Office de la Propriete Canadian CA 2530555 A1 2006/06/20

Intellectuell Intellectual P
du Canada_ Office T 2y 2 530 555
g,rngags?;‘:g:na " ﬁgﬁgtf;%yaﬁ; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2005/12/16 (51) ClInt./Int.Cl. GO6F 1/24(2006.01),

GO6F 11/176 (2006.01)

(71) Demandeur/Applicant:
NEC CORPORATION, JP

(72) Inventeur/Inventor:
ABE, SHINJI, JP

(74) Agent: SMART & BIGGAR

(41) Mise a la disp. pub./Open to Public Insp.: 2006/06/20
(30) Priorité/Priority: 2004/12/20 (JP2004-367749)

(54) Titre : METHODE ET SYSTEME POUR REINITIALISER UN SYSTEME INFORMATIQUE INSENSIBLE AUX

DEFAILLANCES
54) Title: METHOD AND SYSTEM FOR RESETTING FAULT TOLERANT COMPUTER SYSTEM

CPU RESET

CPU RESET CPU CPU
~1, 211-2: INTERRUPTION
211 CONTROLLER
. — A
CPU | STEM RESET
BSgSG-lgNMT-— COMPA- comPA- [BUS CONT-| | CONT-
| ROLLER RATOR | CPUFTLINK|] RATOR ROLLER ROLLER
—_— _/211—1 _—
By — R ¥
— 2112
LOBRIB [OBRIB
—— ROUTER | | JoFTAS \ / SRS o FOUTER| o @ [
MEMORY 1 QTROLLER -MEMORY
R | | 1/0 — LOBRIB TOBRIB o
COMPA™I™ | conTROLLER CONTROLLER
| RATOR | |° 1/0 FT LINK -
o _n TERFACE
_JEEM) E 206~ 206-2 | | "eRiae
906-1206-2: SYNCHRONOUS COMMAND GENERATOR
(57) Abrégée/Abstract:

There Is disclosed a method capable of resetting a fault tolerant computer in complete synchronization among modules. The
method includes a step of generating a reset requesting signal by one of the modules, a step of dividing the reset requesting signal
to first and second reset requesting signals, a step of transmitting the second reset requesting signal to the other module, a step of
delaying the first reset requesting signal in the one module by a time required for transmitting the second reset requesting signal to
the other module, a step of resetting at least one CPU Included in the one module by a first CPU reset sighal generated based on
the first reset requesting signal delayed in the one module, and a step of resetting at least one CPU included in the other module by
a second CPU reset sighal generated based on the second reset requesting signal transmitted to the other module.

EORUIORIOR . o
g0
s

=

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

10

CA 02530555 2005-12-16

ABSTRACT OF THE DISCLOSURE

There is disclosed a method capable of resetting a fault tolerant
computer in complete synchronization among modules. The method
includes a step of generating a reset requesting signal by one of the modules,
a step of dividing the reset requesting signal to first and second reset
requesting signals, a step of transmitting the second reset requesting signal
to the other module, a step of delaying the first reset requesting signal in
the one module by a time required for transmitting the second reset
requesting signal to the other module, a step of resetting at least one CPU
included in the one module by a first CPU reset signal generated based on
the first reset requesting signal delayed in the one module, and a step of
resetting at least one CPU included in the other module by a second CPU
reset signal generated based on the second reset requesting signal

transmitted to the other module.

10

15

20

29

CA 02530555 2005-12-16

METHOD AND SYSTEM FOR RESETTING FAULT TOLERANT
COMPUTER SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and a system for
resetting a fault tolerant computer system equipped with a plurality of
modules.

2. Description of the Related Art

Regarding a computer that provides high reliability, there has
conventionally been available a fault tolerant computer system. The fault
tolerant computer duplexes or multiplexes hardware modules constituting a
system to operate all the modules in synchronization, and cuts off a module
to continue processing by a normal module even when a fault occurs 1n a
certain area, thereby enhancing fault tolerance.

The fault tolerance computer basically includes hardware modules
such as a CPU, a memory and an I/O device to be duplexed or triplexed, and
a fault tolerance control section (“FT control section” hereinafter) connected
to the modules to execute synchronous operation processing, switching
control at the time of a fault, or the like. FIG. 1 shows an example of a
system 1in which a CPU, a memory and an I/O device are duplexed. In the
drawing, a CPU (group) 901 and a main memory 902 constitute one CPU
subsystem 903-1, and it is duplexed with another CPU subsystem 903-2 of a
completely identical configuration. Similarly, I/O devices (groups) of
identical configurations are duplexed to constitute an 1/0 subsystem 904.

The FT control section is positioned in a center thereof to control the

modules (CPU subsystems 903-1, 903-2, and I/0 subsystem 904). It controls

10

15

20

25

CA 02530555 2005-12-16

maintenance of synchronous operations of both CPU subsystems 903-1 and
903-2, detection of faults, and cutting-off of a fault module.

Generally, the fault tolerant computer is divided into a section for
duplexing and controlling the modules by hardware and a section for
duplexing and controlling the same by software.

For example, the CPU subsystem constituted of the CPU and the
memory is itself a board on which software operates, and must be duplexed
and controlled by hardware. Accordingly, when an error occurs in the CPU
subsystem, the hardware (FT control section) cuts off the CPU or the
memory from the system and executes control to prevent an influence on the
CPU or the memory of a normal operation.

In FIG. 1, there are two CPU subsystems 903-1 and 903-2. A fault
side 1s logically cut off by the F'T control section, and an operation is
continued by one CPU subsystem 903-1 (or 903-2) and the 1/0 subsystem
904.

On the other hand, when a fault occurs in the 1/0 device, the F'T
section that has detected the fault announces an error to software (“I/O
device driver” hereinafter) for controlling the I/O device, whereby I/O device
switching can be executed by the software. In this case, the 1/O device

driver cancels use of the fault I/0 device, and uses another duplexed I/0O
device instead.

This means switching of I/O devices 905 to be used in the I/0
subsystem 904.

The CPU subsystems 903-1, 903-2 of the fault tolerant computer
must be operated by completely identical clocks, and it is important to

achieve sameness in reset releasing timing for starting operations of the

CPU’s.

10

15

20

25

CA 02530555 2005-12-16

According to a conventional method, e.g., JP-A-9-128258
“Resynchronous Reset Processing Method of Computer System”, an
intersystem synchronization section connected to both processors
simultaneously issues resets to CPU’s.

According to a system described in JP-A-9-128258, it is easy to
simultaneously issue resets to a plurality of CPU’s as one intersystem
control section issues resets. However, presence of only one intersystem
synchronization section creates a risk that the system will not start when a
fault occurs therein. Especially, since there is no mention of a case in which
intersystem control sections are duplexed, how to simultaneously issue
resets to CPU’s is not described.

There are only a few other documents which specifically touch on
synchronous reset control to a plurality of CPU’s. A reason is that a CPU
synchronization method uses not a reset but interruption synchronism as a
starting point, for example, as described in JP-A-7-073059. For example,
according to a method frequently used conventionally, an operating system
or system software operating on a CPU stops at a certain check point, and a
synchronous operation is started upon reception of an interruption input

from a synchronous control section.

According to this method, however, an internal state of the CPU
must be completely understood to guarantee that the internal state of the
CPU 1s completely the same at the time of a stop at the check point.
Otherwise, even when interruptions are simultaneously applied to the
CPU’s, enormous internal logics of the CPU’s are not always maintained in

the same state, and consequently synchronism of operations thereafter

cannot be guaranteed.

That is, while the CPU is engaged in loop processing to wait for

10

15

20

2D

CA 02530555 2005-12-16

interruptions by the operating system or the system software, even in a
CPU stopped state seen from the outside, many logics still operate in the
CPU, such as processing of a loop command of the operating system or the
system software, or system bus monitoring to wait for interruptions. In the
CPU, prediction processing is carried out to achieve a high speed. However,
prediction contents may vary from CPU to CPU. Furthermore, even a
difference 1n refreshing timing or address of the main memory between the
CPU subsystems may cause a variance in internal states of the CPU’s.

In the old type CPU, the synchronization method that uses an
interruption as a starting point may be effective. However, because of
recent increases in size and complexity of internal logics of the CPU, it is
virtually impossible to change the CPU that has started an operation to the
completely identical state by software. To solve this problem, therefore, a
method of completely synchronizing reset signals to reset all the internal

logics of the CPU to input them to the CPU 1s the only way.

SUMMARY OF THE INVENTION

It 1s therefore an object of the present invention to provide a
method and a system for resetting a fault tolerant computer, capable of
resetting the fault tolerant computer in complete synchronization among

modules.

According to a first aspect of the present invention, there 1s
provided a method of resetting a fault tolerant computer equipped with a
plurality of modules, comprising a step of generating a reset requesting
signal by one of the modules; a step of dividing the reset requesting signal to
first and second reset requesting signals; a step of transmitting the second

reset requesting signal to the other module; a step of delaying the first reset

10

15

2.0

23

CA 02530555 2005-12-16

requesting signal in the module by a time required for transmitting the
second reset requesting signal to the other module; a step of resetting at
least one CPU included in the one module by a first CPU reset signal
generated based on the first reset requesting signal delayed in the one
module; and a step of resetting at least one CPU included in the other
module by a second CPU reset signal generated based on the second reset
requesting signal transmitted to the other module.

The above method may further comprise a step of generating a
locking command in the module; a step of transmitting the locking command
to an I/0 interface bridge of the one module; a step of transmitting the
locking command to an I/O interface bridge of the other module; a step of
locking an inbound request and generating first locking completion upon
completion of returning of nonposted outbound request completion
corresponding to all nonposted outbound requests before the locking
command is received in the I/O interface bridge of the one module which has
received the locking command; and a step of locking an inbound request and
generating second locking completion upon completion of returning of
nonposted outbound request completion corresponding to all nonposted
outbound requests before the locking command is received in the I/O
interface bridge of the other module which has received the locking
command, wherein the reset requesting signal is generated upon generation
of the first locking completion in the I/0 interface bridge of the one module
and the second locking completion in the 1/O interface bridge of the other
module.

The above method may further comprise a step of refreshing a main
memory of the one module by a refreshing command and a refreshing

counter reset signal generated based on the first reset requesting signal

10

15

20

25

CA 02530555 2005-12-16

delayed in the one module; and a step of refreshing a main memory of the

other module by a refreshing command and a refreshing counter reset signal
generated based on the second reset requesting signal transmitted to the
other module.

The above method may further comprise a step of determining
matching of a command issued by at least one reset CPU included in the one
module with a command issued by at least one reset CPU included in the
other module; and a step of resetting at least one CPU included in the one
module and at least one CPU included in the other module again when the
commands do not match with each other.

The above method may further comprise a step of transmitting the
command issued by at least one reset CPU included in the other module to
the one module; and a step of delaying the command issued by at least one
reset CPU included in the module by a time required for transmitting the
command from the other module to the one module, wherein in the step of
determining machining of the command issued by at least one reset CPU
included in the one module with the command issued by at least one reset
CPU included in the other module, determination is made as to matching of
the command issued by at least one reset CPU included in the one module
and delayed with the command issued by at least one reset CPU included in

the other module and transmitted.

According to a second aspect of the present invention, there is
provided a system for resetting a fault tolerant computer equipped with a
plurality of modules, comprising means for generating a reset requesting
signal by one of the modules; means for dividing the reset requesting signal
to first and second reset requesting signals; means for transmitting the

second reset requesting signal to the other module; means for delaying the

10

15

20

29

CA 02530555 2005-12-16

first reset requesting signal in the module by a time required for
transmitting the second reset requesting signal to the other module; means
for resetting at least one CPU included in the one module by a first CPU
reset signal generated based on the first reset requesting signal delayed in
the one module; and means for resetting at least one CPU included in the
other module by a second CPU reset signal generated based on the second
reset requesting signal transmitted to the other module.

The above system may further comprise means for generating a
locking command in the one module; means for transmitting the locking
command to an I/O interface bridge of the one module; means for
transmitting the locking command to an I/O interface bridge of the other
module; means for locking an inbound request and generating first locking
completion upon completion of returning of nonposted outbound request
completion corresponding to all nonposted outbound requests before the
locking command is received in the I/O interface bridge of the one module

which has received the locking command; and means for locking an inbound

request and generating second locking completion upon completion of
returning of nonposted outbound request completion corresponding to all
nonposted outbound requests before the locking command is received in the
I/0 interface bridge of the other module which has received the locking

command, wherein the reset requesting signal 1s generated upon generation

of the first locking completion in the I/O interface bridge of the one module
and the second locking completion in the I/O interface bridge of the other
module.

The above system may further comprise means for refreshing a
main memory of the one module by a refreshing command and a refreshing

counter reset signal generated based on the first reset requesting signal

10

15

20

25

CA 02530555 2005-12-16

delayed in the one module; and means for refreshing a main memory of the
other module by a refreshing command and a refreshing counter reset signal
generated based on the second reset requesting signal transmitted to the
other module.

The above system may further comprise means for determining
matching of a command issued by at least one reset CPU included in the one
module with a command i1ssued by at least one reset CPU included in the
other module; and means for resetting at least one CPU included in the one
module and at least one CPU included in the other module again when the
commands do not match with each other.

The above system may further comprise means for transmitting the
command issued by at least one reset CPU included in the other module to
the module; and means for delaying the command issued by at least one
reset CPU included in the one module by a time required for transmitting
the command from the other module to the one module, wherein in the
means for determining machining of the command issued by at least one
reset CPU included in the one module with the command issued by at least
one reset CPU included in the other module, determination is made as to
matching of the command issued by at least one reset CPU included in the
one module and delayed with the command issued by at least one reset CPU
included in the other module and transmitted.

According to a third aspect of the present invention, there is
provided a fault tolerant controller used for a fault tolerant computer
equipped with a plurality of modules, comprising reset requesting signal
generation means for generating a reset requesting signal; dividing means
for dividing the reset requesting signal to first and second reset requesting

signals; transmission means for transmitting the second reset requesting

10

15

20

25

CA 02530555 2005-12-16

signal to a fault tolerant controller included in a module other than a
module which includes the controller; first delaying means for delaying the
first reset requesting signal by a time required for transmitting the second
reset requesting signal to the fault tolerant controller included in the
module other than the module which includes the controller; and CPU
resetting means for resetting at least one CPU included in the module which
includes the controller by a first CPU reset signal generated based on the
delayed first reset requesting signal.

The above controller may further comprise locking command
generation means for generating a locking command; first locking command
transmission means for transmitting the locking command to an I/0
interface bridge included in the controller; second locking command
transmission means for transmitting the locking command to an I/0
interface bridge included in the fault tolerant controller included in the
module other than the module which includes the controller; and locking
completion generation means for locking an inbound request and generating
first locking completion upon completion of returning of nonposted outbound
request completion corresponding to all nonposted outbound requests before
the locking command is received in the I/O interface bridge included in the
controller, wherein the reset requesting signal generation means generates
the reset requesting signal upon generation of the first locking completion in
the 1/0 interface bridge included in the controller and second locking
completion in the I/O interface bridge included in the fault tolerant
controller.

The above controller may further comprise refreshing means for
refreshing a main memory of the module which includes the controller by a

refreshing command and a refreshing counter reset signal generated based

10

15

20

25

CA 02530555 2005-12-16

._..10__

on the first reset requesting signal delayed by the first delaying means.

The above controller may further comprise matching determination
means for determining matching of a command issued by at least one reset
CPU included in the module which includes the controller with a command
1ssued by at least one reset CPU included in the module other than the
module which includes the controller; and re-resetting means for resetting
at least one CPU included in the module which includes the controller again
when the commands do not match with each other.

The above controller may further comprise second delaying means
for delaying the command issued by at least one reset CPU included in the
module which includes the controller by a time required for transmitting the
command from the module other than the module which includes the
controller to the module which includes the controller, wherein the
matching determination means determines matching of the command
1ssued by at least one reset CPU included in the module which includes the
controller and delayed by the second delaying means with the command
1ssued by at least one reset CPU included in the module other than the
module which includes the controller and transmitted.

According to the present invention, the first reset requesting signal

is delayed in one module by a time required for transmitting the second
reset requesting signal to the other module. As a result, it is possible to

reset at least one CPU included in one module simultaneously with at least

one CPU included in the other module.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 i1s a block diagram showing a basic configuration of a fault

tolerant computer;

10

15

20

25

CA 02530555 2005-12-16

ll

FIG. 2 is a block diagram showing a configuration of a fault
tolerant computer according to an embodiment of the present invention;

FIG. 3 is a block diagram showing the fault tolerant computer of
FIG. 2 seen from one CPU;

FIG. 4 is a block diagram showing a configuration of a fault
tolerant control section shown in FIG. 2;

FIG. 5 is a block diagram showing a configuration of an
LOB/RIB.I/O FT link controller shown in FI1G. 4;

FIG. 6 is a block diagram showing a configuration of a delay
controller shown in FIG. 5;

FIG. 7 is a timing chart showing a situation in which command
packets simultaneously arrive at a local router and a remote router
according to the embodiment of the present invention;

FIG. 8 is a block diagram showing a configuration of a CPU
comparator shown in FI1G. 4;

FIG. 9 is a first explanatory diagram of a CPU resetting method

according to the embodiment of the present invention;

FIG. 10 is a second explanatory diagram of a CPU resetting method

according to the embodiment of the present invention;
FIG. 11 is a third explanatory diagram of a CPU resetting method
according to the embodiment of the present invention;
FIG. 12 is a timing chart showing a situation of resetting a DRAM
by the CPU resetting method according to the embodiment of the present
invention; and
FIG. 13 is a timing chart showing a situation of detecting
asynchronism by the CPU comparator to reset the CPU again according to

the embodiment of the present invention.

10

15

20

25

CA 02530555 2005-12-16

12.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Next, the preferred embodiments of the present invention will be
described in detail with reference to the accompanying drawings.

The CPU resetting method and system of the present invention
input reset signals of multiplexed CPU subsystems to CPU’s in complete
synchronization to guarantee synchronous operations of the CPU’s of the
systems in a fault tolerant computer system. Recent CPU resetting employs
asynchronous resetting not synchronized with a clock in many cases. Even
when resetting is synchronously input on a clock basis, complete CPU
synchronism may not be established. To deal with this situation, a
mechanism is provided to monitor a request from a nearby CPU after reset
releasing, and to immediately input resetting again when a timing shift is
detected.

A reset controller is provided for each CPU subsystem, realizing a
configuration of improved fault tolerance.

F1G. 2 shows a basic configuration of the fault tolerance computer
to realize the method and the system for resetting the fault tolerant
computer according to an embodiment of the present invention.

The fault tolerant computer of FIG. 2 is a duplex system divided

into primary and secondary sides for convenience. As devices, the primary

and secondary sides are constructed on separate boards to enable switching
of fault places.

A CPU subsystem 121 comprises a CPU group (including CPU’s
101-1 and 101-2), main memories 102-1, 102-2, and upper halves of F'T
control sections 103-1, 103-2 including reset control sections, and operates

in complete synchronization between the primary and secondary sides

10

15

20

25

CA 02530555 2005-12-16

including clocks. The FT control section 103 is configured by adding a
functional section for realizing the fault tolerant computer system to a north
bridge functional section of Intel (registered trademark) architecture.

An I/0 subsystem 122 is also divided into primary and secondary
sides similar to each other in configuration. The I/O subsystem 122 includes
an I/0 device group. FIG. 2 shows an example in which the I/O device group
of the primary side includes I/O devices 105-1-1, 105-1-2, and the I/O device
group of the secondary side includes 1/0 devices 105-2-1, 105-2-2. The 1/O
devices are not operated 1in synchronization. In both I/0O device groups,
devices to be used are switched when faults occur.

I/0 FT links 111-1 and 111-2 are set between the FT control
sections 103-1 and 103-2. The I/O FT link 111-1 is mainly for accessing the
I/0 device of the secondary side from the CPU subsystem of the primary
side. The I/O FT link 111-2 1s mainly for accessing the I/O device of the
primary side from the CPU subsystem of the secondary side. These can be
used for other purposes.

Accordingly, access alone from the F'T control section #1 (103-1) to
the I/0 devices #1a, b (105-1-1, 105-1-2) below 1s forwarded, and I/O access
synchronous checking of both systems is limited within a range of I/0 access

forwarded to an I/0 comparator 208-1 (see FIG. 4). Similarly, the F'T control
section #2 (103-2) i1s in charge of synchronous checking of access to the 1I/O
devices #2a, b (105-2-1, 105-2-2) below an I/O comparator 208-2.
As a result, according to this system, synchronous checking of 1/0
access 1s discretely carried out between the primary and secondary sides.
Fig. 3 shows the system seen from one CPU of the system of FIG. 2.
The CPU subsystem is duplexed. However, the I/O subsystem is configured

as shown since it 1s duplexed for each device by software.

10

15

20

25

CA 02530555 2005-12-16

14

The FT control section 103-2 incorporates an I/O interface bridge

210-1, and the FT control section 103-2 incorporates an I/0 interface bridge
210-2. The CPU 101-1 of the primary side accesses the I/O interface bridge
210-2 of the secondary side through the I/O FT link 111-1, and the CPU 101-
2 of the secondary side accesses the I/0 interface bridge 210-1 of the
primary side through the IO FT link 111-2.

FIG. 4 shows the insides of the F'T control sections 103-1, 103-2 1n
detail. Referring to FIG. 4, description will be made based on the primary
side. However, description can be made based on the secondary side by
changing a suffix “-1” of each section to “-2” and vice versa.

A system bus controller 201-1 executes control concerning a request
from the CPU 101-1 through a system bus 202-1. The received request 1s
sent to a router 203-1. Completion of an inbound request or an outbound
request from the I/O device 105-1 is received from the router 203-1, and
returned to the CPU 101-1. Generally, a request from the CPU to the I/O
device is called an outbound request, and a request from the I/0O device to
the CPU/memory is called an inbound request. A reply accompanied by
data to a nonposted request such as reading will be called completion,
completion to the outbound request will be called outbound request
completion, and completion to the inbound request will be called inbound
request completion.

A reset controller 204-1 supplies a reset signal to the CPU 101-1,
and gives a synchronous resetting instruction to a memory controller 205-1
in accordance with an instruction from the router 203-1.

The memory controller 205-1 executes DRAM control including
issuance of a request to the main memory 102-1 based on a memory request

routed from the router 203-1. In accordance with the synchronous resetting

10

15

20

25

CA 02530555 2005-12-16

_15__

instruction from the reset controller 204-1, it instantaneously refreshes the
DRAM, and clears a refreshing counter.

A synchronous command generator 206-1 is an I/O device in the FT
control section 103-1, and issues a special command as an inbound request
in accordance with an instruction from the CPU 101-1.

The synchronous command generator 206-1 issues a synchronous
reset command of the CPU.

The router 203-1 routes a request and completion passed in the F'T
control section 103-1. Upon reception of a request from a requester, a
routing destination is decided from an address written in the request, and
the request is passed to the decided routing destination.

Routing destinations are the main memory 102-1, the CPU 101-1, a
local (in own FT control section 103-1) I/O interface bridge 207-1, a remote
(in F'T control section 103-2 of an opposite side) I/O interface bride 207-2,
the synchronous command generator 206-1, and the reset controller 204-1.

An address, a command and data are lumped together to facilitate
synchronization, and the request and the completion are formed into
packets to be routed in the F'T control section 103-1 and in the I/O FT link
111-1. Hereinafter, the request and the completion will be simply referred
to as packets.

The router 203-1 accepts all packets of similar formats.
Packetization of each request or completion is carried out by a controller
such as the system bus controller 201-1, the memory controller 205-1, the
I/0 interface bridge 207-1, the synchronous command generator 206-1, an
LOB/RIB I/O FT link controller 208-1, or an LOB/RIB I/O FT link controller
209-1. The LOB is an abbreviation of a local outbound request, and the RIB

1s an abbreviation of a remote inbound request.

10

15

20

25

CA 02530555 2005-12-16

16

When the outbound request is routed to the I/O interface bridge
207-1, the router 203-1 routes the request to its own I/O comparator 208-1.

When the outbound request is routed to the remote I/0 interface
bridge 207-2, the request is passed to the LOB/RIB I/0 FT link controller
209-1, and further sent through an ROB/RIB I/O FT link controller 210-2 of
the remote side to the remote I/0 interface bridge 207-2.

The inbound request from each I/0O device 105-1 is passed through
the 1/0 interface bridge 207-1 and the LIB/ROB 1/0 FT link controller 210-1
to the local router 203-1, or the remote router 203-2, or both.

The routing to the local router 203-1 and the remote router 203-2
vary depending on a synchronous or asynchronous state of the primary and

secondary sides.

F1G. 5 shows the inside of the LIB/ROB 1/0O FT link controller 210-1
in detail. The LIB/ROB I/0O FT link controller 210-2 is similar to the
LIB/ROB I/O FT link controller 210-1. Description will be made by taking
the example of the LIB/ROB I/O FT link controller 210-1.

A packet received from the remote side is received by an FT link
input controller 221, and decoded by a decoder 222 to determine a
request/completion.

When it is determined to be an outbound request or inbound
request completion, the packet received from the remote side is sent to the
I/O comparator 208-1, and lastly forwarded through the I/O interface bridge
207-1 to each 1/0O device 105-1.

When it is determined to be an inbound request or an outbound
request completion, the packet received from the remote side is sent to the

router 203, and lastly forwarded to one of the CPU 101-1, the main memory
102-1, and the reset controller 204-1 which are devices in the CPU

10

15

20

2.

CA 02530555 2005-12-16

._17._..

subsystem 121.

The following three types of routing are conceivable for the inbound
request or the outbound request completion from the inside.

(1) The primary and secondary sides are in complete
synchronization, and the inbound request or the outbound request
completion is forwarded to both CPU subsystems. (2) The primary and
secondary sides are not in synchronization, and the CPU subsystem
connected to its own FT control section 103-1 is an active side while the
CPU subsystem connected to the other FT control section 103-2 is a standby
side. A request or completion from each of the local I/O interface bridge 207-
1 and the remote I/O interface bridge 207-2 is forwarded only to its own
CPU subsystem.

(3) The primary and secondary sides are not in synchronization,
and the CPU subsystem connected to its own FT control section 103-11s a
standby side while the CPU subsystem connected to the other FT control
section 103-2 is an active side. A request or completion from each of the
local I/O interface bridge 207-1 and the remote I/0O interface bridge 207-2 1s
forwarded only to the CPU subsystem of the remote side.

These states are set in an active/standby register 223 and a
synchronous/asynchronous state register 224.

In the case of (1) in which both sides are in complete
synchronization, the request or completion from the I/O device 105-2 1s
passed through an arbiter 225, and then sent to both of a delay controller
226 and an FT output link controller 227. As a result, the request or
completion from the I/0 device 105-2 is passed to the routers 203-1, 203-2 of
both FT control sections 103-1, 103-2. However, in the fault tolerant

computer, the CPU subsystems including the routers 203-1, 203-2 are 1n

10

15

20

25

CA 02530555 2005-12-16

18.

complete synchronization. Accordingly, the request or completion from the
I/0 device 105-2 must be passed to the routers 203-1, 203-2 in complete
synchronization.

As the packet is forwarded to the other system through the I/O FT
link 111-2, a certain time lag occurs. Thus, when the packet is passed to an
own router 203-1, it goes through the delay controller 226. This time lag is
called a flight time.

The LIB/ROB I/0O link controller 209 includes the FT link input
controller 221 and the F'T link output controller 227 alone among
components of the LIB/ROB I/O FT link controller 210.

FIG. 6 shows the delay controller in detail.

The packet of the request or completion passed through the arbiter
225 1s stored i1n a shift register 231 of an FIFO configuration shifted for each
clock.

A switch 233 selects a request or completion from a node
corresponding to a flight time stored in an I/O FT link flight time register
232 from a plurality of nodes of the shift register 231, and passes it to the
router 203-1.

That is, the request or completion passed to the router 203-1 is
delayed by a time (flight time) equal to that of the request or completion
passed through the I/O FT link 111-2 to the router 203-2.

The flight time depends on mounting. For example, a flight time is
measured in a mounted state at the time of shipment from a plant, and the

measured flight time is stored in a predetermined area (EEPROM or the
like), and set in the I/O FT link flight time register at the time of starting
the system.

By the aforementioned function, in the synchronous state, the

10

15

20

23

CA 02530555 2005-12-16

— 19 —

packet of the inbound request or the outbound request completion is passed
to the routers 203-1, 203-2 at the same timing.

FIG. 7 1s a timing chart when a time flight i1s 4T. The packet
output from the local FT link output controller 227 is synchronized with a
clock at the remote FT link input controller 222. Accordingly, a flight time
1s an 1integral multiple of a clock cycle T.

When the primary and secondary sides are in an asynchronous
state and the primary side is active (2), as indicated by a reference numeral
228 of FIG. 5, the packet is not passed to the FT link output controller 227
but directly forwarded from the arbiter 225 to the router 203.

Conversely, when the primary and secondary sides are in an
asynchronous state and the secondary side is active (3), the CPU subsystem
of its own system is set in a standby state to be cut off from the system.
Thus, the packet is forwarded only to the FT link output controller 227.

The CPU comparators 212-1, 212-2 connect their CPU subsystems
to each other through the CPU FT link 213, transfers request information
issued by the CPU’s with each other, and checks synchronism. FIG. 8 shows
these sections in detail.

The CPU comparator 212 includes a delay controller (constituted of
shift register 241, CPU FT link flight time register 242 and switch 243)
similar to the delay controller (constituted of shift register 231, I/O FT link
flight time register 232 and switch 233) for maintaining synchronism with
the I/O FT link. A command of the CPU 101-1 of its own system is stored in
the shift register of an FIFO configuration for executing shifting for each
clock, taken out from the shift register 241 by the switch at timing set in the
CPU FT link flight time register 242, and passed to a checker 244.

This flight time also depends on mounting. For example, a flight

10

15

20

25

CA 02530555 2005-12-16

.20

time 1s measured in a mounted state at the time of shipment from the plant,
and the measured time is stored in a predetermined area (EEPROM or the
like), and set in the CPU FT link flight time register 242 at the time of
starting the system.

The checker 244 receives a CPU command of the remote system
through the CPU FT link 213. The checker 244 monitors issuance of
identical CPU commands from the primary and secondary sides at the same
timing.

This function is mainly used for checking synchronism of the CPU’s
immediately after CPU reset releasing. When a synchronization failure of
the CPU’s by reset releasing is confirmed by the checker 244, the failure is
immediately announced to the local reset controller 204 to prompt resetting
of the CPU again.

The 1/0 interface bridge 207-1 has a function of forwarding a packet
to a lower 1/O interface, or a function of packetizing a request or completion
from the lower I/O device 105-1 to forward it to the LIB/RIB 1/0 FT link
controller 210-1.

When both systems are synchronized by resetting the CPU’s 101-1,
101-2, the 1/0 devices 105-1-1, 105-1-2, 105-2-1, and 105-2-2 must be
temporarily stopped.

For example, it is because when an interruption or DMA occurs

from the I/O device 105-1-1 during resetting of the CPU’s 101-1, 101-2, the
CPU’s 101-1, 101-2 cannot deal with it. However, a stop time must be short.
It i1s because a long-time stop of the system means a stop of services,
inconveniencing the user.

For the CPU’s 101-1, 101-2, system software such as a system

management interruption handler (SMI hander) higher than the operating

10

15

20

2D

CA 02530555 2005-12-16

.21.

system 1s accessed to enable a temporary stop of the operating system.
Additionally, control for synchronous processing is carried out by software
accessed by an SMI generated by the interruption controllers 221-1, 211-2.

However, system software unaware of a nature of each I/O device
105 cannot stop the I/0 device 105 as it is unable to control the same.

(zenerally, control of the I/O device 105 is carried out by an 1I/0
device driver present for each I/O device through an interface of the
operating system. Accordingly, to stop the I/O device 105, a driver of each
I/0 device 105 must be accessed to request a stop of the device each time.

After completion of synchronization, the driver of each I/O device
105 must similarly be accessed to start an operation of the device.

This is after all equivalent to a stop of all services for
synchronization, meaning a long-time stop of the system.

To prevent such a problem, according to the system, the I/O
interface bridge 207 is provided with a locking function.

The 1/0 interface bridge 207 stores all nonposted outbound requests
(requests requiring completion) issued to the I/0 devices 105, receives
completion, packetizes it, and clears the requests when the packet is passed
to the LOB/RIB I/O FT link controller 210.

Upon reception of a lock packet as an outbound request from the

CPU 101 engaged in system software execution, the I/O interface bridge 207
cuts off all inbound requests when all the prepared nonposted requests are

cleared, and returns lock completion to the router 203.

That is, after the I/O interface bridge 207 receives the lock packet,

the lock packet becomes a last inbound packet sent from the 1/0O interface

bridge 207.
Accordingly, all the packets from the I/O interface bridge 207 are

10

15

20

2D

CA 02530555 2005-12-16

— 27 -

cut off to temporarily stop the 1I/0 device 10o.

After the synchronization, an unlocking command is issued from
the CPU 102 engaged in BIOS execution to release a locked state.

As a result, since the I/O interface is capped only during reset
synchronization without stopping each I/0 device 105, it is possible to
shorten a time more greatly as compared with the case of accessing the
device driver to stop/start the system.

In the system of FIG. 2, it is presumed that both systems are in an
asynchronous state, the primary side is active, and services are operated by
the operating system. It is presumed that the secondary side is in a standby
state, and services by the CPU 101-2 are stopped by board switching due to

a fault.

It is further presumed that the I/O FT links 111-1, 111-2 have been
set in operated states, and the I/O device 105-2 of the standby side can be
used from the active side.

In this case, the synchronous/asynchronous state register 24 1s set
to indicate asynchronism, and the active/standby register 223 of the primary
side is active while the active/standby register 223 of the secondary side 1s

in a standby state.

Therefore, no packet reaches the router 203-2 of the CPU
subsystem of the secondary side in the standby state from the active side,
and the router 203-2 rejects all the outbound requests from the standby side,
logically setting a cut-off state.

An operation procedure of operating the primary and secondary

sides in synchronization from this state will be described with reference to
FIGS. 9 to 11.

To synchronize the standby side, system software (e.g., SMI

10

15

20

29

CA 02530555 2005-12-16

23

handler) is accessed by an interruption (e.g., SMI) higher than the operating
system. At a point of this time, an operation of the operating system 1is
temporarily stopped.

The CPU 101-1 that executes the system software requests the
router 203-1 to issue a locking command (1 of FIG. 9).

The router 203-1 issues locking commands to the 1/O interface
bridges 207-1, 207-2 of both local and remote sides (2 of FIG. 9).

The 1/0 interface bridges 207-1, 207-2 that have received the
locking commands (3 of FIG. 9) return nonposted outbound request
completion to all the prepared nonposted outbound requests, and
simultaneously lock all the inbound requests from the I/O devices 105-1,
105-2. Then, the I/O interface bridges 207-1, 207-2 return lock completion
after returning of last nonposted outbound request completion (4 of FIG. 10).

The router 203-1 checks the return of lock completion from both I/O
interface bridges 207-1, 207-2 (5 of FIG. 10) to announce it to the CPU 101-1
(6-FI1G. 10).

As an announcing method to the CPU 101-1, an announcement is
made by polling the register in the router 203-1 indicating a lock completion
returned state by the CPU 101-1 which executes the system software.

Though not described in detail in the embodiment, contents of the
main memory 102-1 of the active side are continuously copied in the main
memory 102-1 of the standby side by an internal DMA engine of the FT
control section 103-1, which is carried out in the background during the
operation of the operating system.

During the period from the start of the system software for
synchronous processing to the stop of DMA from the I/0 devices 105-1, 105-2
to the main memory 102-1 by locking of the 1/0 interface brides 207-1, 207-2,

10

15

20

29

CA 02530555 2005-12-16

24

contents written in the memory 102-1 of the active side by the DMA are
forwarded to the memory 102-2 of the standby side, providing a function of
automatically maintaining sameness.

That is, at a point of time when the router 203-1 checks the return
of lock completion from both I/O interface bridges 207-1, 207-2 (5 of FIG. 10),
and announces it to the CPU 101-1, the main memories 102-1, 102-2
connected to both FT control sections 103-1, 103-2 are in completely the
same state.

Next, the CPU 101-1 that executes the system software requests
the synchronous command generator 206-1 to issue a synchronous CPU
reset command. This is carried out by writing in a control register of the
synchronous command generator 206-1 (7 of FIG. 11).

The synchronous command generator 206-1 announces a packet of

the synchronous CPU reset command to the LIB/ROB 1/O FT link controller
210-1 (8 of FIG. 11).

Upon reception of the synchronous CPU reset command, the
LIB/ROB I/O FT link controller 210-1 automatically switches the
synchronous/asynchronous state register 224.

Accordingly, the primary and secondary sides are considered to be

in the middle of a synchronizing operation, and the synchronous CPU reset
command is forwarded to the delay controller 226 and the I/O FT link
output controller 227 (9 of FIG. 11).

Because of the passages through the delay controller 226 of the
active side and the 1/O FT link 111-2 of the standby side, the synchronous

CPU reset commands simultaneously arrive at the routers 203-1, 203-2 (10
of FIG. 11).

The routers 203-1, 203-2 respectively forward the synchronous CPU

10

15

20

29

CA 02530555 2005-12-16

reset commands to the reset controllers 204-1, 204-2 (11 of FIG. 11). The
reset controllers 204-1, 204-2 respectively assert resets to the CPU’s 101-1,

101-2 for certain periods (12 of FI1G. 11). As sections above the routers 203-1,
203-2 operate 1n complete synchronization, CPU resets are simultaneously
applied.

The reset controllers 204-1, 204-2 respectively send synchronous
reset pulses to the memory controllers 205-1, 205-2.

As shown in a timing chart of FIG. 12, the memory controllers 205-
1, 205-2 that have received the synchronous reset pulses issue refreshing
commands to DRAM’s as the main memories 102-1, 102-2, and reset the
DRAM refreshing counters (13 of FIG. 11). To reset the DRAM refreshing
counters, DRAM refreshing counter reset signals are applied from the
memory controllers 205-1, 205-2 to the main memories 102-1, 102-2.

Accordingly, there are no more sections which asynchronously
operate in both CPU subsystems, setting a complete lock step synchronous

state.

After reset releasing of the CPU’s 101-1, 101-2, the CPU
comparators 212-1, 212-2 start to operate, thereby monitoring issuance
timing of requests of both CPU’s 101-1, 101-2 (14 of FIG. 11).

As described above, the resetting of the CPU’s 101-1, 101-2 are

asynchronous resetting in many cases, and the re-resetting function that
uses the CPU comparators 212-1, 212-2 is provided in consideration of a

case 1In which the CPU’s 101-1, 101-2 are not synchronized with each other

even when reset pulses synchronized with a clock are applied thereto.
As shown in FIG. 13, when a timing shift occurs in a nearby

request after the reset releasing, the CPU comparators 212-1, 212-2

simultaneously detect an error. The CPU comparators 212-1, 212-2

10

15

20

CA 02530555 2005-12-16

26

immediately announce the error to the reset controllers 204-1, 204-2. As a
result, the sequence of the synchronous CPU resetting is started again from
the place indicated by 12 of FIG. 11.

The resynchronous resetting of the CPU’s 101-1, 101-2 by CPU
comparator checking is a function of executing fast resynchronization only
at a ROM fetching stage by BIOS before main memory access.

Upon successful synchronization, ROM fetching of BIOS in
addresses indicated by reset vectors of the CPU’s 101-1, 101-2 is continued.
Knowing that a result of the CPU comparator checking is positive and the
resynchronization processing has been successful, to unlock the I/O interface
bridges 207-1, 207-2, the CPU’s 101-1, 101-2 that execute BIOS request the
routers 203-1, 203-2 to 1ssue unlocking commands. This is carried out by
writing in the control registers of the routers 203-1, 203-2.

The 1/0 interface bridges 207-1, 207-2 that have received the
unlocking commands release the locked states. Thus, the I/O devices 105-1,
105-2 start to operate again.

The BIOS itself accesses the system software by SMI, executes
context returning to return before a stop of the operating system, and then
returns in a form of return from the SMI before a stop to complete the

synchronization processing.

10

15

20

23

CA 02530555 2005-12-16

WHAT IS CLAIMED IS:

1. A method of resetting a fault tolerant computer equipped with a
plurality of modules, comprising:

a step of generating a reset requesting signal by one of the modules;

a step of dividing the reset requesting signal to first and second
reset requesting signals;

a step of transmitting the second reset requesting signal to the
other module;

a step of delaying the first reset requesting signal in the module by
a time required for transmitting the second reset requesting signal to the
other module;

a step of resetting at least one CPU included in the one module by a
first CPU reset signal generated based on the first reset requesting signal
delayed in the one module; and

a step of resetting at least one CPU included in the other module by
a second CPU reset signal generated based on the second reset requesting

signal transmitted to the other module.

2. The method according to claim 1, further comprising:

a step of generating a locking command in the module;

a step of transmitting the locking command to an I/0 interface
bridge of the one module;

a step of transmitting the locking command to an I/O interface
bridge of the other module;

a step of locking an inbound request and generating first locking
completion upon completion of returning of nonposted outbound request

completion corresponding to all nonposted outbound requests before the

10

15

20

25

CA 02530555 2005-12-16

locking command is received in the 1/O interface bridge of the one module
which has received the locking command; and

a step of locking an inbound request and generating second locking
completion upon completion of returning of nonposted outbound request
completion corresponding to all nonposted outbound requests before the
locking command is received in the 1/O interface bridge of the other module
which has received the locking command,

wherein the reset requesting signal is generated upon generation of
the first locking completion in the 1/0O interface bridge of the one module and
the second locking completion in the I/O interface bridge of the other module.

3. The method according to claim 1, further comprising:

a step of refreshing a main memory of the one module by a
refreshing command and a refreshing counter reset signal generated based
on the first reset requesting signal delayed in the one module; and

a step of refreshing a main memory of the other module by a
refreshing command and a refreshing counter reset signal generated based

on the second reset requesting.signal transmitted to the other module.

4. The method according to claim 1, further comprising:

a step of determining matching of a command issued by at least one
reset CPU included in the one module with a command issued by at least
one reset CPU included in the other module; and

a step of resetting at least one CPU included in the one module and

at least one CPU included in the other module again when the commands do

not match with each other.

10

15

20

25

CA 02530555 2005-12-16

29

5. The method according to claim 4, further comprising:

a step of transmitting the command issued by at least one reset
CPU included in the other module to the one module; and

a step of delaying the command issued by at least one reset CPU
included in the module by a time required for transmitting the command
from the other module to the one module,

wherein in the step of determining machining of the command
issued by at least one reset CPU included in the one module with the
command issued by at least one reset CPU included in the other module,
determination is made as to matching of the command issued by at least one
reset CPU included in the one module and delayed with the command
issued by at least one reset CPU included in the other module and

transmitted.

6. A system for resetting a fault tolerant computer equipped with a
plurality of modules, comprising:

means for generating a reset requesting signal by one of the
modules;

means for dividing the reset requesting signal to first and second
reset requesting signals;

means for transmitting the second reset requesting signal to the
other module;

means for delaying the first reset requesting signal in the module
by a time required for transmitting the second reset requesting signal to the
other module;

means for resetting at least one CPU included in the one module by

a first CPU reset signal generated based on the first reset requesting signal

10

15

20

25

CA 02530555 2005-12-16

30

delayed in the one module; and

means for resetting at least one CPU included in the other module
by a second CPU reset signal generated based on the second reset

requesting signal transmitted to the other module.

7. The system according to claim 6, further comprising:

means for generating a locking command in the one module;

means for transmitting the locking command to an I/O interface
bridge of the one module;

means for transmitting the locking command to an I/0 interface
bridge of the other module;

means for locking an inbound request and generating first locking
completion upon completion of returning of nonposted outbound request
completion corresponding to all nonposted outbound requests before the
locking command is received in the I/O interface bridge of the one module
which has received the locking command; and

means for locking an inbound request and generating second
locking completion upon completion of returning of nonposted outbound
request completion corresponding to all nonposted outbound requests before
the locking command is received in the I/O interface bridge of the other
module which has received the locking command,

wherein the reset requesting signal is generated upon generation of
the first locking completion in the I/O interface bridge of the one module and

the second locking completion in the I/O interface bridge of the other module.

8. The system according to claim 6, further comprising:

means for refreshing a main memory of the one module by a

10

15

20

25

CA 02530555 2005-12-16

_._31._..

refreshing command and a refreshing counter reset signal generated based
on the first reset requesting signal delayed in the one module; and

means for refreshing a main memory of the other module by a
refreshing command and a refreshing counter reset signal generated based

on the second reset requesting signal transmitted to the other module.

9. The system according to claim 6, further comprising:

means for determining matching of a command issued by at least
one reset CPU included in the one module with a command issued by at
least one reset CPU included in the other module; and

means for resetting at least one CPU included in the one module
and at least one CPU included in the other module again when the

commands do not match with each other.

10. The system according to claim 9, further comprising:

means for transmitting the command issued by at least one reset
CPU included in the other module to the module; and

means for delaying the command issued by at least one reset CPU
included in the one module by a time required for transmitting the
command from the other module to the one module,

wherein in the means for determining machining of the command
issued by at least one reset CPU included in the one module with the
command 1ssued by at least one reset CPU included in the other module,
determination is made as to matching of the command issued by at least one
reset CPU included in the one module and delayed with the command

1ssued by at least one reset CPU included in the other module and

transmitted.

10

15

2.0

25

CA 02530555 2005-12-16

32..

11. A fault tolerant controller used for a fault tolerant computer
equipped with a plurality of modules, comprising:

reset requesting signal generation means for generating a reset
requesting signal,;

dividing means for dividing the reset requesting signal to first and
second reset requesting signals;

transmission means for transmitting the second reset requesting
signal to a fault tolerant controller included in a module other than a
module which includes the controller;

first delaying means for delaying the first reset requesting signal
by a time required for transmitting the second reset requesting signal to the
fault tolerant controller included in the module other than the module
which includes the controller; and

CPU resetting means for resetting at least one CPU included in the
module which includes the controller by a first CPU reset signal generated

based on the delayed first reset requesting signal.

12. The controller according to claim 11, further comprising:

locking command generation means for generating a locking
command;

first locking command transmission means for transmitting the
locking command to an I/0O interface bridge included in the controller;

second locking command transmission means for transmitting the
locking command to an I/O interface bridge included in the fault tolerant

controller included in the module other than the module which includes the

controller; and

10

15

20

25

CA 02530555 2005-12-16

__33._

locking completion generation means for locking an inbound
request and generating first locking completion upon completion of
returning of nonposted outbound request completion corresponding to all
nonposted outbound requests before the locking command is received in the
1/0 interface bridge included in the controller,

wherein the reset requesting signal generation means generates
the reset requesting signal upon generation of the first locking completion in
the I/0 interface bridge included in the controller and second locking
completion in the I/O interface bridge included in the fault tolerant

controller.

13. The controller according to claim 11, further comprising:

refreshing means for refreshing a main memory of the module
which includes the controller by a refreshing command and a refreshing
counter reset signal generated based on the first reset requesting signal

delayed by the first delaying means.

14. The controller according to claim 11, further comprising:

matching determination means for determining matching of a
command i1ssued by at least one reset CPU included in the module which
includes the controller with a command issued by at least one reset CPU
included in the module other than the module which includes the controller;
and

re-resetting means for resetting at least one CPU included in the
module which includes the controller again when the commands do not

match with each other.

10

CA 02530555 2005-12-16

34.

15. The controller according to claim 14, further comprising:

second delaying means for delaying the command issued by at least
one reset CPU included in the module which includes the controller by a
time required for transmitting the command from the module other than the
module which includes the controller to the module which includes the
controller,

wherein the matching determination means determines matching
of the command issued by at least one reset CPU included in the module
which includes the controller and delayed by the second delaying means
with the command issued by at least one reset CPU included in the module

other than the module which includes the controller and transmitted.

Smart & Biggar
Ottawa, Canada

Patent Agents

CA 02530555 2005-12-16

43 TTOHLNOO LA |

- IN3LSASENS NdD ¢

-€0

G06

6ri- — —/— —

106

e

OINId

CA 02530555 2005-12-16

NTLSASENS 0/1:22 1

40IAdd
O/I

SNg Io0d
¢-v01

CH
HITT04LNOD

| #

00,
AHOW3IN J3T104.LN

NIVI
¢—¢0!

T AR e . |
T Y7 N3LSASENS NdO 1 ¢ —\

|
A .
P ————

AHVANOD3S | AV

CA 02530555 2005-12-16

FIG.3 101

" CPU
102 205
MAIN MAIN CONTROLLER
MEMOIRY ,210-1 210-2
104 10 /0
| INTERFACE INTERFACE
SOUTH BRIDGE BRIDGE
BRIDGE ‘
112-1 112-2
PCI BUS .
I/0 I/0 /0 /0
DEVICE | DEVICE DEVICE DEVICE
#la #1b #2a #2b

105-1-1 105-1-2 *105-2-1 105—2-1

CA 02530555 2005-12-16

HOLVYHINID ANVIWNOD SNONOYHONAS :2-90¢ 1-90¢

43TI0HINOD mm._._omhzoo HOlvd

MNIM 14 O/
ar/g01

¢-60¢ ¢-80¢

437710HL
-NO9D
AHOW3IW

gly/g0 - 0/1

d3T104LNOD
ANIT 14 O/1

giy/d0

43 T1041NOD
ANIT L4 O/]

431N0Y . L

¢—-£0¢

4371104

4317104 437104
—INOD | [-LNOQ SnN8 -INOD SN
W31LSAS ‘ e12 - Lo

39544 -
JOV44ILINI Nuoow 1-90¢

MNIT L4 0/1 -VdNOO

|-L0¢

0dldd
3JOV4d41NI
O/1

1-80¢ 1-50¢

d31N0d

2-¥0¢ . A 1-212” 1-10C
Y3ITT0HLNOD 1-202
NOILANYYILNI :¢~412 ‘I-11C

(149
13534 NdO H

¢—101 1-101

7 Old

13544 NdO

AHYOWdW
NIVIA

1-¢0}
1-E01

CA 02530555 2005-12-16

1444

H31SIDIY 31VIS
SNONOUHONASY
/SNONOYHIONAS

H31S103d
AGANVLS/3AILOV

Y3TTOHLNOD MNI']
0/1411/804

d31194V

£0¢ . — Géé
431T0YLNOD
1NdLNO MNIT L4
MNIT 14 O/ LGG 1¢¢
YITTOMLINOD | |¥3ITTOHLNOD 077
LNdNI MNIT 14 AV13d
43a0903d 922

YT TTOH.LNOD MNIT:012 e

~ NOLLITdIWOD 1S3INDIY ANNOFLNO NOIL3TdWNOD 1S3NDdd ANNOELNO

1S3NO3d ANNOYNI 1S3ND03IH ANNOENI

HOLVIVANOO \7LON
€07

G Ol 302

CA 02530555 2005-12-16

FIG.6

232

TO ROUTER

COMMAND
PACKET

S
233

FIG./

COMMAND PACKET‘

SHIFT #1

COMMAND
PACKET

FROM ARBITER

¥

/0 FT LINK FLIGHT TIME REGISTER

\ 231

226

- SHIFT

REGISTER

SHIFT #2

SHIFT -#3

SHIFT #4

LOCAL
ROUTER INPUT

LOCAL FT LINK

OUTPUT CONTROLLER

REMOTE FT LINK
INPUT CONTROLLER

]

REMOTE ROUTER
INPUT

rr——

|

FT LINK FLIGHT TIME

lQ '

P

T
b .

CA 02530555 2005-12-16

¢lé

NdO TVOO'1 NO4A

ANVIANINOD
. NdO
Eve
f

H31SIO3Y JNLL

¢vié

1HDI4 MNIT 14 NdO

NdO FLONTH NHOA

ANVININOO
NdO

144

HIANOIHO [«

a(0)at=E
SNONOYHONAS
NdO

CA 02530555 2005-12-16

AJONdN
NIVIN

13S34 NdD dY

HO1VHINTD ANVYAWOO SNONOYHONAS :2-902'1-90¢

400144
dOV4d3LNI
Q/1

d3T104LNOD

43 TI0HLINOD HOLlvd
MNIT 14 O/1 MNIT 14 O/1 ~-VYdWOO
g14/907 ard/g0 O/1
4311041 ¢ J
~-NOD
AHOWIW , ,
43TT0YLNOD 43 TI0HLNOO |2
MNIT L4 O/1 MNIT L4 O/ 14 H31N0Y
gid/d0’l _ I
!
437704 H43710Y HIT10H
-1NOD SNg -1NOO SNg ~-1NOOD
. Emi@rw | 1383

431104.LNOD |
NOLLANYYILNI :2-1 12 ‘1-112

6 Old

d9 13S34 NdD

AHOWSN
NIVIN

CA 02530555 2005-12-16

AHJONWHN
NIVIA

HO LYHINTD ANVAWOD SNONOYHONAS :2-902°'1-90¢

1-90

d0.1vd
-VdNOO
O/1

d3T104LNOD
MNIT 14 O/1

gi4/80 1

NI 14 0/1
g1d/801

4304 o
AHONIN AHONN
_ HITTOHLINOD
MNIT 14 O/I MNIT 14 O/I Y31LNnoy
g14/807 g1y/807
4371704 437704
~1NOD -1NOD Snd

13534

YITIOHINOOD
NOLLANYYILINI 2= 112 ‘1-112

13S34 NdD NdJ NdY 13S34 NdD

0L DI

AJONdN
NIVIA

CA 02530555 2005-12-16

AJON4N
NIVIA

300148

d43 11048
~1NQO
14S3d

13534 NdO

HOLVHINID ANVAWOD SNONOYHONAS 2-90¢ 1-90¢

H3TT04LINOD
MNIT 14 O/1

gRi/ao’t

d4T1041NOD
ANTT 14 O/1

4ITIOMLNOO
SN[L4 O/1

gii/ga0'1

d3TT041INOD
AN L4 O/1

gii/gaot

43I11081NOD |
NOLLANYYILNI -2 1=}

Nd2

L L Ol

- T 1 ERINE
JOV443LNI - ¢-90¢ _ JOV4HIALNI

437104
~1INO9D Sng
| WILSAS

NdO

13S34d NdO

CA 02530555 2005-12-16

FIG.12

SYNCHRONOUS
RESET COMMAND ()

CPU RESET / \
SYNCHRONOUS

RESET PULSE [\
et EEC e 000000 s

DRAIN INTERFACE @ REFRESHING COMMAND

FIG.13

CPU#1 REQUEST STROBE

CPU#1 REQUEST ()

CPU#1 RESET

CPU SYNCHRONOUS CHECKER
#1 ERROR

CPU#2 REQUEST STROBE

CPU#2 REQUEST O

CPU#2 RESET

CPU SYNCHRONOUS CHECKER
#2 ERROR ‘

CPU RESET

CPU RESET CPU CPU

211-1, 211-2: INTERRUPTION
CONTROLLER

. 14 .
RESET SYSTEM CPU . CPU SYSTEM RESET
| CONT- | |BUSGONT-Ml COMPA- | COMPA- [®BUS CONT-| | CONT-
ROLLER ROLLER RATOR CPU FT LINK RATOR ROLLER ROLLER
- — 211-1 [—— T .
E— A
V4l || S —
. 211-2 -
ROUTER id I/ :-)OFB'{'RII_?N K LOBRIS
. - 1/0 FT LINK -
wan | B [-—______ / cokivouts "0 Fieyory| B [wan
N CON-
MEMORY TROLLER MEMORY
1/0 —TOBRB [’ TOBRIE e 1
| COMRAT [dontaotit st [Goato |
LL
/0 FT LINK R | LBATOR

L] | Yy |

INTERPAC | |nTeReace
E — —
BRIDGE _ 206 1__ | 206_2 BRIDGE

206-1.206-2: SYNCHRONOUS COMMAND GENERATOR

e e —

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - abstract drawing

