12 with massive
parallel processing capabilitics suitable for graphics processing. in some instances,
GPU 12 may also tuclude general purpose processing, and may be referred o as a
general purpoese GPU (GPGPL). The techniques described in this disclosure may also
be applicable to examples where GPU 12 is a GPGPU.
(8036} Systom memory 14 may comprise one or more compuier-readable storage
media. Examples of system memory 14 mclude, but are not bmited to, a random access
memory {(RAM), a read only memory (ROM), an electrically erasable programmable
read-only memory (EEPROM), flash memory, or any other medivm that can be used to
carry or store desired program code in the form of instructions and/or data structures
and that can be accessed by a computer or a processor.
(8037} In some aspects, system memory 14 may inchude instructions that cause CPY 16
and/or GPU 12 to perforo the functions ascribed 1o CPU 16 and GPU 12 in this
disclosure. Accordingly, system memory 14 may be a computer-readable storage
medium comprising instroctions that cavse one or more processors, ¢.g., CPU 16 and
GPU 12, to perform various functions.
16038} System memory 14 may, o some examples, be considered as a non-transitory
storage medivm. The term “non-transitory” may indicate that the storage medium is not
embodied in a carrier wave or a propagated signal. However, the term “non-transitory”
should not be interpreted to mean that system: memory 14 is non-movable. As one
example, system memory 14 may be removed from device 10, and moved to another
device. As another example, a system memory, substantially similar to system memory
14, may be inserted into device 10. In certain examples, a non-transifory storage
medium may store data that can, over time, change {¢.g., n RAM).
16635} CPU 16 may also generate commands and data for GPGPLU applications, for
example commands and scene data for a ray tracing application, a physics stmulation, or
data for any other type of GPGPU kernel. GPGPU applications, ¢.g. kernel 20, may
also be compiled using a graphics AP, such as DirectX, or Open(GlL, or using a more
general purpose compute APL such as Open Compute Language (OpenCL)}, or
OpenCompute, or DirectCompute. CPU 16 may transmit the data for the kernel 20 to a
comvmand buffer for processing. In various examples, the coromand buffer may be part

of system memory 14, or part of GPU 12, In some examples, CPU 16 may transmit the

WO 2015/050681 PCT/US2014/054966

10
commands and data of kernel 20 for GPU 12 to process via a special purpose bas, such
as a PCI-Hxpress bus or another gencral purposc serial or paralle! bus.
18048} To perform the operations stored of keronel 20 in the command buffer, GPU 12
may twoplement a graphics processing pipeline. The graphics processing pipeline
inchides performing as defined by software or firmware executing on GPU 12 and
performing functions by fixed-function units that are hardwired to perform very specific
functions. The software or firmware executing on the GPU 12 may be referred to as
shaders, e.g. shader 22. Shaders 22 may exccute on one or more processing elements
{also referred to as “shader cores” or “PEs™) of GPU 12. Shaders 22 provide users with
functioral flexibility because a user can program the shaders to exccute desired tasks in
any conceivable manner, as with any other processor. The fixed-function units,
however, are hardwired for the manner in which the fixed-function units perform tasks.
Accordingly, the fixed-function units may vot provide much functional flexibiltty, The
techniques of this disclosure are directed toward execution of a kernel, such as kernel
20, on GPU shaders 22,
18841} Once CPU 16 transmits the data and/or commands associated with rendering a
graphical scene or executing a kernel to the command buffer, GPU 12 begius execution
of the commands through the graphics pipeline of GPU 12, Scheduler 24 of GPU 12
creates threads, which perform the basic unit of work associated with the kernel.
Scheduler 24 assigns the threads to a particular processing element of shaders 22.
Scheduler 24 also groups the threads into warps for execution and begins execution of
the warps.
18842} As discussed above, if different threads jump to different instructions as the
result of executing 2 flow control instruction, the threads of a warp diverge. In the case
of a divergent warp, the scheduler executes serially each set of threads, That is, GPU 12
no longer executes all of the warp threads in parallel, but serially in groups, which hurts
GPU performance.
(8043} To improve GPU performance when warps are divergent, a prograromer or
compiler / driver 18 may insert a divergence barrier instruction into kernel 28, The
divergence barrier is associated with 8 Boolean expression, which GPU 12 evaluates at
run-time. A Boolean expression is an expression that evaluates as cither true or false.
A Boolean expression may include arithmetic operators, bitwise logical operators,

and/or logical operators in various examples. By determining whether to execote a

WO 2015/050681 PCT/US2014/054966

it
divergence barrier instruction based on a Boolean expression, the Boolean expression
provides flexibility in controlling when the GPU should execuice the divergence barrier.
The Boolean expression evaluation is one way in which a divergence barrier instraction
differs from a traditional barrier instruction. That is, unlike exccuting a traditional
divergence barrier instruction, in which a GPU always stops execution of warps when
executing the barrier instruction, warps do not have fo stop at each divergence barrier
because divergence barriers are associated with a Boolean condition, and divergence
barriers are often located in control flow blocks that are also associated with the
Boolean expression. Aun cxample of pseudocode for the divergence barrier instruction
is:

divergence barrier(Boolean expression);

(8044 The divergence barrier instruction causes the GPU to determine whether the
Boolean expression associated with the divergence barrier instruction is true for at least
one thread in cach of a warp that reaches the divergence barrier instruction. Ifthe
condition is truc for at least one thread, GPU 12 pauses cxecution of each of the
plurality of the warps, sorts the warps based on the number of active threads, and then
swaps nactive threads with active threads to form new active/inactive warps. GPU 12
continues to swap tnactive threads with active threads until no inactive warps, having all
inactive threads, can be created. Once no inactive warps can be created, GPU 12
resumes execution of the warps. I GPU 12 forms a warp having all active threads,
GPU 12 may also tmmediately release from the quene and begin exccation of that warp.
18845] As one example in accordance with the techniques of this disclosure, GPU 12 of
computing device 2 may be configared fo perform a method comprising determining,
for each warp of a plurality of warps, whether a Boolean expression is true for a
corresponding thread of each warp, pausing exccution of each warp having a
corresponding thread for which the expression is true, and determining 8 number of
active threads for cach of the plurality of warps for which the expression is true. The
method may further comprise sorting the plorality of warps for which the expression is
true based on the number of active threads in each of the plurality of warps, swapping
thread data of an active thread of a first warp of the plurality of warps with thread data
of an nactive thread of a sccond warp of the plurality of warps, and resuming execution

of the at least one of the plurality of warps for which the expression is true.

WO 2015/050681 PCT/US2014/054966

i2
[8046] FIG. 2 i3 a block diagram illustrating a warp that exccutes on a plorality of
processing elements in accordance with the techniques of this disclosure. Figure 2,
illustrates a thread warp 40 that executes on a plurality of processing eloments 42A—42N
{PEs 42). PEs 42 may be a part of one or more shaders 22 (FIG. 1). A thread warp,
such as warp 40, may comprise a group of threads, which GPU scheduler 24 may assign
to a plurality of processing elements, ¢.g. PEs 42, for execution. Each PE of FIG. 2 may
comprise 4 single instraction multiple data (SIMD) unit, capable of exccuting a single
mstruction, such as a vector instruction, on mudtiple data values at a particular time.
PEs 42 may also support exccution of a single instruction on a single data value, such as
& single operation on a single floating poind value.
18647 Warp 40 also includes instructions 44 that a scheduler of GPU 12 assigns PEs 42
for execution. In some examples, instructions 44 may be stored in 2 conunand buffer.
Tostructions 44 may include a set of instructions of a kemnel that cach PE is configured
to execute. Program counter (PC) 5O indicates the current instruction that one or more
of PHs 42 are to execuote. Afier an instruction finishes execoting on PEs 42, the value of
PC 50 may be incremented to the address of the next instruction of kernel 280, Warp 40
also includes registers 46, Registers 46A—46N (registers 46) may be general purpose
registers capable of holding multiple data values or a single value. Registers 46 may be
“banked,” that 15, may load and store data for particelar PE. As an example, register
46A may be limited to storing data for PE 42A, and may not load or store data for other
PEs. 46 Each of registers 46 may supply data to and/or from one of PEs 42, which PEs
42 may then process. Warp 40 may also include warp context data 48, Warp context
data 4% may include data that is common or shared amongst the differcnt thrcads of
warp 40. As an example, context data 48 may include data of a predication register,
which may include data for cach thread that executes on PHs 42 of warp 40.
[8648] Warp 40, PEs 42, instructions 44, registers 46, context 48, and PC SO may
comprise a core or part of a core of shaders 22 of GPY 12, In various cxamples, warp
40 may comprise part of a shader, such as a goometry shader, pixel shader, and/or a
vertex shader, which may be part of a graphics pipeline of GPU 12, In some examples,
GPU 12 may feed the results genorated by a warp into another stage of the graphics
pipeling for additional processing.
16045} During execution of the kernel on warp 40, one or more of PEs 42 executes one

of instructions 44 located at the address mdicated by PC 50. Daring execuotion of an

WO 2015/050681 PCT/US2014/054966

i3
mstruction, PEs 42 may read one or more data values from registers 46. PEs 42 may
perform one or more operations on the data values, and store new values back to
regisiers 46, PHs 42 may execute flow control instructions, such as branches, junps,
gotos, ete. The flow countrol instructions may cause one PE, ¢.g. PE 42A to jump to a
different one of instructions 44 than PE 42B, i.c. the threads exccuting on the PEs may
become divergent due to different evaluations of flow control. Becausc there is a single
PC 50 however, PEs 42 may only execute one of instructions 44 indicated by PC 50 at
one particular at a given time.
18458} Once the threads of a warp diverge, PEs 42 may stiil only execute one
mstraction, indicated by the value of PC 50, at a particular time. To support divergent
execution, warp 40 maintains state, such as a bitmagk, that indicates which of PEs 42
should exccute the instruction at the address of PC 50, As an example, PE 42A and 428
may be scheduled 1o execute different jnstructions resulting from taking ditferent
branches of an “iftelse” statement. In this example, PE 42A executes a first mstruction
of instructions 44, and PE 42B executes a second, different instruction of instructions 44
at a later time. When PE 42A exccutes the first instruction, warp 40 sets the bitmask to
indicate that PE 42A is active during the execution of the instruction, while PE 42B is
mactive. PE 42A then continues to execute instructions 44 until the thread of PE 424
finishes execution or pauses executes divergence barrier mstruction and pauses
execution of the thread. Once PE 42 A finishes execution, warp 40 changes the bitmask
to indicate that only PE 42B is active, changes the value of PC 50 to the address of the
instriction that PE 428 should execute, and then PE 42B execcutes the instructions
specified by PC 50 until the thread pauses or finishes execution.
16051} As stated above, the technigues of this disclosure include a divergenee barrier
mstraction that, when executed, may improve performance of GPU 12 when threads of
multiple warps, such as warp 40, diverge. The divergence barrier instruction may
comprise part of an application programming interface (API), such as the DireetX 11

AP, the OpenGL AP OpenCL, and/or DirectCompute, etc. A program writien in such

ey

an APT may insert a call to a divergence barnier function into kernel 20 that causes GPL
12 excecute the divergence barrier instruction.

16052} Compiler / driver 18, or an oporating system may also insert calls to the
divergence barrier instruction into the code of kernel 20, In various examples, a user

may compile kernel 20 using compiler / driver 18, During compilation, compiler /

WO 2015/050681 PCT/US2014/054966

i4

driver 18 may analyze kernel 20 and determine at least one of a location the program
where divergence is likely (o occur, and a location that would significantly tmapact
performance, and may jnsert divergence barrier instructions at least one of those
locations. Compiler / driver 18 may nsert divergence barrier instractions into the
instructions of kernel 20 at run-time (also referred to as “bind time™) at least one of 2
location where thread divergence is likely fo occur, and a location that would
significantly impact performance.
[8053] One example of code that may be hikely to diverge, may be code of a raytracing
application, which is included below. In this example, a divergence barrier instruction
18 inserted, e.g. (by a compiler or a user) to reduce divergence when executing the the
following raytracing pseudocode:

i=0;

While (1< dynamic_lmit) | // dynamic_limit goes from 0 1o 30

divergence barrier(i% 1 0==0}; /climinate divergence after cach 10 loops
/ftraverse scene tree and do ray infersection calculation

;
[8054] The above pseudocode is an example of a loop that multiple threads and warps
of GPU 12 may execute. Each thread may execute the loop a differcnt muumber of times,
¢.g. based on a number of bounces that a ray makes in a raytracing scene. Theretore,
some threads may end after performing 8 fow ierations of the loop, while other threads
may continue execution of the loop for as many as thirty iterations of the loop.
(8055} In this example, GPU 12 executes the divergence barrier instruction during cach
loop iteration. The divergence barrier instruction inclodes a Boolean expression, which
the GPU evaluates with each iteration of the loop. GPU 12 only executes the operations
associated with the divergence barrier instruction, ¢.g. warp sorting and thread

compaction if the Boolean expression evaluates to true for at least one thread of a warp.

tenth iteration of the loop. When the Boolean expression is true for one thread of 2
warp, GPU 12 may swap threads from different warps in order to form now warps
having more active threads, a process referred to as “thread compaction.”

[88%6] Whenever the Boolean expression associated with a divergence barrier of one
warp thread evahiates to true, GPU 12 puts the warp associated with that thread, e.g.
warp 40 inte a queue or a bufter. Unce the warp is placed into the queue, GPU 12 stops

warp 40 from executing, and sorts the warps in the queue.

WO 2015/050681 PCT/US2014/054966

is
180571 Sorting a warp based on the munber of active threads of each warp is illustrated
in greater detail in FIG. 3 GPU 12 may sort each of the warps based on the number of
active threads in cach warp using an inscrtion sort, GPU 12 sorts the warps such that
warps with more active threads are sorted to the front of the queue, and warps with
fewer active threads are at the back of the queue.
[8058] Afier all warps cither added into the queuc or have completed without being
pauscd at the barrier, GPU 12 then performs thread compaction on warps in the queue,
1.e. swaps inactive threads from warps having a greater number of active threads with
waips having a smaller number of greater number of threads. GPU 12 continues to
swap threads trom warps having a greater number of active threads with warps having a
smaller number of active threads until GPU 12 cannot create an “mactive” warp., An
inactive warp is a warp having all inactive threads. GPU 12 may also swap per-thread
condext data 48 if any when swapping an inactive thread data with active thread. Unce a
“fully active warp” having all active threads is created by swapping threads, GPU 12
removes the fully active warp from the queue, and sets its state to active and resumes
exccution of the fully active warp from the current instruction. After GPU 12 finishes
thread compaction, all warps, including partially active warps and fully inactive warps,
are set to the ready or active state. Partially active warps are also resumed from cusrent
mstroction. Fully inactive threads can fast forward to the end of carrent control flow
block, and if no instructions follow the current controf block, the fully inactive warp can
finish execution inmmediately. The process of swapping threads among warps is
llustrated in greater detatl with respect to FIG 4.
18859] To swap an active thread with an inactive thread, GPU 12 may store the register
data stored of the nactive thread and the active thread in register swap buffer 52 in
some examples. GPU 12 then stores the register data of the formerly inactive thread
the corresponding register of the formerly active thread. GPU 12 also stores the register
data of the formerly active thread in the corresponding register of the formerly inactive
thread using multiplexer 54 (“MUX 547}, More particularly, for cach register
associated with cach thread, multiplexer 54 (“MUX 547} multiplexes between the stored
register values of the inactive and active threads, and stores the values back to the
register files of the warps that arc to be swapped. During the swap process, DBS 50

may also swap per-thread context data 48 from the first and second warps. In some

WO 2015/050681 PCT/US2014/054966

15
examples, GPU 12 may not utilize register swap buffer 52 to swap register data. Rather,
GPU 12 may swap regisier values in parallel rather than storing the values in a buffer.
16068] In some examples, cach warp may vefer to a sot of registers 46 associated with a
particular thread, referred to as a “bank,” osing a register pointer. GPU 12 may store a
mapping tabie of pointers. Each row or column of the table may correspond i a
particular warp, and each cntry within the row or column corresponding to the warp
{depending on the table layout) may store a pointer value that maps a particular thread
to a register bank within registers 46, GPU 12 may store the mapping of pointers to
register banks for the threads of a warp in context data 48. In some cxamples, if
registers 46 are referenced by per-thread register bank poioters, GPU 12 may swap per-
thread register data by stmply swapping the per-thread register bank pointer values of
two threads, rather than swapping cach of the corresponding register values of two
threads using register swap buffer 52, and mux 54,
(8061} In some examples, executing kemnels may frequently access global memory, e.g.
of GPU 12, andVor system memory 14 or perform other operations that have a high
amount of access time or latency. In this case, barrier operations, inchuding divergence
harricr operations, may pause too reany warps to hide these long latency oporations, and
execution performance may suffer. In order to speed the execution of kernels with long
latency operations, GPYU 12 may perform thread compaction inmmediately once the
number of active warps (the active warp pool} reaches a certain threshold.
8062} Some kernels may include a mixture of “traditional” barrier operations and
divergence barrier operations. Traditional barrier operations cause all warps that reach
the barricr to pause, and unlike divergence barriers are not associated with a Boolean
condition that GPU 12 evaluates at runtime. Traditional divergence barrier operations
also do not cause GPU 12 to perform thread sorting and thread compaction. For kernels
that mchide a mix of traditional barriers and divergence barriers, divergence barrier
instructions should yield to traditional barrier operations. In a kernel baving a mixture
of both traditional and divergence barriers, GPU 12 may perform thread compaction
without waiting for warps to pause due to executing a traditional barrier operation.
18863} Some kernels may alse inchide subrouting calls. Puring a subrouting call, a
GPU may swap threads data with a warp having a different call stacks associated with
the called subroutine. Subroutine calls may be problematic when divergence barrier

operations are included within such a call. For example, a thread of a first warp may

WO 2015/050681 PCT/US2014/054966

17
call a subroutine at a first hine, e.g. Hne 10, of a kernel. A second warp may call the
same subroutine at a later execution poud, e.g. line 20 of the kernel. The subroutine
includes a divergence barrier instruction.
{8664} Due to the execution intervening nstructions and/or other factors, the stacks of
the first warp and the sccond warp may differ from cach other when the first and second
warps cxecuie the divergence barrier instruction inside the subroutine. In one cxample
solution to the problem of having divergence barriers nside subroutines, GPU 12 may
prohibit having divergence barriers inside subroutines entirely. In another example
solution, GPU 12 may implement logic to ensure that warps cxecuting subroutines
having divergence barrier instructions have the same stacks when executing the
divergence barrier mstructions inside the subroutine calls.
18065} FIG. 3 is conceptual diagram illustrating sorting warps based on a number of
active threads within cach warp in accordance with the techniques of this disclosure.
The example of FIG. 3 illustrates a number of unsorted warps 80, GPU 12 sorts
unsorted warps 30 responsive to evaluating a Boolean expression associated with a
divergence barrier instruction as being equal to true, as described above. In the example
of FIG. 3, unsorted warps 80 include warps 82, 84, 86, 88, 90, 92, 94, 96, and 98, in
unsorted warps 80, active warps are illostrated with diagonal hashing. Inactive warp
threads are illustrated without any hashing.
[8666] GPU 12 sorts unsorted warps 82 based on the number of active threads in cach
warp. The resulting sorted warps are iHustrated in FIG. 3 as sorted warps 100. Of
unsorted warps 30, warp 82 has the most active threads (all active}, followed in order by
warp 90, warp 88, warp 94, warp 84, warp 98, warp 92, warp 86, and warp 96 (all
inactive). As illustrated in FIG. 3, GPU 12 sorts unsorted warps 80 using an insertion
sort. The result of the insertion sort based on the number of active threads in each warp
is illustrated in FIG. 3 as sorted warp 100, In various examples, GPU 12 may store
unsorted warps 80 in a queue, then sort the warps n-place in the gueue, which results in
sorted warps 100 being the gueue. In various examples, the queue may be implemented
as a linked list of pointers. Each pointer may point to a particular warp. To sort the
tinked Hst, GPU 12 may swap pointers associated with the warps in the linked list.
18067} FIG. 4 is a conceptual diagranm dlustrating techniques for swapping active
threads from one warp with inactive threads from another warp. In the example of FIG.

4, GPU 12 has previously sorted unsorted warps 80 into sorted warps 100, GPU 12

WO 2015/050681 PCT/US2014/054966

i8
swaps inactive threads with active threads of sorted warps 1034, GPU 12 swaps inactive
threads with active threads until no more “inactive warps,” .. warps with all inactive
threads, can be created. The process of swapping inactive threads with active threads is
referred to as “thread compaction.” The result of swapping the inactive threads with the
active threads of sorted warps 100 is illustrated as compacted warps 120,
[8068] GPU 12 swaps inactive threads with active threads based on the number of
active and inactive threads in the two warps. In the example of FIG. 4, GPU 12 swaps
threads from warps having more active threads with threads from warps having fewer
active threads. in FIG. 4, GPU 12 swaps threads of a leftmost warp baving an inactive
thread with a rightmost warp baving an active thread. GPU 12 countivnes to swap
threads from different warps from the outside in, 1.e. swapping inactive threads from
warps having more active threads with active threads from warps having more inactive
threads until no more inactive warps can be created. Scheduler 24 rosumes exccution of
any and all warps that still remain in the gueue at that time. Additionally, whenever the
warp at the head of the queue contains all active threads, scheduler 24 releases the warp
having all active threads located at the head of the queue and begins exccution of that
Warp.
16065] By swapping inactive threads with active threads, the techniques of this
disclosure form warps that have a larger number of active threads, as well as warps that
have all inactive threads. Warps baving a greater number of active threads increase the
utilization and throughput of GPU 12, Warps having all inactive threads may also
merease the throughput of GPU 12 because inactive warps may “fast forward” to the
end of the current control flow block or finish exccution if no instructions follow the
current conirol block. Thus, warps having all inactive threads may finish execution
immediately in some cases. Thus, GPU 12 may reduce execution time or stop exccution
of such an inactive warp and utilize the PEs associated with the inactive warp to execote
a different warp that scheduler 24 determines can execute on those PEs.
[8078] FIQG. 5 18 a conceptual diagrarn that illustrates techniques for handling multiple
divergence barrier instructions in accordance with the techniques of this disclosure.
Becausc a divergence barrier is often located in control flow blocks, which also have
associated 2 Boolean condition, warps may either enter the control flow branch where
divergence barrier 15 located if the GPU evaluates that the Boolean condition is true for

any thread of that warp, or the GPU may allow the warp to pass through the control

WO 2015/050681 PCT/US2014/054966

i9

flow block where divergence barrier 1s located and continue execution. Warps may pass
through a divergence barricr if they do not enter the control flow branch where the
harrier is focated or if the Booelean conditions of the divergence barrier are false for all
threads in the warp. In the example of FIG. §, GPU 12 exccutes kernel 20 that includes
multiple divergence barriers, referred to as “DB1,” “DB2)” and “DB3.7 As one
example, the kernel may be of a raytracing application. FIG. 5 illustrates the progress
of cight threads, threads 140, 142, 144, 146, 148, 150, 152, and 154 through the kernel.
The length of the bars of threads 140154 indicates whether each thread has reached
one of the divergence barricrs, DBI-DB3, or has finished execution entirely (“ENDY)
of the kernel.
186711 In the oxample of FIG. §, each of DB, DB2, and DB3 are located at different
points in the kernel. One cxampic pseudocode of sample that contains three divergence
barriers that correspond to DB, DB2, and DB3, is included below:

=0

while(i < dynamic lmit){ // dynamic limit goes from § to 30

divergence barricr(i%10==0); //DB1 for cach 10 loops

P
/1 do some work ...
Y
J
if {(dynamic_codition) |
divergence barrier{true); // BB2 for long control flow block
7/ do some heavy work
1
2
else |
divergence barrier(true); // DB3 for long flow control block
/1 do some heavy work
:
(8072 The kernel pseudocode includes multiple divergence barrier instructions, DB,
B2, and DB3. Each of the divergence barrier instructions cccurs in an branch
statement of loop statement. Warps executing kernel 20 may reach the different
divergence barriers depending on which control blow block they enter and the
evaluation of the Boolean conditions, ¢.g. barrier conditions associated with the
divergence barrier instructions. Threads executing kernel 20 may encounter DB1 first
in the execution of kernel 20, followed by DBZ or DB3.
8873} GPU 12 may bandle the process of sorting warps and perforoung thread

compaction similarly when nultiple divergence barvier instructions are present in a

WO 2015/050681 PCT/US2014/054966

20
kernel, as opposed to a single divergence basrier instruction. In particular, scheduler 24
may group warps together that reach the same divergence barrier into what is referred to
as a “compaction pool.” GPU 12 may compact the threads of warps in the compaction
pool, which have reached the same divergence barrier instruction.
18074} More particularly, GPU 12 associates 8 prefix associated with the divergence
barrier that a warp has reached with cach warp. As an example, warps that reach the
first divergence barrier may have a prefix “1,” warps that reach a second divergence
barrier may have a prefix “2,” ete. Bach warp 15 also assigned a second number, ¢.g. a
suffix, that indicates the number of active threads in that warp. As an example, if a
warp has three active warps, the warp is assigned the suffix “three” (3).
18673} The combination of the prefix and the suffix forms a mumber that GPU 12 uses
to sort the warps in the warp queue. As an example, there may be three threads in the
warp queue for GPU 12 to sort. A first warp bas reached divergence barrier “2,” and
has four (4) active threads. GPU 12 may assign the first warp the number “24” for
sorting purposes. A second warp may have reached divergence barrier “1,” and have
one {1} active thread, GPU 12 may assign the second warp the value “11.” A third
warp muay have reached divergence barrier “1,” and has 3 {three) active threads. GPU 12
may assign 13 as the sorting valae for the warp. GPU 12 sorts the warps in the queue
by valaes of each warp. The result of the sort may be that such that the third warp
{baving sort value 11) is at the head of the queue, the sccond warp (having sort value
13) 15 second in the queue, and the first warp (having sort value 24) s at the tail of the
gueue. Because the warps having sort values 11 and 13 have the same prefix, “1,” GPU
1Z may form a compaction group.
184776) Afier GPU 12 pauses all warps, and foserts the warps in the queue (or fimishes
execution if the warps are not paused on a basrier), GPU 12 performs thread compaction
on warps in the first warp group by swapping active threads with inactive threads. In
other words GPU 12 climinates ali divergence on the first divergence barrier before
climinating divergence ou subsequent divergence barriers, Le. GPU 12 climinates
divergence on divergence barrier DB before moving onto divergence barriers DB2,
DR3, cte.
186771 To climinate divergence associated with a particular divergence barrier, GPU 12
detaches a first warp group from the queue, forms a compaction pool and performs

compaction on the warps in the pool. As GPU 12 executes compaction, GPU 12

WO 2015/050681 PCT/US2014/054966

21

releascs warps from the compaction pool and resames the warps upon execution such
that GPU 12 may pause the released warps again upon reaching any subsequent
divergence barriers. Meanwhile, the queue containing the remaining warps coutinues to
recetve additional warps paused on any divergence barriers. GPU 12 may pause the
resumed warps if they reach barriers DB2, DB3, or oven DB again in the case of a
toop. GPU 12 adds the warps to the queue and sorts the warps with other warps inthe
queue as described above.

(86781 When all those warps are paused and inserted in the queus, .o, the quoue gets
full again, GPU 12 repeats the same compaction process on the current first group in the
queue, which may be for DB2 for example. Note that before GPU 12 comipletes the
previous compaction and releases all warps from previous compaction pool, GPU 12
may not have all warps in the queve and start another around of compaction. Thus,
there s not a conflict between consecutive compaction processes. Once all warps are
paused on same barrier, which forms only one group in the queuve, GPU 12 may detach
all of the paused warps from the queue and emply the queus.

186791 Because warps paused on a barrier at the front of the queue, for example DB,
are likely to hit subsequent barricrs, e.g. DBZ/DB3 later on, GPU 12 may utilize the
technique of compacting only the fivst warp group in order to be able to group as many
divergent warps together tnto compaction pools as possible when performing
compaction for subsequent barriers {¢.g. DBZ, DB3, ctc.). By compaciing onc barrier
at-a-time, this technique may improve efficiency of thread compaction by enabling
compaction of a greater nomber of warps in a compaction pool during compaction of
subsequent divergence barriers.

160868] In casc of multiple barriers, GPU 12 may begin performing compaction on
divergence barriers earlier, 1.¢. when gueue is not full, in same fashion and under the
same conditions described above. Those conditions may mchude, for example, a kernel
program coniains traditional barriers, or incurs frequent long latency operaticns.

(8081} Wheo multiple divergence barriers arc present in a kernel, and the Boolean
expression associated with the warp evaluates to true for at least one warp thread, GPU
1Z places the warp into a queuce and associates a prefix with the warp. The prefix
indicates the particular divergence bardicr that the warp has reached. As one example,
scheduler 24 may append a prefix such as “1” to an identifier associated with cach of

warps 140, 146, 148, 132, and 154 to indicate that those warps have reached divergence

WO 2015/050681 PCT/US2014/054966

22
barrier DB1. Scheduler 24 may add similar prefixes (e.g., “2,” “37) to warps 144 and
150 to indicate that those warps have reached divergence barricrs DBE3 and DB2,
respectively.
[8682] DBM 52 stores each of warps 140, 142, 144, 146, 148 150, 152 and 154 ina
queue. Warps 140-154 are initially unsorted and are associated with prefixes based on
which divergence barrier the warps have reached. DBM 52 initially sorts warps 140,
142, 144, 146, 148, 150, 152, and 154 based on the prefix associated with each of the
threads and groups the warps together inlo compaction groups based on the prefix
number.
16083] The group of warps having a prefix corresponding fo the earliest divergence
barrier, e.g. DB is referred 1o as the “compaction pool.” In the example of FIG. 1,
compaction pool 156 includes warps 140, 146, 148, 152, and 154, all of which have
reached divergence barrier DB, and therefore include the same prefix.
[8884] As described above, GPU 12 sorts the warps of compaction pool 156 based on
the prefix, which is derived based on the divergence barrier mumber reached, and the
suffix, which is related to the number of active threads in cach warp. After GPU 12
pauses all warps (except those that have finished execution) on barriers, and inserts the
paused warps into the queue, and sorts the warps in the queue, GPUI2 detaches the first
warp group from the quene, which represents the front-most barrier in the queue, and
forms a compaction pool with this group. GPU 12 then performs thread compaction by
swapping inactive threads of warps in the compaction pool having a larger number of
active threads with active threads of warps in the compaction pool having a larger
number of inactive threads until no more inactive warps can be created from the warps
of the compaction pool. Ouee GPU 12 finishes thread compaction of any new warps,
DBM 52 releases the warps from compaction pool 156 for execution.
[8085] At the same time, the queue may continue to receive warps that are paused on
any barriers after they resume on execution as described above. GPU 12 may sort the
newly received warp and sort them in the queue along with the existing warps inthe
gueue using insertion sort as described above. Oncee all the warps have either paused on
a divergence barrier and move into the queue, or finish execution and then exit, GPU 12
detaches current first warp group from the queuce to form a compaction pool, and

performs compaction on the compaction pool.

WO 2015/050681 PCT/US2014/054966

23
{80861 Some kernel applications may require even pacing of threads executing the
kernel. Kemels that are sensitive to the pace at which threads execute may also
complicate the use of divergence barriers. For example when executing such a pace-
sensitive kernel to which divergence barricrs have been added, some warps may reach
the divergence barriers and pause, while other warps may not be paosed at a divergence
barriers until nwch later in the instruction sequence of the keroel. Thus, divergence
barriers may cause uneven thread and warp pacing. To even thread pacing around a
first divergence barrier having a first associated Boolean condition, a programmer may
insert a second divergence barrier instruction having a second associated Boolean
cxpression that is the Boolean complement of the first Boolean condition.
186871 The following pseudocode illustrates this technique:
=0
while(i < dynaouc limit} {
I+t
/fto eliminate divergence
divergence barricr{diverg conditon==true};
/1 do some work
}
/fwarps do not hit barrier wait for those do
divergence barrier(diverg conditon==falsc};
// some heavy work.
[8888] In the above pseudocode, GPU 12 executes a loop that includes a first
divergence barrier instruction associated with a first Boolean condition. The code
includes a second divergence barrier instruction outside the loop that has a second
Boolean condition that is the complement of the first Boolean condition. Because the
second Boolean condition is the complement of the first, GPU 12 will pause each warp
at cither the first or second divergence barrier instruction, thereby ensuring consistent
thread pacing
[8089] IIG. 6 1s a flow diagram illostrating techniques for execuoting divergence barrier
instructions in accordance with the technigues of this disclosure. GPU 12 may be
configured to perform the method tHustrated in FIG. 6. Tn some examples, GPU 12 may
determine for each warp of a plurality of warps, whether a Boolean expression is true

for a corresponding thread of each warp (200). GPU 12 may pause execution of each

WO 2015/050681 PCT/US2014/054966

24
warp having a corresponding thread for which the expression is true (202), and
determine a number of active threads for cach of the plurality of warps for which the
cxpression is true (204). GPU 12 may sort the plurality of warps for which the
expression is true based on the number of active threads in each of the plurality of warps
{206). GPU 12 may then swap thread data of an active thread of a first warp of the
plurality of warps with thread data of an inactive thread of a second warp of the
plurality of warps (208} and resume execution of the at least one of the phuraliny of
warps for which the expression is trae (210}
188981 In various cxamples, the method of FIG, 6 may further comprise swapping per-
thread context data 48 for the plurality of threads for which the expression is true before
resuming execution of the at least one of the plarality of warps. The thread data of the
active thread may comprise register data of the active thread, and the thread daia of the
nactive thread roay comprise register data of the inactive thread. In some exanmples,
sorting the phwality of warps may comprise sorting the plurality of warps using an
msertion sort.
18691} In some examples, GPU 12 may further determine, for cach warp of the plurality
of warps for which the expression is true, an associated divergence barrier of a plurality
of divergence barriers, and group each warp of the plarality of warps into a pharality of
compaction pools based on the associated divergence barrier of each warp. To sort
the pharality of warps, GPU 12 may be further configured to sort the plorality of warps
comprises sorting the plurality of warps belonging to a same one of the plorality of
compaction pools. In varions examples, the first warp and the second warp comprise
waips belong to the same one of the plurality of compaction pools, and to resume
exccution of the at least one of the plurality of warps for which the condition 18 true,
(P 12 may be configured to resume execution of at least one warp of the same one
compaction pool.
(8092} In some examples, GPU 12 may further assigo a prefix to cach of the plarality of
warps based on the divergence barrier associated with each of the plurality of warps,
and to group the plurality of warp into the at least one compaction pool, GPU 12 may
group the plorality of warps into at icast one compaction pool based on the assigned
prefix.
16093] In still other examples, GPU 12 may further determine that the plurality of warps

imchides 2 warp having all active threads; and resuming execution of the warp having all

WO 2015/050681 PCT/US2014/054966

25
active threads. In yet another example, to sort the plurality of warps for which the
expression is true, GPU 12 may be configure to store the plorality of warps in a queue,
sort the plurality of warps for which the expression is true based on the number of active
threads, and store the sorted plurality of warps in the quese.
(8094} . In vet another example, compiler / driver 18 may be further configured to
determing at least one of a location where divergence is bikely to occur and a location
that would significantly impact performance within kernel 20 that executes on a
plurality of warps. Comptler / driver 18 may insert a divergence barner instruction into
the kernel at the at least one location. The Boolean expression of the method of FIG. 6
may be associated with the divergence barrier instruction in this example.
16695} The techniques described in this disclosure may be implemented, at least in part,
in hardware, software, firmware or any combination thereof. For example, various
aspects of the described techniques may be implemented within one or more processors,
melading one or more microprocessors, digital signal processors (D5Ps), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any
other equivalent integrated or discrete logic circuiiry, as well as any combinations of
such components. The term “processor” or “processing circutiry” may generally refor
to any of the foregoing logic circuitry, alone or in combination with other logic circuitry,
or any other equivalent cirenitry such as discrete hardware that performs processing.
18696} Such hardware, software, and firmware may be implemented within the same
device or within separate devices to support the various operations and fimetions
described in this disclosure. In addition, any of the described units, modudes or
components may be impicmented together or separately as discrete but mnteroperable
fogic devices. Diepiction of different features as modules or units is intended to
highlight different functional aspects and does not necessarily imply that such modules
or units must be realized by separate hardware or software components. Rather,
functionality associated with one or more modules or units may be performed by
separate hardware, firmware, and/or software components, or integrated within common
or separaie hardware or software components.
188971 The techniques described in this disclosure may also be stored, embodied or
encoded in a computer-readable medium, such as a computer-readable storage medimmg
that stores instructions. Instructions embedded or encoded in a computer-readable

medium may cause one of more processors o perform the technigues described herein,

WO 2015/050681 PCT/US2014/054966

26

e.g., when the instructions are executed by the one or more processors. Computer
readable storage media may include random access memory (RAM), read only memory
(ROM}, programmable read only memory (PROM), erasable programmable read only
memory (EPROM), electronically erasable programmable read only memory
{EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, 8 cassctie, magnetic
media, optical media, or other computer readable storage media that is tangible.

{68098} Computer-readable media may include computer-readable storage media, which
corresponds to a tangible storage medim, such as those listed above. Computer-
readable media may also comprise communication medis including any medivm that
facilitates iransfer of a computer program from one place to another, e.g., according to a
commumnication protocel. In this manner, the phrase “computer-readable media”
generally may correspond to (1) tangible computer-readable storage media which is
non-transitory, and (2} a non-tangible computer-readable commmunication medium such
as a transitory signal or carrier wave.

(88891 Various aspects and examples have been described. However, modifications can
be made to the structure or techniques of this disclosure without departing from the

scope of the following claims.

WO 2015/050681 PCT/US2014/054966

WHAT IS CLAIMED IS
1. A method performed by at least one programmable processor, the method
comprising:

determining, for cach warp of a plurality of warps, whether a Boolean
expression is true for a corresponding thread of cach warp;

pausing execution of cach warp baving a corresponding thread for which the
expression is frue;

determining a muanber of active threads for each of the plurality of warps for
which the expression is troe;

sorting the plurality of warps for which the expression is true based on the
number of active threads in cach of the plurality of warps;

wapping thread data of an active thread of a first warp of the plurality of warps

with thread data of an fnactive thread of a second warp of the plurality of warps; and

resuning execution of the at least one of the plurality of warps for which the

expression is trae.

2. The method of claim 1, the method further comprising:
swapping per-thread context data for the pharality of threads for which the

expression is true before resoming execution of the at least one of the phuirahity of warps.

3. The method of claim 1, wherein the at least one programmable processor

comprises a graphics processing unit (GPU).

4. The method of claim 1, wherein the thread data of the active thread comprises
register data of the active thread, and
wherein the thread data of the inactive thread comprises register data of the

inactive thread.

5. The method of claim 1, wherein sorting the plurality of warps comprises sorting

the plurality of warps using an inscrtion sort.

WO 2015/050681 PCT/US2014/054966

28

6. The method of claim 1, further comprising:

determining, for cach warp of the phurality of warps for which the expression is
frue, an associated divergence barrier of a plurality of divergence barriers;

grouping cach warp of the plurality of warps into a plurality of compaction pools
based on the associated divergence barvier of each warp,

wherein sorting the plorality of warps comprises sorting the plurality of warps
belonging to a same one of the phurality of compaction pools,

wherein the first warp and the second warp comprise warps belong to the same
one of the plurality of compaction pools, and

wherein resuming execution of the at least one of the plurality of warps for
which the condition is true comprises resuming cxecution of at least one warp of the

same one compaction pool.

7. The method of claim 6, firther comprising:

assigning a prefix to each of the phaality of warps based on the divergence
barrier associated with cach of the phirality of warps,

wherein grouping the plurality of warp info the at least one compaction pool
comprises grouping the plurality of warps into at least one compaction pool based on

the assigned prefix.

8. The method of claim 1, wherein the swapping the thread data of an active thread
with thread the data of an inactive thread continues until ne inactive warps can be

formed.

9. The method of claim 1, further comprising:
determining that the plorality of warps inclades a warp having all active threads;

and resuming execution of the warp having all active threads.

WO 2015/050681 PCT/US2014/054966

29
10 The method of claim §, wherein sorting the phurality of warps for which the
expression is tree comprises:
storing the plurality of warps in a queus;
sorting the plurality of warps for which the expression is true based on the
number of active threads; and

storing the sorted plurality of warps in the queue.

1L The method of claim 1, further comprising:

determining at [cast one of a location where divergence s likely to vccur and a
focation that would sigoificantly impact performance within a kemnel that cxecutes on a
plurality of warps; and

mserting & divergence barricr instruction into the kernel at the at least one
tocation,

wherein the Boolean expression is associated with the divergence barrier

mnstiruction.

12, Awn apparatus comprising:

means for determining, for cach warp of a plorality of warps, whether a Boolean
expression is true for a corresponding thread of each warp;

means for pausing execution of cach warp having a corresponding thread for
which the expression is true;

means for determining a mimber of active threads for cach of the plurality of
warps for which the expression is true;

means for sorting the plurality of warps for which the cxpression is true based on
the number of active threads n each of the plurality of warps;

means for swapping thread data of an active thread of a first warp of the plurality
of warps with thread data of an inactive thread of a second warp of the plurality of
warps; and

means for resuming execution of the at least one of the plurality of warps for

which the expression is true.

WO 2015/050681 PCT/US2014/054966

39
13. The apparatus of claim 12, the apparatus forther comprising:
means for swapping per-thread context data for the plurality of threads for which
the expression is true before resuming execution of the at least one of the plurality of

Warps.

14. The apparatus of claim 12, wherein the apparatus comprises a graphics

processing unit (GPU).

15. The apparatus of claim 12, wherein the thread data of the active thread
comprises register data of the active thread, and
wherein the thread data of the inactive thread comprises register data of the

inactive thread.

16. The apparatus of claim 12, wherein the means for sorting the plurality of waips

comprises means for sorting the plurality of warps using an insertion sort.

17. The apparatus of claim 12, further comprising:

means for determining, for cach warp of the phirakity of warps for which the
expression is true, an associated divergence barrier of a plurality of divergence barriers;

means for grouping cach warp of the plurality of warps into a plurality of
compaction pools based on the associated divergence barrier of cach warp,

wherein the means for sorting the plurality of warps comprises means for sorting
the plurality of warps belonging 1o a same onc of the plurality of compaction pouls,

wherein the first warp and the second warp comprise warps belong to the same
one of the plarality of compaction pools, and

wherein the means for resuming execution of the at least one of the phurality of
warps for which the condition is frue compriscs means for resuming cxecution of at

least one warp of the same one compaction pool.

WO 2015/050681 PCT/US2014/054966

31
18. The apparatus of claim 17, further comprising:
mecans for assigning a prefix to cach of the plurality of warps based on the
divergence barrier associated with cach of the plurality of warps,
wherein the means for grooping the plurality of warp into the at least one
compaction pool compriscs means for grouping the plurality of warps into at least one

compaction pool based on the assigned prefix.

19. The apparatus of claim 12, wherein the means for swapping the thread data of an
active thread with thread the data of an inactive thread contimies unti! no inactive warps

can be formed.

20. The apparatus of claim 12, further comprising:

means for determining that the plurality of warps includes a warp having all
active threads; and

means for resuming execution of the warp having all active threads.
21. The apparatus of claim 12, wherein the means for sorting the plurality of warps
for which the expression is true comprises:

means for storing the plurality of warps in a queae;

means for sorting the phurality of warps for which the cxpression is true based on
the number of active threads; and

means for storing the sorted plurality of warps in the queue,

]

The apparatus of claim 12, further comprising:
means for determining at least one of a location where divergence is Hikely to
occur and a location that would significantly impact performance within a kernel that
executcs on a phlurality of warps; and

means for inserting a divergence barricr instruction into the kernel at the at least
one location,
wherein the Boolean expression is associated with the divergence barrier

instruction.

WO 2015/050681 PCT/US2014/054966

32

23. A non-transitory computer-readable storage medium comprising nstructions
that, when executed, cause at least one programmable processor to:

determine, for cach warp of a plurality of warps, whether a Boolean expression
is true for a corresponding thread of each warp;

pause execution of each warp having a corresponding thread for which the
cxpression is frue;

determine a nunnber of active threads for each of the plurality of warps for which
the expression is true;

sort the plurality of warps for which the expression is true based on the number
of active threads in each of the plurality of warps;

swap thread data of an active thread of a first warp of the plurality of warps with
thread data of an inactive thread of a second warp of the plurality of warps; and

resume execution of the at least one of the plurality of warps for which the

gxpression is true.

Z24. An apparatus comprising:

a memory; and

at least one programmable processor configured to:

determine, for cach warp of a plurality of warps, whether a Boolean expression
is true for a corresponding thread of cach warp;

pause execution of each warp having a corresponding thread for which the
expression is trae;

determine a number of active threads for cach of the plurality of warps for which
the expression is true;

sort the plurality of warps for which the expression is truc based on the number
of active threads in cach of the plorality of warps;

wap thread data of an active thread of a first warp of the plurality of warps with

thread data of an inactive thread of a second warp of the plurality of warps; and

resume execution of the at least one of the plurality of warps for which the

gxpression is true.

WO 2015/050681 PCT/US2014/054966

33
25. The apparatus of claim 24, wherein the at least one programmable processor is
further continued to:
swap per-thread context data for the plurality of threads for which the

expression is true before resoming execution of the at least one of the phurality of warps.

26. The apparatus of claim 24, whercin the apparatus comprises a graphics

processing unit (GPU).

27. The apparatus of claim 24, wherein the thread data of the active thread
comprises register data of the active thread, and

wherein the thread data of the inactive thread comprises register data of the

inactive thread.

28, The apparatus of claim 24, wherein the at least one programmable processor is
further configured to:

determine, for each warp of the plurality of warps for which the expression is
true, an associated divergence barrier of a plurality of divergence barriers;

group each warp of the pharality of warps into a plarality of compaction pools
based on the associated divergence barrier of each warp,

wherein to sort the plurality of warps, the at least one programmable processor is
further configured to sort the plurality of warps comprises sorting the plurality of warps
belonging to a same one of the phurality of compaction pools,

wherein the first warp and the second warp comprise warps belong to the same
one of the plarality of compaction pools, and

wherein to resume execution of the at least one of the plurality of warps for
which the condition is true, the at least one programmable processor is configured to

resume execution of at least one warp of the same one compaction pool

WO 2015/050681 PCT/US2014/054966

34

29. The apparatus of claim 28, wherein the at least one programmable processor is
further configured to:
assign a prefix to each of the plurality of warps based on the divergence barrier
associated with each of the phurality of warps,
wherein the instructions that cause the at least one programmable processor 1o
group the plarality of warp into the at least one compaction pool comprise instructions
that cause the at least one programmable processor to group the plurality of warps into

at least one compaction pool based on the assigned prefix.

30. The apparatus of claim 24, wherein to sort the plurality of warps for which the
expression is true, the at least one programmable processor 1s configured to:

store the plurality of warps in a queue;

store the plurality of warps for which the expression 1s true based on the number
of active threads; and

store the sorted plurality of warps in the queue.

PCT/US2014/054966

WO 2015/050681

1/6

i
AYOWIIN WILSAS

44 ve
SY3AvHS ¥31NA3HOS
(4 91
ndo ndo
0 A
(14
RELEE N
i v

sl
AIARIA / ¥3THdINOD

I "Old

WO 2015/050681 PCT/US2014/054966

2/6

40

Ve

INSTRUCTIONS PC
44 50
|
CONTEXT
DATA
48
PE PE PE
42A 42B | ... 42N
46A 46B 46N
REGISTERS
46
MUX
54
¥ T)

REGISTER SWAP BUFFER
52

FIG. 2

WO 2015/050681

98

96

/-94

/-92

90

88

86

— 84

/-82

86

/-92

— 84

/-94

—~ 82

PCT/US2014/054966

Y
100

FIG. 3

WO 2015/050681

wv

4/6

PCT/US2014/054966

v
120

FIG. 4

PCT/US2014/054966

WO 2015/050681

G "Old

anN3

€dad

5/6

14°1"

¢SL—8vL— 9vL— OVl

951
100d NOILOVdINOD

vSlL—¢sl cm—..\wﬁ—. 143 ﬁﬁr.\mﬁr.\cﬁr

WO 2015/050681

FIG. 6

6/6

PCT/US2014/054966

DETERMINE WHETHER A BOOLEAN EXPRESSION IS
TRUE FOR AT LEAST ONE THREAD IN EACH OF A
PLURALITY OF WARPS

/200

l

PAUSE EXECUTION OF EACH OF THE PLURALITY OF
WARPS FOR WHICH THE EXPRESSION IS TRUE

/202

l

DETERMINE A NUMBER OF ACTIVE THREADS FOR
EACH OF THE PLURALITY OF WARPS FOR WHICH
THE EXPRESSION IS TRUE

/204

l

SORT THE PLURALITY OF WARPS FOR WHICH THE
EXPRESSION IS TRUE BASED ON THE NUMBER OF
ACTIVE WARPS

/206

l

SWAP THREAD DATA OF AN ACTIVE THREAD WITH
THREAD DATA OF AN INACTIVE THREAD

/208

l

RESUME EXECUTION OF THE AT LEAST ONE OF THE
PLURALITY OF WARPS FOR WHICH THE CONDITION
IS TRUE

/210

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/054966

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/52
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WILSON W.L. FUNG ET AL:

Control Flow",

2007),

407-420, XP055092511,
DOI: 10.1109/MICRO.2007.30
ISBN: 978-0-76-953047-5

figure 9

"Dynamic Warp
Formation and Scheduling for Efficient GPU

40TH ANNUAL TEEE/ACM INTERNATIONAL
SYMPOSIUM ON MICROARCHITECTURE (MICRO

1 January 2007 (2007-01-01), pages

sec 4: page 5 left col lines 7-30, right
col lines 6-8, 11-13, 24-29, 31-32;

1-30

_/__

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

18 December 2014

Date of mailing of the international search report

08/01/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Balevic, Ana

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/054966

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A MINSOO RHU ET AL: "CAPRI: Prediction of
compaction-adequacy for handling
control-divergence in GPGPU
architectures",

COMPUTER ARCHITECTURE (ISCA), 2012 39TH
ANNUAL INTERNATIONAL SYMPOSIUM ON, IEEE,
9 June 2012 (2012-06-09), pages 61-71,
XP032200022,

DOI: 10.1109/ISCA.2012.6237006

ISBN: 978-1-4673-0475-7

sec 1,2,2.1,2.2,3,5.1

1-30

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report

