PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
[nternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 9/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/22922

26 June 1997 (26.06.97)

(21) International Application Number: PCT/US96/18838

(22) International Filing Date: 6 December 1996 (06.12.96)

(30) Priority Data:

08/573,305 Us

15 December 1995 (15.12.95)

(71) Applicant (for all designated States except US): INTEL COR-
PORATION [US/US]; 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): PADWEKAR, Kiran, A.
[US/US); 1520 Vista Club Circle #203, Santa Clara, CA
35054 (US).

(74) Agents: TAYLOR, Edwin, H. et al; Blakely, Sokoloff,
Taylor & Zafman, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility
model), DE, DE (Utility model), DK, DK (Utility model),
EE. EE (Utility model), ES, FI, FI (Utility model), GB, GE,
HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ,
TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE,
LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE,
DK, ES, FI, FR, GB. GR, IE, IT, LU, MC, NL, PT, SE),
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
NE, SN, TD, TG).

Published

With international search report.

(54) Title: INSTRUCTION ENCODING TECHNIQUES FOR MICROCONTROILLER ARCHITECTURE

(§7) Abstract
. . . YO PORTS
Code and instruction encoding exten-
sions to a microcontroller architecture provide e
backward compatibility with an existing mi-
0 PORTS

DATA
STORAGE

A

PROGRAM

crocontroller (unit 11) while allowing signifi-

cant performance enhancements as a result to i
the new architecture. An extension to provide
additional instruction codes has been imple-

ity so that the instructions for the prior pro- !

Y _MEMORY DATABUS Y
mented while retaining backwards compatibil- ¥Y_MEMORY ADDRESS BUS

STORAGE
A /1

DATA
a7) 8IS

/Ll

PERIPHERAL]

!

PERIPH

1

cessor retain their functionality by utilizing Yy
one unused opcode in the prior processor’s 2

BUS INTERFACE UNIY

| INTERFACE

[4-— PERIPH

opcode map. In this connection, two modes wsraucnouws]_

of operation are provided, namely binary and (A

source modes. The entire instruction set is
available in both modes, but the encoding is

INSTRUCTION SEQUENCER

different. In the binary mode, all of the in-
structions of the prior processor keep their en-

il

SOURCE ¢

\ .
A oo DATA

coding. The additional instructions have an
ASH prefix, ASH being the single unused op-

souRce2

A ADDRESS PEAIPH
8Us I

code. Insource mode, some of the instructions
from the prior processor known as register in-
structions have the AS prefix, thereby freeing
up 160 opcodes for more important instruc-
tions. Since the register based instructions of
the new processor provide better performance
than the instructions that they replace, there is b

no need to use the old register based instruc- \

ALY

i PERIPHERAL
’ BUS

SRR
Lo

e

LAA

DATA
MEMORY
INTERFACE]

PERIPHERALS

REGISTER
FLE

tions. Therefore, adding a byte and a state to
the old register instructions results in a negli-
gible penalty. In source mode, the instructions

for new processor do not require the A5 prefix. This shortens these instructions by 1 byte in length and speeds up the execution by 1| state.

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
CS
CZ
DE
DK
EE
ES
FI
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’lvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU

IT
Jp
KE
KG
KP

KR
KZ
L1
LK
LR
LT
LU
LY
MC
MD
MG
ML
MN
MR

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

TG
TJ

TT
UA
uG
us
Uz
VN

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 97/22922 PCT/US96/18838

10

15

20

25

30

-]~

INSTRUCTION ENCODING TECHNIQUES FOR
MICROCONTROLLER ARCHITECTURE

Field of the Invention

The invention relates to microcontroller architectures, specifically
techniques for ensuring compatibility between old and new members of
a family of microcontroller architectures.
Background of the Invention

As new microcontroller architectures become feasible due to cost
reductions for a variety of reasons and new techniques for improving the
performance of microcontrollers become available, it is desirabie to
provide complete compatibility between old and new members of a
family of microcontrollers to protect the investment of customers in
program code and expertise with a particular design. These desires
result in tradeoffs between optimizing performance of a microcontroller
with a new architecture while maintaining complete backwards
compatibility. The present invention has particular application to an
existing microcontroller sold under the product name MCS-51 by Intel
Corporation and a new microcontroller known as MCS-251, also
available from Intel Corporation. The major differences between the
architectures of the two microcontrollers are as follows:
1. Extended code and data spaces: The MCS-51 has 256 bytes of
internal data, 64K of external data, and 64K of program memory. The
MCS-251 in comparison has 16M, extendible to 4G, of single address
space.
2. Unified address space: Single address space in the MCS-251 makes
CPU and compiler implementations easier. In the MCS-51, program
memory, data memory and internal registers each lie in a separate
address space.
3. Extended stack: MCS-251 provides 64K of stack space (Extendible to
4G) compared to 256 bytes on the MCS-51.
4. Extended bit addressability: In the MCS-251, the special function
registers (SFRs) and directly addressable RAM are bit addressable.

WO 97/22922

10

15

20

25

30

PCT/US96/18838

-2-

5. Extended register file: MCS-251 architecture has 24 more bytes of
registers than the MCS-51 architecture.

6. Instruction set: The MCS-251 architecture provides an instruction set
which is a superset of the MCS-51 instruction set.

7. Availability of extended address space: The MCS-251 architecture
makes the MCS-251 extended address spaces accessible to the MCS-
51 instruction set. This allows existing users to utilize their investments
in MCS-51 software tools to tap the benefits of the MCS-251
architecture.

In the following description, the techniques of the present
invention are described with reference to the MCS-51 and the MCS-251
architectures. However, the references to these two architectures are for
convenience in describing the invention with respect to real world
examples. Persons skilled in the art will recognize that the invention has
application to other architectures as well.

Summary of the Invention

The present invention is directed to address space, code and
instruction encoding extensions to a microcontroller architecture which
provide backward compatibility with an existing microcontroller while
allowing significant performance enhancements as a result to the new
architecture. The extensions are based on the following architectural
tradeoffs:

Address Space Extension

The MCS-51 architecture has 256 bytes of internal data, 64K of
external data, and 64K of program memory. The MCS251 in comparison
has 16M (extendible to 4G) of single address space.

The internal data memory of the MCS-51 architecture is mapped
at address 0 of the MCS-251 architecture. This removes the
architectural restriction on internal RAM size. It further allows a stack
larger than 256 bytes without losing MCS-51 code compatibility. The
stack rolls out from internal memory to external memory thus making an
external stack available to existing MCS-51 programs.

WO 97/22922 PCT/US96/18838

10

15

20

25

30

-3-

The external data memory is mapped at 64K on the MCS-51
architecture. This allows instructions which move data to/from a register
or accumulator from/to external memory to map to external memory (as
long as there is no internal memory at 64K) without restricting the size of
the internal RAM.

Program memory is mapped to FF0000. This allows the external
bus, which is used for data transfer operations, to be extended beyond a
16-bit address while keeping compatibility with the MCS-51 port reset
value of FF.

PSEN (program store enable) or read strobe for external fetches
and RD (read) are the code and data strobes respectively for the MCS-
51 architecture. The MCS-251 architecture unifies the code and data
space by making PSEN and RD both address mapped code/data read
strobes. This makes PSEN/RD partitioning transparent to the software
tools which do not see separate code and data spaces, but a single
address space.

The MCS-51 registers R0-R7 (in four banks or 32 bytes total)
have been extended to a 64 byte register file. The MCS-51 address and
data registers have been mapped to this register file. This ensures
compatibility while allowing the MCS-251 instructions to be used to
manipulate MCS-51 registers. The data pointer (DPTR) and stack
pointer (SP) are extended in the MCS-251 architecture. This allows
MCS-51 users to address the MCS-251 address space, and allows
them to use a larger stack.

The MCS-51 special function registers (SFRs) are carried over to
the MCS-251 architecture without changing the addresses. The
extended stack pointer and the data pointer have been mapped to the
SFR space to allow using MCS-51 instructions to address beyond the
MCS-51 address space.

i Provi - ibili

All MCS-51 instructions retain their functionality on MCS-251.
Any code relative addressing reference the current 64K page where
instructions are under execution.

WO 97/22922 PCT/US96/18838

10

15

20

25

30

-4

There are two interrupt transfers available on the MCS-251
architecture. One is fully compatible with the MCS-51 architecture. It
pushes two bytes of the program counter (PC) on the stack before
jumping to the interrupt vector. The instruction return from interrupt
(RETI) pops two bytes of PC. This mode allows existing code which uses
the instructions return from subroutine (RET) and return from interrupt
(RETI) interchangeably to work. The limitation is that the code size is
restricted to 64K.

The preferred mode pushes a new program status word (PSW1)
of the MCS-251 and all 3 bytes of the PC. The RETI instruction pops the
pushed bytes. Pushing the PSW1 ensures that interrupt service routines
written for the MCS-51 can be used with new code for the MCS-251
which relies on the Z and N flags of the PSW to be unchanged. The last
two bytes pushed are in the same order in the MCS-251 architecture as
they are on the MCS-51 architecture. This ensures that any code that
alters the return address will work.

MCS 251 | . i

The MCS-51 architecture provides one unused opcode which
does not leave much room for an architectural extension to provide
additional instructions. However, changing the instruction set
compromises the compatibility. Therefore, to address this issue, the
MCS-251 architecture provides two modes of operation: namely binary
and source modes. The entire instruction set is available in both modes,
but the encoding is different. The encoding is arranged to simplify
decoding. The two modes have different applications.

a) Binary Mode

In the binary mode, all 111 of the MCS-51 instructions (49 of
which are single byte, 45 of which are two bytes and 17 of which are
three bytes) keep their encoding. The additional MCS-251 instructions
have an A5H prefix, A5H being the single unused MCS-51 opcode. This
mode allows any new code to be linked to existing binaries to run
without changing. Any non MCS-51 instruction however has a 1 byte
size penalty and a 1 state execution time penalty. This mode is suitable

WO 97/22922

10

15

20

25

30

PCT/US96/18838

-5-

for users with large existing code who do not mind the penalty for a
small percentage of their code.

b) Source Mode

In the MCS-51 architecture, 32 of the 111 instructions, referred to
as register instructions, using Rn (register n) or @Ri (indirect RAM
address based on the address contained in register i where i is 0 or 1) in
the address field, occupy 160 opcodes. In source mode, these
instructions have the A5 prefix, thereby freeing up 160 opcodes for more
important instructions. Since the new MCS-251 register-based
instructions provide better performance than the MCS-51 instructions
that they replace, there is no need to use the old register based
instructions. Therefore, adding a byte and a state to the MCS-51 register
instructions results in a negligible penalty. In this mode, the MCS-251
instructions do not require the A5 prefix. This shortens these instructions
by 1 byte in length and speeds up the execution by 1 state. This mode is
suitable for users with all new code, or those with substantial new code
who can reassemble/recompile the old code.

Brief Description of the Drawings

Figure 1 is a block diagram showing the functional blocks of an
architecture of a suitable microcontroller which may utilize the invented
address space, code and instruction encoding extensions.

Figure 2 is a table showing the instructions corresponding to
opcodes 06-FF in binary mode and A506-A5FF in source mode.

Figure 3 is a table showing the instructions corresponding to
opcodes A508-A5FF in binary mode and 08-FF in source mode.

Figure 4 is a block diagram of an instruction sequencer used to
decode two different instruction sets according to the present invention.

Figure 5 shows a system in which a microcontroller incorporating
the inventive elements may be used.

Detailed Description of the Invention

Referring to Figure 1, the functional blocks of an architecture of a
suitable microcontroller which may utilize the invented address space,
code and instruction encoding extensions are shown. Although a

WO 97/22922

10

15

20

25

30

-6_

typical microcontroller may include additional functional blocks, the
functional blocks shown in Figure 1 are sufficient for explaining how to
make and use the present invention. Additionally, persons skilled in the
field of the invention will recognize that numerous timing, control and
power signals are needed, however, the specifics of such additional
signals are highly dependent on the specifics of the microcontrolier
implementation and are not needed for a proper understanding of the
present invention.

The microcontroller shown in Figure 1 includes a central
processing unit CPU 11 having an instruction sequencer 13, ALU 15,
register file 17, data memory interface 19, program counter (PC) 23,
source bus 1, source bus 2 and destination bus. The CPU
communicates with the other elements of the microcontroller using a
data bus 25, data address bus 27 and bus interface unit 29. Bus
interface unit 29 feeds instructions to instruction sequencer 13 over an
instruction bus. Instruction sequencer receives the instructions from bus
interface unit 29 which are in the form of an opcode and address and/or
data and decodes the received opcode, address/data information and
places appropriate signals on the source 1 and source 2 buses and
control signals to ALU 15 and data memory interface 19 to carry out the
requested instruction in a manner well known in the art. Program
storage 31 which is typically, but not always, a read only memory (ROM)
is used to contain a user program which controls the operation of the
microcontroller and connects to the CPU over a memory data bus and
memory address bus through bus interface unit 27. Data storage 33,
which is typically a random access memory (RAM), contains data used
by the program in program storage 31 as it is run in CPU 11. The
microcontroller communicates with the outside world using /O ports 37
which are coupled to the memory data bus and memory address bus
and peripherals 41 which are coupled to a peripheral bus and to the
data bus and data address bus through peripheral interface 43. User
programs may also be stored in external memories coupled to the
microcontroller through I/O ports 37. Data used by running programs
may also come from or be sent to peripherals 41.

PCT/US96/18838

WO 97/22922

10

15

20

25

30

PCT/US96/18838

-7

The CPU accesses code and data through two different buses.
Bus interface unit 29 feeds the instruction bus with code from program
storage 31 or external memory, both connected to the memory bus.
Internal data access is either to/from register file 17 or through the data
bus which is connected to data storage 33, peripheral interface 43 and
bus interface unit 29. Data accesses to peripherals connected to the
peripheral bus is facilitated by peripheral interface unit 43, while
accesses to peripherals through I/O ports 37 are facilitated by the bus
interface unit. The bus interface unit also transfers data between the
memory bus and the data bus.

The present invention lies mainly in the implementation of
instruction sequencer 13 and its operation to support an existing
instruction set and an expanded instruction set while maintaining fuli
backwards compatibility. However, other aspects of the architecture of
the microcontroller family used to implement the invention are described
as necessary for a complete understanding of the invention. Although
an understanding of the MCS-51 is presumed, further information may
be found in the MCS-51 Microcontroller Handbook for the MCS-51
available from Intel Corporation.

MCS-251 Address Space

The MCS-251 architecture has one contiguous 16 megabyte
address space that is used for both code and data. The 16M address
space is partitioned for internal and external access, depending on the
amount of on-chip memory.

MCS-251 Code Memory

Code memory can reside anywhere in the address space except
for reserved areas, such as the register file. Further restrictions may
prevent code execution from certain locations that can vary from product
to product within the MCS-251 architecture family. Upon reset, code
execution begins at address FF:0000H, after which the user can jump to
any executable region within the address space. The code memory
resides outside the CPU and is partitioned as internal and external
memory, depending on the amount of on-chip code memory.

-251 M

WO 97/22922 PCT/US96/18838

10

15

20

25

30

-8-

Data memory can reside anywhere in the MCS-251 address
space except for reserved locations. The lower 32 bytes of the address
space actually reside in the CPU (as part of the register file) and can be
accessed as both data memory and general purpose registers. All
products in the MCS-251 architecture family have this memory as part of
the CPU; the amount of additional on-chip data memory varies from
product to product.

MCS-251 Register Fil

The MCS-251 architecture supports an extra 32 bytes of registers
in addition to the four banks of eight registers that the MCS-51
microcontroller architecture provides. The lower eight bytes are mapped
between locations 00:00-00:1FH. The lower eight bytes are mapped in
this way to support MCS-51 microcontroller register banking. The
register-file can be addressed in the following ways, depending upon
the registers to be accessed:

Registers 0-15 can be addressed as either byte, word, or double
word (Dword) registers.

Registers 16-31 can be addressed as either word or Dword
registers.

Registers 56-63 can be addressed only as Dword registers.

There are 16 possible byte registers (R0-R15), 16 possible word
registers (WR0-WR30) and 10 possible Dword registers (DR0O-DR28,
DR56-DR60) that can be addressed in any combination outlined above.
DR32-DR52 are theoretically also available in the architecture, but
DR32-DR52 need not be implemented.

All Dword registers are Dword aligned; each is addressed as DRk
with "K" being the lowest of the 4 consecutive registers. For example,
DR4 consists of registers 4-7.

All word registers are word aligned; each is addressed as WR;j
with "j" being the lower of the 2 consecutive registers. For example, WR4
consists of registers 4-5.

Ali byte registers are inherently byte aligned; each is addressed
as Rm with "m" being the register number. For example R4 consists of
register 4.

WO 97/22922 PCT/US96/18838

10

15

20

-2%91 in P

In addition to being a word register, DR60 is also a 16-bit stack
pointer for the stack. It is used for all stack operations such as
pushes/pops, calls/returns, transfer to interrupt service routine and
return from interrupt service routine. Making the stack pointer part of the
register file allows all MCS-251 instructions to be used for stack pointer
manipulation, and enhances stack access through a rich set of
addressing modes.

Program Status Word:

The Program Status Word (PSW) contains status bits that reflect
the current state of the CPU. It consists of two 8-bit registers, PSW and
PSW1 as shown in Table 1. The PSW register retains the existing MCS-
51 microcontrolier flags and the PSW1 register contains the new MCS-
251 flags as well as the CY, AC, RS1, RS0, and OV flags found in the
PSW. The new MCS-251 flags are Zero (Z) and Negative (N). The Zero
flag is set if the result of the last arithmetic or logical operation was a
zero. The Negative flag is set if the result of the last arithmetic or logical
operation was negative.

PSW cY AC Fo RS1 RSO oV ubD P

PSW1 |CY AC N RS1 RSO oV Z
Table 1: Program Status Word Registers

SUBSTITUTE SHEET (RULE 26)

WO 97/22922 PCT/US96/18838

10

15

lO..

Symbol | Function

CY | Carry Flag

AC | Auxiliary Carry Flag (For BCD Operations)

FO Flag O (Available to the user for General Purpose)

RS1 | Register bank select bit 1
RSO | Register bank select bit 0

RSt RSO Working Register Bank Address

0 0 Bank 0 (00:00H-00:07H)
0 1 Bank 1 (00:08H-00:0FH)
1 0 Bank 2 (00:10H-00:17H)
1 1 Bank 3 (00:18H-00:1FH)

OV | Overfiow flag

UD | User definable flag

P Parity Flag

- Reserved for future use

Z Zero flag

N Negative flag

Table 2: PSW Bit Definitions

The following is a description of how the MCS-251
microcontroller architecture supporns the MCS-51 microcontroller
memory organization, instruction set, and user issues as seen by an
MCS-51 microcontroller user.

Code C ibili

The MCS-251 is MCS-51 microcontroller code compatible. All
MCS-51 microcontroller instructions are available in MCS-251.

The MCS-51 microcontroller architecture has four separate
address spaces: program memory, Special Function Registers (SFRs),
internal and external data memory. The MCS-251 architecture
incorporates the program memory and the data memory address spaces

SUBSTITUTE SHEET (RULE 26)

WO 97/22922

10

15

20

25

30

PCT/US96/18838

-11-

into a 16M unified address space. The mapping is completely
transparent to the user and is taken care of by the assembler.
Program Memory:

The MCS-51 microcontroller program memory space is mapped
at FF:0000H, which is the MCS-251 reset vector. All MCS-51
microcontroller instructions work just as before in the 64K region starting
at FF:0000H. The move code byte MOVC instructions access the same
64K region, providing MCS-51 microcontroller compatibility. The MCS-
251 assembler assembles MCS-51 microcontrolier code in the 64K
region making the mapping transparent to the user (all origin (ORG)
statements are interpreted with this mapping). The reset and interrupt
vectors are correspondingly mapped, avoiding any problems on reset or
interrupts.

Interna] Data Memory:

The internal data memory is mapped at location 00:0000H,
ensuring complete runtime compatibility. Register banking, bit
addressing, direct/indirect addressing as well as stack access are MCS-
51 microcontroller compatible. The MCS-251 address space begins as
MCS-51 microcontroller internal data memory and extends to 16M. This
allows enhanced data/stack access using new instructions while
maintaining compatibility with the MCS-51 microcontroller.

Spegial F ion Reqi i

The 128-byte MCS-51 microcontroller SFR space is integrated
into a 512-byte MCS-251 SFR space starting at address S:80H. This
provides complete compatibility with direct addressing of MCS-51
microcontroller SFRs, including bit addressing. The address/data SFRs
such as A, B, DPL, DPH, SP reside in the MCS-251 register file for high
performance, however they are also mapped into the 128-byte MCS-51
microcontroller SFR region for compatibility. In the MCS-251
architecture, these SFRs can be referred to either by their MCS-51
microcontroller names, MCS-51 microcontroller SFR addresses or the
MCS-251 register names as shown in Table 3.

WO 97/22922

10

15

20

25

PCT/US96/18838
-1 2_..
MCS-51 MCS-51 Registers in MCS- MCS-251
Microcontrolier Microcontroller 251 Register file Register Name
SFR Name SFR Addresses (byte-wide)
RO to R7 - 0 through 7 RO to R7
ACC EQ 11 R11
B FO 10 R10
DPH, DPL 83, 82 58, 59 DR56
SP 81 63 DR60 (SPX)

Table 3: MCS-51 Microcontroller Registers in the MCS-251

For purposes of compatibility the Program Status Word (PSW) of
the MCS-51 microcontroller has been retained unmodified.
External Data Memory:

The 64K MCS-51 microcontroller external data memory is
mapped at 01:0000H. This provide complete run-time compatibility with
the MCS-51 microcontroller, since the lowest 16 address bits of the
external data memory are identical the lowest 16 address bits of the
external data memory for the MCS-51 microcontroller. Keeping internal
and external data memory spaces separated ensures that MOVX
instructions do not access internal memory, and that MCS-51
microcontroller MOV (move byte) instructions will not access external
memory.

I ion Set E i

The MCS-251 opcode map is based on the MCS-51
microcontrolier opcode map. It is arranged as two separate maps,
namely binary compatible or assembly compatible modes, configurable
at reset.

The default opcode map is the MCS-51 microcontroller map with
255 opcodes and one ESCAPE prefix (A5). The ESCAPE map allows
the user to take advantage of the new MCS-251 instructions. Unused
opcodes in the ESCAPE map are reserved for future use.

At initialization, the user may choose to configure the
microcontroller to take optimum advantage of the new MCS-251
instructions by providing an input to the microcontrolier which causes a

SUBSTITUTE SHEET (RULE 26)

WO 97/22922 PCT/US96/18838

10

15

20

25

30

-13-

signal CFG_SRC which is input to sequencer 13 to be asserted. The
opcode map remains the same except for the register based instructions
of the MCS-51 microcontroller as shown in Figure 2. The register based
instructions have opcodes with the lower nibble between 6H and FH
(i.e., hexidecimal 6 and hexidecimal F corresponding to decimal 6 and
decimal 15 respectively). These 160 opcodes are moved to the
ESCAPE map as shown in Figure 3. The new MCS-251 instructions are
moved to this freed up space. Unused opcodes are reserved for future
use. The register based instructions keep the same machine code
(opcode + operand bytes) except that each must now be preceded by
the ESCAPE (A5) prefix. The MCS-251 instructions keep the same
machine code, except they no longer need to be proceeded by the
ESCAPE (A5) byte.

That is, in a 256 opcode space which may be encoded as shown
in Figure 2, the only unused prefix is ASH which is shown in Figure 2 as
A5 OPEN providing a 255 opcode map. In this case, the instruction INC
Rn (increment Register n) encodes as 00001rrr2 where rrr ranges from
00020 1112 (0 to 7) for n ranging from 0 to 7. Thus, for register 2, the
instruction would be INC R2 which would encode as 000010102 or OAH.
However, in source mode, i.e., when CFG_SRC is asserted, the A5H
prefix is employed, and the instruction INC Rn encodes as 1010 0101
0000 1rrro. Thus, INC R2 would encode as AS0AH.

In this connection, referring to Figure 3, in source mode, the
instruction 0AH would encode as MOVZ WRj,Rm where jis0,2,4 ... 30
and mis 0 to 15. Each j is encoded as a hexidecimal number OH-FH
and each m is is encoded as a hexidecimal number OH-FH. Thus, the
instruction MOVZ WR10,R2 would encode as 0AA2H. It should be
understood that the specifics of the instructions set forth in this
description and Figures 2 and 3, including how they cause the
microcontroller they are running on to operate are not important to an
understanding of the invention, and the specific information provided
herein is for the purpose of showing how in one particular embodiment
of the invention the same opcode can function as two instructions
depending on a user selectable option.

WO 97/22922 PCT/US96/18838

10

15

20

25

30

_14..

As previously noted, the signal used to switch between the two
modes of operation referred to herein as source mode and binary mode,
is initialized based upon a user input. For example, in the architecture
shown in Figure 1, a signal placed on 1/O ports 37 can be used to
indicate whether the microcontroller is to be configured in source mode
or binary mode at system start-up. The bus interface unit receives this
signal from the memory data bus and stores the signal value (i.e., 0 or 1)
in a memory such as an EPROM. The value stored in the EPROM is
passed to the instruction sequencer over the instruction bus during
system initialization as the CFG_SRC signal. Referring now to Figure 4,
upon receiving the CFG_SRC signal, previously stored in a memory
such as EPROM 45 from the bus interface unit 29, the signal is latched
in latch 47 forming a bit (SRC_MD) within instruction sequencer 13
which is set or reset and as instructions are decoded by instruction
sequencer 13 into micro-instructions which control the operation of CPU
11, the state of the SRC_MD bit is used to determine whether the
incoming instructions should be interpreted as source mode instructions
or binary mode instructions. The implementation details of an
instruction sequencer which can operate in this dual mode fashion are
highly dependent on the overall microcontroller architecture. However,
the impiementation details for providing a SRC_MD or equivalent bit in
any particular instruction sequencer should be readily apparent from
this description.

Referring now to Figure 5, a microcontroller having the invented
instruction sequencer 13 with dual mode operation capability is shown
connected to an external device such as a scanner, copier, point of sale
terminal, CD-ROM drive, tape drive, telephone switch or the like having
a memory 61 connected to the microcontroller bus interface 29 and
external device controller 63 coupled to the microcontroller peripheral
interface. The specifics of these connections are highly device
dependent, are well known to persons skilled in the art and are not
needed for an understanding of the invention. In the configuration
shown in Figure 5, a complete system for performing a particular device
dependent function is provided.

WO 97/22922 PCT/US96/18838

_15..

The specifics of the implementation details set forth herein are
provided by way of example only to illustrate the concepts forming the
invention and should not be construed as limiting the scope of the
invention since other microcontroller or microprocessor architectures

5 may utilize an entirely different implementation. However, the various
changes which would be needed to implement the invention for other
architectures should be readily apparent to persons skilled in the art.

WO 97/22922

10

15

20

25

30

..16_.
CLAIMS
| claim:
1. A microcontroller comprising:

a) means for receiving a signal from an external source, said
signal having a value which is stored in a memory;

b) instruction decoder means adapted to operate in one of
two predetermined modes depending on the state of said stored value,
each of said predetermined modes adapted to operate on one of a first
and a second predetermined instruction set;

wherein one of said opcodes in said first predetermined
instruction set is unused and said unused opcode is used as a prefix to
predetermined instructions in said first instruction set when said decoder
is operating in a first one of said two predetermined modes and said
unused opcode is used as a prefix to predetermined instructions in said
second instruction set when said decoder is operating in a second one
of said two predetermined modes.

2. The microcontroller defined by Claim 1 wherein said prefix
is used by said decoder to distinguish between two instructions having
the same opcode and is used only for a subset of instructions within said
first instruction set and for a subset of instructions within said second
instruction set.

3. The microcontroller defined by Claim 1 wherein said
receiving means in an input port of said microcontroller coupled to a bus
interface unit, said bus interface unit coupled to said decoder means
which includes a latch to capture the signal input via said input port
during initialization of said microcontrolier.

4, The microcontroller defined by Claim 1 wherein said
instruction decoder means comprises a latch for latching said received
signal and a micro-instruction sequencer for receiving instructions and
generating control signals and data which cause a central processing
unit of said microcontrolier to operate in a predetermined manner based
upon said received instructions and said latched received signal.

PCT/US96/18838

WO 97/22922 PCT/US96/18838

10

15

17

5. A system for controlling a device comprising:
a) a microcontroller including:
i) means for receiving a signal from an external source,
said signal having a value which is stored in a memory;;
ii)instruction decoder means adapted to operate in one of
two predetermined modes depending on the state of said stored value,
each of said predetermined modes adapted to operate on one of a first
and a second predetermined instruction set;
wherein one of said opcodes in said first predetermined
instruction set is unused and said unused opcode is used as a prefix to
predetermined instructions in said first instruction set when said decoder
is operating in a first one of said two predetermined modes and said
unused opcode is used as a prefix to predetermined instructions in said
second instruction set when said decoder is operating in a second one
of said two predetermined modes.
b) said device having a device memory coupled to a bus
interface of said microcontroller and a device controller coupled to a
peripheral interface of said microcontroller.

WO 97/22922

PCT/US96/18838

1/5
VO PORTS
i » > DATA
YO PORTS PROGRAM
\ A STORAGE o STORAGE N
3 DATA 3
37)
1 BUS
MEMOQRY DATA BUS
f MEMORY ADDRESS BUS /43 /‘
¢ t e P PERIPHERAL L1 PERIPH
Y -« »| INTERFACE [E
% 8US INTERFACE UNIT D] perpr
INSTRUCTION BUS A .
Y
INSTRUCTION SEQUENCER N\ o
77
, \ .
SOURCE | CPU DATA
ADDRESS
souac&zf f i { DRE }4—»- PERIPH
4 A PERIPHERAL)
BUS * *
Y
PERIPKERALS
REGISTER DATA |q1>
FILE MEMORY
INTERFACE
15 | e | T _— / T
3 DESTINATION ™

FIG. 1

PCT/US96/18838

WO 97/22922

2/5

Z bi

=

H4 Ol HO wouJj sabues x

VIHOOW| VSHOOW | V'SHDOW| VvHOOW| VEHOOW| vy OON| VIHOON | V04 DOW Vi@ oonw | vodu® oon aisn| 4
(MY AON | SHVAOW | SHVAOW! tH'VAON| cuvaow]| zuv AON | IHVAOW| 0U'VAOW IHO'V AON | 0H®'V AON a3sn| 3
LYY QHOX | 9H'V QHOX | SH'VAHOX | tH'VAHOX | ed'VaHOX | zu'v GHOX | 1H'VaHOX | o'V aHOX IHO'V QHOX | 0H®'V QHOX g3sn| a
ZH'Y HOX 9Y'V HOX SH'Y HOX YH'Y HOX €Y'V HOX ZH'VY HOX LH'Y HOX 0H'V HOX LH®'Y HOX 0HO'Y HOX a3sn| 9
13 CILPLY | |85 IBPH'OY | 101 RIBPR'SY | (01 BIEPK vy | [0V EICPA'EY | 101 EIep# 2y | P EIePE'L H| 195 IEDA'OH | 191 BIEpH LD | 10/ Clep¥ 0u D
INED IND INrD 3NMD 3INFD 3NMD 3INMD 3N INMD 3NMD aisnyi g
1DaNpLH waip gy 1%81ip'GY PAIP'vY P3UP'EY 1031p2H 1921p7LY e oy RAP'OHD | N3JO SV
AOW AON AOW AON AOW AONW AON AQW | benp'tH® AOW AONW a3snyi v
L9’V 88NS | 8W'V B8NS | SH'v B8NS | ru'vasns | ew'vaans | zu'vasns | iu'v 8gNs | oH'v gans iH®'v g8ns | oud'v gans aasni 6
£Y4'10911p 9y wep SH Lanp vH Panp €Y 10040 ZH wenp L4 vanp OH Venp IH®'Pep 0HO Peup
AOW AOW AOW AOW AOW AON AOW AOW AOW AON aisnj s
elepy Ly eleps'ay elEpH'GY elep#' vy elep#'cy elepy 'y elep#' LY elepR oY elep#'oy
AOW AON AOW AON AOW AON AOW AOW | Blepa' LH® AOW AON a3isn|- ¢
LY’V 1YY 9H'V 14X SH'V TYX 'V IHX £H'V THX ZH'V HX 1H'Y 1YX OH'V X YOV X 0H®'V HX a3sni s
LH'VY INV 9H'Y INV SH'V INY tH'VY INY €Y'V INV ZH'V TNV LH'VY INV 04H'V INV tHD'V INV 0H®'V INVY a3asny| s
LYV 1HO S8H'VY THO SH'V 1HO PH'V THO €4V THO ZH'V THO LH'VY THO 04’V 1HO LHO'V 1HO 0HO'VY THO g3snyi ¢
{4’V 00Qv | SH'VY OQQV | SH'VOAAv | +H'v DAQv | ed'v oaav | 2u'v oaav | id'v oaav | ou'v oaav iIH®'V 2aav | oH®'v oaav g3asn| ¢
LYV aavy 9H'v Qv SH'vaav ! wd'vaav| ey'vaav ZH'v aav H'Y aav o4'v aav LH®'Y Qav 0H®'Y aav g3isn| z
(4930 g4 03a SHY 0330 ¥4 930 £Y 930 TH 930 14 034 04 234 1H® 930 o4® D530 a3sn|
LH DN 94 ONI SH O Y ONI €H DNt 2 ONI tH ONI 04 ONI tH® ONI 0HO® ONI aisny| o
4xGy ELind axsy xgy axsy VXSY 6XGV 8xXGY LXSY 9XGY 5-0 OYS
4 3 a o) 3] v 6] L 9 S-0 NI

PCT/US96/18838

WO 97/22922
3/5
BINARY ASx3 ASx9 ASxA ASaB ASxC ASxC ASxB ASxP
MODE
SOURCE 28 x9 XA 1B xC xD zE P
MODE
0 JISLErd | MOV Rm, MOVZ INC R/ SRA reg
@WRj+dia WRj, WR/DRk,
R #shont MOY
reg, ind
] JSGrd [MOV@ WRj+ | MOVS DEC R/ SRL reg
dis, Rm WRj, Rm | WRyDRk,
#short MOV
ind reg
2 JLE ref MOV Rm, ADD ADD ADD ADD
@DRk+Ay Rm, Rm WRj, WR| | reg 002 DRk, DRk
3 JG re! MOV@DRk+ SLL
dis Rm [4
4 JSL red MOY WRj, ORL ORL ORL
@WRji+Dis Rm, Rm WRi, WRj | reg, op2
s JSGEredd | MOV@WRp ANL ANL ANL
dis, WRij Rm, Rm WRj, WRj |reg op2
6 JE rel MOV WRj, XRL XRL XRL
@DRk+dis Rm, Rm WRj, WRj | reg, op2
7 INErel | MOV@DRk+ | MOV MOV MOV MOV MOV
dig WR} opl reg Rm, Rm WRj, WRj |{reg op2 DRk, DRk
[] LIMP@WR; | EIMP DIy DIV
EMP@ DRk | addrM Rm, Rm WRj, WRj
9 LCALL@WR | ECALL SUB SUB SUB SUB
ECALL@DRX | sddrM Rm, Rm | WRj WRj |reg op? DRk, DRk
A BIT ERET MUL MUL
Instructions Rm, Rm WRj, WRj
B TRAP CMP CMP CMP CMP
Rm, Rm, WRi, WRj | reg, 002 DRk, DRk
C PUSH op1*
MOV DRk,
PC
D POP opl*
F

x ranges from OH to FH

Fig. 3

PCT/US96/18838

WO 97/22922

475

Li

v "Old

of

e 62
/ /
YILINNOD WYHOOHJ . mo<mmwpz_
: LY \3
\ >
3714 . 5
431S193y TR Woud
! 300930
HISNM | 300030
- IVILINI
nv HIONINDIS NOILONYHLSNI /
e1
3OVIHIINI AHOWIAW V1iVQa

4

39VHOIS v1ivad

_—~

€t

39VHOLS WvdD0Hd

L€ S1HOd O/
wou
D4070HS

PCT/US96/18838
WO 97/22922

5/5
EXTERNAL DEVICE o1
MEMORY —
63
-~
, .
N BUS INTERFACE
_— INSTRUCTION EXTERNAL
13 SEQUENCER PERIPHERAL | 3! pEVICE
INTERFACE CONTROLLER
1| cpu

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/18838

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 9/30
US CL : 395/570, 395/386

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/570, 395/386, 395/389

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the ficlds searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document. with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US. A, 5,335,331 (MURAO ET AL.) 02 August 1994, col. 4, | 1, 3-5
lines 44-51, col. 4, line 66 to col. 5, line 17, col. 3, lines 25-
30, col. 3, lines 10-20, col. 4, lines 44-51, col. 2, 54-62.
Y US, A, 4,531,200 (WHITLEY) 23 July 1985, col. 2, lines 13- 1-2
23, col. 3, line 65 to col. 4, line 33, col. 9, lines 12-39.
AP US, A, 5,555,423 (GROCHOWSKI ET AL.) 10 September| 1,3-5
1996, abstract and fig. 1.
A US, A, 5,274,776 (SENTA) 28 December 1993, abstract| 1,3-5
and fig. 1.
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Speciai gories of cited d T later d d after the | filing date or priority
“A° d defmi [| state of the art which is oot considered m:mmzpmmcndemmm
mbep-nofp-mhrnkvw
E carfier document published oa or afler the mtcroational filing date x ;omdwd‘;fovclormmbc ooud“:ed‘m m:o:::n:rml:
L document which mylhmwdoubboupfnmychmh) orwhdl- when the document i taken alooe
cne:{b blsh the pub date of r other oy B of particuk . the claimed in cannot be
spocial reason (s specified) considered to involve an mventive step wha: the document @
‘o document referring o an oral discl use, exhibition or other combined with one or more other such d such bt
means being obvious to & person skitled i the arnt
P mﬁmmuuwmmmmmmmm N document mesmber of the same pstent family

Date of the actual complction of the international search

05 FEBRUARY 1997

Date of mailing of the international search report

0 5MAR1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authoqzed fficer -
M

(703h5-971 5

Telephone No.

Form PCT/ISA/210 (second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

