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(57) Abstract: Data scrambling techniques implemented externally to a flash memory device are disclosed which can be used in
concert with flash memory on-chip copy functionality operating internally to the flash device, thus supporting high performance
copying operations. All the data stored in the flash may be scrambled, including headers and control structures. Robust file system
& operation may be achieved, including the capability to tolerate a power loss at any time, and yet be able to relocate data internally
@\ within the flash without having to de-scramble and then re-scramble the data. An exemplary hardware based solution has little or no
impact on overall system performance, and may be implemented at very low incremental cost to increase overall system reliability.
The data scrambling technique preferably uses a logical address, such as logical block address or logical page address, rather than

a physical address, to determine a seed scrambling key.
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SYSTEM, METHOD AND MEMORY DEVICE PROVIDING DATA SCRAMBLING
COMPATIBLE WITH ON-CHIP COPY OPERATION

TECHNICAL FIELD

The present invention relates generally to flash memory storage systems, and more
specifically to such a system in which data to be written to the flash memory is scrambled to

help reduce certain data pattern-dependent sensitivities and disturbance effects.

BACKGROUND ART

A “flash file system” provides a system of data storage and manipulation on a flash memory
device that allows the device to emulate a magnetic disk. A flash file system enables
applications or operating systems to interact with a flash memory device not using physical
addresses but rather using logical addresses (sometimes called virtual addresses). An
intermediate software layer between the software application and the physical memory
system provides a mapping between logical addresses and physical addresses. Some
systems that implement logical-to-physical address mapping are described in U.S. Patent
No. 5,404,485 to Ban, in U.S. Patent No. 5,937,425 to Ban, and in U.S. Patent

No. 6,591,330 to Lasser, all three of which patents are incorporated herein by reference in

their entirety.

NAND flash memories are inherently susceptible to specific data patterns. For example,
programming many cells on the same bit line to the same data state, or many cells on the
same word line to the same data state, may cause program disturb effects which may alter
the cell charge distribution and shift one or more cells to a different data state. Such fixed
repetitive data patterns are not uncommon in bit patterns frequently written to flash
memories, particularly those written to certain blocks, such as control blocks, within a flash
file system. Such control blocks are used by the file system, for example, to keep track of
logical-to-physical address mapping information, and other information about the various
data blocks. At times, programming even a few word lines to specific data states may also
cause such disturb effects. These disturb effects, as well as others, are particularly
problematic in memory arrays storing multiple bits per cell (i.e., MBC arrays), also known
as “multiple level cell” (MLC) arrays, and these effects can cause one or more cells to

generate a read error as a function of specific user data patterns. Certain program disturb
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effects are described in U.S. Patent No. 7,023,739 to Chen, et al., (the ‘739 patent), the

disclosure of which is incorporated herein by reference in its entirety.

To address this issue, techniques have been devised using system level data scrambling or
randomization to eliminate the particularly problematic data patterns in the user data and
control blocks before programming into a flash device. In this context, the act of
scrambling or randomizing data refers to breaking up the bit patterns associated with the
memory cell states along memory bit-lines and word-lines. However, such data scrambling
techniques implemented outside the NAND memory are incompatible with the use of Flash
Memory On-Chip-Copy or Copy-Back operations, and cannot achieve the system
performance that would otherwise be attainable. Such an on-chip-copy operates on chunks
of data to autonomously relocate data from one physical memory location to another
physical memory location. This provides higher performance and requires less power
consumption than is achievable without using on-chip copy operation, in which data is read
from the device and communicated off-chip to a companion device (e.g., a flash controller
device), then re-written into a different physical location of the NAND memory. However,
an on-chip copy operation performed on data that is scrambled based on a physical memory
address will unintentionally associate the scrambled data with a new key/seed, and results in
the inability to properly descramble the data using the incorrect new key/seed to retrieve the

original intended data.

DISCLOSURE OF INVENTION

The present invention provides for data scrambling techniques implemented externally to a
flash memory device which can be used in concert with flash memory on-chip copy
functionality operating internally to the flash device, thus supporting high performance
copying operations. Many modern flash memory sub-systems implement “flash file
systems” which frequently utilize garbage collection techniques, and can benefit greatly
from such on-chip copy functionality. In addition, the techniques may be implemented to
provide, for example, a hardware based solution which has little or no impact on overall
system performance, and which may be implemented at very low incremental cost, to

provide a cost-effective solution for increasing overall system reliability.

The data scrambling technique preferably uses a logical address, such as a logical page

address, rather than a physical page address, to determine a seed scrambling key. The
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logical page address is determined from the logical block address of the data, and thus does
not restrict the physical placement of the scrambled data in memory. As a result, on-chip
copy operations may be used. Since the logical page address of the data remains unchanged
even if the data is relocated by an on-chip copy operation, the same seed scrambling key
may be used to descramble the data. This seed scrambling key is used to scramble the user
data in a particular portion of the block, but as additional data is written across a single word
line, and as additional data is written along bit lines, the scrambling key is deterministically

varied to generally “randomize” the data states.

The invention also provides for robust file system operation, including the capability to
tolerate a power loss at any time, and be able to re-initialize a flash memory and reconstruct
the mapping of the various blocks stored therewithin, to properly descramble and read back
data in order to identify data types and data relocations due to on-chip-copy operations. All
the data stored in the flash may be scrambled, including headers and control structures. The
scrambling key information may be stored in the page headers to enable extraction of the
scrambling key itself, from the scrambled data, during initialization. In some embodiments,
different scrambling methods are used to scramble information in control structures to

support initialization and debug processes.

In certain embodiments, the data scrambling can be done effectively by hardware, firmware,
or software using a simplistic method involving XOR logic and a deterministic number of
Scrambling Keys by bitwise rotating a predetermined initial Scrambling Key Seed, thereby
creating a sequence of revolving scrambling keys, each with an assigned key number. The
scrambling keys (i.e., “scrambler” keys) can be deduced for any logical group of data with
knowledge of the first scrambling key number used in the logical group, which may be

referred to as the Starting Key Number (SKN).

SKN'’s can be associated with the logical group memory address and used for scrambling
data. The SKN itself, as well as other header (or overhead) information, can be scrambled
in the same method as user data bits. In some embodiments, the Flash Controller Firmware
(FW) or System Host Software need only set the SKN at the beginning of each memory
transaction. Within the transaction, the scrambler may be configured to automatically

generate subsequent Scrambling Keys as additional groups of data are written or read.
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ECC encoding can be applied to the scrambled SKN bits separately or applied together with
the associated scrambled user data bits. ECC encoded scrambled SKN bits and ECC
encoded scrambled user data bits may be then stored in the Flash Memory. ECC
generation/correction can be done either before or after scrambling/descrambling. The ECC
parity bytes may or may not be scrambled, even though the header and data portions are

scrambled.

In some embodiments, the Flash Controller Firmware or System Host Software having prior
knowledge of Scrambler Key generation mechanism and data scrambling method can: (a)
mimic the Data Scrambler operations; (b) efficiently build a table (e.g., 32 entries) forward
mapping desired scrambled SKN’s to logical addresses (e.g., using the default seed); and (c)
efficiently build a table with reverse mapping of logical addresses to desired scrambled

SKN’s.

During system initialization, an exemplary system may perform the following to identify the
data types and logical grouping locations stored in Flash Memory: (a) Flash Controller
Firmware (FW) or System Host Software generates the forward and reverse mapping tables
for the desired scrambled SKN’s; (b) with the Hardware Scrambler disabled, the first sector
of each memory block is scanned to extract the first scrambled SKN stored in that memory
block (e.g., within the first several bytes of each sector); (c) using the extracted scrambled
SKN, the Flash Controller Firmware or System Host Software looks up the reverse mapping
table to determine the unscrambled SKN; (d) with the Hardware Scrambler enabled, the
first sector is read again but descrambled using the unscrambled SKN as the key
(alternatively, the FW may use the SKN and perform the descrambling of the header
without reading the data again); and (¢) the memory block type is identified and stored in
the Flash Controller RAM.

After system initialization, the Flash Controller Firmware or System Host Software may
control the assignment of physical memory locations for storing logical groups of data, use
the logical group address as the scrambling and descrambling key/seed, and use the forward
mapping table of desired scrambled SKN’s to store the scrambled SKN associated with the
logical group in the Flash Memory. The Flash Controller Firmware or System Host
Software may perform memory read operations using the logical group addresses as the

key/seed for descrambling the user data bits. Logical sector data may be physically
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relocated on the Flash Memory by on-chip-copy operation(s) at any time. The controller is

aware when an on-chip copy is performed, and can re-map the data accordingly.

In one aspect the invention provides a method for storing information in a non-volatile
memory which, in an exemplary embodiment, includes determining a starting key based
upon a seed key and a logical page address associated with a group of data; randomizing the
group of data using a deterministic sequence of keys corresponding to the starting key; and

storing the randomized group of data into a physical page of the non-volatile memory.

In another aspect the invention provides a method for storing information in a non-volatile
memory which, in an exemplary embodiment, includes determining a page offset number
using a logical block address of a memory page; determining a starting key based upon a
seed key and the page offset number; scrambling page data using a deterministic sequence
of scrambling keys corresponding to the starting key; storing into a header of a physical
page of the non-volatile memory an identifier corresponding to the page offset number; and

storing the scrambled page data into the physical page.

In another aspect the invention provides an apparatus which, in an exemplary embodiment,
includes a non-volatile memory, and a memory controller configured to determine a starting
key based upon a seed key and a logical page address associated with a group of data;
randomize the group of data using a deterministic sequence of keys corresponding to the
starting key; and store the randomized group of data into a physical page of the non-volatile

memory.

The methods of the present invention may be implemented by software, by hardware, or by
a combination of both. Such software may be software executed on a host computer which
reads and writes the data (e.g., within a software device driver supporting the storage
device), or may be firmware executed within a memory controller that interacts with the
host computer and controls the memory media. Such hardware may be implemented either
within the memory controller or within the memory media, irrespective of whether the
memory controller and the memory media reside on two separate dies or reside on a
common die. All of the above configurations and variations are within the scope of this

invention.
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The foregoing summary is intended to help introduce the invention, and should not be
viewed as limiting, as the invention is defined by the claims. Moreover, the inventive
concepts and embodiments described herein are specifically contemplated to be used alone
as well as in various combinations. Accordingly, other embodiments, variations, and
improvements not described herein are not necessarily excluded from the scope of the

invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous objects, features, and
advantages made apparent to those skilled in the art by referencing the accompanying

drawings.
Fig. 1, labeled prior art, is a schematic diagram of a NAND memory array.

Figs. 2A, 2B, and 2C are diagrams depicting various programmed memory states in a

single-bit-per-cell memory, and in a multiple-bit-per-cell memory.

Figs. 3A and 3B depict conceptually a scrambler block and a descrambler block in

accordance with the present invention.
Fig. 4 is a diagram of an exemplary sequence of 8-bit scrambling keys.
Fig. 5 is a table depicting an exemplary sequence of 32-bit scrambling keys.

Fig. 6 is a diagram depicting the use of different scrambling keys for different words of a

page, and for different pages.
Fig. 7 is a diagram illustrating a sector boundary falling in the middle of a scrambling key.

Fig. 8 is a table illustrating exemplary values of several scrambling parameters relevant to

cach of 16 sectors within a physical page.
Fig. 9 is a diagram of another exemplary sequence of 8-bit scrambling keys.

Fig. 10 is another diagram illustrating a sector boundary falling in the middle of a

scrambling key.
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Fig. 11 is a table illustrating exemplary values of several scrambling parameters relevant to

cach of 4 ECC pages within a physical page.

Fig. 12 is a table illustrating exemplary SKN values for each of 4 ECC pages within a
physical page, and for each of 32 physical pages.

Fig. 13 is a diagram depicting an exemplary header format for a single-sector ECC page.
Fig. 14 is a diagram depicting another exemplary header format for a 2K Byte ECC page .

Fig. 15 is an exemplary page mapping table in accordance with some embodiments of the

present invention.

Fig. 16 is an exemplary SKN table in accordance with some embodiments of the present

invention.

Fig. 17 is a flowchart of exemplary operation of a scrambler in accordance with some

embodiments of the present invention.

Fig. 18 is a diagram of an exemplary scrambler block in accordance with some

embodiments of the present invention.
Fig. 19 is a table depicting memory cell states of unscrambled repeating OxFF data patterns.

Fig. 20 is a table depicting memory cell states of scrambled data corresponding to that
shown in Fig. 19, after scrambling in accordance with certain embodiments of the present

invention.

The use of the same reference symbols in different drawings indicates similar or identical

items.

MODES FOR CARRYING OUT THE INVENTION

Referring now to Fig. 1, a schematic diagram is shown representing a portion of a typical
NAND memory array 100. The portion shown may represent a two-dimensional array
having only one plane of memory cells, or may represent one level of three-dimensional
memory array having more than one plane of memory cells stacked on top of each other.

The exemplary NAND string 102 includes thirty-two memory cell transistors connected in
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series, each gated by a respective one of a plurality of thirty-two word lines 111
(individually labeled WLO, WL1, ..., WL30, WL31). The NAND string 102 also includes a
block select device 114 for coupling one end of the NAND string to a bit line 103 in
accordance with a block select signal BSO conveyed on node 113, and further includes a
second block select device 116 for coupling the other end of the NAND string to a shared

bias node 101 in accordance with a block select signal BS1 conveyed on node 115.

Each NAND string 102, 104, 106 is disposed within the same block 124 within the memory
array, and each is respectively coupled to its associated bit line 103, 105, 107. The memory
cells in the NAND strings (i.¢., those gated by one of the word lines) typically incorporate a
floating gate structure, or may incorporate a charge storage dielectric layer between the gate
and the underlying channel, so that the threshold voltage of the memory cell device may be
altered by programming and erasure. The various block select devices (e.g., 114, 116) are
typically normal MOS devices (i.c., non-programmable), but in certain memory
technologies may be fabricated identically to the memory cell devices. While this
exemplary NAND array 100 shows thirty-two word lines in a NAND block, other numbers
of word lines per block are possible, such as 16, 64, 88, or any other value, although a

number equal to an integral power of two is typically implemented.

Thus, a typical NAND memory cell array may be generalized as having a memory cell
represented by the intersection of each bit-line and word-line. Traditionally, each memory
cell stores one bit of information, which is accomplished by supporting two states of the
memory cell. One state represents a logical "0" and the other state represents a logical "1".
Frequently, the two states may be implemented by having a floating gate situated above the
cell's channel (the area connecting the source and drain elements of the cell's transistor), and
having two valid states for the amount of charge stored within the floating gate. Typically,
one state is with zero charge in the floating gate and is the initial unwritten state of the cell
after being erased (commonly defined to represent the "1" state) and another state is with
some amount of negative charge in the floating gate (commonly defined to represent the "0"
state). Having negative charge in the gate causes the threshold voltage of the cell's
transistor (i.e. the voltage that has to be applied to the transistor's control gate in order to
cause the transistor to conduct) to increase. It is then possible to read the stored bit by
checking the threshold voltage of the cell — if the threshold voltage is in the higher state then

the bit value is “0” and if the threshold voltage is in the lower state then the bit value is “1”.
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Actually there is no need to accurately read the cell’s threshold voltage — all that is needed is
to correctly identify in which of the two states the cell is currently located. For that purpose
it is enough to make a comparison against a reference voltage value that is in the middle
between the two states, and thus to determine if the cell’s threshold voltage is below or

above this reference value.

Fig. 2A shows graphically how this works. Specifically, Fig. 2A shows the distribution of
the threshold voltages of a large population of cells. Because the cells in a flash device are
not exactly identical in their characteristics and behavior (due, for example, to small
variations in impurities concentrations or to defects in the silicon structure), applying the
same programming operation to all the cells does not cause all of the cells to have exactly
the same threshold voltage. (Note that, for historical reasons, writing data to a flash
memory is commonly referred to as “programming” the flash memory.) Instead, the
threshold voltage is distributed. Cells storing a value of “1” typically have a negative
threshold voltage, such that most of the cells have a threshold voltage close to the value
shown by the left peak 120, with some smaller numbers of cells having lower or higher
threshold voltages. Similarly, cells storing a value of “0” typically have a positive
threshold voltage, such that most of the cells have a threshold voltage close to the value
shown by the right peak 122, with some smaller numbers of cells having lower or higher

threshold voltages.

It is increasingly common for memory cells to store more than 1 bit of information, using a
technique conventionally called "Multi Level Cells" or MLC for short. However, this
nomenclature is misleading, because the previous type of flash cells also has more than one
level: they have two levels, as described above. Therefore, the two kinds of flash cells are
referred to herein as “Single Bit Cells” (SBC) and “Multi-Bit Cells” (MBC). The
improvement brought by the MBC flash is the storing of two (or more) bits in each cell. In
order to simplify the explanations, the two-bit case is emphasized herein. It should however
be understood the present invention is equally applicable to flash memory devices that
support any number of bits per cell. In order for a single memory cell to store two bits of
information, the memory cell must be able to be programmed in one of four different states.
As the cell's "state" is represented by its threshold voltage, it is clear an MBC cell should
support four different valid ranges for its threshold voltage. Fig. 2B shows an exemplary
threshold voltage distribution for a typical MBC cell. As expected, Fig. 2B has four peaks
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130, 132, 134, 136, cach corresponding to one state. As for the SBC case, cach state is
actually a range and not a single number. When reading the cell's contents, all that must be
guaranteed is that the range that the cell’s threshold voltage falls within is correctly
identified. An example of an MBC flash device is described in U.S. Patent No. 5,434,825 to

Harari, the disclosure of which is incorporated herein by reference in its entirety.

When encoding two bits in an MBC cell by the four states, it is common to have the left-
most state, peak 130, (typically having a negative threshold voltage) represent the case of
both bits having a value of "1". In the discussion below, the following notation is used — the
two bits of a cell are called the "lower bit" and the "upper bit". An explicit value of the bits
is written in the form ["upper bit" "lower bit"], with the lower bit value on the right. So the
case of the lower bit being "0" and the upper bit being "1" is written as "10". It should be
understood that the selection of this terminology and notation is arbitrary, and other names
and encodings are possible. Using this notation, the left-most state represents the case of
"11". The other three states are typically assigned by the following order from left to right —
"10","00", "01". An example of MBC NAND flash device using such encoding is
described in U.S. Patent No. 6,522,580 to Chen, the disclosure of which is incorporated
herein by reference in its entirety. See in particular Fig. 8 of the Chen patent. The four such
states may be referred to simply as E, A, B, and C. It should be noted though that there is
nothing limiting about this assignment of the states, and that any other ordering can be used.
When reading an MBC cell's content, the range that the cell’s threshold voltage falls within
must be identified correctly; but in this case this cannot be achieved by comparing to one

reference voltage, and several comparisons may be necessary.

Another state assignment is depicted in Fig. 2C, which may be referred to as LM Mode. In
this mode, there are four peaks 140, 142, 144, 146 (in order from left to right) corresponding
respectively to memory states “117, "01", "00", "10". These four states may again be
referred to simply as E, A, B, and C. The lower page is typically programmed first, and if a
“0” is to be programmed, results in an intermediate LM state, labeled as peak 148. When
the upper page is to be programmed, if the upper bit is a “0”, either the E state 140 is
programmed to the A state 142 , or the LM state 148 is programmed to the B state 144. If
the upper bit is a “1”, then the LM state 148 is programmed to the C state 146.

This LM Mode provides several advantages over the Conventional mode. First, there may

be less programming stress since the programming time in the LM mode may be less than in
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the conventional mode (¢.g., programming a memory cell in the conventional mode from
the E state 130 to the C state 136 requires a long time to shift the threshold voltage of the
memory cell, and stresses neighboring cells the entire time, whereas each of the threshold
shifts in the LM mode are smaller in magnitude), and therefore less program disturb, and
greater reliability. In addition, if using only the lower page, the separation between the E
state 140 and the intermediate LM state 148 is larger than the separation between the E state
130 and A state 132 in the conventional mode, thereby resulting in greater signal margins in
the memory cell. Lastly, the width of peak 148 can be wider than the width of peak 132 in
the conventional mode, which allows lower page programming to occur more quickly since
the resulting final threshold value need not be controlled as exactingly as in the

conventional mode.

MBC devices provide a great advantage of cost — using a similarly sized cell an MBC
device stores two bits rather than one. However, there may also some drawbacks to using
MBC flash — the average read and write times of MBC memories are longer than of SBC
memories, resulting in lower performance. Also, the reliability of MBC is lower than SBC.
This can easily be understood — the differences between the threshold voltage ranges in
MBC are much smaller than in SBC. Thus, a disturbance in the threshold voltage (e.g.
leaking of the stored charge causing a threshold voltage drift, interference from operations
on neighboring cells, etc.) that may have gone unnoticed in SBC because of the large gap
between the two states, might cause an MBC cell to move from one state to another,
resulting in an erroneous bit. The end result is a lower quality specification of MBC cells in
terms of data retention time or the endurance of the device to many write/erase cycles. Thus
there may be advantages to using both MBC cells and SBC cells, depending on the

application's requirements.

While the above explanations deal with floating-gate flash memory cells, there are other
types of flash memory technologies. For example, in the NROM flash memory technology
there is no conductive floating gate but an insulating layer trapping the electric charge. The
present invention is equally applicable for all flash memory types, even though the

explanations are given in the context of floating-gate technology.
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Program Disturb

There are several sources of errors in flash memory devices. One specific source of error is
typically called “Program Disturb” or “PD” for short. The PD effect causes cells that are
not intended to be written, to unintentionally move from their initial left-most state to some
other state. (The explanations herein assume the common practice, also used in Figs. 2A,
2B, and 2C, of drawing the threshold voltage axis such that its left direction represents
lower values. This is an arbitrary practice and should not be construed to limit the scope of
the invention in any way). Referring to the two-bit-per-cell example of Fig. 2C, cells that
are in the leftmost state corresponding to bit values of “11” (or in other words, to the cell’s
erased state) and which are supposed to remain in such state, are found to be in the next-to-
leftmost state of “10”, resulting in one bit out of the two bits stored in the cell to be
incorrect. In some cases, especially in cells storing more than two bits per cell and having
more than four states, PD effects might turn out not only as a move from the leftmost state
to its immediately adjacent state, but also as a move from the leftmost state to more distant
states, and also as a move from a state that is not the leftmost state to another state to its
right (i.e. having a higher threshold voltage). However, the case described first above of
moving from the leftmost state to its immediately adjacent neighboring state is the most
common, and will be used herein for all examples and explanations without limiting the

generality of the methods of the present invention.

The reason for the PD effect is easy to understand when reviewing the voltages applied to
the cells of a NAND flash device when programming a page. When programming a page of
cells, a relatively high voltage is applied to the word line connected to the control gates of
the cells of the page. What decides whether a certain cell threshold voltage is increased as a
result of this control gate voltage is the voltage applied to the bit line connected to that cell.
Cells that are not to be written with data have their bit line connected to a relatively high
voltage level that minimizes the voltage difference across the cell. Cells that are to be
written have their bit line connected to low voltage, causing a large voltage difference
across the cell, and resulting in the cell’s threshold voltage getting increased, thus moving

the cell to the right on the voltage axis of Figure 2C and causing the cell’s state to change.

However, even though cells that are not meant to be written have a lower voltage difference
across them than cells that are meant to be written, they still have some voltage difference

across them. To reduce the voltage across these non-programmed cells even more, their
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channels may be “boosted” to a voltage closer in magnitude to the programming voltage
applied to the selected word line, and thereby reduce the voltage difference across such
memory cell devices. This is done by biasing other non-selected word lines in the memory
block to an intermediate voltage closer to the “relatively high” bit line voltage
corresponding to the cells that are not meant to be written. This biases the channel of these
cells to a higher voltage, which is boosted to an even higher voltage when the selected word
line is pulsed to a high programming voltage. However, since the charge trapped in the
programmed cells along the selected word line partially negates the voltage applied to those
non-selected word lines, and the overall boosting depends on the data (i.e., memory state)
programmed to previous cells along the same bit line. For example, cells programmed to
the “C” state (i.e., maximum charge stored in the memory cell) have the highest threshold
voltage of such memory cell devices. If other cells along the bit line were previously
programmed to the “C” state, this reduces the boosted voltage that is achieved, thus
increasing the voltage across the memory device that is not to be written, and which causes

unintentional programming.

In addition, if the page to be written has some cells that are written to high threshold
voltages (for example, to the rightmost state), then the voltage difference across non-
programmed cells gets higher. This is because all control gates of all cells of the page get
the same voltage applied to them, and the higher the threshold voltage to be reached, the
higher is that voltage. Therefore the need to apply higher control gate (i.e. word line)
voltage to some cells, results in higher voltage difference at the non-programmed cells.
Even though the cells are designed with the goal of not being effected by such anticipated
voltage difference, in actual NAND flash devices such voltage differences stress the cells
and might result in some of them changing their state even though this was neither intended

nor desired.

To summarize the above explanation, PD is an effect in which when programming a page of
cells, some cells that are intended to remain in their present memory state end up in another
state, resulting in bit errors when reading those cells. Unfortunately, typical real-life user
data is not random. Measurements on real-life user files show that the various possible
states of the cells do not have equal probability to occur. As the leftmost state of the cells is

the default value of cells not being written to, this state is the most frequent. This is easy to
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understand — a section of memory not initialized or not used within a file, very often

corresponds to cells in the erased state.

As a result, in real-life applications the problem of PD errors is more severe than what is
expected based on random data patterns statistical calculations. Relatively many cells will
be in the erased state that is the most vulnerable state to PD errors, and therefore more PD
errors than are predicted by random data distribution models will actually occur. The
present invention deals with reducing the number of errors due to PD effects by
manipulating the user data and randomizing the actual sequences of voltage levels or states

programmed into the flash.

NAND Flash Concepts Introduction

To better understand the remaining description, several concepts and structures of an

exemplary NAND flash memory device and flash file system are now introduced.

A block is the smallest chunk of a NAND flash memory that can be erased as a single unit.
In reference to Fig. 1, the block includes the memory cells associated with the word lines
selectable by a pair of block select transistors (i.c., the word lines between the
corresponding block select lines), and the bit lines whose memory cells are coupled to these
same physical word lines. A physical page is the smallest chunk of a NAND flash memory
that can be written (i.e., programmed) as a single unit. In reference to Fig. 1, a physical
page may include all memory cells along a single word line, and more than one physical
page may correspond to the memory cells of a single word line. For example, in an MBC
memory, a single word line may include a lower page and an upper page, and may further
include lower and upper pages corresponding to even bit lines, and lower and upper pages
corresponding to odd bit lines, for a total of four physical pages for each physical word line.
A meta-page is one or more physical pages that are linked together to form a larger page.
All physical pages within the meta-page are read/written in parallel to achieve higher

performance.

An ECC page includes one or more sectors protected by a single cluster of ECC redundancy
bytes. For example, in a single-sector ECC page, each sector is protected by its own ECC
redundancy bytes, whereas in an ECC page having four 512-byte sectors, each 2KB of data
information is protected by a single cluster of ECC redundancy bytes. Each ECC page may
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include a header of several bytes (e.g., 2, 6, 14, or some other number of bytes), in addition

to the data.

The logical address space (e.g., of the host) is divided into equal sized logical groups of
sectors. Each logical group contains exactly the number of sectors that will fit in a meta-
block. A meta-block is a physical group of sectors that is erasable as a unit, and can be used
to store a logical group of data. Two sector types are both stored in meta-blocks: data
sectors for storing host data, and control sectors for storing firmware data. Control sectors
are typically not accessed by the host. At a given time, a given meta-page typically contains

only data or control sectors (e.g., except for scratch pad blocks, which may contain both

types).

A logical to physical address translation is performed to relate a host's logical address to a
corresponding physical address in flash memory. The lowest logical sector address (i.c.,
LBA) of the logical group does not need to be the first sector of the meta-block to which it
is mapped. In other words, there may be an offset between the lowest address of a logical
group and the lowest address of the meta-block to which it is mapped. A page tag is used to
identify any offset, such as identifying the starting logical sector address of the data stored
in the first physical sector of the meta-block.

The memory management system allows for update of a logical group of data by allocating
a meta-block dedicated to recording the update data of the logical group. When the host
starts to write data in a logical group, an update block is opened. The update meta-block
records update data in the order received and has no restriction on whether the recording is
in the correct logical order as originally stored (sequential) or not (non-sequential). Initially,
such an update block is opened as a sequential update block, but if any of the writes are non-
sequential, the block is converted to a non-sequential (i.e., “chaotic’’) update block.
Eventually the update meta-block is closed to further recording. One of several processes
will take place, but will ultimately end up with a fully filled meta-block in the correct order
which replaces the original meta-block. In the chaotic case, directory data is maintained in

the non-volatile memory in a manner that is conducive to frequent updates.

Data of a complete logical group of sectors is preferably stored in logically sequential order
in a single meta-block. In this way, the index to the stored logical sectors is predefined.

When the meta-block has in store all the sectors of a given logical group in a predefined
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order it is said to be "intact." As for an update block, when it eventually fills up with update
data in logically sequential order, then the update block will become an updated intact meta-
block that can readily replace the original meta-block. On the other hand, if the update
block fills up with update data in a logically different order from that of the intact block, the
update block is a non-sequential (i.c., “chaotic”) update block and the out-of-order segments
must be further processed so that eventually the update data of the logical group is stored in
the same order as that of the intact block. In the preferred case, it is in logically sequential
order in a single meta-block. The further processing involves consolidating the updated
sectors in the update block with unchanged sectors in the original block into yet another
update meta-block. The consolidated update block will then be in logically sequential order
and can be used to replace the original block. Under some predetermined condition, the
consolidation process is preceded by one or more compaction processes. The compaction
process simply re-records the sectors of the chaotic update block into a replacing chaotic
update block while eliminating any duplicate logical sector that has been rendered obsolete

by a subsequent update of the same logical sector.

Mappings between logical groups and physical groups (meta-blocks) are stored in a set of
tables and lists distributed among the non-volatile flash memory and RAM within a flash
controller. An address table is maintained in flash memory, containing a meta-block
address for every logical group in the memory system. In addition, logical to physical
address records for recently written sectors are temporarily held in RAM. These volatile
records can be reconstructed from block lists and data sector headers in flash memory when
the system is initialized after power-up. The hierarchy of address records for logical groups
includes the open update block list, the closed update block list in RAM and the group
address table (GAT) maintained in flash memory.

An open update block list is a list in controller RAM of data update blocks which are

currently open for writing updated host sector data. The entry for a block is moved to the
closed update block list when the block is closed. The closed update block list is a list in
controller RAM of data update blocks which have been closed. A subset of the entries in

the list is moved to a sector in the Group Address Table during a control write operation.

The Group Address Table (GAT) is a list of meta-block addresses for all logical groups of
host data in the memory system. The GAT contains one entry for each logical group,

ordered sequentially according to logical address. The nth entry in the GAT contains the
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meta-block address for the logical group with address “n.” It is preferably a table in flash
memory, comprising a set of sectors (referred to as GAT sectors) with entries defining meta-
block addresses for every logical group in the memory system. The GAT sectors are
located in one or more dedicated control blocks (referred to as GAT blocks) in flash

memory.

Such flash file system concepts are more fully described in U. S. Patent No. 7,139,864 to

Bennett, et al., the disclosure of which is incorporated herein by reference in its entirety.

Scrambling

From a logical point of view, the data stored in the memory cell array can be represented as
a two-dimensional (2D) bitmap with the bit-lines on one axis and the word-lines on the
other. With this in mind, effective data pattern scrambling fundamentally accomplishes two
things: (1) manipulate data bits appropriately to alter the programmed pattern of memory
cell states; and (2) minimize the alignment of memory cells programmed to the same states

from word-line to word-line, and also from bit-line to bit-line.

Figs. 3A and 3B depict conceptual block diagrams for an exemplary Data Pattern Scrambler
150 and Descrambler 170, respectively, also referred to herein simply as a Scrambler. Such
a Scrambler is based on a simple encryption method using exclusive-OR (XOR) logic and a
known key. The simple XOR logic provides for scrambling data using the key, and then
descrambling to get the original data back using the same key. In Fig. 3A, unscrambled data
from a host is conveyed on bus 152 to an XOR block 156. In addition, a scrambling key is
conveyed on bus 154 to the XOR block 156, which then performs a bit-wise XOR operation
to generate the scrambled data conveyed on bus 158. The key generator 168 receives a
clock signal 160, a seed key on bus 162, and a starting key number SKN on bus 164
(explained below), from which it generates the scrambling key on bus 154. In Fig. 3B,
scrambled data from memory is conveyed on bus 172 to an XOR block 176. The
scrambling key is conveyed on bus 174 to the XOR block 176, which then performs a bit-
wise XOR operation to generate the unscrambled data conveyed on bus 178. As before, the
key generator 188 receives a clock signal 180, a seed key on bus 182, and a starting key
number SKN on bus 184, from which it generates the descrambling key on bus 174. Even
though shown as separate blocks, the XOR block and Key generator block may be shared

and used for both scrambling and descrambling, with appropriate steering of the various
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input and output busses. Bit-wise XOR operation between Host data and Scrambler Keys

enables simple descrambling with the known Seed and Key number used to scramble.

Consequently, the core of the Scrambler 150 and Descrambler 170 essentially becomes the
generations of the Keys. Instead of regarding Keys as numbers, such keys may be viewed
as strings of 1’s and 0’s. Controlling the bit ordering and the number of 1’s and 0’s in the

strings is one of the underlying principles to generating suitable Scrambling Keys.

A set of bit strings can be easily generated by rotating an initial bit string, refer to as the
Seed, one bit at a time until the pattern of bits starts repeating. This can be accomplished by
employing a fixed length shift register to create a sequence of rotating Keys with the Key
values being controlled by the initial Seed value. For example, an 8-bit shift register can
produce up to 8 unique Keys. An exemplary set of rotating 8-bit keys (left direction) are
shown in Fig. 4. In this example, KeyO is followed by Keyl, which is followed by Key2,
etc. Of course, an initial bit string alternatively could be rotated to the right to generate a
sequence of rotating keys. In some embodiments, a serial shifter may be used, while in

other embodiments other shifters, such as a barrel shifter, may be used.

Referring now to Fig. 5, an exemplary set of rotating 32-bit keys are shown, which are
rotated to the left to produce 32 distinct scrambling keys. The initial key, KeyO0, takes on
the value of the seed key, which is 0x695334C6. Other seed keys are contemplated, and
may be empirically determined. The seed key preferably provides a good amount of
“randomness” of its bit pattern, and also preferably balances the number of 1’s and 0’s in
the key. Each successive key is generated by a single-bit left rotation of the preceding key.
For example, Key1 is generated by left-shifting Key0 by one bit position. The 32 different
key are also numbered, as shown in the table, and a given key number represents the seed
key rotated by a number of bits equal to the key number. For example, Key21 represents
the seed key, Key0, rotated by 21 bits to the left. This key may be generated by single-bit
rotating the seed key 21 times (e.g., once per clock), or may be generated in a single clock

cycle using a barrel shifter, or possible by other techniques.

Thus, in certain embodiments, the Scrambler Key may be generated from an initial Seed
Key which may be rotated one bit at a time to create successive Scrambler Keys. The Seed
preferably is a minimum of 32 bits long (although any other length may also be used), and

preferably has a predetermined hardware default value, which firmware (FW) may change
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during initialization (as further described below). Every 32 bits of data are XOR’ed with a
Scrambler Key, after which the next Key is automatically generated (e.g., by left-rotating
the current Key to create the next Key) to be used with the next 32 bits of data. Only the
Seed, which is the initial Key, needs to be set by the FW because subsequent Keys are
automatically generated for each new cycle (e.g., by toggling the CLK signal shown in

Figs. 3A and 3B).

The Keys are logically XOR’ed with chunks of data (e.g., 32 bits of data), thus the number
of 1’s and 0’s in the Keys causes data bits to toggle, which directly translates to memory
cell states being scrambled across the word-lines. After 128 bytes (32 Keys * 32 bits / 8
bits/byte) from the beginning of the memory page, the key number will wrap around and the
scrambling pattern will repeat itself. This is visually depicted in Fig. 6, which shows
several memory pages 208, 216, 224, etc. of a memory block 200. The first 32-bit word
(labeled 202) of the first memory page 208 is scrambled using Key0. As additional words
in the page 208 are written, the key number is incremented as shown, so that the thirty-
second word (labeled 204) is scrambled using Key31. The next word written (labeled 206)
is scrambled using Key0, as the 32-keys are reused for each subsequent group of 32 words
in the page. Since the purpose of the Scrambler is to avoid fixed patterns rather than to
encrypt the data, re-using the keys after 128 bytes is sufficient “randomness” to break up
memory cell states across a word line (i.e., from bit line to bit line). However, other
randomization techniques may be employed, as noted below, that may be even more

“random.”

To break up memory cell states going down the bit-lines, each page starts using a different
key. The first 32-bit word (labeled 210) of the next memory page 216 is scrambled using
Keyl. As additional words in the page 216 are written (or read), the key number is
incremented, as before, so that the thirty-first word (labeled 212) is scrambled using Key31,
and the thirty-second word (labeled 214) is scrambled using Key0. The subsequent word
215 scrambled using Key 1 since, as before, the 32 different keys are reused for each

subsequent group of 32 words in the page.

The identification of the first key to be used for each page may be provided by a Starting
Key Number (SKN), which acts as an index or offset from a fixed reference point (i.e.,
KeyO0 or the Seed). The index is changed on every logical page transition to create a

staggered bit pattern produced from the bit strings of the rotating Keys. Such a logical page
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address transition occurs when transitioning from one word line to the next word line, and
may also occur within a single word line (e.g., in an MLC cell having an upper page and a
lower page stored in the memory cells of a given word line, and also if a word line has more
memory cells than the number of bits in a page). The ability to offset the starting Key
results in a bitmap-like pattern of walking 0’s and 1°s that when XOR’ed with the data,
produces a striping effect across the memory cell array. Thus, the Scrambler Keys serve the
purpose of toggling bits. The rotation of the Keys serves to shift the bit patterns across the
word lines (and across different pages). The Starting Key Number serves the purpose of
shifting the bit patterns going down the bit-lines, while setting the correct Key according to

the appropriate page.

To help determine which Key should be used for a given byte within a page (i.c., along a
word line), we introduce a D-Word Offset Number, which counts from 0 to 31, starting with
the first word of a page, then repeats for subsequent groups of 32 words. In other words, the
D-Word Offset Number counts from 0 to 31 over and over, and indicates which key to use,
relative to the first key in the page (which may be Key0, as in page 208, or another initial
key, as shown in the other pages 216, 224, etc.) This D-Word Offset Number is derived
from the Column Offset of the first sector to be accessed within a physical page, and may be

calculated by the following formula:

Column _ Start
Key Length(=4)’

D —Word offset = round _ down{mod[ No. of keys(= 32)],0}

Column_Start is the first data byte, including header and data bytes (but excluding ECC
bytes unless such ECC bytes are also scrambled) in the physical page from which we start
reading or to which we start writing. It is calculated by the sum of the header length (e.g., 6
bytes, 14 bytes, or other suitable value) + data field length (e.g., 512 bytes, 2048 bytes, or
other suitable value) of all the previous sectors (or, for some embodiments, ECC pages) in
the physical page. The Key Length is the length, in bytes, of each Scrambling Key. The
“mod” function (i.e., “modulo” function) returns the remainder of the first argument divided
by the second argument, while the “round down” function returns the first argument
rounded to the number of digits indicated by the second argument. Since here the indicated
number of digits is 0, the function rounds down to an integer. A numeric example is

described below in relation to Fig. 10.
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The D-Word Offset is typically set to zero for the first sector of each page, but is typically
not zero for the other sectors in the physical page, since the sector lengths are frequently are
not an even multiple of 128 bytes (i.e., 4-byte keys, times 32 keys = 128 bytes). All pages
preferably start with a zero column offset regardless of the meta-page configuration (i.e., the

number of physical pages in the meta-page).

As described above, the SKN may be viewed as indicating which of the 32 keys should be
used for the first word in the physical page. In some embodiments, the SKN may be
calculated by taking the lower 5 bits of the sum of the Page Offset Number and the D-Word

Offset Number, as shown in the following equation:

SKN =mod[(SKN Page Offset + SKN DWord Offset)32]

The Page Offset Number is preferably set to either the lowest 5 bits of the physical page
address within the block or the lowest 5 bits of the logical page address within the block.
This relationship may be seen in Fig. 6 by observing, for example, that the SKN of the first
sector within each page (where D-Word Offset = 0) is identical to the Page Offset number.
If the size of each sector within a page is an even multiple of 128 bytes, then each sector
would start with the same SKN. However, frequently sector sizes are chosen such that each

sector within a page has a different SKN.

For certain sector sizes that are not an even multiple of 4 bytes, the first byte of a new sector
may fall within a 32-bit word (and thus within a 32-bit Scrambling Key). We introduce a
Byte Offset number to indicate the starting byte position within a given 32-bit Scrambler
Key. This is necessary to address keys spanning across sector boundaries (or alternatively,
across ECC page boundaries), which is an important consideration in determining the
correct SKN when performing a memory read with a non-zero column offset (i.e. starting
read in the middle of a memory page). The byte offset is typically set to zero for the first
sector of each page. The byte offset for other sectors depends on the sector size (or ECC
page size), excluding ECC, and sector number or ECC page number. The Byte Offset

number may be calculated by the following formula:

Byte offset = rnod(Column _ Start,Key Length(= 4))
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As before, the Column_Start is the first data byte (including header and data bytes,
excluding ECC bytes) in the physical page from which we start reading or to which we start
writing. Thus, the Byte Offset counts from 0 to 3 over and over for increasing
Column_Start values. Said differently, the Byte Offset value indicates which of the four
bytes of a Scrambling Key corresponds to a given byte within a physical page.

A Byte Offset Number example with 32-bit Keys is shown in Fig. 7. The first sector,
Sector 0, is 518 bytes long (reflecting, for example, a 6-byte header and a 512-byte data
portion). Since this is not an even multiple of 4 bytes, this sector ends in the middle of a
Scrambling Keyl. (Recall from Fig. 6 that byte 512 corresponds to the first byte in Key0,
since this byte is an even multiple of 128 bytes.) The first byte in Sector 1 corresponds to
byte 2 within Keyl. Sector 1 thus begins with a Byte Offset value = 2, and a D-Word Offset
value = 1. This may be seen in Fig. 8, which shows the SKN calculation for a page
including 16 sectors. The first two pages are indicated in the table, corresponding to Page
Offset Values of 0 and 1. The first sector in each page includes a 6-byte header, and
additional sectors within each page ecach include a 2-byte header. The first two lines of this
table correspond to the example graphically shown in Fig. 7. In particular, the second line
indicates a D-Word Offset value = 1, and a Byte Offset value = 2. It may also be
appreciated that the SKN of sectors within a given page are not all the same, as described
above. Moreover, the SKN of the first sector of each page is identical to the Page Offset

number, as described above.

In certain other embodiments, subsequent Scrambler Keys may be generated in other ways
than a simple single-bit rotation of a starting key, to improve the “randomness” of the
scrambling keys. For example, each subsequent key may be derived from an initial number
or Seed which is rotated multiple times to create additional Scrambler Keys. After each
XOR operation, the next key number is calculated (e.g., calculating by how many bits to
left-rotate the key) and the key is rotated accordingly. By so doing, the Scrambling Keys
are less repetitive, and thus XOR the data with a more random-like data pattern than is
achievable using a simple single-bit rotation. An exemplary calculated key sequence of 8-
bit keys is shown in Fig. 9. Each Scrambling Key is a left rotation of the original seed by
the Key Number, i.e. Key®6 is the seed Key0 left-rotated by 6 bits, but as shown, each
subsequent key is not merely a single bit shift of the previous key. In this example, KeyO is

followed by Key6, which is followed by Key3, etc.
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As before, however, 32-bit keys (or larger) are more suitable than 8-bit keys. In such an
example, the Starting Key Number (SKN) may be recursively calculated according to the

following formulas:

K, = sced rotated left by SKN,
SKNpi;=[SKN, + C + P+ (SKN, + P)] >>5

Where: C =DWord Offset & 0x1f
P = Page Offset Number & 0x1f
SI(N() =P

The Page Offset Number, the D-word offset number, and the Byte Offset Number are
calculated as before, using the formulas shown above. The “>>” operator is a right non-
circular shift function, resulting here in a “divide by 32 without remainder” function. The
“&” operator is a bit-wise AND operator. An example illustrating the calculation of the D-
Word Offset Number and the Byte Offset Number, for a memory having 2062-byte ECC
pages, is shown in Fig. 10. Each ECC page includes a 14-byte header and four 512-byte
sectors, for a total of 2062 bytes.

A partial page may be accessed without necessarily accessing the entire page. Setting the
SKN and calculating the correct Key provides for correct reading or writing from any sector
in the Card without having to read/write any additional sectors to set the scrambling Key.
Preferably, the FW sets the Starting Key Number and configures the Scrambler
appropriately for scrambling/descrambling starting at any ECC page in the memory card.

As further explained below, the SKN is set at the beginning of each chunk according to
cither the logical block address (LBA) address or the physical location of the first sector to
be written/read. The FW sets the SKN in addition to setting the Page Offset Number, the D-
Word Offset number and the Byte Offset Number registers. After setting the SKN, the key
generator (e.g., hardware, or firmware) can calculate the correct scrambling Key for the

particular sector that is about to be read or written.

Whenever an operation starts in the middle of a page, the Page Offset, D-Word Offset, and
the Byte Offset registers may be set by FW according to the table shown in Fig. 11. This
table reflects the example, introduced above, of 2062-byte ECC pages each including four
sectors preceded by a 14-byte header, and other sizes are, of course, clearly contemplated.

The D-Word Offset and the Byte Offset registers are preferably cleared when setting the
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Page Offset register (since most reads and writes start at the beginning of a page), so they
should be set after the Page Offset Register is set. After these registers are set, FW can then
set the SKN value according to the table shown in Fig. 12. Such a table is preferably hard-
coded in the FW so that an SKN may be quickly determined without having to perform the
recursive calculation for each memory access. Alternatively, the table may be created by
the FW during initialization by recursively calculating the corresponding SKN for each of
the four ECC pages within each of the thirty-two physical pages (i.e., corresponding to each
value of the Page Offset Number). By doing the lengthy recursive calculations once, and
saving the table, the FW can quickly determine an SKN without having to perform the

recursive calculation for each memory access.

Whenever a sequential operation (read/write) crosses a page boundary and is about to access
the next page, the SKN has to be adjusted to that of the next page. Setting the Key value at a
physical page crossing within a meta-page (such as at plane or die boundary) is preferably
done by hardware (HW), by manually clearing the D-Word Offset and the Byte Offset
Registers while keeping the Page Offset value as it is. Setting the Key value at a meta-page
crossing is preferably done automatically by HW when directed by FW by writing a ‘1’ in
the Page Increment bit of an SKN Auto Increment Register, which will initiate the key
adjustment. The Auto Page Increment bit is preferably set between meta-page transactions,

and preferably is automatically cleared after the Key adjustment by HW.

Within a memory system or controller, the Scrambler may be placed between the buffer
management unit (BMU) and the Flash interface (+ ECC). During write transfers, the
scrambling can occur after multiplexing the fill pattern data, which allows the fill data to be
scrambled as well. ECC check bit generation may be performed after scrambling (on the
scrambled data), and need not pass through the Scrambler. There is no issue here, as the
ECC bits themselves are already random, so there is no need to scramble them again. Also,
given the data structure design, duplicate sector data patterns (including the header) will

rarely be repeated on consecutive pages.

During read transfers, descrambling occurs after the mis-comparison counting (which may
be employed to also detect “erased” sectors and “bad block™ markers, as noted below).
ECC error detection may be performed prior to descrambling, but correction is preferably
performed after such descrambling. This eliminates the need to buffer the entire sector in

order to correct any ECC bits before descrambling, and thus eliminates any performance
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impact due to such additional buffering. This is possible since any ECC errors in the
original data stream should not affect the unscrambled data stream beyond the individual
bits which are in error, as there is no feedback mechanism between the data and the

generation of the next key.

Support for On-Chip Copv Functions

The Page Tag feature enables intact blocks to begin with any given logical page. i.e., any
LBA can be written to any given physical page within the block, according to the Page Tag
value. On-Chip Copy functions enable copying data between different blocks of the same
die without fully passing the data through the Controller. Since the Scrambler resides
outside of the NAND, On-Chip Copy necessarily implies that the data is copied intact (i.c.,
without being de-scrambled and then re-scrambled). Consequently, the same scrambling
key will be used for the same logical page address, regardless of the physical pages they are

written to.

Support for on-chip copy (OCC) is achieved through setting the Page Offset Number
Register based on the logical address rather than the physical address (at least for most
block types). As noted below, the Page Offset Number Register for some block types (e.g.,

control blocks) may remain based on the physical address.

Logical Page Calculation

Similarly to the way a meta-block is divided into physical meta-pages, a Logical Group can
be divided into Logical Pages. Each Logical Page has the same size as one meta-page, and
there are as many Logical Pages in a Logical Group as there are meta-pages in a meta-block.
The Logical Page Address (i.c., Logical Page value) may be determined from the LBA
value by first dividing the LBA value by the meta-page size. If there are only 32 different
keys (32 bits), we then take only the lower 5 bits, as described by the following formula:

LBA
Logical Page = mod[RoundDown( - ,0],32]
meta — page size

All the sectors within a meta-page have the same Logical Page value, which is also
described herein as the Logical Page Offset value. The specific scrambling key of each
sector is different, since the D-Word Offset and Byte Offset registers have different values

according to the sector offset within the page, as explained above.
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During initialization the FW scans the blocks in the Open Block List to determine what the
last state of the card was prior to the power cycle. The block type (i.e., control, data, etc.) is
determined according to the ID byte in the header (as further described below), and the
Open Update Block List is built through scanning the headers and reading the LBAs of the
sectors written in the open blocks. During initialization and prior to building the Open
Update Block List, the stored data is preferably entirely scrambled. This situation creates a
Chicken-and-Egg problem in that reading must be performed to determine the LBAs of each
sector, but in order to properly read the content of each sector, the Logical Page address
(which is based on the LBA) is required to properly set the descrambling Key to unscramble
the data. The resolution to this initialization dilemma is to store scrambling key information
(i.e. the SKN Page Offset Number, or other information from which the scrambling key may

be determined) in the scrambled sector headers and then extract it during card initialization.

After the initialization is completed there is no need to extract the SKN from the header, as
the FW knows the location, the block type and the Page Offset Register value of each sector
in the card. Therefore, the FW can set the Scrambler Registers correctly, then the HW can

read and descramble the data as if the Scrambler is transparent to the FW.

Storing the Scrambling Kev Information in the header

The page headers preferably include a 5-bit field (or other appropriate length) for the Page
Offset Number (or other scrambling key information) that is used to determine the
scrambling key for scrambling the data for the given page. Many different arrangements are
possible, including the header format indicated in Fig. 13, which includes a 6-byte
LBA/control header for the first sector in a page and a 2-byte header for the rest of the
sectors, and which is suitable for single-sector ECC pages (i.c., each sector protected by its
own ECC redundancy bytes). The 2-byte header is the same as the 6-byte header, except
without the first 4 bytes, as the LBA need only be stored in the first sector of the page. The
Data Structure ID field (also referred to herein as a Sector ID field) may be used to identify
what kind of sector it is (e.g., control, data, etc.). The Application Byte field is reserved for

use by individual applications.

In certain embodiments it may be desirable to provide for a larger page size. For example,

the ECC page size may be 4 sectors long (i.e., each 2KB of user data information is
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protected by a single cluster of ECC redundancy bytes) and each ECC page may have a
single header of 14 bytes, as shown in Fig. 14, including a 2-byte sector header for each of
the four sectors, and the LBA of the page. Each 2-byte Sector Header includes a Page
Offset field, which is used to determine which Page Offset Number was used to scramble

the data for the given page.

Since the header itself is preferably scrambled, along with the data in the rest of the sector,
the actual Page Offset value is not directly written into the header. Instead, a Page Code is
written by the FW into the header, which is then scrambled (i.e., by HW) to generate a
Mapped Page Offset Code which is actually written into the memory page. An exemplary
page offset mapping table is shown in Fig. 15, which corresponds to a Seed

of 0x69C734C6. Other mapping tables are also possible for this same default seed, and
different mapping tables for other default Seeds, but conceptually such tables will be similar
to this table. The first column of this table is the Page Offset value (ranging from 0 to 31
since there are 32 keys). The second column lists a corresponding Page Code, which is the
value written into the memory page by the FW. Since the scrambling key for a page is
dependent upon the Page Offset value, each page will be scrambled differently. For this
example, since the 5-bit Page Offset field for Sector 0 corresponds to bit positions 11-15 of
the first word in Sector 0, each written Page Code is scrambled by bits 11-15 of the
corresponding Scrambling Key for the particular page (shown in the third column), to

generate the Mapped Page Offset Code shown in the fourth column.

This lookup table provides a 1-to-1 mapping between the Page Offset value and a Page
Code that can be written by the FW and scrambled and stored in the memory page. A
reverse mapping table, shown at the right side of Fig. 15, provides a 1-to-1 mapping
between the scrambled 5-bit value actually stored in the header and read with the scrambler
disabled, and the corresponding unscrambled Page Offset value (i.e., the SKN value for the
first sector in a page). Such lookup tables are based on the particular Seed chosen, and are
preferably stored by the FW in RAM to provide fast mapping during a write, and quick

determination of the SKN after reading the scrambled header.

During write commands, the FW knows the logical address, the target physical location and
the block type of the write command. Therefore, the FW knows the Page Offset value,
whether it’s based on a Logical Page or a Physical Page (e.g., such as for a control block, as

described elsewhere herein). As part of every write command, the FW can look up the Page
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Offset value in the Page Offset Mapping table and write the 5-bit Page Code from the table
into the Page Offset field in the header. Those 5 bits will be scrambled (e.g., by HW), along
with the data in the page, and no special handling is needed. After scrambling, each one of
the 5-bit Mapped Page Offset Code combinations will have a distinct value, which may be

used to uniquely identify the Page Offset value during initialization.

Extracting the SKN from the header

During initialization, the header may be read with the Scrambler bypassed, since the Key is
still unknown. Since the entire header itself is preferably scrambled, the Page Offset
Number cannot simply be read with the scrambler disabled. Instead, the Mapped Page
Offset Code is read, and the Page Offset value is determined, such as by using the reverse
mapping lookup table of Fig. 15, and the scrambling Key is calculated. Since only the
headers at the beginning of each meta-page need be read during initialization, the Page
Offset extracted from the 5-bit header field corresponds to the final SKN value, because the
D-Word Offset and the Byte Offset are both equal to zero. Such tables alternatively may be
replaced by a translation function. Use of such tables guarantees a 1:1 mapping between the

Page Offset value and the 5-bits field actually written in the header.

Once the SKN is known, the FW can calculate the Scrambling key by left rotating the
Scrambling Seed by SKN places to the left. Once the key is known, the FW can XOR the
header data with the scrambling key and resolve the header information. An alternative is to
enable the scrambler, set the Scrambler Registers, and re-read the sector using the Scrambler
circuitry to de-scramble the data, but since the header is usually only several bytes long
(e.g., 6 bytes, 14 bytes, etc.), merely XOR’ing the data in FW may be much simpler and
faster. When descrambling in FW, the FW has to calculate the rotation of the Key (or shift
the Key, as appropriate) after each XOR operation as described above.

The tables shown in Fig. 15 refer only to the first ECC page within the physical page, as the
scrambling keys, and hence the values written to the flash, are different for other ECC pages
within the physical page. This is shown, for the exemplary embodiment thus far described,
by the table depicted in Fig. 16. This table shows the SKN value for each of the four ECC
pages in a physical page, for each of the thirty-two Page Offset values. The table also
shows the Column_ Start value, D-Word Offset value, and Byte Offset value for each byte

position in the entire physical page, and the corresponding SKN. This is another table that
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is preferably built by FW upon initialization to speed determination of the SKN operation,
especially for memory reads and writes that do not start at the beginning of a page, and is

particularly helpful if the SKN is calculated recursively, such as described above.

Page Offset Number in Sequential Update Blocks / Intact Blocks

Sequential Update Blocks, or Intact Blocks, set the Page Tag offset parameter at the very
first write to the block. It is determined by the offset of the first logical page that is written
to the Update Block within its corresponding logical group. A logical page may be a set of
contiguous sectors which are written to one full meta-page, i.e. it has the size of a meta-page
and it is aligned to meta-page boundaries. Once the Page Tag parameter is set, all the
logical pages written in the Update Block are written sequentially from the first page, and
cach logical page will have the same offset relative to the physical pages in which it is

written.

In order to make the scrambling key independent of the Page Tag value, the Page Offset
Number Register setting is determined according to the Logical Page value, rather than the

Physical Page value. In the event the Page Tag is zero, the two values coincide.

Page Offset Number in Chaotic Update Blocks

A block written in non-sequential sector order is known as a Chaotic Update Block.
Similarly to the Sequential Update Blocks, Chaotic Update Blocks also use the Logical Page
as the Page Offset Number, thus enabling the use of the on-chip copy functions. The issue
here is that since the same page can be written over and over to the same block, all the pages
may use the same scrambling key, resulting in a repeating pattern throughout the block.

This potential issue may be averted by using only the lower memory page for Chaotic
Update Blocks (i.e., only writing 2 of the 4 MLC states per memory cell, thus treating the
block as a binary block) to mitigate the boosting effect that results from the repetitive
pattern, and thus avoid the program disturb phenomenon. As can be seen in Fig. 2C, the
improved margins are achieved because the difference in threshold voltage between the two

states when writing only the lower page is greater than if writing both the lower and upper

pages.
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Page Offset Number in Control Blocks and Scratch Pad Blocks

Control blocks don’t use on-chip copy, since they are mainly accessed on a single sector
basis. Therefore, the Physical Page is preferably used as the Page Offset Number, so that
cach page is scrambled with a Key corresponding to the physical page number that it was
written to. The continually-changing page number will guarantee that a different
scrambling Key will be used as additional pages get written down the block and thus avoid
the occurrence of the worst case patterns which cause the PD issues. In addition, such
control blocks may also use only the lower memory page to increase the signal margins of

the memory cells.

Scrambling Data in File System Blocks

All control blocks are preferably scrambled, including the Boot Block and the firmware
(FW) blocks (which are included within the file system blocks). In an exemplary Flash File
System, the Boot Block is scanned and read by the FW to find the pointers to the File
System Blocks, which are also partially read by the FW. Since both the Boot Block and the
File System Blocks are scrambled when written, the FW must be able to descramble the
data. Only the functionality needed for page read (+descrambling) has to be supported by
the FW. Specifically the FW should support setting the various registers that load the Seed,

and specifying which descrambling Key to use.

The first page in the Boot Block, which holds information regarding the meta-block
geometry, the ECC level, and the device ID information, preferably includes the Scrambler
Seed that was used to scramble the Boot Blocks and the File System Blocks. The first page
itself, however, is preferably scrambled using the default Scrambler Seed which is
incorporated in the HW. At the beginning of the initialization process, the first page is read
using the default Seed. The Seed which is used for the rest of the card is then read from the
first page and loaded into the Scrambler, and used for all subsequent operations. The
remaining pages in the boot block are scrambled with a Page Offset Register which is set
according to the physical page value (like other control blocks). The FW should include the
functionality to set the registers according to the physical page offset. For proper Scrambler
operation, one should explicitly set the Seed in the Boot Block even if it is the same value as
the default Seed. A Seed value of 0 will essentially cause data to not be scrambled even

though the Scrambler is enabled.
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Bad Block Detection:

Generally Bad Block detection may be done with the Scrambler bypassed. At first
download there is no issue, as none of the blocks holds any information. In subsequent
downloads, after the card already has some information written, it is possible that scrambled
data might be misinterpreted as a bad block. Since the bad block marking is different for

different vendors, a different detection scheme may need to be used for each vendor.

Some vendors mark factory bad blocks by writing zeros to the entire block. Using the
scrambling keys as described above (i.c., the default key value of 0x69C734C6) there
cannot be any header combination that after scrambling will result in a “00” value in all of
the header bytes (e.g., in the LBA and the data structure ID) and will be stored in the first
sectors in the page. Generally, the header should be designed so that after scrambling there
is no possibility that all header bytes can be “00.” Therefore, a detection scheme which
looks for the “00” pattern in the header may be used. Such detection may be easily

accomplished with the Scrambler bypassed.

Other vendors mark factory bad blocks by writing a single byte in the user data area (i.c.
within the 512 data bytes of a sector, as opposed to the header area or ECC) with any pattern
which is not ‘FF’. The specific location of the byte changes with the memory type. Big
Block (i.e., each page includes more than one sector) MBC memories frequently mark the
block as bad by writing a non-FF pattern to byte 2048 of the last page. Big Block BIN
memories (i.e., single bit per cell) mark the block as bad by writing a non-FF pattern to byte

2048 of either the first or second pages.

Since the byte which is used for the bad block marking can have a non-FF value after
scrambling, it may be accidentally detected as a bad block, as the scrambled data structure
ID will also be unrecognized. However, the mis-comparison counting block of the ECC
engine may be used to differentiate between factory bad blocks and good blocks, since the
ECC engine will indicate an uncorrectable ECC error (i.c., UECC) when all bits are either

all zeros or all “FF”’s.

During detection the Scrambler is bypassed, and the ECC engine is enabled. If the sector
holding the bad block marking is read successfully, the block is detected as a good block,
regardless of the value of the bad block marking byte. A sector is read successfully if it

results in no UECC or correctable ECC. If reading the sector which holds the bad block
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marking will result in UECC, and the value of the bad block marking byte is not all “FF”,
the block is suspected as a bad block. In this case, page 0 of the suspect block is then read.
If all sectors in page 0 also result in UECC, the block will be determined as bad. If any
sectors in page 0 are read successfully, the block will instead be determined to be a good
block. This, of course, represents but one of many possible methods for bad block

detection.

Exemplarv Implementation

The above techniques may be carried out in many different specific implementations. An
exemplary operating flow diagram which implements the Scrambler functionality described
above is shown in Fig. 17. An exemplary module is shown in Fig. 18 and will now be
described. Such a Scrambler module is suitable for an ASIC implementation, and
preferably is a self-contained hardware block in order to allow easy integration (or removal)
among various ASIC projects with no dependencies to the CPU type or on any specific

ASIC Design Architectures.

The Scrambler hardware block may be placed directly in the data path. As noted above, the
ECC bytes may be scrambled along with the header and user data, in which case the
Scrambler block should logically be placed at the end of the data path going to the memory
interface. However, since it is not necessary to scramble the ECC bits, the Scrambler may
be placed earlier in the data path. A single clock source is sufficient for the Scrambler
module. The clock frequency is preferably no less than the bus speed at which the

Scrambler module 1s clocked.

A Data Input bus and Data Output bus of, for example, 32-bits provides for streaming data
through the Scrambler, although such port sizes may be limited by an internal ASIC bus to
16-bits. A dedicated 16-bit Control Data Input bus provides access to the control registers.
A 5-bit Input Address bus is included for addressing control registers and to latch in the

Starting Key Number during HW Flow Control operation.

A set of control lines is preferably included for accessing internal control registers and for
HW Flow control. A Reset line may be asserted to reset the Scrambler Module to an initial
state and set up for HW Flow operation. A Read/Write (R/W) control signal is provided to

control register accesses through Control Data In[15:0]. In addition, a Control SEL line is
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provided to select between Control Register Access and HW Flow Control modes of

operation. Default selection is preferably set to HW Flow Control.

The Scrambler Module includes several registers, including a Seed Register, a
Configuration Register, a SKN Page Offset Register, and a SKN Sector Offset Register.
The Seed Register is preferably a 32-bit R/W register for storing the Initial Key or KeyO,
which is the same as the Seed. The default key may be 0x69C734C6, or another suitable
value. In addition, a control register is provided to trigger loading of the stored Seed

Register value into the Shifter. The Seed Register value does not change on reset.

In addition, a Configuration Register is included to control operation of the Scrambler
Module. For example, such control includes whether to enable or disable Shifter continuous
rotation. Preferably the default setting is to enable continuous shifter rotation. Disabling
rotation forces the use of the same key for the entire memory page (i.e. Keys may be rotated
by pre-clocking). The configuration register can also control whether to enable full bypass
of the scrambling function, resulting in data flow through the module with no manipulation
of the data, with minimal delays, and with minimal power consumption. Preferably the

default setting is to enable full bypass.

The SKN Page Offset Register is preferably a 5-bit R/W register for storing the Starting Key
Number (e.g., assuming 32 different keys). The default value preferably is 0 (i.e. Key0). In
Control Register Access mode, the register value preferably goes back to the default value
upon reset. In HW Flow Control mode, the register value is loaded from the Address Input
port on reset. The value loaded into the SKN Register is based on the memory page address
corresponding to the lower 5 bits of either the physical page address or the logical page

address.

The D-Word Offset Number (e.g., 5-bit value) and the Byte Offset Number (e.g., 2-bit
value) may be stored in separate registers, but may instead be conveniently combined in a
single 7-bit R/W register, which we can call the SKN Sector Offset Register. This SKN
Sector Offset Register may be viewed as storing the offset from the Starting Key Number.
The default value preferably is 0. Regardless of operation mode, the register value

preferably reverts to the default value on reset.
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As noted above, this 7-bit register may include two fields based on key sizes of 32 bits, as

noted in the following Table 1:

6 5 4 3 2 1 0
D_Word Offset Byte Offset
Number Number

Table 1: Exemplary Sector Offset Register Format for 32-bit Keys

The SKN Sector Offset Register bits [6:0] directly correspond to either the memory column
address [6:0] or the relative 7-bit byte offset from the start of the logical page (also referred

to above as Column_Start value). The 5-bit D-Word Offset Number indicates the offset key
number that corresponds to the first byte of the starting sector to be scrambled/descrambled.
The D-Word Offset number is relative to the SKN so a value of 0 corresponds to Sector 0

aCCCSSCS.

The 2-bit Byte Offset Number indicates the starting byte position within one Key. This is
necessary to address Keys spanning across sector boundaries, which is an important
consideration in determining the correct SKN when performing a memory read with a non-
zero column offset (i.c. starting read in the middle of a memory page). The Byte Offset is 0
for Sector( of each page. The Byte Offset for other sectors depends on the sector size,
sector number, and key size in bytes. Examples of D-Word Offset Number and Byte Offset
Number based on 32-bit Keys are shown above in regards to Figs. 7, 8, 10, and 11.

Also internal to the Scrambler Module, a parallel-in/parallel-out shift register or similar
circuit is preferably designed that can rotate bits in a constant left direction. The bits shifted
out one end circularly return on the other end. A fixed size (e.g., 32 bits) allows easier
system implementation to decode the Starting Key Number for memory read with column
offsets (see discussion of SKN Page Offset Register). The size also determines the number

of Keys available.

On reset, the shift register preferably automatically reloads the Seed and loads the Starting
Key Number. It should also allow loading of the initial Key from the Seed Register, and
may allow pre-clocking based on a count stored in the SKN Registers. Such a pre-clock
count may be based on both the Page Offset Number and the Sector Offset Number stored
in the SKN Page Offset Register and the SKN Sector Offset Register, respectively. Using a

shift register has inherent latencies, especially with the concept of pre-clocking. These may
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be addressed by pre-clocking early before data arrival, using a faster clock, and/or utilizing

a faster type of shift register such as a barrel-shifter.

The Scrambler Module also includes an XOR circuit having two input ports and one output
port, each of up to 32-bit widths for parallel-in/parallel-out operation. One input port is
connected to the Data Input port, and the other input port is connected to the Shifter output.
The single output port is connected to the Data Output port.

Under HW Flow Control, the full Scrambler operation may be controlled using only the
Clock, Reset, and Address[4:0], with no register access required. This is a typical operating
mode once the Scrambler registers are configured. Basic scrambling operation may be
accomplished, for example, in the following manner. Initially, the Scrambler configuration
registers are set up and then switched to HW Flow Control mode. The initial 5-bit memory
page address to be accessed is presented on the Address Input bus. Then, on asserting a
RST pulse, the Page Starting Key Number Register is loaded from the Address Input bus,
and the Seed (i.c., the contents from the Seed Register) is loaded into the Shifter. On Clock
transitions, the Scrambler pumps the unscrambled data from the Data Input port, scrambles
the data, and outputs the scrambled data to the Data Output port, and continuously operates
in this manner until the configuration is changed with Reset. In some embodiments a
number of clock transitions may also be required to pre-clock a bit-serial shifter in order to
calculate the correct scrambling keys for use by the scrambler. The general operation is

identical for unscrambling.

Generally, the Scrambler Module is initialized for memory accesses aligned to the
beginning of a memory page. This is a typical mode of operation and requires minimal FW
control to (1) enable HW Flow Control operating mode; and (2) send the proper lower 5-bit
memory page address to the Scrambler Address Input port. On memory accesses not
starting at the beginning of a memory page, the Starting Key Number Register should be
loaded with the proper Key value using a Control Register Access operation. After enabling
the Control Register Access operating mode, the SKN Page Offset Register is loaded with
the memory page address, the SKN Sector Offset Register is loaded with the memory

column address, and operation of the Scrambler is then switched to HW Flow Control.

The Scrambler may be controllable with parameter settings stored as control data in the file

system. Useful parameters include whether the Scrambler is bypassed, whether the
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Scrambler default Seed is used or another seed is loaded instead, and whether the shifter is
enabled for continuous rotation or disabled, for example, for diagnostic purposes. Such

configuration is preferably carried out on power-on initialization.

In co-pending U.S. Patent Application No. 11/808,905, filed June 13, 2007 by Sharon, et al,
and entitled “Randomizing for Suppressing Errors in a Flash Memory,” the disclosure of
which is incorporated herein by reference in its entirety, the figures therein are also
appropriate to further depict certain memory systems and modules in accordance with the
present invention, by viewing the randomization module as described therein as generally

corresponding instead to a data scrambling module as described herein.

Referring now to Fig. 19, a table is shown listing memory cell states of unscrambled
repeating OXFF data for the first 16 bytes of each word line within a memory block. Fig. 20
shows the scrambled memory cell states of the same first 16 bytes of each word line after

scrambling as described above.

Additional Alternatives

In some embodiments, the system may perform a two-step memory read operation, to first
extract the SKN by reading with the descrambler disabled and using the extracted SKN to
look up the unscrambled key, and then perform a second read with the descrambler enabled
using the unscrambled SKN. However, this has implications to overall system performance
and possible host timeout concerns. Other embodiments may be possible which trade off
system design issues and/or requirements. For example, the header or other control
information need not necessarily be scrambled, while still preserving many of the
advantages of randomizing the data in a page. As another example, the SKN information

may be stored unencrypted in the sector’s header.

In some embodiments, the SKN could be stored, rather than the Page Offset value, in the
page header. Alternatively, the entire initial Key used for the page could be stored. These,
as well as the Page Offset value, could also be stored in a fully unscrambled manner,

although this would create potentially undesirable data patterns down the bit lines.

The techniques for generating rotating scrambling keys described above are not the only
manner of generating a deterministic sequence of scrambling keys. Another method utilizes

a linear shift feedback register (LFSR) to generate a pseudo-random sequence based upon
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an initial seed. Such a seed can be associated with each page based upon either the logical
page address or physical page address in a similar manner as described above. An
exemplary use of a LFSR for randomizing data in a flash memory is described in the

previously-mentioned U.S. Patent Application No. 11/808,905.

The descriptions above frequently make reference to registers for storing certain values,
such as the Page Offset Register for storing the Page Offset value. These refer to exemplary
scrambler implementations, but are not to be viewed as limiting the more general

discussion.

Memory pages frequently include 8-16 sectors, but other values may be used. Each sector
typically includes 512 bytes of data and a sector header, and may also include ECC
redundancy bytes. In some formats, a single cluster of ECC bytes may protect more than

one sector.

The block diagrams herein may be described using the terminology of a single node
connecting the blocks. Nonetheless, it should be appreciated that, when required by the
context, such a “node” may actually represent a pair of nodes for conveying a differential
signal, or may represent multiple separate wires (e.g., a bus) for carrying several related
signals or for carrying a plurality of signals forming a digital word. As used herein, coupled

means either directly or indirectly.

Terminology used herein that might be viewed as potentially limiting should be viewed as
merely descriptive of exemplary embodiments, and not limiting of the invention itself.
While the various embodiments have been described in the exemplary context of a non-
volatile NAND memory, the invention is also useful for other types of memory devices,

including volatile memory devices.

As used herein, the concept of a sequence of keys is really a function of the implementation
(e.g., only 32 bits at a time). For example, an 8-key sequence of 8-bit keys, is really no
different than a single 64-bit key. For example, if a scrambler key is long enough, you
might need only one for a chunk of data of a certain bit width, whereas for shorter keys, a
sequence of keys may be required to fully scramble the chunk of data. In some
embodiments, more than one seed key may be used, which might be determined, for

example, based on the logical address.
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The foregoing detailed description has described only a few of the many possible
implementations of the present invention. For this reason, this detailed description is
intended by way of illustration, and not by way of limitations. Variations and modifications
of the embodiments disclosed herein may be made based on the description set forth herein,
without departing from the scope and spirit of the invention. Moreover, the inventive
concepts and embodiments described above are specifically contemplated to be used alone
as well as in various combinations. It is only the following claims, including all
equivalents, that are intended to define the scope of this invention. Accordingly, other
embodiments, variations, and improvements not described herein are not necessarily

excluded from the scope of the invention.
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CLAIMS:

1. A method for storing information in a non-volatile memory, said method
comprising:
determining a starting key based upon a seed key and a logical page address
associated with a group of data;
randomizing the group of data using a deterministic sequence of keys corresponding
to the starting key; and
storing the randomized group of data into a physical page of the non-volatile

memory.

2. The method as recited in claim 1 further comprising storing, into the physical
page of the non-volatile memory, additional information from which the starting key may be

determined without knowledge of the logical page address.

3. The method as recited in claim 2 further comprising:
storing the additional information into more than one location within the physical
memory page, so that even if one location is corrupted, another can still be

read to determine the starting key.

4. The method as recited in claim 2 wherein the determining step comprises:

determining an index for a sequence of scrambling keys based upon a logical page
offset value; and

using the index to identify the starting key within a repeating sequence of M-bit

scrambling keys corresponding to the seed key.

5. The method as recited in claim 2 further comprising:
storing the additional information as randomized information using the deterministic

sequence of keys corresponding to the starting key.

6. The method as recited in claim 2 further comprising:

determining a page code associated with a logical page offset value;
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randomizing the page code using the deterministic sequence of keys corresponding
to the starting key, to generate a mapped page offset code having a 1:1
correspondence with the logical page offset value; and

storing the mapped page offset code as the additional information into a page header

of the physical page of the non-volatile memory.

7. The method as recited in claim 6 further comprising initializing the non-volatile
memory upon power-up, said initializing comprising:

reading a randomized memory page header including a mapped page offset code;

extracting a corresponding page offset value from the mapped page offset code; then

determining a starting key based upon the page offset value and the seed key; and

reading and de-randomizing the memory page using a deterministic sequence of

scrambling keys corresponding to the starting key.

8. The method as recited in claim 7 further comprising;:

determining a second starting key based upon the seed key and a physical page
address associated with a second group of data;

randomizing the second group of data using a deterministic sequence of keys
corresponding to the second starting key; and

storing the randomized second group of data into a second physical page of the non-
volatile memory;

wherein said initializing step is performed on blocks whose starting key is based
upon its logical page address and on blocks whose starting key is based upon
its physical page address; and

wherein the second group of data corresponds to a control block of a flash file

System.

9. The method as recited in claim 1 further comprising:
ECC encoding the randomized group of data and storing non-randomized ECC

redundancy bytes in the non-volatile memory.

10. The method as recited in claim 2 further comprising:

randomizing all page header information written into the non-volatile memory.
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11. The method as recited in claim 10 further comprising:

randomizing control blocks for a flash file system using a physical page address
rather than a logical page address; and

randomizing boot blocks for the flash file system using a predetermined default seed

key.

12. The method as recited in claim 1 wherein:

the deterministic sequence of keys comprises a number M of separate scrambling
keys, each comprising M-bits, wherein each respective scrambling key N
(KeyN) corresponds to an N-bit circular rotation of a predetermined seed key
(Key0); and

the randomizing comprises a bit-by-bit XOR operation using the deterministic

sequence of M-bit scrambling keys.

13. The method as recited in claim 12 wherein each successive scrambling key in

the deterministic sequence is a single-bit rotation of the preceding scrambling key.

14. The method as recited in claim 12 wherein:
cach successive scrambling key in the deterministic sequence is a bit-wise rotation
of the seed key by a calculated number of bits; and

the calculated number of bits for the successive key depends on the current key.

15. A method for storing data in a non-volatile memory comprising:

determining a page offset number using a logical block address of a memory page;

determining a starting key based upon a seed key and the page offset number;

scrambling page data using a deterministic sequence of scrambling keys
corresponding to the starting key;

storing into a header of a physical page of the non-volatile memory an identifier
corresponding to the page offset number; and

storing the scrambled page data into the physical page.

16. The method as recited in claim 15 further comprising scrambling all page header

information written into the non-volatile memory, and wherein:
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the deterministic sequence of keys comprises a number M of separate scrambling
keys, each comprising M-bits, wherein each respective scrambling key N
(KeyN) corresponds to an N-bit circular rotation of a predetermined seed key
(Key0); and

the identifier comprises an index to identify the starting key within the repeating

sequence of M-bit scrambling keys.

17. The method as recited in claim 16 wherein the scrambling comprises a bit-by-bit

XOR operation using the deterministic sequence of M-bit scrambling keys.

18. An apparatus comprising:

a non-volatile memory; and

a memory controller configured to:

determine a starting key based upon a seed key and a logical page address associated
with a group of data;

randomize the group of data using a deterministic sequence of keys corresponding to
the starting key; and

store the randomized group of data into a physical page of the non-volatile memory.

19. The apparatus as recited in claim 18 wherein the non-volatile memory

comprises a distinct integrated circuit separate from the memory controller.

20. The apparatus as recited in claim 18 wherein the memory controller is further
configured to store, into the physical page of the non-volatile memory, additional
information from which the starting key may be determined without knowledge of the

logical page address.

21. The apparatus as recited in claim 20 wherein the memory controller is further
configured to:
determine an index for a sequence of scrambling keys based upon a logical page
offset value; and
use the index to identify the starting key within a repeating sequence of M-bit

scrambling keys corresponding to the seed key.
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22. The apparatus as recited in claim 20 wherein:
the additional information is stored as randomized information using the

deterministic sequence of keys corresponding to the starting key.

23. The apparatus as recited in claim 20 wherein the memory controller is further
configured to:
determine a page code associated with a logical page offset value;
randomize the page code using the deterministic sequence of keys corresponding to
the starting key, to generate a mapped page offset code having a 1:1
correspondence with the logical page offset value; and
store the mapped page offset code as the additional information into a page header of

the physical page of the non-volatile memory.

24. The apparatus as recited in claim 23 wherein the memory controller is further
configured for initializing the non-volatile memory upon power-up, said initializing
comprising:

reading a randomized memory page header including a mapped page offset code;

extracting a corresponding page offset value from the mapped page offset code; then

determining a starting key based upon the page offset value and the seed key; and
reading and de-randomizing the memory page using a deterministic sequence of

scrambling keys corresponding to the starting key.

25. The apparatus as recited in claim 24 wherein the memory controller is further
configured to:

determine a second starting key based upon the seed key and a physical page address
associated with a second group of data;

randomize the second group of data using a deterministic sequence of keys
corresponding to the second starting key; and

store the randomized second group of data into a second physical page of the non-
volatile memory;

wherein said initializing is performed on blocks whose starting key is based upon its
logical page address and on blocks whose starting key is based upon its

physical page address; and
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wherein the second group of data corresponds to a control block of a flash file

System.

26. The apparatus as recited in claim 18 wherein:
the randomized group of data is ECC encoded and non-randomized ECC redundancy

bytes are stored in the non-volatile memory.

27. The apparatus as recited in claim 20 wherein:

all page header information written into the non-volatile memory is randomized.

28. The apparatus as recited in claim 27 wherein:

control blocks for a flash file system are randomized using a physical page address
rather than a logical page address; and

boot blocks for the flash file system are randomized using a predetermined default

seed key.

29. The apparatus as recited in claim 18 wherein the deterministic sequence of keys
comprises:
a number M of separate scrambling keys, each comprising M-bits, wherein each
respective scrambling key N (KeyN) corresponds to an N-bit circular rotation

of a predetermined seed key (KeyO0).

30. The apparatus as recited in claim 29 wherein:

the randomizing comprises a bit-by-bit XOR operation using the deterministic
sequence of M-bit scrambling keys; and

cach successive scrambling key in the deterministic sequence is a bit-wise rotation

of the seed key by a calculated number of bits.

31. The apparatus as recited in claim 30 wherein the calculated number of bits for
the successive key depends on the current key, and also depends on the page offset value

and the D-word offset value of the corresponding successive word.
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32. The apparatus as recited in claim 18 wherein the deterministic sequence of keys
comprises:
a pseudo-random sequence of keys generated by a linear feedback shift register

(LFSR) having a starting value corresponding to the starting key.
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Exemplary Sequence based on Seed of 0x71
rotating left with 8-bit shifter

01011100

Exemplary Sequence based on Seed of 0x695334C6
rotating left with Shifter size of 32

00101110

10111000

01110001

00010111

11100010

10001011

Rotation Length: 32 # of Cnt
Rotation Direction: Left O's 16

1's 16
Key Key Shifter Qutput
Sequence # Byte 3 Byte 2 Byte 1 Byte O
0x69C734C6 0 | 01101001 11000111 00110100 11000110
0xD38E698C 1 11010011 10001110 01101001 10001100
0xA71CD319 2 | 10100111 00011100 11010011 00011001
0x4E39A633 3 | 01001110 00111001 10100110 00110011
0x9C734C66 4 | 10011100 01110011 01001100 01100110
0x38E698CD 5 | 00111000 11100110 10011000 11001101
0x71CD319A 6 | 01110001 11001101 00110001 10011010
0xE39A6334 7 | 11100011 10011010 01100011 00110100
0xC734C669 8 | 11000111 00110100 11000110 01101001
0x8E698CD3 9 | 10001110 01101001 10001100 11010011
0x1CD319A7 10 | 00011100 11010011 00011001 10100111
0x39A6334E 11 | 00111001 10100110 00110011 01001110
0x734C669C 12 | 01110011 01001100 01100110 10011100
0xE698CD38 13 | 11100110 10011000 11001101 00111000
0xCD319A71 14 | 11001101 00110001 10011010 01110001
0x9AB6334E3 15 | 10011010 01100011 00110100 11100011
0x34C669C7 16 | 00110100 11000110 01101001 11000111
0x698CD38E 17 | 01101001 10001100 11010011 10001110
0xD319A71C 18 | 11010011 00011001 10100111 00011100
0xAB334E39 19 | 10100110 00110011 01001110 00111001
0x4C669C73 20 | 01001100 01100110 10011100 01110011
0x98CD38E6 21 | 10011000 11001101 00111000 11100110
0x319A71CD 22 | 00110001 10011010 01110001 11001101
Ox6334E39A 23 | 01100011 00110100 11100011 10011010
0xC669C734 24 | 11000110 01101001 11000111 00110100
0x8CD38E69 25 | 10001100 11010011 10001110 01101001
0x19A71CD3 26 | 00011001 10100111 00011100 11010011
0x334E39A6 27 | 00110011 01001110 00111001 10100110
0x669C734C 28 | 01100110 10011100 01110011 01001100
0xCD38E698 29 | 11001101 00111000 11100110 10011000
0x9A71CD31 30 | 10011010 01110001 11001101 00110001
0x34E39A63 31 [ 00110100 11100011 10011010 01100011

11000101

FIG. 5
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Byte Offset Number Example with 32-bit Keys and
Sector 0 size of 518 Bytes

Key#0 Key#0 Key# 1 Key# 2
ByteOﬁset#l 0 1 2 3 | | 0 1 2 3 | 0 1 2 3 | 0 1 2 3
Sector Byte#
(Excluding ECC) 0 1 2 3 512 513 514 515 516 517|000 001 002 003 004 005

I‘— Sector 0 »- | - Sector] ———— g

FIG 7 Column_Start byte for Sector 1

Corresponds
Exemplary SKN Calculation toFig. 7
Page |Sector|Sector Format|Sector|Column|Column|#Keys per|Page |D-Word Byte
Offset | No. Hdr  User | Size Start End Sector |Offset] Offset | SKN:[Offset
0 0 6 512 | 518 0 0205 0 00 00 00 0
0 1 2 512 | 514 206 0407 129 2/4 00 01 01 2
0 2 2 512 | 514 408 0609 258 00 02 02 0
0 3 2 512 | 514 60A 080B 386 2/4 00 02 02 2
0 4 2 512 | 514 80C 0AOD 515 00 03 03 0
0 5 2 512 | 514 AOE 0COF 643 2/4 00 03 03 2
0 6 2 512 | 514 C10 OE11 772 00 04 04 0
0 7 2 512 | 514 E12 1013 900 2/4 00 04 04 2
0 8 2 512 | 514 1014 1215 | 1029 00 05 05 0
0 9 2 512 | 514 1216 1417 | 1157 2/4 | 00 05 05 2
0 10 2 512 | 514 1418 1619 | 1286 00 06 06 0
0 11 2 512 | 514 161A 181B | 1414 2/4 | 00 06 06 2
0 12 2 512 | 514 181C 1A1D | 1543 00 07 07 0
0 13 2 512 | 514 1A1E 1C1F | 1671 2/4 | 00 07 07 2
0 14 2 512 | 514 1C20 1E21 | 1800 00 08 08 0
0 15 2 512 | 514 1E22 2023 | 1928 2/4 | 00 08 08 2
1 0 6 512 | 518 0 0205 0 01 00 01 0
1 1 2 512 | 514 206 0407 129 2/4 01 01 02 2
1 2 2 512 | 514 408 0609 258 01 02 03 0
1 3 2 512 | 514 60A 080B 386 2/4 01 02 03 2
1 4 2 512 | 514 80C 0AOD 515 01 03 04 0
1 5 2 512 | 514 AOE 0COF 643 2/4 01 03 04 2
1 6 2 512 | 514 C10 OE11 772 01 04 05 0
1 7 2 512 | 514 E12 1013 900 2/4 01 04 05 2
1 8 2 512 | 514 1014 1215 | 1029 01 05 06 0
1 9 2 512 | 514 1216 1417 | 1157 2/4 | 01 05 06 2
1 10 2 512 | 514 1418 1619 | 1286 01 06 07 0
1 11 2 512 | 514 161A 181B | 1414 2/4 | 01 06 07 2
1 12 2 512 | 514 181C 1A1D | 1543 01 07 08 0
1 13 2 512 | 514 1A1E 1C1F | 1671 2/4 | 01 07 08 2
1 14 2 512 | 514 1C20 1E21 | 1800 01 08 09 0
1 15 2 512 | 514 1E22 2023 | 1928 2/4 | 01 08 09 2

FIG. 8
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Exemplary “calculated” sequence of 8-bit keys

01110001

10111000 01011100

10001011

11000101
00101110

00010111

FIG. 9

Byte Offset Number example with 32-bit keys and
2062-byte ECC pages

Key#0 Key# 6 Key# 10 Key# 15
Byte Offset#[ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 |
ECC Page Byte#
(Excluding ECC); 0 1 2 3 2056 2057 2058 2059 i2060 2061|000 001 : 002 003 004 005
€&————— BCCPage0 > | € ECCPagel —>
D-Word Offset Number =3
D-Word Offset Number = 0 -
Byte Offset Number =0 Byte Offset Number = 2
_ Header bytes = 14.
Header bytes = 14 Data bvios—d#512-2048
Data bytes=512#4=2048. Tatal j"zeg P
Total = 2062 bytes. otal = ytes.

FIG. 10
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SKN Register Values for Exemplary 2062-byte ECC Pages

Page Offset ECC ECC ECC ECC
No. Pag_;e 0 Page 1 Page 2 Page 3
0 0 6 28 23
1 1 0 18 6
2 2 1 17 4
3 3 7 27 21
4 4 6 3 30
5 5 14 15 14
6 6 24 28 1
7 7 17 17 17
8 8 9 31 19
9 9 12 8 31
10 10 25 25 20
11 11 8 12 9
12 12 23 31 0
13 13 8 20 23
14 14 27 11 17
15 15 31 20 29
16 16 6 30 12
17 17 21 17 0
18 18 18 18 4
19 19 9 13 2
20 20 0 9 0
21 21 24 5 31
22 22 18 2 0
23 23 14 2 2
24 24 8 31 3
25 25 1 16 8
26 26 29 9 0
27 27 30 13 6
28 28 12 1 27
29 29 12 4 7
30 30 14 16
31 31 14 16

FIG. 12
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Exemplary Header Format, including 5-bit Page Offset Field
(e.g., for a single-sector ECC page)

LBA Data Structure ID Page Offset Application Byte
4 Bytes 6 Bits 5 Bits 5 Bits

Exemplary 2K Byte ECC Page Header Format, including 5-bit Page
Offset Field (e.g., for each of four Sectors in an ECC Page)

ECC Page Header Layout (14 Bytes)

Sector 0 Sector 1 Sector 2 Sector 3 Page Header Data
Header Header Header Header (LBA or Other Data) Unused
2 Bytes 2 Bytes 2 Bytes 2 Bytes 4 Bytes 2 Bytes

The Page Header Data field holds either the LBA or other parameters related to sector 0.

Sector Header Layout (2 Bytes)

Page Offset SD Application Sector Id
5 Bits 5 Bits 6 Bits
Bits 11-15 Bits 6-10 Bits 0-5

FIG. 14
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