PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

GOG6F 15/00, 7/38 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/45282

3 August 2000 (03.08.00)

(21) International Application Number: PCT/US00/01803

(22) International Filing Date: 24 January 2000 (24.01.00)

(30) Priority Data:
09/238,446 28 January 1999 (28.01.99) us
(71) Applicant: BOPS INCORPORATED [US/US]; Suite 210,

6340 Quadrangle Drive, Chapel Hill, NC 27514 (US).

(72) Inventors: DRABENSTOTT, Thomas, L., 109 Marshfield
Place, Cary, NC 27513 (US). PECHANEK, Gerald, G.; 107
Stoneleigh Drive, Cary, NC 27511 (US). BARRY, Edwin,
F.; 1208 Larkhall Court, Cary, NC 27511 (US). KURAK,
Charles, W., Jr.; 5823 Kiltshire Road, Durham, NC 27712
(US).

(74) Agent: PRIEST, Peter, H.; Law Offices of Peter H. Priest, 529
Dogwood Drive, Chapel Hill, NC 27516 (US).

(81) Designated States: CA, CN, IL, JP, KR, MX, European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title:
WITH SUBWORD EXECUTION

METHODS AND APPARATUS TO SUPPORT CONDITIONAL EXECUTION IN A VLIW-BASED ARRAY PROCESSOR

TRUCTION
5”{ wowes o s’i CPERADS e
- | ! [} 1
AV
’_ +
572 | {GENERATION
W | S8 [ww
578 ACF
GERERATION
0 .—567
REGISTER FILE sn R PR
10 e e 10 .
4 FESISTER FILE §4 L (| mesisTeR FRE 5573 st
§ s 5%
%
T2 HIX CONTAOL | i j ACF HUK CONTAOL
[1.1 Pl 10 B
sy | 5% U L0GIC
i
STATE Uhton | || £ stae Laren
L s/ sl

(57) Abstract

General purpose flags (ACFs) (571 or 561) are defined and encoded utilizing a hierarchical one, two, three-bits encoding. Each
added bit provides a superset of the previous functionality. With condition combination, a sequential series of conditional branches based
on complex conditions may be avoided and complex conditions can then be used for conditional execution. ACF generation (578 or 568)
can be specified by the programmer. By varying the number of flags affected, conditional operation parallelism can be widely varied, for
example, from mono—processing to octal-processing in VLIW execution, and across an array of processing elements (PEs). Multiple PEs
can generate condition information at the same time with the programmer being able to specify a conditional execution in one processor
based upon condition generated in a different processor using the communication interface between the processing elements to transfer the
conditions. Each processor in a multiple processor array may independently have different units conditionally operate based upon their

ACFs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803
1

Methods and Apparatus to Support Conditional Execution in a VLIW-Based
Array Processor with Subword Execution

Cross Reference to Related Applications

 The present application claims the benefit of U.S. Provisional Application Serial No.
60/072,915 entitled Methods and Apparatus to Support Conditional Execution in a VLIW-Based
Array Processor with Subword Execution
Field of the Invention

The present invention relates generally to improvements in digital processing and more
particularly to methods and apparatus for supporting conditional execution in a very long
instruction word (VLIW) based array processor with sub-word execution.

Background of the Invention

Conditional execution, also referred to as predicated execution, provides the programmer
the ability to specify for a non-branch type of instruction whether it is to execute or not based
upon a machine state generated previously. This data-dependent conditional execution capability
minimizes the need for conditional branches. By avoiding the use of branches, which incur a
branch delay penalty on pipelined processors, performance is improved. In addition, it is noted
that many types of sequential control dependencies can be turned into parallel data dependencies.
Consequently, it is desirable that a pipelined SIMD array processor support conditional execution
in each processing element (PE) to provide a level of data-dependent parallelism unavailable on a
Single Instruction Multiple Data stream (SIMD) machine that only supports conditional
branching. With parallel conditional execution, the performance gain can be significant since
multiple conditional branches can be avoided.

In creating the architecture of a parallel array indirect VLIW processor for a given range
of operations it is found that the format needed to specify the operations varies in requirements
depending upon the type of operation. For example, the parallel array operations can be grouped
into three types, control and branch operations, load and store operations, and arithmetic
operations. Each of these types will have different encoding requirements for optimum
implementation. Since the instruction format typically is of a fixed number of bits, it is difficult,
without restricting functional capabilities for at least some of the operations, to define a
mechanism supporting a single specification for conditional execution across all instructions in a
processor. Given that it is desirable to support conditional execution, even if the degree of
support must vary depending upon the instruction type, a problem is encountered on how to
define a unified but variable-specification conditional execution mechanism based upon the

instruction type.

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803

2

For conditional branching or conditional execution to be more efficient, it is desirable that
the conditional operation be based on complex conditions that are formed by a Boolean
combination of relations such as [a>b OR c<d]. This may be accomplished by sequentially using
multiple single-test conditional branches that effectively achieve the desired result. The problem
associated with using multiple single-test conditional branches is that there is a performance
decreasing effect for each branch required due to the branch delay penalty. This performance
decreasing effect can be reduced with non-branching complex conditional execution.

In machines with a SIMD architecture, it is desirable to generate independent conditional
operations in the PEs as well as to transfer condition information between PEs to allow the
gathering of conditional state information generated in the PEs. It is also desirable to provide
conditional branching in the controller, sequence processor (SP), of a SIMD array processor
where the conditions are created in the array PEs. By allowing condition-state information to be
moved between PEs, a condition producing operation can take place in one PE and a conditional
operation based upon the conditional result to take place in another PE. By allowing conditional
information to be moved between the PEs and the SP, a conditional operation can take place in
the SP based upon PE conditions. How to best add such capability into the architecture raises
further issues.

In VLIW machines, a plurality of execution units exist that may execute in parallel, with
each execution unit possibly producing condition information or state information for each sub-
instruction of the multi-instruction VLIW. To make a data dependent conditional execution
decision, it is necessary to reduce the total amount of machine state to the desired test condition.
It is also desirable to have a mechanism to select condition results from one of the multiple
execution units to control the execution of one or more of the other execution units. An example
of this type of situation is a compare instruction followed by a conditionally dependent shift
mstruction where the compare is perfbrmed in a different execution unit than the shift.
Consequently, the problems to be solved are how to reduce the amount of condition information
to a specified test condition and how to provide a mechanism for interdependent conditional
execution between the multiple execution units that operate in synchronism in a VLIW machine.

Sub-word execution refers to the multiple individual operations that simultaneously take
place on pieces of data smaller than a word or double word within a single execution unit. The
aggregate of the multiple sub-word operations are referred to as packed data operations, where
for example quad 16-bit operations or octal 8-bit operations occur in parallel on packed 64-bit
data types. When performing sub-word execution in a machine that supports conditional
execution, it is desirable to achieve a sub-word level of conditional execution granularity when

executing the instruction. The question is how to support such a capability in the architecture.

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803

Summary of the Invention

The present invention advantageously addresses such problems, preferably utilizing a
ManArray architecture, by providing a hierarchical conditional execution specification based
upon instruction type, support in the controller Sequence Processor (SP) and PEs for complex
conditions based upon present and previous condition state, a mechanism to distribute condition
state information between the PEs and SP, a mechanism for interdependent conditional execution
between the multiple execution units in a VLIW machine, and a mechanism for sub-word
conditional execution.

In the ManArray architecture, as presently adapted, a three level hierarchical specification
is used where one, two, or three bit conditional execution specifications are used in the
instruction formats depending upon the instruction type and format encoding restrictions. The
condition state to be operated upon, as specified by these bits, is a reduced set of state
information separately produced from the normal side-effect state generated in parallel by
executing instructions, be they packed data or VLIW operations. Conceptually, the normal side-

effect state generated from an instruction execution is saved in the arithmetic scalar flags (ASFs),

‘namely carry (C), overflow (V), sign (N), and zero (Z) flags. Some restrictions apply depending

upon the data type. The separately produced conditional state is saved in the arithmetic condition
flags (ACFs), namely F7-F0, where Fi corresponds to packed data element i. The ASFs can only
be used for conditional branching while the ACFs are used in both conditional branching and for
conditional execution. In addition, the ACFs contain state information that is set as a result of an
instruction execution or set as a result of a Boolean combination of state information generated
from a present compare instruction and previous instruction execution. These ACFs can be
specified and tested for in the SP by conditional instructions thereby minimizing the use of
conditional branches. In the simplest case, PE instructions may conditionally execute and SP
instructions may conditionally executei or branch on the condition results of the immediately
preceding instruction. If the immediately preceding instruction did not affect the flags, general
conditional execution is based on the condition results of the last instruction that affected the
ACFs or a Boolean combination of condition state information.

The ManArray, when constructed, programmed and operated in accordance with the
present invention, uses the convention of the programmer specifying either how the ACFs are set
by the instruction generating the condition or how to use the ACFs, rather than only specifying
how to use the ACFs with an instruction operating on a condition. This convention produces a
single True or False flag that contains a 1 or a 0 designated F,, per operation. For compare
instructions, the programmer must specify which condition state, greater-than, equal, less-than,

etc., to use in setting the ACFs. In addition, compare instructions operating in the arithmetic

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803
4

logic unit (ALU) can specify the setting of the flags based upon a Boolean combination of the
present compare result state and past instruction ACF state. For arithmetic operations, in one
embodiment of the ManArray architecture in accordance with the present invention, the ability to
select how to update the ACF condition flags using one of the four ASF conditions C (carry flag),
V (overflow flag), N (negative flag), or Z (zero flag) on an instruction by instruction basis is
advantageously provided.

When executing VLIW operations, the programmer must select which of the arithmetic
units is allowed to affect the single set of ACFs. The single set of flags can be used in VLIW
execution to conditionally control the execution of each of the VLIW units. During each cycle,
the ownership and setting of the condition flags is dynamically determined by the instruction in
execution. Conditions that occur but are not selected to affect the ACFs or that affect the
programmer’s visible ASFs cause no effect and are not generally saved.

Another aspect of one embodiment of the ManArray instruction set is that instructions
that execute conditionally do not affect the condition flags themselves. This feature gives the
programmer the ability to execute C-style conditional expression operators of the form (a>b) ?
z=xty : r= qts without worry that the first instruction after the comparison will alter the flags
producing an undesired result. An instruction may either specify to conditionally execute based
upon the ACFs or specify how to set the ACFs but not both.

It is desirable to have an efficient mechanism for means to generate complex conditions
in each PE that can be specified and tested for by conditional instructions. This has the effect of
changing SP conditional branches into PE data dependent execution operations. Having an
effective means for parallel array conditional execution minimizes the need to have the PEs send
condition signals back to the controller, which takes time and implementation expense, for the
purposes of supporting conditional branching based on PE conditions. An implication of having
parallel array conditional execution is that the approach chosen for providing PE condition
feedback to the array controller can be simple in nature and less costly than providing condition
signaling paths from each PE. By saving the condition flags in a programmer accessible register
space that can be copied or moved to a PE’s register file the flags can be easily communicated
between PEs. In conjunction with a merged SP/PE as described more fully in U.S. Application
Serial No. 09/169,072 filed October 9, 1998 entitled Methods and Apparatus for Dynamically
Merging an Array Controller with an Array Processor Element, flags saved in PEO are easily
transferred to the SP. Using a log N reduction method, where N is the number of PEs in the
array, it is possible to exchange PE flag information between all PEs in log N steps. The transfer
of condition information is consistent with the design of the existing ManArray network and does

not require the addition of condition signaling paths between the PEs and the SP controller.

10

15

20

25

30

35

wo 60/45282 PCT/US00/01803

5

With a need by many applications for conditional sub-word execution, the three bit form
of conditional execution specifies, for specific instructions or specific groups of instructions, that
the instruction is to operate only on the data elements of a packed data type that have a
corresponding ACF of the appropriate value for the instruction specified true or false test.

These and other advantages and aspects of the present invention will be apparent from the
drawings and Detailed Description which follow.

Brief Description of the Drawings

Fig. 1 illustrates a ManArray architecture suitable for use with the present invention;

Fig. 2A illustrates an exemplary compare instruction encoding sequence in accordance
with the present invention;

Fig. 2B illustrates an exemplary description of the CC bit field and the Ccombo field bits
of the compare instruction of Fig. 2A;

Fig. 3A illustrates 64-bit packed data type operations and their relationship to the
arithmetic condition flags in accordance with the present invention;

Fig. 3B illustrates 32-bit packed data type operations and their relationship to the
arithmetic condition flags in accordance with the present invention;

Fig. 4A illustrates an exemplary load direct instruction encoding sequence using the CE1
single-bit conditional execution specification of the present invention;

Fig. 4B illustrates an exemplary copy instruction encoding sequence using the CE2 two-
bit conditional execution specification of the present invention;

Fig. 4C illustrates an exemplary logic instruction encoding sequence using the CE3b
three-bit conditional execution specification of the present invention;

Fig. 5A illustrates details of one suitable implementation of hardware for implementing
conditional execution in accordance with the present invention;

Fig. 5B illustrates further details of one suitable implementation of hardware for
implementing conditional execution in a VLIW processor in accordance with the present
invention.

Detailed Description

Further details of a presently preferred ManArray architecture for use in conjunction with
the present invention are found in U.S. Patent Application Serial No. 08/885,310 filed June 30,
1997, U.S. Patent Application Serial No. 08/949,122 filed October 10, 1997, U.S. Patent
Application Serial No. 09/169,255 filed October 9, 1998, U.S. Patent Application Serial No.
09/169,256 filed October 9, 1998, U.S. Patent Application Serial No. 09/ 169,072 filed October 9,
1998, U.S. Patent Application Serial No. 09/187,539 filed November 6, 1998, U.S. Patent
Application Serial No. 09/205,558 filed December 4, 1998, U.S. Patent Application Serial No.

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803

6

09/215,081 filed December 18, 1998 and U.S. Patent Application Serial No. __ filed January
12, 1999 and entitled "Methods and Apparatus to Dynamically Reconfigure the Instruction
Pipeline of an Indirect Very Long Instruction Word Scalable Processor", Provisional Application
Serial No. 60/071,248 entitled "Methods and Apparatus to Dynamically Expand the Instruction
Pipeline of a Very Long Instruction Word Processor" filed January 12, 1998, Provisional
Application Serial No. 60/072,915 entitled "Methods and Apparatus to Support Conditional
Execution in a VLIW-Based Array Processor with Subword Execution" filed January 28, 1998,
Provisional Application Serial No. 60/077,766 entitled "Register File Indexing Methods and
Apparatus for Providing Indirect Control of Register in a VLIW Processor" filed March 12,
1998, Provisional Application Serial No. 60/092,130 entitled “Methods and Apparatus for
Instruction Addressing in Indirect VLIW Processors” filed July 9, 1998, Provisional Application
Serial No. 60/103,712 entitled "Efficient Complex Multiplication and Fast Fourier Transform
(FFT) Implrementation on the ManArray" filed October 9, 1998, Provisional Application Serial
No. 60/106,867 entitled "Methods and Apparatus for Improved Motion Estimation for Video
Encoding" filed November 3, 1998, Provisional Application Serial No. 60/113,637 entitled
"Methods and Apparatus for Providing Direct Memory Access (DMA) Engine" filed December
23, 1998 and Provisional Application Serial No. 60/113,555 entitled "Methods and Apparatus
Providing Transfer Control" filed December 23, 1998, respectively, and incorporated by
reference herein in their entirety.

In a presently preferred embodiment of the present invention, a ManArray 2x2 iVLIW
Single Instruction Multiple Data stream (SIMD) processor 100 shown in Fig. 1 contains a
controller Sequence Processor (SP) combined with Processing Element-0 (PE0) SP/PEO 101, as
described in further detail in U.S. Application Serial No. 09/169,072 entitled “Methods and
Apparatus for Dynamically Merging an Array Controller with an Array Processing Element”.
Three additional PEs 151, 153, and 155 are also utilized to demonstrate conditional execution
apparatus and methods in accordance with the present invention. It is noted that the PEs can be
also labeled with their matrix positions as shown in parenthesis for PEO (PE00) 101, PE!
(PE01)151, PE2 (PE10) 153, and PE3 (PE11) 155. The SP/PE0 101 contains a fetch controller
103 to allow the fetching of short instruction words (SIWs) from a 32-bit instruction memory
105. The fetch controller 103 provides the typical functions needed in a programmable processor
such as a program counter (PC), branch capability, digital signal processing loop operations,
support for interrupts, and provides the instruction memory management control which could
include an instruction cache if needed by an application. In addition, the SIW I-Fetch controller
103 dispatches 32-bit SIWs to the other PEs in the system by means of a 32-bit instruction bus
102.

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803

7

In this exemplary system, common elements are used throughout to simplify the
explanation, though actual implementations are not so limited. For example, the execution units
131 in the combined SP/PE0 101 can be separated into a set of execution units optimized for the
control function, e.g. fixed point execution units, and the PEO as well as the other PEs 151, 153
and 155 can be optimized for a floating point application. For the purposes of this description, it
1s assumed that the execution units 131 are of the same type in the SP/PEO and the other PEs. In
a similar manner, SP/PEO and the other PEs use a five instruction slot iVLIW architecture which
contains a very long instruction word memory (VIM) memory 109 and an instruction decode and
VIM controller function unit 107 which receives instructions as dispatched from the SP/PEQ’s I-
Fetch unit 103 and generates the VIM addresses-and-control signals 108 required to access the
1VLIWs, identified by the letters SLAMD in 109, stored in the VIM. The loading of the iVLIWs
is described in further detail in U.S. Patent Application Serial No. 09/187,539 entitled “Methods
and Apparatus for Efficient Synchronous MIMD Operations with iVLIW PE-to-PE
Communication”. Also contained in the SP/PEO and the other PEs is a common PE configurable
register file 127 which is described in further detail in U.S. Patent Application Serial No.
09/169,255 entitled "Methods and Apparatus for Dynamic Instruction Controlled
Reconfiguration Register File with Extended Precision”.

Due to the combined nature of the SP/PEO the data memory interface controller 125 must
handle the data processing needs of both the SP controller, with SP data in memory 121, and
PEO, with PEO data in memory 123. The SP/PEOQ controller 125 also is the source of the data that
is sent over the 32-bit broadcast data bus 126. The other PEs 151, 153, and 155 contain common
physical data memory units 123°, 123”°, and 123”"” though the data stored in them is generally
different as required by the local processing done on each PE. The interface to these PE data
memories is also a common design in PEs 1, 2, and 3 and indicated by PE local memory and data
bus interface logic 157, 157” and 157", Interconnecting the PEs for data transfer
communications is the cluster switch 171 more completely described in U.S. Patent Application
Serial No. 08/885,310 entitled “Manifold Array Processor”, U.S. Application Serial No.
09/949,122 entitled “Methods and Apparatus for Manifold Array Processing”, and U.S.
Application Serial No. 09/169,256 entitled “Methods and Apparatus for ManArray PE-to-PE
Switch Control”. The interface to a host processor, other peripheral devices, and/or external
memory can be done in many ways. The primary mechanism shown for completeness is
contained in the DMA control unit 181 that provides a scalable ManArray data bus 183 that
connects to devices and interface units external to the ManArray core. The DMA control unit
181 provides the data flow and bus arbitration mechanisms needed for these external devices to

interface to the ManArray core memories via bus 185.

10

15

20

25

30

WO 00/45282 PCT/US00/01803
8

All of the above noted patents are assigned to the assignee of the present invention and
incorporated herein by reference in their entirety.

Turning to specific details of the ManArray processor conditional execution methods and
apparatus, this approach advantageously solves the aforementioned parallel array iVLIW
conditional execution problems with a simple programming model and minimal hardware
requirements.

Arithmetic Condition Flags

The ManArray Architecture defines a set of Arithmetic Condition Flags (ACFs) that store
specified results from instruction execution, e.g. results from a compare instruction. These ACFs
are used for generalized conditional execution. In order to minimize branch latencies, almost all
instructions can be conditionally executed based upon the ACFs. For an instruction to be
conditionally executed in each PE in an array of PEs, a testable condition must be generated
locally in each PE. This local testable condition is derived from the large number of conditions
that can occur in each PE due to iVLIW execution on packed data types. For cycle-by-cycle
conditional execution of an instruction stream, the instruction coding must be able to specify
which conditions are employed to determine whether to execute the instructions or not. Since
there are many types of conditions, four or more bits would have to be dedicated in each
instruction format to do the specification properly. Since conditional branches typically specify
a single condition test and it is anticipated that multimedia data dependent code will make
primary use of single condition testing, it is herein assumed that a single level of conditional
execution would provide the most performance gain over more complicated nested conditional
execution scenarios. However, more complex nested conditions with multiple sets of condition
flags are not precluded by the present teachings, although the inventive concepts discussed herein
are made in the context of a single level of conditional execution. With this in mind, the
programming model for ManArray conditional execution requires the specification of how the
ACFs are to be set in order to reduce the amount of condition state information that results after a
packed data iVLIW operation.

Two types of flags are specified: the Carry (C), Overflow (V), Sign (N), Zero (Z) are
termed Arithmetic Scalar Flags (ASF) and the F7-FO flags are termed Arithmetic Condition Flags
(ACF). The programmer visible ASFs are always set after each instruction execution, as
specified by the instl;uction, based on the least significant operation being executed on a packed
data type, i.e. byte-0 (b0),Half-word-0 (HO), Word-0 (W0), or Double-word (D) and represent the
traditional side effects of the operation. Branches may occur based on the condition of these

scalar flags by specifying the condition in the branch operation. Table 1 gives an example of the

10

15

20

25

WO 00/45282 PCT/US00/01803

9

scalar conditions which may be generated as a result of an instruction execution and as defined

by the instruction:

Scalar Flag Description

C — Carry Set if the carry output from bit-31 of the arithmetic unit is 1. Cleared if carry
output is 0.

V —Overflow | Set if the XOR of the two highest order carries (the carry into bit-31 and the
carry out of bit-31) is a 1. Cleared if the XOR is a zero. This condition

corresponds to a positive or negative overflow in 2’s complement arithmetic.

N - Sign Set if highest order bit (bit-31) of the result (sign bit) is 1. Cleared if highest
order bit is 0.
Z —Zero Set if the output of the operation contain all zeroes.
Table 1

Generalized conditional execution, however, is based only upon the ACFs. The ACFs are only
modified by a selected set of instructions, such as compares. It is noted, however, that
architecturally this execution could be extended to the majority of instructions. The generation
of the ACFs by these certain instructions is not a side effect of execution but rather is specified
by the programmer. The ACFs are derived, as specified in an instruction, from the side effects of
execution -- CNVZ -- during the condition return phase of the pipeline. In addition, the ACFs
are available for use by the next instruction without any wait penalty. By definition, there is one
set of ACFs per SP 101 of Fig. 1 and for each PE 101, 151, 153, and 155 of Fig. 1 independent of
the number of execution units in the VLIW architecture. In this manner, a condition can be
generated in one execution unit, e.g. from a compare instruction in the ALU, and the other
execution units can conditionally execute based upon this condition.
Condition Transfer to the ACFs

A characteristic of the instruction set is the need for the programmer to specify how to set
the ACF condition flags when using certain instructions. For ALU comparison instructions, such
as instruction 20 as illustrated in Fig. 2A, the programmer must specify which condition test CC
202 of Fig. 2B, to use in setting the ACF F7-F0. For example, valid condition results such as
Greater than or Equal (GE) 205 or Less than or Equal (LE) 207 can be specified to set the
appropriate ACF. As shown in Fig. 2B, the symbol represents a logical OR operation; the &&
symbols represent an AND operation; and the ! symbol represents Not Equal.

The architecture specifies an execute True, an execute False, an unconditional execute,
and other specific operations on a per instruction basis, in a hierarchical fashion. The True and

False flag settings are used for Execute if Condition is True and Execute if Condition is False

10

15

20

25

30

WO 00/45282 PCT/US00/01803

10

operations. Branches may also occur based on the True or False condition state of these flags.
For certain DSU instructions, Shift/Rotates, PEXCHG (a communication instruction), and
selected others instructions, the ManArray architecture provides the ability to specify how to
update the ACFs using one of the four scalar conditions C, V, N, or Z side effects on an
instruction by instruction basis. When executing VLIW operations, the programmer must select
which of the arithmetic units, presently only the ALU or DSU although it will be recognized this
capability can be extended, controls the setting of the single set of flags. Each cycle, the setting
of the condition flags is explicitly specified by the instruction.

Another characteristic of the ManArray instruction set is that instructions that execute
conditionally do not affect the condition flags themselves. This feature gives the programmer the
ability to execute C-style conditional expression operators of the form (a>b) ? z=x+y : r=q+s
without worrying that the first instruction after the comparison will alter the flags producing an
undesired result. An instruction may either specify to conditionally execute based upon the
ACFs or specify how to set the flags but not both.

Hierarchical Conditional Execution Instruction Formats

A hierarchical format for the specification of conditional execution is used in the
ManArray instruction set architecture allowing a better utilization of instruction bits.

A 3-bit, 2-bit or 1-bit subset opcode extension encoding is defined for each instruction that
supports conditional execution. It should be noted again that the ASF scalar flags are always
affected on b0, HO, W0, and D operations regardless of whether or not the ACFs are affected.
Arithmetic Condition Flags (ACFs) for Packed Operations

A packed data operation is defined as executing the same operation on each of the
multiple data elements specified by the instruction. Each of these individual data element
operations can generate side effects that can set the appropriate ASF and/or ACF as defined by
the packed data instruction. Since the ManArray architecture supports up to eight simultaneous
packed data operations there are eight ACFs FO-F7 defined. There is a correspondence, as shown
in Table 2 below, between the flags and the operation parallelism. The flags are affected as
specified by the CCcode field in compare instructions and by the CE3a field, to be described in
further detail below, in selected instructions. Figs. 3A and 3B depict the relationship of a packed
data element operation and its corresponding ACF. For example, in Fig 3A, illustrating 64-bit
packed data operations 300, in dual word operations, the operation 302 on WO affects FO and the
operation 304 on W1 affects F1. In another example, in Fig. 3B, representing 32-bit packed data
operations 350, in quad byte operations, the operation 352 on b0 affects F0, the operation 354 on
bl affects F1, the operation 356 on b2 affects F2, and the operation 358 on b3 affects F3.

10

WO 00/45282

PCT/US00/01803
11
Operation Supported ACFs Affected ACFs Scalar Flags
Parallelism | Data types Unaffected C,V,N,Z set
by __ operation
64-bit 8 Bytes F7(b7), F6(b6), F5(bS), F4(b4), F3(b3), None b0
F2(b2), F1(b1), FO(b0)
32-bit 4 Bytes F3(b3), F2(b2), F1(b1), FO(b0) F7-F4 b0
64-bit 4 Half-words F3(Hlo), F2(HOo), F1(H1e), FO(HOe) F7-F4 HOe
32-bit 2 Halfwords F1(H1), FO(HO) F7-F2 HO
64-bit 2 Words FI(W1), FO(W0) F7-F2 WO
32-bit 1 Word FO(W) F7-Fi w
64-bit 1 Doubleword | FO(DW) F7-F1 D

Table 2

CE1: One-bit Conditional Execution Opcode Extension Encoding

Opcodes with a CE1 1-bit extension field as illustrated in Table 3 below, may

conditionally execute on True or unconditionally execute without affecting the ACFs. The ASFs

are set as defined by the instruction. For example, load and store instructions, such as instruction

400 of Fig. 4A, never affect ACF flags and they may be conditionally executed on a true

condition.
Encoding Execution Affect on ACFs | Example Instruction
0 Execute DO NOT AFFECT | lim.s.h0 RO, OxFFFF
1 Cond. Exec. IfFO is True | DO NOT AFFECT | T.lim.s.h0 RO, OXFFFF
Table 3

15

WO 00/45282 PCT/US00/01803

12

CE2: Two-bit Conditional Execution Opcode Extension Encoding

Opcodes with a CE2 2-bit extension field as illustrated in Table 4 below may
conditionally execute on true or false, unconditionally execute and not affect the ACFs or
provide an instruction specific conditional execution function. The ASFs are set as defined by
the instruction. An exemplary copy instruction encoding 410 with bits 0 and 1 comprising a CE2

2-bit extension field is shown in Fig. 4B.

Encoding Execution Affect on ACFs Example Instruction
00 Execute DO NOT AFFECT copy.sd.w RO, R1
01 Cond. Exec if FO is True | DO NOT AFFECT T.copy.sd.w RO, R1
10 Cond. Exec if FO is False | DO NOT AFFECT F.copy.sd.w RO, R1

11 Defined by instruction Defined by instruction | See instructions

Table 4

CE3a: Three-bit Conditional Execution Opcode Extension Encoding

DSU specific instructions Shift/Rotate, Receive-type, Floating-Point/Integer conversion
instructions, and select others with a conditional execution CE3a 3-bit extension field as
illustrated in Table 5 below, specify how the instruction is to be executed and how the ACFs are
affected. The C, N, Z, and V flags represent the side effect from the instruction that is executing.
Arithmetic instructions of the form A <~ X 0Y or X«-XOYUZ where the [is an arithmetic
function, like +, -, *, logical OR, may be conditionally executed on a true or false condition

without affecting the flags. They may be unconditionally executed without affecting the flags or

unconditionally executed and affect the flags based on one of the conditions C, V, N, or Z.

10

15

20

WO 00/45282 PCT/US00/01803

13
Encoding Execution Affect on ACFs Example Instruction
000 Execute DO NOT AFFECT | add.sa.lw RO, R1, R2

001 Cond. Exec if FO is True | DO NOT AFFECT | T.add.sa.1w R0, R1, R2
010 Cond. Exec if FO is False | DO NOT AFFECT | F.add.sa.1w RO, R1, R2

011 Reserved Reserved None

100 Execute ACFs«Z sprecvZ.pd.w RO, R1,2x2PEQ

101 Execute ACFs<N sprecvN.pd.w RO, R1,2x2PE1

110 Execute ACFs«V shriV.sd.1lw RO, R1, R2

111 Execute ACFs«C shriC.pd.1w RO, R1, R2
Table 5

CE3b: Three-bit Conditional Execution Opcode Extension Encoding

There are three situations that are addressed with the CE3b 3-bit architecture. A first one
is to unconditionally execute the operation. A second is to conditionally execute the operation on
all packed data elements. A third is to select which data elements are to be conditionally
operated upon. In the first case, the operation always occurs on all data elements. In the second
case, the operation either occurs on all data elements or the operation does not occur at all. In the
third case, the operation always occurs but only acts on those data elements that have a
corresponding ACF of the appropriate value for the specified true or faise coding. In this third
case, the packed data instruction is considered to partially execute in that update of the
destination register in the SP or in parallel in the PEs only occurs where the corresponding ACF
is of the designated condition. All three approaches are available by using the CE3b encodings.
An exemplary logic instruction encoding 420 with bits 3, 4 and 5 comprising a CE3b 3-bit
extension field is shown in Fig. 4C.

The syntax defining the third case operations are “Tm” and “Fm.” They stand for “True
Multiple” and “False Multiple.” The multiple case uses the data element count in the current
Instruction to determine the number of flags to be considered in the operation. For example, a
Tm.add.sa.4h would execute the add instruction on each of the 4 halfwords based on the current
settings of FO, F1, F2, and F3. This execution occurs regardless of how these four flags were set.
This approach enables the testing of one data type with the operation on a second data type. For
example, one could operate on quad bytes setting flags F3-F0, then a conditional quad half-word

operation can be specified based on F3-F0. Certain instructions, primarily those in the MAU and

10

15

WO 00/45282 PCT/US00/01803
14

ALU, allow a conditional execution CE3b 3-bit extension field to be specified. How the

instruction is to be executed and how the ACFs are affected is shown in Table 6 below.

CE3b Execution Affect ACFs? | Example Instruction
000 |Execute Do Not Affect |add.sa.lw RO, R1, R2
001 |[Cond. Exec if FO is True Do Not Affect [T.add.sa.lw RO, R1, R2
010 |Cond. Exec if FO is False Do Not Affect |F.add.sa.lw RO, R1, R2
011 |Reserved Reserved None

100 |Cond. Exec on Multiple flags determmed | Do Not Affect | Tm.add.sa.4h RO,R2,R4
by the number of data elements in the
current instruction, if Fn is True operate on

the corresponding data element.

101 | Cond. Exec on Multiple flags determined Do Not Affect |Fm.add.sa.4h RO,R2,R4
by the number of data elements in the
current instruction, if Fn is False operate on

the corresponding data element.

110 |Reserved Do Not Affect |Reserved

111 |[Reserved Do Not Affect |Reserved

Table 6

The rationale for including the 100 and 101 encodings are similar to the 001 and 010 encodings.
In other words, this feature gives the programmer the ability to execute C-style conditional
expression operators of the form (a>b) ? z=x+y : r=q+s where a, b, X, y, z, q, 1, and s are all
packed data vector elements.
Conditional Branch Type Instructidns

The ManArray architecture as described herein supports both unconditional and
conditional branch-type instructions in the SP based upon the scalar condition flags C,V,N, or Z
as well as the ACFs. Since the condition code for setting the ACFs is specified in the compare
instruction, as well as other specifically defined instructions as shown in Fig. 2B, the conditional
branch need only specify branch on true or branch on false though control code may make use of
scalar conditional branch instructions. To accommodate multiple conditions generated by
instructions on packed data, a branch instruction must also specify a reduction operation of All
(AND reduce) or Any (OR reduce). Instructions on non-packed single data (MONO) operations
are treated as a subset of packed data operations for orthogonality although the two reductions

are equivalent when there is only one operation.

WO 00/45282 PCT/US00/01803
15

Table 7 represents one suitable reduction method. Here again, the multiple concept is
utilized. The syntax format is as shown in Table 7 below where the number of flags to be

considered are specified by the 2, 4, and 8 digits in the syntax.

Instruction Specification Programmer Interpretation

[TF].op T:if (FO=1) F: if (FO=0)

[TF].opANY.2 T: if (any F1-F0 = 1) F: if (all F1-F0 = 0)
[TF].opALL.2 T: if (all F1-FO = 1) F: if (any F1-F0 = 0)
[TF].opANY .4 T: if (any F3-F0 = 1) F: if (all F3-F0 = 0)
[TF].opALL .4 T: if (all F3-F0 = 1) F: if (any F3-F0 = 0)
[TF}.opANY.8 T: if (any F7-F0 = 1) F: if (all F7-F0 = 0)
[TF].opALL.8 T: if (all F7-FO = 1) F: if (any F7-F0 = 0)

Table 7

5 Compare Instructions
Comparison instructions are always executed and always affect the flags. General-
purpose flags (ACFs) are affected based on the condition code specified as part of the
comparison instruction. Using condition combination, the previous state of the flags can be
combined with the result of the condition code test specified by the current compare instruction.
10 This approach allows complex conditions to be created without resorting to multiple branching.
In Fig. 2B, CC stands for a condition code 202 such as Greater Than (GT) 206, Less Than (LT)
208, Equal (EQ) 204, or Less Than or Equal (LEQ) 207. The Compare (CMPcc) instruction 200
in Fig. 2A specifies the desired conditions CC, Fig. 2B, to be tested, the two source registers to
be compared, the data type covering packed forms, and a Boolean combination specification field
15 labeled CComb.
In Table 8 below, F; , designates the “n” T/F condition flags (F) generated on cycle t.
Specifically, the letter “n” represents the set of ACFs n=1: F0, n=2: F1- F0, n=4: F3—- F0, or n=8:
F7-F0 depending on whether the compare instruction is mono, dual, quad, or octal respectively.
Ft.1, » designates the state of the ACFs on the previous cycle, as indicated by the t-1 subscript. F,
20 represents the final set of true/false values that the set of n machine ACFs takes upon completion

of the compare operation. This condition flag encoding is shown in Table 8 below.

10

15

20

25

WO 00/45282 PCT/US00/01803

16
Encoding | Combination Operation
00 none F, € Fi,
01 AND Fo€ Fuin AND Fy
10 OR Fo€ Frin OR Fyp
11 XOR Fn€& Fiip XOR Fyy
Table 8

Condition combination allows the programmer to branch in the SP or conditionally execute in the
SP and PEs on a Boolean combination of multiple conditions. This approach can be used in lieu
of multiple branches and their associated penalty which are necessary to achieve the same effect
without condition combination. Conditional execution may also take place based on a
combination of multiple conditions rather than a single condition. Finally, condition combination
can be used in conjunction with a pieceding arithmetic instruction to generate a complex
condition that is not directly available from the limited set of arithmetic instruction condition
codes. It is noted that combined conditions of arbitrary complexity may be obtained by copying
the condition flags to any one of the many processor registers and then performing logical
operations upon them in the arithmetic unit. After the desired condition has been computed and
stored in the register, it can be copied back to the condition flags whereupon it may be used for
conditional execution. Using this methodology, an extremely general method of obtaining
éomplex conditions is obtained at the expense of some programming overhead. This
methodology can also be used to support the nesting of C-style conditionally executed statements
which requires multiple sets of condition results which could be generated and reside in the
compute-register file. These condition results residing in the processor register file would then
be copied to the ACFs prior to conditional execution.
VLIW Conditional Execution

Each instruction stored in the VLIW memory (VIM) contains its CE1, CE2, or CE3a/b
specification. When the VLIW is read out for execution in response to an execute-VLIW (XV)
instruction, multiple flags internal to the individual units can be generated. Since there is one set
of ACFs and potentially each instruction in the VLIW could affect the flags, a selection
mechanism is needed to choose which arithmetic unit will affect the flags for any given cycle.
There are two mechanisms for achieving this in one embodiment of the ManArray in accordance
with the present invention. These mechanisms cater to the needs of SIMD and Synchronous

Multiple Instruction Multiple Data stream (SMIMD) code, respectively.

10

15

20

25

WO 00/45282 PCT/US00/01803
17

In SMIMD a different VLIW can exist at the same VIM address which can then be
executed in parallel for purposes of optimizing performance in different applications with
varying needs for VLIW parallelism. For SMIMD code, the programmer specifies which
arithmetic unit affects the flags when the VLIW is loaded as part of the Load VLIW Lrv)
instruction. This approach allows different PEs to have different units affect the flags. For
SIMD code, the programmer specifies which unit affects the flags at execution time as part of the
XV instruction. The XV instruction specification may override the unit specified in the LV
instruction. This allows the programmer to pack multiple non-overlapping VLIWSs in the same
VIM address with different arithmetic units affecting the condition flags per VLIW execution.
Transmitting Condition Flags Between PEs

The PE DSU receive instruction (PEXCHG) specifies the communication operation
between PEs. By allowing the PEXCHG instruction to have access to the programmer visible
status register containing the ACFs and ASFs it is possible to efficiently transfer condition-state
information from one PE to another. The SP receive instruction (SPRECV) can be used to
transmit conditions between the PEs and the SP. The condition state would be received into the
compute-register file of a different PE and can then be copied to its own programmer visible flag
register and used for conditional execution.

Expanded Conditional Execution Definition

Each instruction currently having a CE3 field 422, Fig. 4C, or a CE2 field 412, Fig. 4B,
has at least one encoding reserved as illustrated in Table 5 and 6 and Table 4, respectively. The
following mechanism would use this reserved encoding to allow the instruction to update the
arithmetic condition flags (F7-F0) with a programmable "compound condition” specified by a
"SetCC” instruction. As an example, the CE2 encodings for utilizing the reserved field are
shown in Table 9 below. CE3a and CE3b fields would both use the same encoding definition for

their equivalent reserved encoding.

Encoding Execution Affect on ACFs
00 Execute DO NOT AFFECT
01 Cond. Exec if FO is True DO NOT AFFECT
10 Cond. Exec if FO 1s False DO NOT AFFECT
11 Execute ACF <« Compound Compound Condition
Condition Defined by SetCC
instruction

Table 9

10

15

20

25

30

WO 00/45282 PCT/US00/01803

18

The SetCC instruction specifies a compound condition to be generated and saved in the
arithmetic condition flags (F7-F0) of a particular execution unit when an instruction for that unit
specifies this type of condition generation. The currently preferred CE3a encoding allows the
specification of one of four possible conditions: C (carry), N (negative), V (overflow) or Z (zero).
The SetCC instruction allows up to 32 compound conditions to be specified, including the
standard 16 conditions such as greater than, less than or equal, higher or the same, and the like.
For example, a condition can be specified to detect whether an overflow occurred on any data
operation within a packed data execution. In this way, data operation six having anoverflow
within an octal packed data execution could cause flag ACFF6 to be set. Any of these may be
selected by an instruction having the CE3 or CE2 encoding that can affect conditions. It is also
possible to make the SetCC instruction conditionally executable based upon some data so that the
selection of different compound conditions can be data dependent. An exemplary SetCC

instruction is shown in Table 10 below.

SetCC opcode | Select Execute Unit to affect ACFs: | Select Compound Condition
ALU, MAU, DSU, ALL... (3bits) | (5 bits)

Table 10

The SetCC instruction, identified by its opcode encoding, specifies the following two parameters:
¢ Execute Unit: This field specifies to which execution unit the specified compound condition

applies. Each execution unit may have a different compound condition or if the ALL

encoding is chosen then all units use the same compound condition.
¢ Selected Condition: This field specifies one of 32 conditions. Assuming the instruction

format allows it, this field could be expanded if other conditions arise that should be tested.
Conditional Execution Apparatus

Fig. 5A illustrates aspects of conditional processing hardware 500 suitable for

implementation of conditional processing in accordance with the present invention. The
hardware 500 includes an arithmetic unit 510, for example an arithmetic logic unit (ALU), or
other execution unit of the ManArray architecture of Fig. 1. The ALU 510 receives operands 507
and 509 from the ManArray register file. The instruction control lines 501 are derived from the
registered instruction in the processor pipeline. The instruction control lines include conditional
execution control lines 503 to control conditional operation as specified in the instruction. Fig.
4A shows exemplary load direct instruction 400 with bit 22 comprising the CE1 field 402. Fig.
4B shows the exemplary copy instruction 410 with bits 1 and 0 representing CE2 field 412. Fig.
4C shows the exemplary logic instruction 420 with bits 5-3 representing CE3b field 422. The

operative unit within the arithmetic unit 510, for example an adder 502, produces a result 515 and

10

15

20

25

30

WO 00/45282 PCT/US00/01803
19

a latched arithmetic scalar condition state 519. The latches 512 and 514 hold the latch input
values at the end of the execute cycle and so represent the arithmetic scalar conditions and
instruction control signals for an instruction that has finished its execution cycle. It is noted that
the pipeline for the execution units can vary depending upon the implementation and
consequently pipeline effects must be accounted for to achieve the desired conditional operation.
The result 515 is sent to the processor’s or processing element’s register file. The arithmetic
scalar condition signals 519 are further processed in the ACF generation unit 508 by a signal
selection and condition combination unit 506 as dictated by the controls 505 for the instruction
that executed. The output of the ACF generation unit 521 represents the ACFs generation signals
F7-F0 prior to their being stored in the programmer visible register 518. The ACF generation
unit for selected instruction also provides a Boolean combination of the present selected state
with the previous state 525. It is noted that as indicated above many instructions do not affect the
flags, as specified by the architecture. In these no-affect cases, the flags remain as previously set.
Multiplexer 520 selects either the ACF generation signals 521 or the ACF latch 518 output 525 to
be used as an output 527 for conditional test in the arithmetic unit to control whether to write the
result output 515 in the register file dependent upon the results of the test specified in the
instruction under execution. The multiplexer 520 output 527 is sent to the branch logic in the SP
only and latched in the next cycle in latches 518 that represent programmer visible status bits. In
a similar manner, multiplexer 522 selects either a portion of the latched CNVZ latch outputs 517
or the CNVZ latch 516 output 523 to be sent to the branch logic in the SP only and latched in the
next cycle in the latches 516 that represent programmer visible status bits. These bits in latches
516 and 518 can be combined in a common programmer visible status register where the CNVZ
516 values are placed into bits 19-16 respectively of the programmer’s visible Status and Control
Register 0 (SCRO) and the ACF F7-F0 518 values are placed into bits 7-0 respectively as shown
in Table 11 below. |

6 UPRILP
CINVZ } F7}F6]F5]F4F3F2F11F0

The 32-bit Status and Control Register 0 (SCRO) contains the primary status and control

31 30R9R8R7R26 R5R4R3]22]2100 19118 17]16]15{14]13]12{11{10}9{8}7

information. Blank fields are reserved.
Table 11
In the ManArray processor, the concept represented in Fig. SA is extended to the VLIW
architecture as shown in Fig. 5B. In Fig. 5B, a conditional execution VLIW unit 550 is shown

containing three execution units, a Data Select Unit (DSU) 560, an ALU 570, and a Multiply

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803
20

Add Unit (MAU) 580. This hardware is incorporated in the SP and in each PE of a ManArray
processor such as processor 100 shown in Fig. 1. Internal to these units are the basic operative
elements and their ASF generation and latch units namely in the DSU 560 functional unit fi 562,
in the ALU adder 572, and in the MAU multiplier 582. Three types of flag functionality are
shown to demonstrate the versatility of the concept and are representative of typical application
needs. In the DSU 560, the ASF, (C N V Z), are generated as required by DSU instructions. The
ACFs 561 are generated in AFC generation unit 568 based upon the ASFs 563 with no feedback
of stored ACF state from the programmer visible latches 598. The ALU 570 maintains the
functionality of the approach illustrated in Fig. SA. In the ALU 570, the ACFs 571 are generated
in ACF generation unit 578 based upon the ASFs 573 and stored ACF state 599 fed back from
the programmer visible latches 598. The MAU 580 utilizes a relatively simple mechanism with
no ACFs being generated as a result of an MAU instruction. The MAU is not precluded in
general from setting the ACFs as shown by this exemplary implementation. Only the
architecturally defined ASFs, (C N V Z), 587 for the least-significant operation of an MAU
instruction that affects these flags, are sent to multiplexer 592 where if selected they would pass
through to multiplexer output 597 and be latched in programmer visible state latches 596. The
multiplexer 592 selects the ASFs generated from the MAU 587, from the ALU 577, from the
DSU 567, or from the CNVZ state latch 589 as controlled by the CNVZ mux control signal 591.
For VLIW execution, the Unit Affecting Flags (UAF) field in the load VLIW (LV) instructions, a
2 bit field in the present ManArray architecture, in conjunction with the UAF of an XV
instruction determines the multiplexer control signals 591 and ACF Mux Control 593 as follows.
The LV instruction’s Unit Affecting Flags (UAF) bits are used to select which arithmetic
instruction slot (A=ALU, M=MAU, D=DSU) is allowed to set condition flags for the specified
VLIW when it is executed. The XV instruction’s Unit Affecting Flags (UAF) bits override the
UATF specified for the VLIW when it was loaded via the LV instruction. The override selects
which arithmetic instruction slot (A=ALU, M=MAU, D=DSU) or none (N=NONE) is allowed to
set condition flags for this execution of the VLIW. The override does not affect the UAF setting
specified via the LV instruction as these are loaded in the VIM at the specified VLIW address.

In the instruction syntax, a flag parameter is used to specify the UAF for the instruction. A blank
parameter, i.e. F=', selects the UAF specified when the VLIW was loaded to be used for the
instruction execution and consequent control of the multiplexers 592 and 594 to load the proper
flags into the programmer visible registers 596 and 598. For example, with the UAF indicating
the MAU is to affect the flags, multiplexer 592 selects in response to CNVZ Mux Control 591
signal, path 587 to pass through to multiplexer output 597 to load the generated CNVZ ASFs to
CNVZ state latches 596. Since the MAU does not generate any ACFs as shown in the exemplary

10

15

20

25

30

WO 00/45282 PCT/US00/01803
21

MAU 580, no ACFs are to be latched into the programmer visible ACF State Latches 598 and
they retain their previous state. The MAU may still conditionally execute based upon the ACF
values generated by another execution unit 595 following its pipeline sequence. If no instruction
sequence requires the CNVZ or ACF state latches 596 and 598 respectively to be updated by any
execution unit, then the mux control signals 591 and 593 cause the multiplexers 592 and 594 to
select the state latch outputs 589 and 599 to pass through to their multiplexer outputs 597 and
595 respectively. For the ManArray implementation, the bus widths for the CNVZ and ACF
signals are shown in Fig. 5B where the CNVZ paths 587, 577, and 567 are all 4 bit signals
corresponding to the C, N, V, and Z values. The ACF paths 571 and 561 are each 8 bit signals
corresponding to F7-F0. The outputs of the multiplexers 592 and 594 are the 4 bit signal and the
& bit signals, respectively, both of which are used in the branch logic. The ACF multiplexer
output signals 595 are used to control conditional execution in each of the execution units 560,
570, and 580. In the SP, only the multiplexer output signals 595 and 597 are used in the branch
logic for conditional branch execution.

The ManArray architecture defines the ACF state latches 598 and the CNVZ state latches
596 to be stored in one of the programmer visible status and control registers which can be
loaded by a load immediate instruction, loaded from memory, or copied from a compute register.
This register can also be saved in memory and copied to one of the compute registers available to
the execution units.

Utilizing the above described methods and apparatus for implementing condition flag
information and the instruction encodings for conditional execution, it can be seen that condition
execution is supported with as little as 1 bit of additional opcode space and up to 3 bits with
varying degrees of functionality. In addition, a better match between instruction function
specification and conditional execution specification can be obtained. For example, a 1 bit
conditional execution encoding is sufficient for load and store instructions, allowing a maximum
number of bits for function encoding. Each added conditional execute bit provides a superset of
the previous functionality. Further, with this approach, the overall number of condition bits is
reduced. This maps well with instructions that operate on packed data with one flag being
defined for each sub-word operation, allowing partial execution of instructions on a sub-word
basis.

A further condition flag reduction is specified where all of the execution units in a VLIW
share the same condition flags. By use of the ManArray network and communication
instructions, it is possible to allow instructions that execute in different PEs to utilize each others

condition information. In addition, with condition combination, the use of multiple branches for

WO 00/45282 PCT/US00/01803
22

complex condition cases may be avoided and complex conditions can be used for conditional
execution. '

While the present invention has been described in a presently preferred embodiment, it
will be recognized that the teachings of the present invention may be advantageously applied to a

variety of processing arrays consistent with the claims which follow.

10

15

20

25

30

WO 00/45282 PCT/US00/01803
23

We claim:

1. A SIMD machine with an array comprising at least one processing element (PE)
and an array control processor, the array control processor and the PE each comprising:

an arithmetic unit condition register; and

a plurality of general purpose flags (ACFs) that contain reduced condition information
that is used for branching or conditional execution.

2. The machine of claim 1 wherein said plurality of ACFs have a format in which a
bit or bits store the condition information from a number of execution units operating in parallel.

3. The machine of claim 1 further comprising an instruction memory for storing
instructions that are executed conditionally, execution of said instructions not affecting the ACFs.

4. The machine of claim 1 wherein the SIMD machine operates on packed data
instructions and one ACF is affected for each packed data operation.

5. The apparatus of claim 1 in which multiple PEs are employed and different PEs
select different units to affect the ACFs.

6. A method of supporting conditional execution in a very long instruction word
(VLIW) based array processor with subword execution, the method comprising:

providing general purpose flag bits (ACFs) that contain reduced condition information
that is used for branching or conditional execution; and

specifying and setting a condition in ACFs based upon a condition code specification
encoded in an instruction generating a condition.

7. The method of claim 6 wherein instructions that execute conditionally do not
affect the ACFs.

8. The method of claim 6 wherein instructions that affect the ACFs execute
unconditionally.

9. The method of claim 6 further comprising the steps of:

executing a packed data instruction where the execution of each sub-word of the packed
data operation is dependent upon the associated subword ACF.

10. A hierarchical conditional execution instruction format comprising:

a plurality of instruction bits defining an instruction;

a 3-bit, 2-bit or 1-bit subset of said plurality of instruction bits providing an opcode
extension encoding for each instruction that supports conditional execution;

a set of general-purpose arithmetic condition flags (ACFs) that store specified results
from instruction execution; and

a set of arithmetic scalar flags (ASFs).

WO 00/45282 PCT/US00/01803

10

15

20

25

30

35

24

11. The hierarchical conditional execution instruction format of claim 10 wherein said
1-bit opcode extension is employed and said instruction conditionally executes on a true AFC
condition if said 1-bit is a one, or said instruction conditionally executes on a false AFC
condition if said 1-bit is a zero without affecting the AFCs.

12. The hierarchical conditional execution instruction format of claim 10 wherein said
2-bit opcode extension is employed and said instruction unconditionally executes if both bits are
true and the ACFs are affected as defined by a SetCC instruction.

13. The hierarchical conditional execution format of claim 12 wherein the SetCC
instruction includes a first opcode encoding field which specifies to which execution unit a
speciﬁed condition applies.

14. The hierarchical conditional execution format of claim 13 wherein the SetCC
instruction includes a second opcode encoding field which specifies a plurality of test conditions.

15. The hierarchical conditional execution format of claim 13 wherein each execution
unit has a different specified condition or if an ALL encoding of the SetCC instruction is chosen
then all the execution units use the same specified condition.

16. The hierarchical conditional execution format of claim 14 wherein a test condition
can be specified to detect whether an overflow occurred on any data operation within a packed
data execution.

17. The hierarchical conditional execution instruction format of claim 10 wherein said
2-bit opcode extension is employed and said instruction conditionally executes dependent upon
the state of an ACF if either one of said bits is true and the other one of said bits is false, without
affecting the ACFs.

18. The hierarchical conditional execution format of claim 10 wherein said 2-bit
opcode extension is employed and said instruction unconditionally executes if both bits are false,
without affecting the ACFs. |

19. The hierarchical conditional execution instruction format of claim 10 wherein said
3-bit opcode extension is employed and said instruction specifies how the instruction is to be
executed unconditionally or conditionally based on the ACFs and how the ACFs are affected
utilizing the bits of said 3-bit opcode extension.

20. The hierarchical conditional execution instruction format of claim 15 wherein the
set of ASFs flags represent the side effect from the instruction that is executing and wherein if
two or more bits of said 3-bit opcode extension are true the AFCs are affected based on one of
the conditions of said set of ASFs.

21. The hierarchical conditional execution format of claim 20 wherein said ASFs

comprise carry (C), overflow (V), sign (N) and zero (Z) flags.

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803
25

22. The hierarchical conditional execution instruction format of claim 10 wherein said
3-bit opcode extension is employed to specify an operation to be performed on one or more data
elements of a packed data instruction and said instruction unconditionally executes the operation
specified by the instruction on all said data elements without affecting the ACFs if all bits in said
3-bit opcode extension are false.

23. The hierarchical conditional execution instruction format of claim 10 wherein said
3-bit opcode extension is employed to specify an operation on one or more data elements of a
packed data instruction said instruction conditionally executing based on the state of an AFC
operation specified by the instruction on all said data elements or the operation does not occur at
all.

24. The hierarchical conditional execution instruction format of claim 10 wherein said
3-bit opcode extension is employed to specify an operation on one or more data elements of a
packed data instruction and said instruction conditionally executes only the data elements having
a corresponding ACF flag of appropriate value for the specified true or false coding of said 3-bit
opcode extension.

25. A method of condition generation comprising the steps of:

defining a set of arithmetic condition flags (ACFs);

determining side effects of a plurality of scalar conditions on an instruction by instruction
basis;

setting a set of arithmetic scalar flags (ASFs) to save the determined side effects;

specifying a condition code utilizing a compare instruction; and

updating the ACFs based upon the specified condition code.

26. The method of claim 25 further comprising the step of:

combining a previous state of the ACFs with the result of a condition code test specified
by a current compare instruction to create a complex condition.

27. The method of claim 25 wherein the condition code specifies a condition such as
greater than (GT), less than (LT), equal (EQ) or less than or equal (LEQ).

28. The method of claim 27 wherein the compare instruction is further utilized to
specify the desired conditions to be tested and two source registers to be compared.

29. The method of claim 28 wherein the compare instruction is further utilized to
specify a data type covering packed data forms.

30. The method of claim 28 wherein the compare instruction is further utilized to
specify a Boolean combination specification field.

31. The method of claim 26 further comprising the step of controlling branching in a

sequence processor (SP) based upon the created complex condition.

10

15

20

25

30

35

WO 00/45282 26 PCT/US00/01803

39 The method of claim 26 further comprising the step of conditionally executing in
a sequence processor (SP) and at least one processing element (PE) based on the created couplex
consisting of a Boolean combination of multiple conditions. based upon the created complex
condition.

33. The method of claim 26 further comprising the step of conditionally executing on
a combination of multiple conditions based upon the created complex condition.

34, A system for generating complex conditions formed by a Boolean combination of
relations comprising:

an arithmetic unit which receives at least two operands from a register file;

‘nstruction control lines derived from a registered instruction in a processor pipeline, the
instruction control lines including conditional execution control lines to control conditional
operation as specified in an instruction;

the arithmetic unit producing a result and a latched arithmetic scalar condition state;

a first latch for holding the arithmetic scalar condition state for the instruction after the
instruction has finished its execution state;

a second latch connected to the conditional execution control lines for holding instruction
control signals for the instruction after the instruction has finished its execution state;

an arithmetic condition flag (ACF) generation unit for providing a Boolean combination
of a present selected state with a previous state; and

an ACF latch for storing the previous state and feeding the previous state back to the ACF
generation unit.

35. The system of claim 34 wherein the ACF latch is a programmer visible latch.

36. The system of claim 34 further comprising a multiplexer connected to receive said
Boolean combination from the ACF generation unit and to controllably switch said Boolean
combination or said AFC latch to branch logic in a sequence processor (SP).

37. The system of claim 34 further comprising an arithmetic scalar flag (ASF) latch
switchably connected to the said first latch arithmetic scalar condition state output of the
arithmetic unit.

38. The system of claim 37 wherein the switchable connection of the said first latch
arithmetic scalar condition state output of the arithmetic unit and the ASF latch comprises a
controllable multiplexer.

39. The system of claim 38 wherein an output of the controllable multiplexer
controllably switches the arithmetic scalar condition state or the ASF latch output to the branch
logic in a sequence processor (SP).

40. The system of claim 37 wherein the ASF latch is a programmer visible latch.

10

15

20

25

30

WO 00/45282 PCT/US00/01803
27

41. A single instruction multiple data stream (SIMD) machine with a controller (SP)
and at least two processing elements (PEs), each PE in said SIMD machine comprising:

an arithmetic unit which receives at least two operands from a register file;

instruction control lines derived from a registered instruction that was received from the
SP in a processor pipeline, the instruction control lines including conditional execution control
lines to control conditional operation as specified in an instruction;

~ the arithmetic unit producing a result and a latched arithmetic scalar condition state;

a first latch for holding the arithmetic scalar condition state for the instruction after the
instruction has finished its execution state;

a second latch connected to the conditional execution control lines for holding instruction
control signals for the instruction after the instruction has finished its execution state;

an arithmetic condition flag (ACF) generation unit for providing a Boolean combination
of a present selected state with a previous state; and

an ACF latch for storing the previous state and feeding the previous state back to the ACF
generation unit.

42. The SIMD machine of claim 41 wherein the ACF latch of each PE is a
programmer visible latch.

43. The SIMD machine of claim 41 wherein each PE further comprises a multiplexer
connected to receive said Boolean combination from the ACF generation unit and to controllably
switch said Boolean combination or said ACF latch to branch logic in a sequence processor (SP).

44. The SIMD machine of claim 41 wherein each PE further comprises an arithmetic
scalar flag (ASF) latch switchably connected to said first latch arithmetic scalar condition state
output of the arithmetic unit.

45. The SIMD machine of claim 44 wherein the switchable connection of said first
latch arithmetic scalar condition state output of the arithmetic unit and the ASF latch of each PE
comprises a controllable multiplexer.

46. The SIMD machine of claim 45 wherein an output of the controllable multiplexer
of each PE controllably switches the arithmetic scalar condition state or the ASF latch output to
the branch logic in a sequence processor (SP).

47. The SIMD machine of claim 41 wherein the arithmetic unit of each PE is one of a
set of execution units comprising a multiply accumulate unit (MAU), an arithmetic logic unit
(ALU), and a data select unit (DSU) each having an associated arithmetic condition flag (ACF)

generation unit.

10

15

20

25

30

35

WO 00/45282 PCT/US00/01803

28

48. The SIMD machine of claim 47 wherein outputs from the ACF generation units
for the MAU, ALU, DSU, and the ACF latch are controllably switched by a multiplexer to
branch logic in a sequence processor.

49. Anindirect very long instruction word (VLIW) processing system comprising;

a first processing element (PE) having a VLIW instruction memory (VIM) for storing
instructions in slots within a VIM memory locations;

a first register for storing a function instruction having a plurality of group bits defining
instruction type and a plurality of unit field bits defining execution unit type;

a predecoder for decoding the plurality of group bits and the plurality of unit field bits;
and

a load mechanism for loading the function instruction in an appropriate one of said slots
in VIM based upon said decoding, the first processor further comprising:

at least two execution units, each execution unit receiving at least two operands from a
register file;

each execution unit having instruction control lines derived from a registered instruction
in a processor pipeline, the instruction control lines including conditional execution control lines
to control conditional operation as specified in an instruction to be executed;

each execution unit producing a result and a latched arithmetic scalar condition state;

each execution unit having a first latch for holding the arithmetic scalar condition state for
the instruction after the instruction has finished its execution state;

each execution unit having a second latch connected to the conditional execution control
lines for holding instruction control signals for the instruction after the instruction has finished its
execution state;

each execution unit having an arithmetic condition flag (ACF) generation unit for
providing a Boolean combination of a present selected state with a previous state; and

a single ACF latch for all of the execution units for storing the previous state and feeding
the previous state back to the respective ACF generation unit.

50. The system of claim 49 wherein the ACF latch is a programmer visible latch.

51. The system of claim 49 wherein the PE further comprises a multiplexer connected
to receive said Boolean combination from each of the ACF generation units and to controllably
switch said Boolean combinations to branch logic in a sequence processor (SP).

52. The system of claim 49 wherein the PE further comprises an arithmetic scalar flag
(ASF) latch switchably connected to the output of each of the execution units.

53. A system for generating complex conditions comprising:

an arithmetic unit which receives at least two operands from a register file;

10

15

20

25

30

WO 00/45282 PCT/US00/01803
29

instruction control lines derived from a registered instruction in a processor pipeline, the
instruction control lines including conditional execution control lines to control conditional
operation as specified in an instruction;

the arithmetic unit producing a result and a latched arithmetic scalar condition state;

a first latch for holding the arithmetic scalar condition state for the instruction after the
instruction has finished its execution state;

a second latch connected to the conditional execution control lines for holding instruction
control signals for the instruction after the instruction has finished its execution state;

an arithmetic condition flag (ACF) generation unit for providing a present selected state
of a plurality of arithmetic condition flags (ACFs); and

an ACF latch for storing a previous state for the ACFs and feeding the previous state back
to the ACF generation unit.

54. A single instruction multiple data stream (SIMD) machine with a controller (SP)
and at least two processing elements (PEs), each PE in said SIMD machine comprising:

an arithmetic unit which receives at least two operands from a register file;

instruction control lines derived from a registered instruction that was received from the
SP in a processor pipeline, the instruction control lines including conditional execution control
lines to control conditional operation as specified in an instruction;

the arithmetic unit producing a result and a latched arithmetic scalar condition state;

a first latch for holding the arithmetic scalar condition state for the instruction after the
instruction has finished its execution state;

a second latch connected to the conditional execution control lines for holding instruction
control signals for the instruction after the instruction has finished its execution state;

an arithmetic condition flag (ACF) generation unit for providing a present selected state
of a plurality of arithmetic condition ﬂiags (ACFs); and

an ACF latch for storing a previous state for the ACFs and feeding the previous state back
to the ACF generation unit.

55. Anindirect very long instruction word (VLIW) processing system comprising:

a first processing element (PE) having a VLIW instruction memory (VIM) for storing
mstructions in slots within a VIM memory locations;

a first register for storing a function instruction having a plurality of group bits defining
instruction type and a plurality of unit field bits defining execution unit type;

a predecoder for decoding the plurality of group bits and the plurality of unit field bits;

and

WO 00/45282 PCT/US00/01803
30

a load mechanism for loading the function instruction in an appropriate one of said slots
in VIM based upon said decoding, the first processor further comprising:

at least two execution units, each execution unit receiving at least two operands from a
register file;

5 each execution unit having instruction control lines derived from a registered instruction
in a processor pipeline, the instruction control lines including conditional execution control lines
to control conditional operation as specified in an instruction to be executed;

each execution unit producing a result and a latched arithmetic scalar condition state;
each execution unit having a first latch for holding the arithmetic scalar condition state for
10 the instruction after the instruction has finished its execution state;
each execution unit having a second latch connected to the conditional execution control
lines for holding instruction control signals for the instruction after the instruction has finished its
execution state;
each execution unit having an arithmetic condition flag (ACF) generation unit for
15 providing a present selected state of plurality of arithmetic condition flags (ACFs); and
a single ACF latch for all of the execution units for storing a previous state for the ACFs

and feeding the previous state back to the respective ACF generation unit.

WO 00/45282

PCT/US00/01803
o1 1/6
SP 32b DATA || PE 320 DATA 3.
b4-256 \ MEHORY oy | [oo L0 FI6. 1
SCALABLE MANARRAY | SPIPED T et oaTh s
DATA BUS 12'~L ¥ 'H[, — 100
(1/0 B/W DEPENDENT) SPLOCAL WM. T Tstore[et 5] 30817
183 LOAD 1! INSTR. fee L
INTERFACE DECODE /P
R T o P v e A YRS |
PEGISTER FILE| == iWLIv Lt | 11 Hds0 /
181~ 11~ P CONFTG, |CONTROLT T T 1 171
o el | LPEGISTERFIE| [V] =0 -
| — 4 :
103~ T T T, E_ D T m| ——<— u
ol BRANCH, L0OP, INTERRUPTS, (By i
MEMORY CONTROL) | 131 || 107 02 it |
55— 1 R Iy
T e INSTRUCTION 805 B
105~ | INSTRUCTION MEMORY j i
123 [PE 32b DATA ’ |
N iy n—— | | |
A | I Hs | |
! INSTR. bt | | l |
e BT e) ||
1 INTERRACE A S TTTTA VI = =
1574~ iy 1] e et | i
| | PE CONFIS, MY JoowTho =TT | |
oy | PSSR FEE| [0 i :
N ot T L — MM 0 |
123" T !
SP 32 DATA —
¥ ay :Lg }
r-- [TsToRe s i i
[P LOCAL MEM INSTR. b | |
S DRSS | LAOLAUD e -k— % | |
157"~ e OO o) N | |
|| ReGISTER Flic CONTROLTT 1 |
15 | DSU manl] i
R 1 l—e—* X |
Y1 M T — =9 H
13 ~JFE 22 DATh] 1 [
MEMORY i IB |
— S| e i |
[P LOCAL HEN. INSTR. e ’
| e *
57 A7 o (LG LIV | g0 |
[P S LT v el |
| 0SU aanall 0 |
e | I (T || !
2 \
[l

PCT/US00/01803

WO 00/45282

216

Ve "9Id

A=iN (paub1s) uey]-ssa7 17 }—"80¢
(A=iN) 1] (T=2) (paub1s) [enb3 Jo uey}-ssa I 102
(A=N)38(0=17) (paub1s) uey|-Jajeadg 19 102

A=N (paub1s) 1enb3j Jo uey}-Jajeadsy 1

T=N anT1ebay 9N

(0=2)83(0=N) 9A1}150d S0d

0=A JB3T) MOT}JaA(JA

T=A 195 MOT}J3AQ SA

(1=2) 11 (0=1) (paubIsun) aweg Jo JamoT] S1

09 (Jeary AuJey Jo 'paubrsun) Jamo] (99101

1=9 (135 KJJeq Jo ‘paubrsun) aweg Jo JaYOTH (S7)SH

(0=2)93(1=0) (paub1sun) Jayb1y IH

0=1 1enb3 JON JO 0J37 JON (IN) ZN
| [enb3 Jo 0J37 (037 f—y02

0UT113S 7-A-N-) U01}014953(2)
8¢ ‘914 202
ooy |oqwosy o0l 2B(0] om 70 330 g | g7 | amos
iy Xy apoddony | -
01T{2| €| v |G[91£]816]0T ﬁﬂ_mﬁ EV |47 |ST |97 LT |87 |67 102|1¢|2C [EC|¥2 {5292 (L2|82| 62 [OE | TE
7
00¢

WO 00/45282 PCT/US00/01803

3/6
FIG. 3A

F7 F6 F5 F4 F3 R FL F0 ACFs

LA~

oD 0D Cop 0D CoiD Gp Y oo Y {fop>
b7 b5 | ba/] b7

b2 | p1/|] bo | octal byte

hlo /o hte / |/ hoe | ouad half-worg
304 / 302
Wi / w0 Dual word
DW Double word
FIG. 3B

F3 F2 F1 F0 ACFs

| 350
359 ‘355 35 - /
8 Ly (oo

b3 | b2 | bt /][b0 | ouad byte

it |/ no Dual half-word

w0 word

PCT/US00/01803

416

WO 00/45282

37601 |63 U mm 0] g [0] 0 [EEC L ey ey

Xy iy apodon Ty
0171 |c|E]r|S|3|L(B[6JOT T[T (€T [¥T [ST|9F|LV |87 |67 |02 V2|22 |E2|¥2|S2|92|L2|82] 62 {OE |TE
rmjmﬂ\ omv\ Bu1poou3 votjandysut o167
Jv "9Id
5n C—lc— Al e Aol — \Aﬁ_ou N
¢3| 1x3kd03 |0/0|5xg |5 7g 0-F 55 0-77g spoadosg | 218 |37 dnoJg
01FCIE{V(S(3|L]8] 6 | OF {TT{CT |EV|¥T |ST |97 |LT |87 {67 {02|TC|22|€C|¥C (52|92 (/2|82 62 |OE [TE
Mﬂ 03\\ Butpoouz uotyandjsu] Adog
gy 914
41l
S
— | — R - peo]| | — [—
CTHOOVA | /1 W13\ gpggy| 0 |3ZTS |diS| Tno%g
0[T{C|E|[S[3|L]BI6]0T [TV |2V (€T |¥T| ST (9T (LT 8T |67 (02{T2| ¢2 |E2|¥C|5C|92|L2|B2| 62 |OE |TE
oov\ Butpoou3 uot1onJ3suT 133J1Q peo

vy 914

WO 00/45282 PCT/US00/01803

a/6

FIG. 5A

INSTRUCTION
OPERANDS CONTROL

sos\l |/507 501
i i Ry o
| . 503 500

CNVZ 514 | :
502 GENERATION o | i
LATCH 93 LATCH i

|

|

| J 505,
| » N
{ 512 4y :
i 506~| CONDITION ||
|

|

|

0 15\ COMBINATION] | |

317 | aF |
N cominon | |

o

Y ! !
0 525 521
REGISTER FILE AN e

STy ae TR

216

T0 BRANCH
LOGIC

o
! |
CNVZ ACF 229
LATCH LATCH

PCT/US00/01803

WO 00/45282

6/6

865 685 966 |
| =i
| |
HOLYT 3LVIS HI1Y1 3LVIS
40v ZAND g5 974
) |
21901 - = 268 165
HONVHE 01 | ~- a /65 M
0HINOD XNW 49V 7 T0HINOD XNW ZAND
£65 B
) G6S -
8 0 - : y 7
1114 H3ILS193Y { 14 431S19
G 185~ 0l e A 0l
| I\ | 1S s~ | 3T B 153:
..... Sy IO A N RSN . S
[B] 185 —" |
NOI1YHINTO NOI LY4INI9
v | >-ggs 4R BN Y7 |
i -1 e .
HILY1 mmm\ HIIY WV | /G HaLY1 HILY
NOI LYHINT9 Nwm_ NOTLvHINT9| | ¢L6 NOILYYINI9| | ¢85
| I : ZAND | __IWND
uj *
I I e
1061NOD SONVHd0 T04LNOJ SANYYI0 T0HINOD SONYHIH0
NOT LINHLSNI 035 NOILINHISNI 048 NOT1INHISNI 085

omm\

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/01803

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 15/00, 7/38

US CL :712/10, 11, 16, 18-22, 24, 200, 209-211, 223, 226, 234

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 712/10, 11, 16, 18-22, 24, 200, 209-211, 223, 226, 234

Documentation searched other than minimum documentation to the extent that such documentsar¢ included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN US PATENT FILE SEARCH

|c. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,805,915 A (WILKINSON ET AL) 08 SEPTEMBER 1998, | 1-5. 41-48, and 54
SEE THE ABSTRACT AND FIG. 1
Y US 5,581,773 A (GLOVER) 03 DECEMBER 1996, SEE THE| 1-5, 41-48 AND
ABSTRACT AND FIG. 2A. AND FIG. 6. 54
Y US 5,555,428 A (RADIGAN ET AL) 10 SEPTEMBER 1996, SEE| 1-5, 41-48 AND
THE ABSTRACT AND FIGS. 3A AND 3B. 54
A US 4,896,265 A (FIDUCCIA ET AL) 23 JANUARY 1990, SEE| 1-5, 41-48 AND
THE ABSTRACT. 54
Y US 5,737,561 A (DULONG) 07 APRIL 1998 SEE THE| 6-9, 49-52, AND
ABSTRACT AND FIGS. 2, 3A-B. 55
Y US 5,669,001 A (MORENO) 16 SEPTEMBER 1997, SEE THE| 6-9, 49-52 AND
ABSTRACT AND FIGS. 4-5. 55
Further documents are listed in the continuation of Box C. D See patent family annex.
. Special tog ies of cited d T later d t published after the international filing date or priority
A" docb:mc;_nl de:t"li-.ilng th|e general state of the art which is not considered :ih‘: p:.:i,:‘;: :, x::l;t “:‘;:'yﬂx;;p'glx 3:::,,‘:: cited to understand
to be of particular relevance
"B* earlier document published on or after the international filing date X m“ﬁ::;:ig:ﬁ:‘::ﬂ'::amu’ the cl:ouned m"::mn ca:mo:':;
L* document whlch may lhrow doubu on priority clalm(l) or which is when the document is taken alone :
cited to the date of h ion or other
rpecial reson (8 specifiod) T ntitared 0 valve - venive, .ﬂ;‘"&’:"ﬁ?xm":
o document referring to an oral disclosure, use, exhibition or other combined with one or more other such d ts, such bi
meoans being obvious to a person skilled in the art
" d t published prior to the i ional filing date but later than «g« document momber of the same patent family

the pnanty date claimed

Date of the actual completion of the international search

18 MAY 2000

Date of mailing of the international search report

19 JUN 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

AN MENG-AI UGN; '“ J’

Telephone No. (703) 305-9678

Form PCT/ISA/210 (second sheet) (July 1998)x

INTERNATIONAL SEARCH REPORT International application No.

PCT/US00/01803

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

ABSTRACT AND FIGS. 1-5.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y.E US 6,041,399 A (TERADA ET AL) 21 MARCH 2000, SEE THE | 6-9, 49-52 AND
ABSTRACT AND FIGS. 1 AND 6. 55

Y US 5,450,556 A (SLAVENBURG ET AL) 12 SEPTEMBER 1995, |6-9, 49-52 AND
SEE THE ABSTRACT AND FIGS. 1-5. 55

Y US 5,805,850 A (LUICK) 08 SEPTEMBER 1998, SEE THE 6-9, 49-52 AND
ABSTRAC AND FIGS. 2 AND 4, 55

Y US 5,202,967 A (MATSUZAKI ET AL) 13 APRIL 1993, SEE 10-24

) THE ABSTRACT AND FIGS. 1 AND 2.

A US 5,805,918 A (BLOMGREN ET AL) 08 SEPTEMBER 1998, 10-24
SEE THE ABSTRACT.

AP US 5,926,644 A (HAYS) 20 JULY 1999, SEE THE ABSTRACT. 10-24

Y US 4,827,403 A (STEELE, JR. ET AL) 02 MAY 1989, SEE THE |10-24
ABSTRACT AND FIGS. 30-31.

Y. P US 5,991,545 A (KAWASAKI ET AL) 23 NOVEMBER 1999, 10-24
SEE THE ABSTRACT AND FIGS. 5-7.

Y. P US 5,872,965 A (PETRICK) 16 FEBRUARY 1999, SEE THE 25-33
ABSTRACT AND FIGS. 3 AND 5.

Y US 5,471,593 A (BRANIGIN) 28 NOVEMBER 1995, SEE THE 25-33
ABSTRACT AND FIGS. 13-15.

Y, P US 5,920,713 A (FAVOR) 06 JULY 1999, SEE THE BASTRACT |34-40 AND 53
AND FIGS. 4 AND 7-9.

Y,E Us 6,044,449 A (GARG ET AL) 28 MARCH 2000, SEE THE 34-40 AND 53

Form PCT/ISA/210 (continuation of second sheet) (July 1998) %

"INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/01803

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
D because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee. ’

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant's protest.
[X] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)x

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/01803

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single
inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search
fees must be paid.

Group I, Claims 1-5, 41-48 and 54 are drawn to "Array Processor SIMD",—c_l;s;i-ﬁed in class 712, subclass
22.

Group II, Claims 6-9, 49-52 and 55 are drawn to "VLIW (very long instruction word) classified in class 712,
subclass 24.

Group III, Claims 10-24 are drawn to "Conditional Branching” classified in class 712, subclass 234.

Group IV, Claims 25-33 are drawn to "Instruction Modification Based on Condition" classified in class 712,
subclass 226.

Group V, Claims 34-40 and 53 are drawn to "Arithmetic Operation Instruction Processing™ classified in class
712, subclass 221.

The inventions listed as Groups I-V do not relate to a single inveative concept under PCT Rule 13.1 because, under
PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

i Inventions I and II are related as sub-combinations disclosed as usable together in a single
combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, invention Group I has separate utility such as array processor SIMD which does not required the step of
specifying and setting a condition code specification coded in an instruction generating a condition. See MPEP §
806.05(d).

ii. Inventions I and III are related as sub-combinations disclosed as usable together in a single
combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, invention Group I has separate utility such as array processor SIMD does not required a 3-bits, 2-bits or

1-bit subset of the plurality of instruction bits providing an opcode extension encoding for each instruction that supports
condition execution. Sec MPEP § 806.05(d).

iii. Inventions I and IV are related as sub-combinations disclosed as usable together in a single
combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, invention Group I has separate utility such as array processor SIMD does not required the step of
determining side effects of a plurality of scalar conditions on an instruction by instruction basis. See MPEP § 806.05(d).

iv. Inventions I and V are related as sub-combinations disclosed as usable together in a single
combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, invention Group I has separate utility such as array processor SIMD does not required a first and a second
latch for holding the arithmetic control condition state for the instruction aﬁer thc instruction has finished its execution
state. See MPEP § 806.05(d).

v. Inventions II and III are related as sub-combinations disclosed as usable together in a single
combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, inveation Group II has separate utility such as very long instruction word (VLIW) which does not required
a 3-bits, 2-bits or 1-bit subset of the plurality of instruction bits providing an opcode. extension encoding for each
instruction that supports condition execution. See MPEP § 806.05(d).

Vi Inventions Il and IV are related as sub-combinations disclosed as usable together in a single
combination. The Sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, invention Group II has separate utility such as very long instruction word (VLIW) array processor does not
required step of determining side effects of a plurality of scalar conditions on an instruction by instruction basis. See
MPEP § 806.05(d).

vii, Inventions II and V are related as sub-combinations disclosed as usable together in a single
combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, invention Group Il has separate utility such as a very long instruction word (VLIW) array processor does
not required a first and a second latch for holding the arithmetic control condition state for the instruction after the
instruction has finished its execution state. See MPEP § 806.05(d).

viii. Inventions III and IV are related as sub-combinations disclosed as usable together in a
single combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In
the instant case, invention Group III has separate utility such as a Hierarchical conditional execution instruction format
does not required step of determining side effects of a plurality of scalar conditions on an instruction by instruction

Form PCT/ISA/210 (extra sheet) (July 1998)»

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/01803

basis. See MPEP § 806.05(d).

ix. Inventions 1II and V are related as sub-combinations disclosed as usable together in a single
combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In the
instant case, invention Group III has separate utility such as a Hierarchical conditional execution instruction format does
not required a first and a second latch for holding the arithmetic control condition state for the instruction after the
instruction has finished its execution. See MPEP § 806.05(d).

X. Inventions IV and V are related as sub-combinations disclosed as usable together in a
single combination. The sub-combinations are distinct from each other if they are shown to be separately usable. In
the instant case, invention Group IV has scparate utility such as a method of condition generation _does not required an
ACEF latch for storing the previous state and feeding the previous sate back to the ACF generation unit. See MPEP §
806.05(d).

Because these inventions are distinct for the reasons given above and the search required for each group is not required
for other groups. Therefore, the restriction for examination purposes as indicated is proper.

Form PCT/ISA/210 (extra sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

