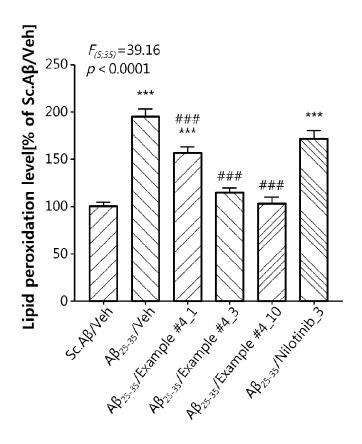
CA 3078173 A1 2019/04/11

(21) 3 078 173


(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) **A1**

- (86) Date de dépôt PCT/PCT Filing Date: 2018/10/01
- (87) Date publication PCT/PCT Publication Date: 2019/04/11
- (85) Entrée phase nationale/National Entry: 2020/04/01
- (86) N° demande PCT/PCT Application No.: KR 2018/011660
- (87) N° publication PCT/PCT Publication No.: 2019/070093
- (30) Priorités/Priorities: 2017/10/02 (US62/566,649); 2018/05/04 (US62/666,800); 2018/07/11 (US62/696,432)
- (51) Cl.Int./Int.Cl. *C07D 277/82* (2006.01), *C07D 417/04* (2006.01), *C07D 417/10* (2006.01), *C07D 513/04* (2006.01)
- (71) Demandeur/Applicant:
 1ST BIOTHERAPEUTICS, INC., KR
- (72) Inventeurs/Inventors: LEE, JINHWA, KR; JO, SUYEON, KR; PARK, A YEONG, KR; LEE, GWIBIN, KR; KIM, JAE EUN, KR; KIM, MISOON, KR;

(74) Agent: SMART & BIGGAR LLP

- (54) Titre: COMPOSES BENZOTHIAZOL ET METHODES D'UTILISATION DE CEUX-CI POUR TRAITER DES TROUBLES NEURODEGENERATIFS
- (54) Title: BENZOTHIAZOL COMPOUNDS AND METHODS USING THE SAME FOR TREATING NEURODEGENERATIVE DISORDERS

(57) Abrégé/Abstract:

The present disclosure provides a compound of general Formula (I) having c-abl kinase inhibitory activity or pharmaceutically acceptable salt thereof, a pharmaceutical composition comprising the compound, and a method useful to treat or prevent neurodegenerative diseases using the compound.

CA 3078173 A1 2019/04/11

(21) 3 078 173

(13) **A1**

(72) Inventeurs(suite)/Inventors(continued): JUNG, GYOOSEUNG, KR; LIM, SEUNG MOOK, KR; LIM, KEONSEUNG, KR; LEE, MINWOO, KR; YANG, HEEKYOUNG, KR; KIM, HYONAM, KR; KIM, HYEONGJUN, KR; LI, WANJUN, CN; FAN, MINGZHU, CN

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 11 April 2019 (11.04.2019)

(10) International Publication Number WO 2019/070093 A1

(51) International Patent Classification:

 C07D 277/82 (2006.01)
 C07D 417/10 (2006.01)

 C07D 417/04 (2006.01)
 C07D 513/04 (2006.01)

(21) International Application Number:

PCT/KR2018/011660

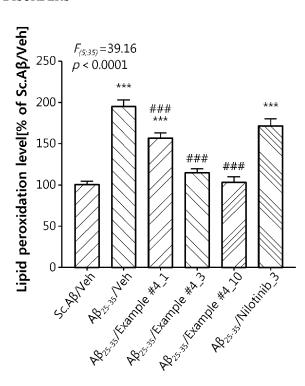
(22) International Filing Date:

01 October 2018 (01.10.2018)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:


62/566,649 02 October 2017 (02.10.2017) US 62/666,800 04 May 2018 (04.05.2018) US 62/696,432 11 July 2018 (11.07.2018) US

- (71) Applicant: 1ST BIOTHERAPEUTICS, INC. [KR/KR]; A-701, 240, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13493 (KR).
- (72) Inventors: LEE, Jinhwa; 802-1501, 267, Jukjeon-ro, Su-ji-gu, Yongin-si, Gyeonggi-do 16876 (KR). JO, Suyeon; 301, 9-1, Heungdeok 1-ro 62beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16954 (KR). PARK, A Yeong; 173, Jangmi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13502 (KR). LEE, Gwibin; 101, 13, Seonjibong-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13585 (KR). KIM, Jae Eun;

170-104, 99, Olympic-ro, Songpa-gu, Seoul 05501 (KR). KIM, Misoon; 203-705, 10, Dongcheon-ro 63beon-gil, Suji-gu, Yongin-si, Gyeonggi-do 16823 (KR). JUNG, Gyooseung; 103-6011, 16, Deogyeong-daero 2077beongil, Giheung-gu, Yongin-si, Gyeonggi-do 17095 (KR). LIM, Seung Mook; 34, Yeongmal-ro 24beon-gil, Hanamsi, Gyeonggi-do 12979 (KR). LIM, Keonseung; 101, 36, Ilsan-ro 725beon-gil, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10377 (KR). LEE, Minwoo; 101-2304, 7-10, Poeun-daero 313beon-gil, Suji-gu, Yongin-si, Gyeonggi-do 16846 (KR). YANG, Heekyoung, 104-710, 59, Muninro, Suji-gu, Yongin-si, Gyeonggi-do 16830 (KR). KIM, Hyonam; 119-1403, 55, Jangmi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13441 (KR). KIM, Hyeongjun; 20, Jayang-ro 51-gil, Gwangjin-gu, Seoul 04955 (KR). LI, Wanjun; WuXi AppTec(Wuhan)Co.,Ltd, No.666, GaoXin Rd, WuHan East Lake High-tech Dev Zone, Wuhan, Hubei 430075 (CN). FAN, MingZhu; WuXi AppTec(Wuhan)Co.,Ltd, No.666, GaoXin Rd, WuHan East Lake High-tech Dev Zone, Wuhan, Hubei 430075 (CN).

- (74) Agent: PHIL & ONZI INT'L PATENT & LAW FIRM; 3F., 36, Seochojungang-ro, Seocho-gu, Seoul 06643 (KR).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(54) Title: BENZOTHIAZOL COMPOUNDS AND METHODS USING THE SAME FOR TREATING NEURODEGENERATIVE DISORDERS

(57) **Abstract:** The present disclosure provides a compound of general Formula (I) having c-abl kinase inhibitory activity or pharmaceutically acceptable salt thereof, a pharmaceutical composition comprising the compound, and a method useful to treat or prevent neurodegenerative diseases using the compound.

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

PCT/KR2018/011660

Description

Title of Invention: BENZOTHIAZOL COMPOUNDS AND METHODS USING THE SAME FOR TREATING NEURODE-GENERATIVE DISORDERS

Technical Field

- [1] The present disclosure generally relates to compounds having enzyme inhibitory activity, pharmaceutical compositions comprising the compound, and methods of using the compounds for treating diseases.
- [2] This application claims the benefits of, and priority to, U.S. provisional application serial numbers 62/566,649 filed 2 October 2017, 62/666,800 filed 4 May 2018, and 62/696,432 filed 11 July 2018. The entire disclosures of the applications identified in this paragraph are incorporated herein by references.

Background Art

- [3] α-synuclein is part of a large family of proteins including β- and γ-synuclein and synoretin. α-synuclein is expressed in the normal state associated with synapses and is believed to play a role in neural plasticity, learning and memory. Several studies have implicated α-synuclein with a central role in Parkinson disease pathogenesis. Molecular changes in the α-synuclein protein that increase protein misfolding and aggregation have a direct role in disease pathogenesis. Aggregation of α-synuclein contributes to the formation of Lewy bodies and neutrites, the pathologic hallmarks of Parkinson disease and α-synucleinopathies. Activation of tyrosine kinase c-abl contributes to α-synuclein-induced neurodegeneration.
- [4] The tyrosine kinase c-abl is tightly regulated non-receptor protein tyrosine kinase involved in a wide range of cellular processes, including growth, survival and stress response (*Nat Rev Mol Cell Biol*, 2004, 5:33-44) and c-abl involved in regulation several cellular processes and has implicated in the development of the central nervous system by controlling neurogenesis. More recently, increasing evidence from various experimental model systems has also revealed that c-abl is activated in neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, Neiman-Pick type C diseases and tauopathies. (*Human Molecular Genetics*, 2014, Vol. 23, No.11)
- [5] The stress-signaling non-receptor tyrosine kinase c-abl links parkin to sporadic forms of Parkinson's disease via tyrosine phosphorylation. Tyrosine phosphorylation of parkin by c-abl is a major post-translational modification that leads to loss of parkin function and disease progression in sporadic Parkinson disease. Inhibition of c-abl offers new therapeutic opportunities for blocking Parkinson disease progression. (*The Journal of Neuroscience*, 2011, 31(1):157-163) Amyotrophic lateral sclerosis (ALS) is

WO 2019/070093 PCT/KR2018/011660 2

a fatal neurodegenerative disease characterized by progressive death of motor neurons. Knockdown of c-abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. (*Imamura et al., Sci. Transl. Med.* 9, 2017) Multiple System Atrophy (MSA) is a rare, rapidly progressive neurodegenerative disease without any current treatment. In MSA there is accumulation of α -synuclein in the neurons and oligodendrocytes of the substantia nigra, striatum, olivopontocerebellar structures and spinal cord. (*J Neural Transm Vienna Austria* 1996. 2016;123(6))

- Administration of the tyrosine kinase inhibitor nilotinib decreases c-abl activity and ameliorates autophagic clearance of α -synuclein in transgenic and lentiviral gene transfer models. Activation of c-abl in the mouse forebrain induces neurodegeneration in the hippocampus and striatum. Therefore, an increase in c-abl activity via phosphorylation may be associated with the α -synuclein pathology detected in Parkinson disease and other neurodegenerative disease. (*Hum Mol Genet.* 2013 Aug 15).
- [7] c-abl is a potential therapeutic target for α -synucleinopathy, Parkinson disease, Alzheimer disease, ALS, Dementia with Lewy body and MSA.
- [8] WO 2010/008847 describes compounds having a heterobicyclic core, such as benzothiazol, substituted with an amid containing moiety, such as acetamido, for treating cancer.

Disclosure of Invention

Technical Problem

[9] Thus one object of the present disclosure is to provide a compound having c-abl kinase inhibitory activity, a composition comprising the compound, a pharmaceutical composition comprising the compound as an effective agent, and medical-uses thereof for treating or preventing neurodegenerative disorders. Another object of the present disclosure is to provide a method for treating or ameliorating neurodegenerative disorders comprising administering to a subject in need of treatment, amelioration or prevention of neurodegenerative disorders a compound having c-abl kinase inhibitory activity according to the present disclosure.

Solution to Problem

[10] **SUMMARY**

[11] The present disclosure provides a compound having c-abl kinase inhibitory activity, a composition comprising the compound and a method useful to treat a neurodegenerative disease. In an embodiment, the compound is a compound of Formula (I):

[12]
$$\mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{4}$$
 (I)

[13] or a pharmaceutically acceptable salt thereof, wherein:

[14] R¹ is cyclopropyl, cyclobutyl, or 3- or 4-membered heterocyclyl, wherein R¹ is optionally substituted with one or more groups selected from the group consisting of halo, alkyl hydroxyalkyl and haloalkyl,

[15] R² and R³ are independently -H, halo, alkyl, alkoxy, -CF₃, or -OCF₃,

[16] R⁴ is aryl, heteroaryl, cycloalkyl, heterocyclyl, or heteroalkyl, wherein R⁴ is optionally substituted with one or more groups selected from the group consisting of halo, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, trimethylsilylethoxymethyl, -NO₂, -NR_aR_b, -NR_aC(=O)R_b, -NR_aC(=O)NR_aR_b, -NR_aC(=O)OR_b, -OR_a, -CN, -C(=O)R_a, -C(=O)OR_a, -C(=O)NR_aR_b, -OC(=O)R_a, -OC(=O)OR_a, -OC(=O)NR_aR_b, -SR_a, azetidinyl, oxetanyl, tetrahydrofuranyl, furanyl, pyrrolidinyl, pyrrolyl, pyrazolyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, furazanyl, oxadiazolyl, thiadiazolyl, phenyl, tetrahydropyranyl, pyranyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and

[17] R_a and R_b are independently -H, halo, amino, alkyl, or haloalkyl.

[18] In another embodiment, the present disclosure provides pharmaceutical compositions comprising a therapeutically effective amound of a compound decribed herein and a pharmaceutically-acceptable carrier.

[19] In yet another embodiment, the present disclosure provides methods of inhibiting or treating a neurodegenerative disease comprising administering to a subject in need thereof a therapeutically effective amount of one or more compounds described herein.

[20] [21]

DETAILED DESCRIPTION

[22] The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.

[23] <u>Definitions</u>

- [24] The generic terms used in the present disclosure are herein defined for clarity.
- [25] This specification uses the terms "substituent", "radical", "group", "moiety", and "fragment" interchangeably.
- [26] As used herein, the term "alkenyl" refers to a straight or branched hydrocarbonyl group with at least one site of unsaturation, i.e., a carbon-carbon, sp2 double bond. In an embodiment, alkenyl has from 2 to 12 carbon atoms. In some embodiments, alkenyl

WO 2019/070093 PCT/KR2018/011660

- is a C_2 - C_{10} alkenyl group or a C_2 - C_6 alkenyl group. Examples of alkenyl group include, but are not limited to, ethylene or vinyl (-CH-CH₂), allyl (-CH₂CH-CH₂), cyclopentenyl (-C₅H₇), and 5-hexenyl (-CH₂CH₂CH₂CH-CH₂).
- [27] As used herein, the term "alkoxy" is RO- where R is alkyl. Non-limiting examples of alkoxy groups include methoxy, ethoxy and propoxy.
- [28] As used herein, the term "alkoxyalkyl" refers to an alkyl moiety substituted with an alkoxy group. Examples of alkoxyalkyl groups include methoxymethyl, methoxyethyl, methoxypropyl and ethoxyethyl.
- [29] As used herein, the term "alkoxycarbonyl" is ROC(O)-, where R is an alkyl group as defined herein. In various embodiments, R is a C_1 - C_{10} alkyl group or a C_1 - C_6 alkyl group.
- [30] As used herein, the term "alkyl" refers to a straight or branched chain hydrocarbonyl group. In an embodiment, alkyl has from 1 to 12 carbon atoms. In some embodiments, alkyl is a C₁-C₁₀ alkyl group or a C₁-C₆ alkyl group. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl and decyl. "lower alkyl" means alkyl having from 1 to 4 carbon atoms.
- [31] As used herein, if the term " C_1 - C_6 " is used, it means the number of carbon atoms is from 1 to 6. For example, C_1 - C_6 alkyl means an alkyl which carbon number is any integer of from 1 to 6.
- As used herein, the term "alkylamino" refers to an amino group substituted with one or more alkyl groups. "N-(alkyl)amino" is RNH— and "N,N-(alkyl)₂amino" is R₂N—, where the R groups are alkyl as defined herein and are the same or different. In various embodiments, R is a C₁-C₁₀ alkyl group or a C₁-C₆ alkyl group. Examples of alkylamino groups include methylamino, ethylamino, propylamino, butylamino, dimethylamino, diethylamino, and methylethylamno.
- [33] As used herein, the term "alkylaminoalkyl" refers to an alkyl moiety substituted with an alkylamino group, wherein alkylamino is as defined herein. Examples of alkylaminoakyl groups include methylaminomethyl and ethylaminomethyl.
- As used herein, the term "alkynyl" refers to a straight or branched carbon-chain group with at least one site of unsaturation, i.e., a carbon-carbon, sp triple bond. In an embodiment, alkynyl has from 2 to 12 carbon atoms. In some embodiments, alkynyl is a C_2 - C_{10} alkynyl group or a C_2 - C_6 alkynyl group. Examples of alkynyl groups include acetylenic (— $C\equiv CH$) and propargyl (— $CH_2C\equiv CH$).
- [35] As used herein, the term "aryl" refers to any monocyclic or bicyclic carbon ring of up to 7 atoms in each ring, wherein at least one ring is aromatic, or an aromatic ring system of 5 to 14 carbon atoms which includes a carbocyclic aromatic group fused with a 5-or 6-membered cycloalkyl group. Representative examples of aryl groups

include, but are not limited to, phenyl, tolyl, xylyl, naphthyl, tetrahydronaphthyl, anthracenyl, fluorenyl, indenyl, azulenyl and indanyl. A carbocyclic aromatic group can be unsubstituted or optionally substituted.

- As used herein, the term "cycloalkyl" is a hydrocarbyl group containing at least one saturated or partially unsaturated ring structure, and attached via a ring carbon. In various embodiments, it refers to a saturated or a partially unsaturated C₃-C₁₂ cyclic moiety, examples of which include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, cyclopentyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl and cyclooctyl. "Cycloalkyloxy" is RO-, where R is cycloalkyl.
- [37] As used herein, the terms "halogen" and "halo" refers to chloro (-Cl), bromo (-Br), fluoro (-F) or iodo (-I). "Haloalkoxy" refers to an alkoxy group substituted with one or more halo groups and examples of haloalkoxy groups include, but are not limited to, -OCF₃, -OCHF₂ and -OCH₂F. "Haloalkoxyalkyl" refers to an alkyl moiety substituted with a haloalkoxy group, wherein haloalkoxy is as defined herein. Examples of haloalkoxyalkyl groups include trifluoromethoxymethyl, trifluoroethoxymethyl and trifluoromethoxyethyl. "Haloalkyl" refers to an alkyl moiety substituted with one or more halo groups. Examples of haloalkyl groups include -CF₃ and -CHF₂.
- [38] As used herein, the term "heteroalkyl" refers to a straight- or branched-chain alkyl group having from 2 to 14 carbons (in some embodiments, 2 to 10 carbons) in the chain, one or more of which has been replaced by a heteroatom selected from S, O, P and N. Exemplary heteroalkyls include alkyl ethers, secondary and tertiary alkyl amines, amides, alkyl sulfides, and the like.
- [39] As used herein, the term "heterocyclyl" includes the heteroaryls defined below and refers to a saturated or partially unsaturated monocyclic, bicyclic or tricyclic group of 2 to 14 ring-carbon atoms and, in addition to ring-carbon atoms, 1 to 4 heteroatoms selected from P, N, O and S. In various embodiments the heterocyclic group is attached to another moiety through carbon or through a heteroatom, and is optionally substituted on carbon or a heteroatom. Examples of heterocyclyl include azetidinyl, benzoimidazolyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthpyridinyl, oxadiazolyl, oxazolyl, oxazoline, isoxazoline, oxetanyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydroisoquinolinyl, tetrazolyl, tetrazolopyridyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, azetidinyl, 1,4-dioxanyl, hexahydroazepinyl, piperazinyl, piperidinyl, pyridin-2-onyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzoimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydroben-

zoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroindolyl, dihydroisooxazolyl, dihydroisothiazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyrazolyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydrothiazolyl, dihydrothiazolyl, dihydrothiazolyl, dihydrothiazolyl, dihydrothiazolyl, dihydrothiazolyl, dihydrothiazolyl, dihydrothiazolyl, dihydrothiazolyl, and hydrothiazolyl, methylenedioxybenzoyl, tetrahydrofuranyl, and tetrahydrothienyl, and N-oxides thereof. "Heterocyclyloxy" is RO-, where R is heterocyclyl. "Heterocyclylthio" is RS-, where R is heterocyclyl.

- As used herein, the term "3- or 4-membered heterocyclyl" refers to a monocyclic ring having 3 or 4 ring atoms wherein at least one ring atom is heteroatom selected from the group consisting of N, O and S. Non-limiting examples of 3- or 4-membered heterocyclyl include aziridinyl, 2*H*-azirinyl, oxiranyl, thiiranyl, azetidinyl, 2,3-dihyroazetyl, azetyl, 1,3-diazetidinyl, oxetanyl, 2*H*-oxetyl, thietanyl, and 2*H* thietyl.
- As used herein, the term "heteroaryl" refers to a monocyclic, bicyclic or tricyclic ring having up to 7 atoms in each ring, wherein at least one ring is aromatic and contains from 1 to 4 heteroatoms in the ring selected from the group consisting of N, O and S. Non-limiting examples of heteroaryl include pyridyl, thienyl, furanyl, pyrimidyl, imidazolyl, pyranyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, oxazolyl, isoxazoyl, pyrrolyl, pyridazinyl, pyrazinyl, quinolinyl, isoquinolinyl, benzofuranyl, dibenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzothienyl, indolyl, benzothiazolyl, benzooxazolyl, benzimidazolyl, isoindolyl, benzotriazolyl, purinyl, thianaphthenyl and pyrazinyl. Attachment of heteroaryl can occur via an aromatic ring, or, if heteroaryl is bicyclic or tricyclic and one of the rings is not aromatic or contains no heteroatoms, through a non-aromatic ring or a ring containing no heteroatoms. "Heteroaryl" is also understood to include the N-oxide derivative of any nitrogen containing heteroaryl. "Heteroaryloxy" is RO-, where R is heteroaryl.
- [42] As used herein, the term "hydroxyalkoxy" refers to an alkoxy group substituted with a hydroxyl group (-OH), wherein alkoxy is as defined herein. An example of hydroxyalkoxy is hydroxyethoxy.
- [43] As used herein, the term "hydroxyalkyl" refers to a linear or branched monovalent C₁ -C₁₀ hydrocarbon group substituted with at least one hydroxy group and examples of hydroxyalkyl groups include, but are not limited to, hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl.
- As used herein, the term "pharmaceutically acceptable" means suitable for use in pharmaceutical preparations, generally considered as safe for such use, officially approved by a regulatory agency of a national or state government for such use, or being listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals, and more particularly in humans.

[45] As used herein, the term "pharmaceutically acceptable carrier" refers to a diluent, adjuvant, excipient, or carrier, or other ingredient which is pharmaceutically-acceptable and with which a compound of the invention is administered.

- As used herein, the term "pharmaceutically acceptable salt" refers to a salt which may enhance desired pharmacological activity. Examples of pharmaceutically-acceptable salts include acid addition salts formed with inorganic or organic acids, metal salts and amine salts. Examples of acid addition salts formed with inorganic acids include salts with hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid and phosphoric acid. Examples of acid addition salts formed with organic acids such as acetic acid, propionic acid, hexanoic acid, heptanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, o
 (4-hydroxy-benzoyl)-benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethane-sulfonic acid, benzenesulfonic acid, p-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid,
 - 4-methyl-bicyclo[2.2.2]oct-2-ene1-carboxylic acid, gluco-heptonic acid, 4,4'-methylenebis(3-hydroxy-2-naphthoic) acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxy-naphthoic acids, salicylic acid, stearic acid and muconic acid. Examples of metal salts include salts with sodium, potassium, calcium, magnesium, aluminum, iron, and zinc ions. Examples of amine salts include salts with ammonia and organic nitrogenous bases strong enough to form salts with carboxylic acids.
- [47] As used herein, the term "substituted" means any of above groups (i.e., alkyl, aryl, heteroaryl, heterocycle or cycloalkyl) wherein at least one hydrogen atom of the moiety being substituted is replaced with a substituent. In one embodiment, each carbon atom of the group being substituted is substituted with no more than two substituents. In another embodiment, each carbon atom of the group being substituted is substituted with no more than one substituent. In the case of a keto substituent, two hydrogen atoms are replaced with an oxygen which is attached to the carbon via a double bond. Unless specifically defined, substituents include halogen, hydroxyl, (lower) alkyl, haloalkyl, mono- or di-alkylamino, aryl, heterocycle, -NO₂, B(OH)₂, BPin, $-NR_aR_b$, $-NR_aC(=O)R_b$, $-NR_aC(=O)NR_aR_b$, $-NR_aC(=O)OR_b$, $-NR_aSO_2R_b$, $-OR_a$, - $CN, -C(=O)R_a, -C(=O)OR_a, -C(=O)NR_aR_b, -OC(=O)R_a, -OC(=O)OR_a, -OC(=O)NR_aR_b, -OC(=O)R_a, -OC(=$ $-NR_aSO_2R_b$, $-PO_3R_a$, $-PO(OR_a)(OR_b)$, $-SO_2R_a$, $-S(O)R_a$, $-SO(N)R_a$ (e.g., sulfoximine), -(R_a)S=NR_b (e.g., sulfilimine) and -SR_a, wherein R_a and R_b are the same or different and independently hydrogen, halogen, amino, alkyl, haloalkyl, aryl or heterocycle, or wherein R_a and R_b taken together with the nitrogen atom to which they are attached

form a heterocycle. R_a and R_b may be in the plural based on atoms which those are attached to.

- As used herein, the term "therapeutically effective amount" means when applied to a compound of the invention is intended to denote an amount of the compound that is sufficient to ameliorate, palliate, stabilize, reverse, slow or delay the progression of a disorder or disease state, or of a symptom of the disorder or disease. In an embodiment, the method of the present invention provides for administration of combinations of compounds. In such instances, the "therapeutically effective amount" is the amount of a compound of the present invention in the combination sufficient to cause the intended biological effect.
- As used herein, the term "treatment" or "treating" as used herein means ameliorating or reversing the progress or severity of a disease or disorder, or ameliorating or reversing one or more symptoms or side effects of such disease or disorder.

 "Treatment" or "treating", as used herein, also means to inhibit or block, as in retard, arrest, restrain, impede or obstruct, the progress of a system, condition or state of a disease or disorder. For purposes of this invention, "treatment" or "treating" further means an approach for obtaining beneficial or desired clinical results, where "beneficial or desired clinical results" include, without limitation, alleviation of a symptom, diminishment of the extent of a disorder or disease, stabilized (i.e., not worsening) disease or disorder state, delay or slowing of a disease or disorder state, amelioration or palliation of a disease or disorder state, and remission of a disease or disorder, whether partial or total.
- [50] In another embodiment, the compounds of Formula (I) are used for modulating the activity of a protein kinase c-abl.
- As used herein, the term "modulating" or "modulation" refers to the alteration of the catalytic activity of a protein kinase. In particular, modulating refers to the activation or inhibition of the catalytic activity of a protein kinase, depending on the concentration of the compound or salt to which the protein kinase is exposed or, more preferably, the inhibition of the catalytic activity of a protein kinase. The term "catalytic activity" as used herein refers to the rate of phosphorylation of tyrosine, serine or threonine under the influence, direct or indirect, of a protein kinase.
- [52] The three main classes that pharmacological inhibitors of kinase activity are categorized by are (1) Type I, or "DFG-in" ATP competitive inhibitors, which directly compete with ATP in the ATP binding site (i.e., dual SRrc ABL inhibitor dasatinib, (2) Type II, or "DFG-out" ATP competitive inhibitors, which, in addition to binding the ATP binding site also engage an adjacent hydrophobic binding site that is only accessible when the kinase is in an inactivated configuration (i.e., the activation loop is oriented in a conformation that would block substrate binding) (i.e., imatinib,

- nilotinib), and (3) non-ATP competitive inhibitors that bind at sites outside the ATP binding site that affect the activity of the kinase (i.e. GNF-2).
- As used herein, the phrase "compound(s) of this/the disclosure" includes any compound(s) of Formula (I), as well as clathrates, hydrates, solvates, or polymorphs thereof. And, even if the term "compound(s) of the disclosure" does not mention its pharmaceutically acceptable sat, the term includes salts thereof. In one embodiment, the compounds of this disclosure include stereochemically pure compounds, e.g., those substantially free (e.g., greater than 85% ee, greater than 90% ee, greater than 95% ee, greater than 97% ee, or greater than 99% ee) of other stereoisomers. That is, if the compounds of Formula (I) according to the present disclosure or salts thereof are tautomeric isomers and/or stereoisomers (e.g., geometrical isomers and conformational isomers), such isolated isomers and their mixtures also are included in the scope of this disclosure. If the compounds of the present disclosure or salts thereof have an asymmetric carbon in their structures, their active optical isomers and their racemic mixtures also are included in the scope of this disclosure.
- [54] As used herein, the term "polymorph" refers to solid crystalline forms of a compound of this disclosure or complex thereof. Different polymorphs of the same compound can exhibit different physical, chemical and/or spectroscopic properties. Different physical properties include, but are not limited to stability (e.g., to heat or light), compressibility and density (important in formulation and product manufacturing), and dissolution rates (which can affect bioavailability). Differences in stability can result from changes in chemical reactivity (e.g., differential oxidation, such that a dosage form discolors more rapidly when comprised of one polymorph than when comprised of another polymorph) or mechanical characteristics (e.g., tablets crumble on storage as a kinetically favored polymorph converts to thermodynamically more stable polymorph) or both (e.g., tablets of one polymorph are more susceptible to breakdown at high humidity). Different physical properties of polymorphs can affect their processing. For example, one polymorph might be more likely to form solvates or might be more difficult to filter or wash free of impurities than another due to, for example, the shape or size distribution of particles of it.
- [55] As used herein, the term "solvate" means a compound or its salt according to this disclosure that further includes a stoichiometric or non-stoichiometric amount of a solvent bound by non-covalent intermolecular forces. Preferred solvents are volatile, non-toxic, and/or acceptable for administration to humans in trace amounts.
- [56] As used herein, the term "hydrate" means a compound or its salt according to this disclosure that further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.
- [57] As used herein, the term "clathrate" means a compound or its salt in the form of a

WO 2019/070093 PCT/KR2018/011660 **10**

crystal lattice that contains spaces (e.g., channels) that have a guest molecule (e.g., a solvent or water) trapped within.

[58] [59]

Compounds of the present disclosure

The present disclosure provides a compound of Formula (I):

[60] [61]

$$R^{1}$$
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4}

[62] or a pharmaceutically acceptable salt thereof, wherein:

R¹ is cyclopropyl, cyclobutyl, or 3- or 4-membered heterocyclyl, wherein R¹ is op-[63] tionally substituted with one or more groups selected from the group consisting of halo, alkyl, hydroxyalkyl, haloalkyl, and monoalkylaminoalkyl,

[64] R² and R³ are independently -H, halo, alkyl, alkoxy, -CF₃, or -OCF₃,

R⁴ is aryl, heteroaryl, cycloalkyl, heterocyclyl, or heteroalkyl, wherein R⁴ is op-[65] tionally substituted with one or more groups selected from the group consisting of halo, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, trimethylsilylethoxymethyl, $-NO_2$, $-NR_aR_b$, $-NR_aC(=O)R_b$, $-NR_aC(=O)NR_aR_b$, $-NR_aC(=O)OR_b$, $-NR_aC(=O)OR_b$ OR_a , -CN, $-C(=O)R_a$, $-C(=O)OR_a$, $-C(=O)NR_aR_b$, $-OC(=O)R_a$, $-OC(=O)OR_a$, $-OC(=O)OR_a$ OC(=O)NR_aR_b, -SR_a, azetidinyl, oxetanyl, tetrahydrofuranyl, furanyl, pyrrolidinyl, pyrrolyl, pyrazolyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, furazanyl, oxadiazolyl, thiadiazolyl, phenyl, tetrahydropyranyl, pyranyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and

R_a and R_b are independently -H, halo, amino, alkyl, or haloalkyl. [66]

[67] In some embodiments, R1 is cyclopropyl, cyclobutyl, or 3- or 4-membered heterocyclyl, wherein R¹ is optionally substituted with one or more groups selected from the group consisting of halo, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl and C_1 - C_3 haloalkyl; R^2 and R³ are independently -H, halo, C₁-C₃ alkyl, C₁-C₃ alkoxy, -CF₃, or -OCF₃; R⁴ is aryl, heteroaryl, cycloalkyl, or heterocyclyl, wherein R⁴ is optionally substituted with one or more groups selected from the group consisting of halo, hydroxyl, C₁-C₃ alkyl, C₂-C₃ alkenyl, C₂-C₃ alkynyl, C₁-C₃ haloalkyl, mono-C₁-C₃ alkylamino, di-C₁-C₃ alkylamino, $-NO_2$, $-NR_aR_b$, $-NR_aC(=O)R_b$, $-NR_aC(=O)NR_aR_b$, $-NR_aC(=O)OR_b$, $-OR_a$, - $CN, -C(=O)R_a, -C(=O)OR_a, -C(=O)NR_aR_b, -OC(=O)R_a, -OC(=O)OR_a, -OC(=O)NR_aR_b,$ -SR_a, azetidinyl, oxetanyl, tetrahydrofuranyl, furanyl, pyrrolidinyl, pyrrolyl, pyrazolyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, furazanyl, oxadiazolyl, thiadiazolyl, phenyl, tetrahydropyranyl, pyridinyl, pyridazinyl, pyrimidinyl,

- pyrazinyl, piperazinyl, morpholinyl and thiomorpholinyl, and R_a and R_b are independently -H, halo, amino, C_1 - C_3 alkyl, or C_1 - C_3 haloalkyl.
- In various embodiments, R^1 is cyclopropyl or cyclobutyl, wherein R^1 is optionally substituted with one or more groups selected from the group consisting of halo, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl and C_1 - C_3 haloalkyl. In particular embodiments, R^1 is cyclopropyl, fluorocyclopropyl, hydroxycyclopropyl, hydroxymethylcyclopropyl, difluorocyclopropyl, methylaminomethylcyclopropyl, cyclobutyl, fluorocyclobutyl, or difluorocyclobutyl. In other particular embodiments, R^1 is cyclopropyl, fluorocyclopropyl, cyclobutyl, or fluorocyclobutyl.
- In some other embodiments, R¹ is 3- or 4-membered heterocyclyl, wherein R¹ is optionally substituted with one or more groups selected from the group consisting of halo, C₁-C₃ alkyl, C₁-C₃ hydroxyalkyl and C₁-C₃ haloalkyl. In particular embodiments, the 3- or 4-membered heterocyclyl is selected from the group consisting of aziridinyl, 2 *H*-azirinyl, oxiranyl, thiiranyl, azetidinyl, 2,3-dihyroazetyl, azetyl, 1,3-diazetidinyl, oxetanyl, 2*H*-oxetyl, thietanyl, and 2*H*-thietyl.
- [70] In some embodiments, R² and R³ are independently -H, methyl, or fluoro.
- [71] In some embodiments, R⁴ is phenyl, pyridinyl, pyrimidinyl, indolinyl, pyrazolyl, thiazolyl, oxoindolinyl, pyrrolopyridinyl, pyrazolyl, pyrazolopyridinyl, oxodihydropyrrolopyridinyl, thiophenyl, or isothiazolyl, wherein R⁴ is optionally substituted with one or more groups selected from the group consisting of halo, alkyl, alkenyl, alkynyl, hydroxyalkyl, amino, cyano, acetyl, hydroxy, and haloalkyl. In particular embodiments, R⁴ is fluoro-methylphenyl, chloro-methylphenyl, dimethylphenyl, acetamido-methylphenyl, hydroxy-methylphenyl, hydroxypropanyl-methylphenyl, methyl-propenylphenyl, methyl-pyridinylethynylphenyl, methyl-pyrrolylphenyl, methyl-thiazolylphenyl, imidazolyl-methylphenyl, cyano-methylphenyl, methylpyrazolylphenyl, ethynyl-methylphenyl, methylpyridinyl, fluoromethyl-methylaminophenyl, dimethylpyridinyl, fluoro-methylpyridinyl, fluoromethylmethylpyridinyl, cyanopyridinyl, trifluoromethyl-methylpyridinyl, hydroxymethylpyridinyl, hydroxymethyl-methylpyridinyl, hydroxyethyl-methylpyridinyl, chloro-methylpyridinyl, aminopyridinyl, acetyl-methylpyridinyl, aminodimethylpyridinyl, hydroxyethyl-methylprydinyl, methylindolyl, trimethylsilylethoxymethylindolyl, acetyl-methylindolinyl, methylpyrimidinyl, dimethylpyrimidinyl, trifluoromethylpyrimidinyl, pyrazolyl, methylthiazolyl, methyloxoindolinyl, pyrrolopyridinyl, methylpyrrolopyridinyl, methyl-tetrahydropyranyl, methylpyrazolyl, methyl-oxodihydrobibenzothiazolyl, pyrazolopyridinyl, oxodihydropyrrolopyridinyl, methylisothiazolyl, chloro-methylisothiazolyl, dimethylisothiazolyl, or fluoro-methylindolyl. In particular embodiments, R⁴ is fluoromethylphenyl, chloro-methylphenyl, bimethylphenyl, acetamido-methylphenyl,

hydroxyl-methylphenyl, methyl-propenylphenyl, ethynyl-methylphenyl, fluoro-methyl-methylaminophenyl, methyl-pyrrolylphenyl, methyl-thiazolylphenyl, cyano-methylphenyl, imidazolyl-methylphenyl, methylpyridinyl, chloro-methylpyridinyl, fluoro-methylpyridinyl, fluoro-methylpyridinyl, bimethylpyridinyl, aminopyridinyl, amino-dimethylpyridinyl, methoxypyridinyl, acetyl-methylpyridinyl, hydroxymethylpyridinyl, hydroxymethylpyridinyl, hydroxyethyl-methylpyridinyl, cyanopyridinyl, trifluoromethylpyridinyl, methylthiophenyl, methylindolinyl, methylpyrimidinyl, dimethylpyrimidinyl, pyrazolyl, methylpyrazolyl, methylpyridinyl, methylpyridinyl, methylpyrrolopyridinyl, methylpyrrolopyridinyl, methylpyrrolyl, pyrazolopyridinyl, dihydropyrrolopyridinyl, methylisothiazolyl, dimethylisothiazolyl, methylindazolyl, or methyl-bibenzothiazolyl. In particular embodiments, R4 is pyridinyl or phenyl that has one ore more substitutions selected from the group consisting of alkyl, alkenyl, alkynyl, halo, hydroxyl, hydroxyalkyl, haloalkyl, cyano, amino, alkoxy, and haloalkoxy. In some particular embodiments, R4 is selected from the group consisting of:

In some embodiments, R¹ is cyclopropyl, fluorocyclopropyl, difluorocyclopropyl, cyclobutyl, fluorocyclobutyl, or difluorocyclobutyl; R² and R³ are independently -H, methyl, or fluoro; and R⁴ is fluoro-methylphenyl, chloro-methylphenyl, bimethylphenyl, acetamido-methylphenyl, hydroxyl-methylphenyl, methylpropenylphenyl, ethynyl-methylphenyl, fluoro-methyl-methylaminophenyl, methylpyrrolylphenyl, methyl-thiazolylphenyl, cyano-methylphenyl, imidazolyl-methylphenyl, methylpyridinyl, chloro-methylpyridinyl, fluoro-methylpyridinyl, fluoro-methylpyridinyl, amino-dimethylpyridinyl, bimethylpyridinyl, aminopyridinyl, amino-dimethylpyridinyl, methoxypyridinyl, acetyl-methylpyridinyl, hydroxymethylpyridinyl, hydroxyethyl-methylpyridinyl,

WO 2019/070093 PCT/KR2018/011660

cyanopyridinyl, trifluoromethylpyridinyl, methylthiophenyl, methylindolinyl, methylpyrimidinyl, dimethylpyrimidinyl, pyrazolyl, methylpyrazolyl, methylindolinyl, methyloxoindolinyl, pyrrolopyridinyl, methylpyrrolopyridinyl, methylpyrrolopyridinyl, dihydropyrrolopyridinyl, methylisothiazolyl, dimethylisothiazolyl, methylindazolyl, or methyl-bibenzothiazolyl.

- [74] The inventors had synthesized and evaluated lots of compounds to find out compounds having good c-abl inhibition activity and high selectivity against c-abl, thereby having good effect against neurodegenerative disease.
- In more detail, the compounds in which R¹ and benzothiazole are connected by SO-NH-, -C(O)O-NH- or -NH-CO-NH-, not -CO-NH- according to the present disclosure, do not show good efficacy. When R¹ is not C₃-C₄ cycloalkyl, the compounds show poor pharmacokinetic property or intrinsic activity, which leads to a poor efficacy. When the substituent of the cycloalkyl of R¹ is Br or Cl, it may create a relatively toxic material by bio-conjugation with a reactive nucleophile such as glutathione.
- When R² or R³ is bulky, for example, aryl, such compounds show less favorable IC₅₀. In particular, the compounds wherein R³ is hydrogen are more preferable in this respect. When the aryl or cyclyl substituent of R³ is too bulky, it also increases the IC₅₀ for c-abl kinase.
- When the substituent of R⁴ comprises -NHSO₂- and so on, such compounds show bad efficacy and low permeability of blood-brain barrier. In case that the cyclyl ring of R⁴ is a monocycle or bicycle indole, its ortho-position preferably has CH₃, Cl, Br, CF₃, CHF₂, CH₂F, methoxy, ethyl, cyclopropyl, acetylenic, or vinyl. Even if its ortho-position does not have such group, hydrogen bonding source of meta-position can maintain good activity even without such substituent at the ortho-position. Preferably, in case that the cyclyl ring of R⁴ is a monocycle or bicycle indole, its ortho-position preferably has CH₃, Cl, Br, CF₃, CHF₂, CH₂F, methoxy, ethyl, cyclopropyl, acetylenic, or vinyl, and its meta- and/or para-position has hydrogen bonding source such as -OH, -NH, or F.
- [78] In some embodiments, R¹ is unsubstituted cyclopropyl and non-limiting examples include the following compounds and pharmaceutically acceptable salts thereof:
- [79] N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [80] N-(6-(5-acetamido-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [81] N-(6-(6-aminopyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [82] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [83] N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide :
- [84] N-(6-(3-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropane

carboxamide;

- [85] N-(6-(1H-pyrazolo[3,4-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamid e;
- [86] N-(6-(2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl) cyclo-propanecarboxamide;
- [87] N-(6-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropane carboxamide;
- [88] N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxami de; and
- [89] N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide.
- [90] In some embodiments, R¹ is fluorocyclopropyl and non-limiting examples include the following compounds and pharmaceutically acceptable salts thereof:
- [91] 2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carbox amide;
- [92] N-(6-(2-chloro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbo xamide:
- [93] N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamid e;
- [94] 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de:
- [95] 2-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [96] 2-fluoro-N-(6-(2-methyl-5-(prop-1-en-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- [97] N-(6-(2-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [98] N-(6-(2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide;
- [99] 2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carb oxamide;
- [100] 2-fluoro-N-(6-(5-(2-hydroxypropan-2-yl)-2-methylphenyl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;
- [101] 2-fluoro-N-(6-(3-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carb oxamide;
- [102] N-(6-(6-amino-2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane -1-carboxamide;
- [103] 2-fluoro-N-(6-(5-methylindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;

PCT/KR2018/011660

[104] 2-fluoro-N-(6-(2-fluoro-6-methylphenyl)thiazolo[4,5-c]pyridin-2-yl)cyclopropane-1-carboxamide:

- [105] N-(6-(1-acetyl-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [106] 2-fluoro-N-(6-(2-fluoro-6-methyl-3-(methylamino)phenyl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;
- [107] 2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [108] 2-fluoro-N-(6-(3-methylthiophen-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [109] 3-(2-(2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)-4-methylpyridine 1-oxide:
- [110] (2-(2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)boronic acid;
- [111] 2-fluoro-N-(6-(4-methylpyrimidin-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [112] N-(6-(6-acetyl-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide:
- [113] N-(6-(4,6-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide;
- [114] N-(6-(6-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [115] 2-fluoro-N-(6-(4-methyl-6-(trifluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [116] 2-fluoro-N-(6-(4-(hydroxymethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [117] 2-fluoro-N-(6-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [118] 2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [119] 2-fluoro-N-(6-(4-(trifluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [120] N-(6-(1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [121] 2-fluoro-N-(6-(2-methyl-5-(pyridin-2-ylethynyl)phenyl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- [122] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-1-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropa ne-1-carboxamide;
- [123] 2-fluoro-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;

- [124] 2-fluoro-N-(6-(5-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [125] 2-fluoro-N-(4-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [126] 2-fluoro-N-(4-fluoro-6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane -1-carboxamide;
- [127] 2-fluoro-N-(6-(5-methylthiazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- [128] N-(6-(4,6-dimethylpyrimidin-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-car boxamide;
- [129] 2-fluoro-N-(6-(7-methyl-2-oxoindolin-6-yl)benzo[d]thiazol-2-yl)cyclopropane-1-car boxamide:
- [130] N-(6-(5-ethynyl-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carb oxamide;
- [131] N-(6-(4-chloropyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxami de:
- [132] N-(6-(4-cyanopyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxami de;
- [133] 2-fluoro-N-(6-(2-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [134] 2-fluoro-N-(6-(4-(trifluoromethyl)pyrimidin-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [135] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-3-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- [136] 2-fluoro-N-(6-(2-methyl-5-(thiazol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1 -carboxamide;
- [137] N-(6-(5-cyano-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide;
- [138] 2-fluoro-N-(6-(4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-3-yl)benzo[d]thia zol-2-yl)cyclopropane-1-carboxamide;
- [139] 2-fluoro-N-(6-(4-methyl-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide;
- [140] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- [141] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-3-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropa ne-1-carboxamide;
- [142] 2-fluoro-N-(6-(5-methyl-2-oxoindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-car boxamide;

- [143] 2-fluoro-N-(4-methyl-2-oxo-2,3-dihydro-[5,6'-bibenzo[d]thiazol]-2'-yl)cyclopropane-1-carboxamide;
- [144] N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [145] 2-fluoro-N-(6-(3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide:
- [146] N-(6-(4-chloro-3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [147] 2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide;
- [148] 2-fluoro-N-(6-(7-methyl-1H-indazol-6-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide;
- [149] N-(6-(3,4-dimethylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carb oxamide;
- [150] N-(6-(5-(1H-imidazol-2-yl)-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocycloprop ane-1-carboxamide;
- [151] 2-fluoro-N-(6'-methyl-[6,7'-bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide;
- [152] 2-fluoro-N-(6-(6-(fluoromethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;
- [153] 2-fluoro-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [154] 2-fluoro-N-(5-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [155] 2-fluoro-N-(6-(6-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [156] 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de:
- [157] 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- [158] 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- [159] 2-fluoro-N-(6-(2-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de:
- [160] 2-fluoro-N-(6-(3-methylpyridin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- [161] 2-fluoro-N-(6-(3-methylpyridin-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- [162] N-(6-(4-ethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamid

e;

- [163] 2-fluoro-N-(6-(4-vinylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamid e;
- [164] N-(6-(4-ethynylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxam ide;
- [165] N-(6-(4-bromopyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxami de;
- [166] 2-fluoro-N-(6-(4-(trifluoromethoxy)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [167] N-(6-(4-(difluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [168] N-(6-(5-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [169] N-(6-(4,5-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide;
- [170] 2-fluoro-N-(6-(6-fluoro-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide:
- [171] 2-fluoro-N-(6-(o-tolyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [172] N-(6-(2-ethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [173] 2-fluoro-N-(6-(2-vinylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [174] N-(6-(2-ethynylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [175] N-(6-(2-bromophenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [176] 2-fluoro-N-(6-(2-methoxyphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [177] 2-fluoro-N-(6-(2-(trifluoromethoxy)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-car boxamide;
- [178] 2-fluoro-N-(6-(2-(trifluoromethyl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide;
- [179] N-(6-(2-(difluoromethyl)phenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbo xamide;
- [180] 2-fluoro-N-(6-(2-(hydroxymethyl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide;
- [181] 2-fluoro-N-(6-(3-fluoro-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carbox amide;
- [182] N-(6-(3-chloro-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbo xamide;
- [183] N-(6-(2,3-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamid e;
- [184] N-(4-chloro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c

arboxamide;

- [185] 2-fluoro-N-(6-(4-methylpyridin-3-yl)-4-(trifluoromethyl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [186] 2-fluoro-N-(4-methoxy-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide:
- 2-fluoro-N-(4-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-[187] carboxamide:
- [188] N-(5-chloro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- 2-fluoro-N-(6-(4-methylpyridin-3-yl)-5-(trifluoromethyl)benzo[d]thiazol-2-yl)cyclop [189] ropane-1-carboxamide;
- [190] 2-fluoro-N-(5-methoxy-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [191] 2-fluoro-N-(5-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1carboxamide;
- [192] N-(6-(1H-imidazol-2-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [193] 2-fluoro-N-(6-(4-methyl-1H-imidazol-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carb oxamide;
- [194] N-(6-(1H-imidazol-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [195] 2-fluoro-N-(6-(2-methyl-1H-imidazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carb oxamide;
- [196] 2-fluoro-N-(6-(3-methylpyrazin-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxam ide;
- [197] 2-fluoro-N-(6-(4-methyloxazol-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- 2-fluoro-N-(6-(3-methyl-1H-pyrrol-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbox [198]
- [199] N-(6-(1H-benzo[d]imidazol-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carb oxamide;
- [200] 2-fluoro-N-(6-(5-methyl-1H-benzo[d]imidazol-4-yl)benzo[d]thiazol-2-yl)cyclopropa ne-1-carboxamide;
- [201] N-(6-(1H-pyrrolo[2,3-b]pyridin-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [202] 2-fluoro-N-(6-(5-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- 2-fluoro-N-(6-(4-methylpyridazin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa [203] mide;
- [204] 2-fluoro-N-(6-(5-methylpyridazin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa

- mide; and
- [205] 2-fluoro-N-(6-(5-methyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide.
- [206] In some embodiments, R¹ is hydroxymethylcyclopropyl and non-limiting examples include the following compounds and pharmaceutically acceptable salts thereof:
- [207] 2-(hydroxymethyl)-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1 -carboxamide;
- [208] 2-(hydroxymethyl)-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane -1-carboxamide;
- [209] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropan e-1-carboxamide;
- [210] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropan e-1-carboxamide;
- [211] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropan e-1-carboxamide;
- [212] N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclop ropane-1-carboxamide; and
- [213] N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl) cyclopropane-1-carboxamide.
- [214] In some embodiments, R¹ is hydroxycyclopropyl or difluorocyclopropyl and non-limiting examples include the following compounds and pharmaceutically acceptable salts thereof:
- [215] 2-hydroxy-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [216] 2-hydroxy-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [217] 2,2-difluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbox amide;
- [218] 2,2-difluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-car boxamide; and
- [219] 2,2-difluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane -1-carboxamide.
- [220] In some embodiments, R¹ is unsubstituted cyclobutyl and non-limiting examples include the following compounds and pharmaceutically acceptable salts thereof:
- [221] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobutanecarboxamide;
- [222] N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutanecarboxamide; and
- [223] N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutanecarboxamide.
- [224] In some embodiments, R1 is fluorocyclobutyl and non-limiting examples include the

- following compounds and pharmaceutically acceptable salts thereof:
- [225] 3-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamid e;
- [226] 3-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamid e;
- [227] 3-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxa mide;
- [228] 3-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxa mide;
- [229] 3-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-ca rboxamide;
- [230] 3,3-difluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxa mide;
- [231] 3,3-difluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobutane-1-carb oxamide; and
- [232] 3,3-difluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1 -carboxamide.
- [233] In particular embodiment, the compound of this discloser is selected from the group consisting of:
- [234] 2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carbox amide;
- [235] N-(6-(2-chloro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbo xamide;
- [236] N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamid e;
- [237] 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de:
- [238] N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [239] 2-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [240] 2-(hydroxymethyl)-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1 -carboxamide;
- [241] N-(6-(5-acetamido-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [242] N-(6-(2-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [243] N-(6-(2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide;
- [244] 2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carb

oxamide;

- [245] 2-fluoro-N-(6-(2-methyl-5-(prop-1-en-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- [246] N-(6-(6-aminopyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [247] 2-fluoro-N-(6-(3-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carb oxamide;
- [248] N-(6-(6-amino-2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane -1-carboxamide:
- [249] 2-fluoro-N-(6-(5-methylindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de:
- [250] N-(6-(1-acetyl-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [251] 2,2-difluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbox amide:
- [252] 3-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamid
- 2,2-difluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-car [253] boxamide;
- [254] N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutanecarboxamide;
- 2-fluoro-N-(6-(2-fluoro-6-methyl-3-(methylamino)phenyl)benzo[d]thiazol-2-yl)cyclo [255] propane-1-carboxamide;
- N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide [256]
- [257] 2,2-difluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane -1-carboxamide;
- N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutanecarboxamide; [258]
- [259] 3-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-ca rboxamide;
- [260] 3,3-difluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1 -carboxamide;
- 2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa [261]
- 2-fluoro-N-(6-(3-methylthiophen-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa [262] mide;
- [263] 3-(2-(2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)-4-methylpyridine 1-oxide;
- [264] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropan e-1-carboxamide;

- [265] 2-fluoro-N-(6-(4-methylpyrimidin-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [266] N-(6-(6-acetyl-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [267] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropan e-1-carboxamide;
- [268] N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclop ropane-1-carboxamide;
- [269] N-(6-(4,6-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide:
- [270] N-(6-(6-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [271] 2-fluoro-N-(6-(4-(hydroxymethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [272] 2-fluoro-N-(6-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [273] 2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [274] 2-fluoro-N-(6-(4-(trifluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [275] N-(6-(1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [276] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-1-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropa ne-1-carboxamide;
- [277] 2-fluoro-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [278] N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide;
- [279] 2-fluoro-N-(6-(5-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [280] 2-fluoro-N-(4-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [281] 2-fluoro-N-(6-(5-methylthiazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- [282] 2-fluoro-N-(6-(7-methyl-2-oxoindolin-6-yl)benzo[d]thiazol-2-yl)cyclopropane-1-car boxamide;
- [283] N-(6-(5-ethynyl-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carb oxamide;
- [284] N-(6-(4-chloropyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxami de;

- [285] N-(6-(4-cyanopyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxami de:
- [286] 2-fluoro-N-(6-(2-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide;
- [287] N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide ;
- [288] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-3-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide:
- [289] 2-fluoro-N-(6-(2-methyl-5-(thiazol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1 -carboxamide;
- [290] N-(6-(5-cyano-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide:
- [291] 2-fluoro-N-(6-(4-methyl-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide:
- [292] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- [293] 2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-3-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropa ne-1-carboxamide;
- [294] 2-fluoro-N-(6-(5-methyl-2-oxoindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-car boxamide;
- [295] N-(6-(3-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropanecar boxamide;
- [296] N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- [297] N-(6-(1H-pyrazolo[3,4-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamid e;
- [298] N-(6-(2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopr opanecarboxamide;
- [299] N-(6-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropane carboxamide;
- [300] 2-fluoro-N-(6-(3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxa mide;
- [301] 2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide;
- [302] 2-fluoro-N-(6-(7-methyl-1H-indazol-6-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carbo xamide;
- [303] N-(6-(3,4-dimethylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carb oxamide;

- [304] N-(6-(5-(1H-imidazol-2-yl)-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocycloprop ane-1-carboxamide;
- [305] 2-fluoro-N-(6'-methyl-[6,7'-bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide;
- [306] 2-fluoro-N-(6-(6-(fluoromethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;
- [307] 2-fluoro-N-(6-(6-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide; and
- [308] 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de.
- [309] In some particular embodiments, the compound is selected from the group consisting of:
- [310] (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [311] (1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-ca rboxamide;
- [312] N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide; and
- [313] (1S,2S)-2-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide.
- [314] Embraced herein, where applicable, are permissible isomers such as tautomers, racemates, enantiomers, diastereomers, atropisomers, configurational isomers of double bonds (E- and/or Z-), cis- and trans- configurations in ring substitution patterns, and isotopic variants. In various embodiments, the compound is a compound of Formula (II):

[315]
$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{4}$$

$$R^{1}$$

wherein R², R³, and R⁴ are as defined above, and R⁵ is selected from the group consisting of halo, C₁-C₃ alkyl, C₁-C₃ hydroxyalkyl and C₁-C₃ haloalkyl. In particular embodiments, R⁴ is fluoro-methylphenyl, chloro-methylphenyl, bimethylphenyl, acetamido-methylphenyl, hydroxyl-methylphenyl, methyl-propenylphenyl, ethynyl-methylphenyl, fluoro-methyl-methylaminophenyl, methyl-pyrrolylphenyl, methyl-pyridinyl, thiazolylphenyl, cyano-methylphenyl, imidazolyl-methylphenyl, methylpyridinyl, chloro-methylpyridinyl, fluoro-methylpyridinyl, fluoromethyl-methylpyridinyl, bimethylpyridinyl, aminopyridinyl, amino-dimethylpyridinyl, methoxypyridinyl, acetyl-methylpyridinyl, hydroxymethylpyridinyl, hydroxymethyl-methylpyridinyl, hydroxymethyl-methyl-

- droxyethyl-methylpyridinyl, cyanopyridinyl, trifluoromethylpyridinyl, methylthiophenyl, methylindolinyl, methylpyrimidinyl, dimethylpyrimidinyl, pyrazolyl, methylpyrazolyl, methylpyrazolyl, methylpyrrolyl, pyrazolopyridinyl, dihydropyrrolopyridinyl, methylisothiazolyl, dimethylisothiazolyl, methylindazolyl, or methyl-bibenzothiazolyl.
- [317] Non-limiting examples of the compounds of the present disclosure include the following compounds and pharmaceutically acceptable salts thereof:
- [318] (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [319] (1S,2S)-N-(6-(2-chloro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [320] (1S,2S)-N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-car boxamide;
- [321] (1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-ca rboxamide;
- [322] (1S,2S)-2-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;
- [323] (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(prop-1-en-2-yl)phenyl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- [324] (1S,2S)-N-(6-(2-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- [325] (1S,2S)-N-(6-(2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [326] (1S,2S)-2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- [327] (1S,2S)-2-fluoro-N-(6-(5-(2-hydroxypropan-2-yl)-2-methylphenyl)benzo[d]thiazol-2 -yl)cyclopropane-1-carboxamide;
- [328] (1S,2S)-2-fluoro-N-(6-(3-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- [329] (1S,2S)-N-(6-(6-amino-2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclo propane-1-carboxamide;
- [330] (1S,2S)-2-fluoro-N-(6-(5-methylindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-ca rboxamide;
- [331] (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)thiazolo[4,5-c]pyridin-2-yl)cyclopr opane-1-carboxamide;
- [332] (1S,2S)-N-(6-(1-acetyl-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- [333] (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methyl-3-(methylamino)phenyl)benzo[d]thiazol-2

- -yl)cyclopropane-1-carboxamide;
- [334] (1S,2S)-2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [335] (1S,2S)-2-fluoro-N-(6-(3-methylthiophen-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [336] 3-(2-((1S,2S)-2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)-4-methylp yridine 1-oxide;
- [337] (2-((1S,2S)-2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)boronic acid;
- [338] (1S,2S)-2-fluoro-N-(6-(4-methylpyrimidin-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1 -carboxamide;
- [339] (1S,2S)-N-(6-(6-acetyl-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- [340] (1S,2S)-N-(6-(4,6-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [341] (1S,2S)-N-(6-(6-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- [342] (1S,2S)-2-fluoro-N-(6-(4-methyl-6-(trifluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide;
- [343] (1S,2S)-2-fluoro-N-(6-(4-(hydroxymethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- [344] (1S,2S)-2-fluoro-N-(6-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide;
- [345] (1S,2S)-2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide;
- [346] (1S,2S)-2-fluoro-N-(6-(4-(trifluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- [347] (1S,2S)-N-(6-(1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carbox amide;
- [348] (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(pyridin-2-ylethynyl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- [349] (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-1-yl)phenyl)benzo[d]thiazol-2-yl)cy clopropane-1-carboxamide;
- [350] (1S,2S)-2-fluoro-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1 -carboxamide;
- [351] (1S,2S)-2-fluoro-N-(6-(5-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide;
- [352] (1S,2S)-2-fluoro-N-(4-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;

- [353] (1S,2S)-2-fluoro-N-(4-fluoro-6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclo propane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(5-methylthiazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-ca [354] rboxamide;
- (1S,2S)-N-(6-(4,6-dimethylpyrimidin-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropa [355] ne-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(7-methyl-2-oxoindolin-6-yl)benzo[d]thiazol-2-yl)cyclopropa [356] ne-1-carboxamide;
- [357] (1S,2S)-N-(6-(5-ethynyl-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane -1-carboxamide;
- (1S,2S)-N-(6-(4-chloropyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-ca [358] rboxamide;
- (1S,2S)-N-(6-(4-cyanopyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-car [359] boxamide:
- (1S,2S)-2-fluoro-N-(6-(2-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro [360] pane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-(trifluoromethyl)pyrimidin-5-yl)benzo[d]thiazol-2-yl)cyclo [361] propane-1-carboxamide;
- [362] (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-3-yl)phenyl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(thiazol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopr [363] opane-1-carboxamide;
- [364] (1S,2S)-N-(6-(5-cyano-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- [365] (1S,2S)-2-fluoro-N-(6-(4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-3-yl)benz o[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-methyl-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopropane [366] -1-carboxamide;
- [367] (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-2-yl)phenyl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-3-yl)phenyl)benzo[d]thiazol-2-yl)cy [368] clopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(5-methyl-2-oxoindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropa [369] ne-1-carboxamide;
- (1S,2S)-2-fluoro-N-(4-methyl-2-oxo-2,3-dihydro-[5,6'-bibenzo[d]thiazol]-2'-yl)cyclo [370] propane-1-carboxamide;
- [371] (1S,2S)-N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;

- [372] (1S,2S)-2-fluoro-N-(6-(3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)cyclopropane-1 -carboxamide;
- [373] (1S,2S)-N-(6-(4-chloro-3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclop ropane-1-carboxamide;
- [374] (1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane -1-carboxamide;
- [375] (1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-6-yl)benzo[d]thiazol-2-yl)cyclopropane -1-carboxamide;
- [376] (1S,2S)-N-(6-(3,4-dimethylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropa ne-1-carboxamide;
- [377] (1S,2S)-N-(6-(5-(1H-imidazol-2-yl)-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluoroc yclopropane-1-carboxamide;
- [378] (1S,2S)-2-fluoro-N-(6'-methyl-[6,7'-bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxa mide:
- [379] (1S,2S)-2-fluoro-N-(6-(6-(fluoromethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;
- [380] (1S,2S)-2-fluoro-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- [381] (1S,2S)-2-fluoro-N-(5-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide; and
- [382] (1S,2S)-2-fluoro-N-(6-(6-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide.
- [383] In yet another embodiment, there is provided a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- In another embodiment, there is provided a method for treating a neurodegenerative disease or disorder comprising administering to a subject in need thereof a therapeutically effective amount of a compound of Formula (I) or pharmaceutically acceptable salt thereof. That is, there is provided a medical use of Formula (I) or pharmaceutically acceptable salt thereof, wherein Formula (I) or pharmaceutically acceptable salt thereof is used as an effective agent. In one embodiment, the medical-use is for treatment or prevention of the neurodegenerative disease or disorder.

[386] <u>Medical uses and Methods of treatment using the compounds according to the present disclosure</u>

[385]

[387] The present disclosure further provides methods for treating a neurodegenerative disease or disorder in a subject having or susceptible to having such a disease or disorder, by administering to the subject a therapeutically effective amount of one or

more compounds as described above. In one embodiment, the treatment is preventative treatment. In another embodiment, the treatment is palliative treatment. In another embodiment, the treatment is restorative treatment.

[388] 1. Diseases or conditions

[389] The compound of the present disclosure for inhibiting c-abl activity is useful for treatment or prevention of a neurodegenerative disease or disorder. The compound can be used for inhibiting or hindering c-abl kinase activity, and for treating a neurodegenerative disease or disorder, or for preventing aggravation of such disease. Thus, the present disclosure provides a method for inhibiting or hindering c-abl activity in a cell, wherein the cell is contacted with an effective amount of a compound of the present disclosure. In one embodiment, such cell is present in a subject (for example, Alzheimer patients). In another embodiment, there is provided a medical use for treating or preventing a neurodegenerative disease or disorder in a subject, using the compound according to the present disclosure. The method of the present disclosure comprises administering to a subject in need of treatment or prevention a pharmaceutical composition containing a therapeutically or prophylactically effective amount of c-abl inhibitor. The neurodegenerative disease or disorder includes, but is not limited to, α-synucleinopathy, Parkinson's disease, dementia with Lewy body, multiple system atrophy (MSA), Alzheimer's disease or amyotrophic lateral sclerosis (ALS).

[390] **2. Subjects**

[391] Suitable subjects to be treated according to the present disclosure include mammalian subjects. Mammals according to the present disclosure include, but are not limited to, human, canine, feline, bovine, caprine, equine, ovine, porcine, rodents, lagomorphs, primates, and the like, and encompass mammals *in utero*. Subjects may be of either gender and at any stage of development. In one embodiment, the suitable subject to be treated according to the present disclosure is human.

[392] **3. Administration and dosing**

[393] The compounds of the present disclosure are generally administered in a therapeutically effective amount. The compounds of the present disclosure can be administered by any suitable route in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. An effective dosage is typically in the range of about 0.001 to about 100 mg per kg body weight per day, preferably about 0.01 to about 50 mg/kg/day, in single or divided doses. Depending on age, species and disease or condition being treated, dosage levels below the lower limit of this range may be suitable. In other cases, still larger doses may be used without harmful side effects. Larger doses may also be divided into several smaller doses, for administration throughout the day. Methods for determining suitable doses are well known in the art to which the present disclosure pertains. For example, Remington:

The Science and Practice of Pharmacy, Mack Publishing Co., 20th ed., 2000 can be used.

[394] [395]

Pharmaceutical Compositions, Dosage Forms and Administration Routes

[396] For the treatment of the diseases or conditions referred to above, the compounds described herein or pharmaceutically acceptable salts thereof can be administered as follows:

[397] **Oral administration**

- [398] The compounds of the present disclosure may be administered orally, including by swallowing, so that the compound enters the gastrointestinal tract, or absorbed into the blood stream directly from the mouth (e.g., buccal or sublingual administration).
- [399] Suitable compositions for oral administration include solid, liquid, gel or powder formulations, and have a dosage form such as tablet, lozenge, capsule, granule or powder.
- [400] Compositions for oral administration may be formulated as immediate or modified release, including delayed or sustained release, optionally with enteric coating.
- [401] Liquid formulations can include solutions, syrups and suspensions, which can be used in soft or hard capsules. Such formulations may include a pharmaceutically acceptable carrier, for example, water, ethanol, polyethylene glycol, cellulose, or an oil. The formulation may also include one or more emulsifying agents and/or suspending agents.
- In a tablet dosage form the amount of drug present may be from about 0.05% to about 95% by weight, more typically from about 2% to about 50% by weight of the dosage form. In addition, tablets may contain a disintegrant, comprising from about 0.5% to about 35% by weight, more typically from about 2% to about 25% of the dosage form. Examples of disintegrants include, but are not limited to, lactose, starch, sodium starch glycolate, crospovidone, croscarmellose sodium, maltodextrin, or mixtures thereof.
- [403] Suitable lubricants, for use in a tablet, may be present in amounts from about 0.1% to about 5% by weight, and include, but are not limited to, talc, silicon dioxide, stearic acid, calcium, zinc or magnesium stearate, sodium stearyl fumarate and the like.
- [404] Suitable binders, for use in a tablet, include, but are not limited to, gelatin, polyethylene glycol, sugars, gums, starch, polyvinyl pyrrolidone, hydroxypropyl cellulose, hydroxypropylmethyl cellulose and the like. Suitable diluents, for use in a tablet, include, but are not limited to, mannitol, xylitol, lactose, dextrose, sucrose, sorbitol, microcrystalline cellulose and starch.
- [405] Suitable solubilizers, for use in a tablet, may be present in amounts from about 0.1% to about 3% by weight, and include, but are not limited to, polysorbates, sodium lauryl sulfate, sodium dodecyl sulfate, propylene carbonate, diethyleneglycol monoethyl

ether, dimethyl isosorbide, polyethylene glycol (natural or hydrogenated) castor oil, HCORTM (Nikkol), oleyl ester, GelucireTM, caprylic/caprylic acid mono/diglyceride, sorbitan fatty acid esters, and Solutol HSTM.

[406] **Parenteral Administration**

- [407] Compounds of the present disclosure may be administered directly into the blood stream, muscle, or internal organs. Suitable means for parenteral administration include intravenous, intra-muscular, subcutaneous intraarterial, intraperitoneal, intrathecal, intracranial, and the like. Suitable devices for parenteral administration include injectors (including needle and needle-free injectors) and infusion methods.
- [408] Compositions for parenteral administration may be formulated as immediate or modified release, including delayed or sustained release. Most parenteral formulations are aqueous solutions containing excipients, including salts, buffering agents and isotonic agents. Parenteral formulations may also be prepared in a dehydrated form (e.g., by lyophilization) or as sterile non-aqueous solutions. These formulations can be used with a suitable vehicle, such as sterile water. Solubility-enhancing agents may also be used in preparation of parenteral solutions.

[409] Transdermal Administration

- [410] Compounds of the present disclosure may be administered topically to the skin or transdermally. Formulations for this topical administration can include lotions, solutions, creams, gels, hydrogels, ointments, foams, implants, patches and the like. Pharmaceutically acceptable carriers for topical administration formulations can include water, alcohol, mineral oil, glycerin, polyethylene glycol and the like. Topical or transdermal administration can also be performed by electroporation, iontophoresis, phonophoresis and the like.
- [411] Compositions for topical administration may be formulated as immediate or modified release, including delayed or sustained release.

[412] Combination therapy

[413] A pharmaceutical composition according to the present disclosure may contain one or more additional therapeutic agents, for example, to increase the efficacy or decrease the side effects. In some embodiments, accordingly, a pharmaceutical composition further contains one or more additional therapeutic agents selected from active ingredients useful to treat or inhibit diseases mediated directly or indirectly by c-abl kinase. Examples of such active ingredients are, without limitation, agents to treat a neurodegenerative disease or disorder.

[414] References for preparing pharmaceutical compositions

[415] Methods for preparing pharmaceutical compositions for treating or preventing a disease or condition are well known in the art to which the present disclosure pertains. For example, based on *Handbook of Pharmaceutical Excipients* (7th ed.), *Remington*:

The Science and Practice of Pharmacy (20th ed.), Encyclopedia of Pharmaceutical Technology (3rd ed.), or Sustained and Controlled Release Drug Delivery Systems (1978), pharmaceutically acceptable excipients, carriers, additives and so on can be selected and then mixed with the compounds of the present disclosure for making the pharmaceutical compositions.

[416] The present disclosure provides a compound having various pharmacological effects by inhibiting c-abl activity, a pharmaceutical composition having the compound as an effective agent, a medical use, particularly for treating a neurodegenerative disease or disorder, of the compound, and a method of treatment or prevention comprising administering the compound to a subject in need of such treatment or prevention. The compounds of the present disclosure and pharmaceutically acceptable salts thereof have good safety and high selectivity for c-able, and thus exhibit superior property as a drug.

Advantageous Effects of Invention

[417] The present disclosure provides a compound having various pharmacological effects by inhibiting c-abl activity, a pharmaceutical composition having the compound as an effective agent, a medical use, particularly for treating a neurodegenerative disease or disorder, of the compound, and a method of treatment or prevention comprising administering the compound to a subject in need of such treatment or prevention. The compounds of the present disclosure and pharmaceutically acceptable salts thereof have good safety and high selectivity for c-able, and thus exhibit superior property as a drug.

Brief Description of Drawings

- [418] Figures 1, 2 and 3 show effects of Example 4 and nilotinib on A β_{25-35} -induced cognitive deficits in mice. a, spontaneous alternation deficits. b, step-through latency. c, escape latency. * p<0.05, ** p<0.01, *** p<0.001 vs. the Sc.A β / Veh group, # p<0.05, ### p<0.001 vs. the A β_{25-35} / Veh group.
- [419] Figures 4, 5 and 6 show effects of Example 8 and nilotinib on $A\beta_{25-35}$ -induced cognitive deficits in mice. a, spontaneous alternation deficits. b, step-through latency. c, escape latency. *** p<0.001 vs. the Sc.A β / Veh group, ### p<0.001 vs. the A β_{25-35} / Veh group.
- [420] Figure 7 shows that once daily oral dosing of 3 mg/kg and 10 mg/kg of Example 4 completely inhibited lipid peroxidation, meaning the reduction of oxidative stress.

Mode for the Invention

[421] Hereinafter, the present disclosure is described in considerable detail with examples to help those skilled in the art understand the present disclosure. However, the following examples are offered by way of illustration and are not intended to limit the

scope of the invention. It is apparent that various changes may be made without departing from the spirit and scope of the invention or sacrificing all of its material advantages.

[422] Synthesis of Formula (I) Compounds

[423] Synthetic methods A to X were used to prepare the compounds of the following. Below, the illustrating synthetic examples of some compounds of the present disclosure are described, and other compounds can be prepared by the similar method to the one described below with different starting or reacting materials.

[424] Synthetic Method A

[425] Example 1. (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide

Example 1

- [427] Step 1) 6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-amine
- To a solution of **Compound 1** (300 mg, 1.31 mmol, 1 *eq*) and **Compound 2** (403.18 mg, 2.62 mmol, 2 *eq*) in dioxane (8 mL) and H₂O (2 mL) was added SPhos biphenyl G2 (94.36 mg, 130.95 μmol, 0.1 *eq*) and K₃PO₄ (416.95 mg, 1.96 mmol, 1.5 *eq*). The mixture was stirred at 80 °C for 3 hr. under N₂. The reaction mixture was concentrated under reduced pressure to remove solvent. Water (20 mL) was added in the reaction mixture, then the mixture was extracted with EA (20 mL*2), the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO2, PE : EA=10 : 1 to 5 : 1) to **Compound 3** (485 mg, crude) as a yellow solid.
- [429] ¹H NMR (400MHz, CDCl₃) $\delta = 7.61$ (d, J=8.3 Hz, 1H), 7.51 (d, J=1.4 Hz, 1H), 7.26

- -7.19 (m, 2H), 7.08 (d, J=7.5 Hz, 1H), 6.99 (t, J=8.7 Hz, 1H), 5.34 (br s, 2H), 2.19 (s, 3H).
- [430] Step 2)
 (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- [431] To a solution of **Compound 3** (200 mg, 774.25 μmol, 1 *eq*) and **Compound 4** (80.58 mg, 774.25 μmol, 1 *eq*) in DMF (2 mL) was added HATU (588.79 mg, 1.55 mmol, 2 *eq*) and TEA (235.04 mg, 2.32 mmol, 323.30 μL, 3 *eq*). The mixture was stirred at 25 °C for 2 h, Then the mixture was stirred at 25 °C for 12 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 20 mL and extracted with EA (20 mL * 2). The combined organic layers were filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (basic condition; column: Phenomenex Gemini 150*25mm*10μm;mobile phase: [water (0.05% ammonia hydroxide v/v)-ACN]; B%: 50%-80%,12min). **Example 1** (50 mg, 136.17 μmol, 17% yield, 93% purity) was obtained as a white solid.
- [432] ¹H NMR (400MHz, DMSO- d_6) δ = 12.75 (br s, 1H), 7.92 (s, 1H), 7.81 (d, J=8.3 Hz, 1H), 7.33 (br d, J=8.2 Hz, 2H), 7.20 7.11 (m, 2H), 5.16 4.92 (m, 1H), 2.23 (td, J=6.7, 13.4 Hz, 1H), 2.14 (s, 3H), 1.82 1.68 (m, 1H), 1.37 1.25 (m, 1H).
- [433] Synthetic Method B
- [434] Example 3. (1S,2S)-N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carb oxamide

- [436] Step 1) 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]thiazol-2-amine
- [437] To a solution of **Compound 1** (500 mg, 2.18 mmol, 1 *eq*) and B₂Pin₂ (665.06 mg, 2.62 mmol, 1.2 *eq*) in dioxane (8 mL) was added Pd(dppf)Cl₂ (159.69 mg, 218.25

μmol, 0.1 eq) and KOAc (321.29 mg, 3.27 mmol, 1.5 eq). The mixture was stirred at 110 °C for 12 hr under N₂. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with brine 50 mL and extracted with EA 20 mL (20 mL * 3). The combined organic layers was filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, Petroleum ether : Ethyl acetate=5:1 to 3:1). **Compound 2** (907 mg, 1.55 mmol, 71% yield, 47% purity) was obtained as a light yellow solid.

- [438] ¹H NMR (400MHz, CDCl₃) δ = 8.06 (s, 1H), 7.77 7.74 (m, 1H), 7.60 (d, *J*=7.2 Hz, 1H), 4.13 (q, *J*=7.2 Hz, 2H), 1.28 (s, 12H).
- [439] Step 2) 6-(2,6-dimethylphenyl)benzo[d]thiazol-2-amine
- To a solution of **Compound 2** (200 mg, 342.12 μmol, 1 *eq*) and **Compound 3** (75.98 mg, 410.54 μmol, 54.66 μL, 1.2 *eq*) in dioxane (5 mL) and H₂O (2 mL) was added Na₂ CO₃ (54.39 mg, 513.18 μmol, 1.5 *eq*) and Pd(PPh₃)₂Cl₂ (24.01 mg, 34.21 μmol, 0.1 *eq*). The mixture was stirred at 110 °C for 3 hr under N₂. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by column chromatography (SiO₂, Petroleum ether/Ethyl acetate=10:1 to 8:1). **Compound 4** (123 mg, 267.57 μmol, 78% yield, 55% purity) was obtained as a red brown oil.
- [441] ¹H NMR (400MHz, CDCl₃) δ = 7.63 7.54 (m, 2H), 7.33 (t, *J*=7.1 Hz, 1H), 7.19 7.14 (m, 1H), 7.14 7.08 (m, 2H), 5.21 (br s, 2H), 2.05 (s, 6H).
- [442] Step 3)
 (1S,2S)-N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carb oxamide
- To a solution of **Compound 4** (123 mg, 267.57 μmol, 1 eq) and **Compound 5** (27.85 mg, 267.57 μmol, 1 eq) in DMF (3 mL) was added HATU (203.48 mg, 535.14 μmol, 2 eq) and TEA (81.23 mg, 802.71 μmol, 111.73 μL, 3 eq). The mixture was stirred at 25 °C for 12 hr. Then the mixture was stirred at 25 °C for 12 hr. The reaction mixture was diluted with EA 20 mL and extracted with brine 20 mL. The combined organic layers was dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (FA condition, column: Phenomenex Synergi C18 150*30mm*4um;mobile phase: [water(0.225%FA)-ACN];B%: 50%-80%,10min). **Example 3** (15.8 mg, 41.31 μmol, 15% yield, 89% purity) was obtained as a white solid.
- [444] ¹H NMR (400MHz, CDCl₃) δ = 7.83 (d, J=8.3 Hz, 1H), 7.60 (d, J=1.0 Hz, 1H), 7.24 (dd, J=1.6, 8.3 Hz, 2H), 7.20 7.17 (m, 1H), 7.15 7.11 (m, 2H), 5.03 4.81 (m, 1H), 2.04 (d, J=2.5 Hz, 6H), 1.97 (d, J=5.4 Hz, 1H), 1.43 1.35 (m, 1H), 1.26 (br s, 1H).
- [445] Synthetic Method C
- [446] Example 5. N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl) cyclopropanecar-

WO 2019/070093 PCT/KR2018/011660

boxamide

[447]

Example 5

[448] Step 1) N-(6-bromobenzo[d]thiazol-2-yl)cyclopropanecarboxamide

To a solution of **Compound 1** (200 mg, 872.98 μmol, 1 *eq*) and **Compound 2** (75.15 mg, 872.98 μmol, 1 *eq*) in DMF (2 mL) was added HATU (497.89 mg, 1.30 mmol, 2 *eq*) and TEA (265.01 mg, 2.61 mmol, 365 uL, 3 *eq*). The mixture was stirred at 60 °C for 12 h. Then, the reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 20 mL and extracted with EA (20 mL * 2). The combined organic layers were filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, Methylene chloride/Methanol= 20:1). **Compound 3** (194 mg, 654.73 μmol, 75% yield,) was obtained as a white solid.

[450] ¹H NMR (400 MHz, DMSO- d_6) δ = 12.71 (s, CONH), 8.23 (s, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 2.03-2.00 (m, 1H), 0.97-0.94 (m, 4H).

[451] Step 2) N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane carboxamide

To a solution of **Compound 3** (100 mg, 0.336 mmol, 1 *eq*) and **Compound 4** (92 mg, 0.672 mmol, 2 *eq*) in dioxane (8 mL) and H₂O (2 mL) was added Pd(dppf)Cl₂ (24 mg, 0.0336 mmol, 0.1 *eq*) and Ns₂CO₃ (71 mg, 0.672 mmol, 2 *eq*). The mixture was stirred at 120 °C for 8 hr under N₂. The reaction mixture was concentrated under reduced pressure to remove solvent. Water (10 mL) was added in the reaction mixture, then the mixture was extracted with EA (10 mL*2), the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, n-Hexane: EA=1:2) to

WO 2019/070093 PCT/KR2018/011660

Example 5 (88 mg, 85% yield) as a white solid.

[453] Synthetic Method D

[454] Example 14. (1S,2S)-2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide

[455]
$$\begin{array}{c} \text{Bpin} \\ \text{Bpin} \\ \text{2} \\ \text{Pd(dppf)Cl}_2, \text{Cs}_2\text{CO}_3 \\ \text{dioxane/H}_2\text{O}, 120 \,^{\circ}\text{C}, 12 \,^{\circ}\text{h} \\ \text{H}_2\text{N} \\ \text{3} \end{array}$$

Example 14

[456] Step 1) 3-(2-aminobenzo[d]thiazol-6-yl)-4-methylphenol

[457] To a solution of **Compound 1** (306.31 mg, 1.34 mmol, 1 eq) and **Compound 2** (313 mg, 1.34 mmol, 1 eq) in dioxane (5 mL) and H2O (1 mL) was added Pd(PPh₃)2Cl₂ (93.85 mg, 133.70 μ mol, 0.1 eq) and Na₂CO₃ (212.57 mg, 2.01 mmol, 1.5 eq). The mixture was stirred at 110 °C for 3 hr under N₂. The reaction mixture was concentrated

under reduced pressure to remove solvent. The residue was purified by column chromatography (SiO₂, Petroleum ether/Ethyl acetate=10/1 to 1:1). **Compound 3** (207 mg, 807.58 µmol, 60% yield) was obtained as a red oil.

- [458] ¹H NMR (400MHz, CDCl₃) δ = 7.69 7.66 (m, 1H), 7.57 7.55 (m, 1H), 7.50 7.44 (m, 2H), 7.13 (d, J=7.8 Hz, 1H), 6.75 (s, 1H), 5.26 (br s, 2H), 2.20 (s, 3H).
- [459] Step 2) 6-(5-((tert-butyldimethylsilyl)oxy)-2-methylphenyl)benzo[d]thiazol-2-amine
- To a solution of **Compound 3** (157 mg, 612.51 μmol, 1 *eq*) in DCM (5 mL) was added IMIDAZOLE (125.09 mg, 1.84 mmol, 3 *eq*) and TBSCl (230.80 mg, 1.53 mmol, 187.64 μL, 2.5 *eq*) at 0 °C. The mixture was stirred at 25 °C for 12 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 30 mL and extracted with EA (30 mL * 2). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, Petroleum ether/Ethyl acetate=10/1 to 1:1). **Compound 4** (211 mg, 546.60 μmol, 89% yield, 96% purity) was obtained as a light yellow oil.
- [461] ¹H NMR (400MHz, DMSO- d_6) δ = 7.61 (d, J=1.8 Hz, 1H), 7.49 (s, 2H), 7.36 (d, J =8.3 Hz, 1H), 7.17 7.11 (m, 2H), 6.73 (dd, J=2.6, 8.2 Hz, 1H), 6.67 (d, J=2.6 Hz, 1H), 2.16 (s, 3H), 0.95 (s, 9H), 0.19 0.16 (m, 6H)
- [462] Step 3) (1S,2S)-N-(6-(5-((tert-butyldimethylsilyl)oxy)-2-methylphenyl) benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide
- To a solution of **Compound 4** (211 mg, 546.60 μmol, 1 *eq*) and **Compound 5** (68.27 mg, 655.92 μmol, 1.2 *eq*) in MeCN (5 mL) was added MsCl (125.23 mg, 1.09 mmol, 84.61 uL, 2 *eq*) and 3-methylpyridine (254.51 mg, 2.73 mmol, 266.12 uL, 5 *eq*) at 0 °C, The mixture was stirred at 25 °C for 12 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 30 mL and extracted with EA (20 mL * 2). The combined organic layers were dried over Na₂ SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, PE: EA = 1:1). **Compound 6** (185 mg, 392.97 μmol, 71% yield, 97% purity) was obtained as a yellow solid.
- [464] ¹H NMR (400MHz, DMSO- d_6) δ = 12.71 (s, 1H), 7.95 (d, J=1.6 Hz, 1H), 7.78 (d, J =8.3 Hz, 1H), 7.38 (dd, J=1.8, 8.3 Hz, 1H), 7.18 (d, J=8.2 Hz, 1H), 6.78 (dd, J=2.6, 8.3 Hz, 1H), 6.72 (d, J=2.5 Hz, 1H), 5.15 4.93 (m, 1H), 2.22 (br d, J=5.5 Hz, 1H), 2.17 (s, 3H), 1.81 1.71 (m, 1H), 1.31 (br dd, J=9.3, 12.9 Hz, 1H), 0.95 (s, 9H), 0.18 (s, 6H).
- [465] Step 4) (1S,2S)-2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide
- [466] To a solution of **Compound 6** (165 mg, 350.49 μ mol, 1 eq) in MeCN (8 mL) was added CsF (159.72 mg, 1.05 mmol, 38.77 μ L, 3 eq). The mixture was stirred at 60 °C

for 3 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 30 mL and extracted with EA (20 mL * 2). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (TFA condition; column: Boston pH-lex 150*25 10um;mobile phase: [water(0.1%TFA)-ACN];B%: 35%-65%,10min). **Example 14** (83.6 mg, 183.17 μmol, 52% yield, 100% purity, TFA) was obtained as a white solid.

[467] ¹H NMR (400MHz, DMSO- d_6) δ = 12.73 (br s, 1H), 7.92 (d, J=1.6 Hz, 1H), 7.77 (d, J=8.3 Hz, 1H), 7.36 (dd, J=1.8, 8.3 Hz, 1H), 7.08 (d, J=8.1 Hz, 1H), 6.72 - 6.64 (m, 2H), 5.17 - 4.93 (m, 1H), 2.27 - 2.17 (m, 1H), 2.12 (s, 3H), 1.82 - 1.68 (m, 1H), 1.31 (tdd, J=6.3, 8.9, 12.8 Hz, 1H); LCMS (electrospray) m/z 343.2 (M+H)+.

[468] Synthetic Method E

[469] Example 15. (1S,2S)-2-fluoro-N-(6-(5-(2-hydroxypropan-2-yl)-2-methylphenyl) benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide

[470]

MeMgBr

THF,
$$0-25$$
 °C, 2 h

Br

MeMgBr

dioxane: $H_2O = 3:1, 110$ °C, 12 h

[471] Step 1) 2-(3-bromo-4-methylphenyl)propan-2-ol

[472] A mixture of **Compound 1** (500 mg, 2.18 mmol, 1 eq) in THF (10 mL) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 0 °C for 0.5 hr under N₂ atmosphere, then added MeMgBr (3 M, 2.91 mL, 4 eq) in the solution slowly. The solution was then allowed to stir and warm slowly at 25°C for 1.5 hr. The residue was purified by prep-TLC (SiO₂, PE:EA=7:1). **Compound 2** (400 mg, 1.75

mmol, 80% yield) was obtained as a light yellow oil.

- [473] ¹H NMR (400 MHz, CDCl₃) δ = 1.58 (s, 6 H), 2.40 (s, 3 H), 7.22 (d, *J*=8.03 Hz, 1 H), 7.33 (dd, *J*=7.97, 1.95 Hz, 1 H), 7.69 (d, *J*=2.01 Hz, 1 H).
- [474] Step 2) 2-(3-(2-aminobenzo[d]thiazol-6-yl)-4-methylphenyl)propan-2-ol
- [475] To a solution of **Compound 3** (506.25 mg, 1.83 mmol, 1.5 eq) and **Compound 2** (280 mg, 1.22 mmol, 1 eq) in dioxane (5 mL) and H₂O (2 mL) was added Pd(PPh₃)₂ Cl₂ (85.78 mg, 122.21 µmol, 0.1 eq) and Na₂CO₃ (194.29 mg, 1.83 mmol, 1.5 eq). The mixture was stirred at 110 °C for 12 hr under N₂. The residue was purified by prep-TLC (SiO₂, PE:EA=1:1). **Compound 4** (210 mg, 703.75 µmol, 57% yield) was obtained as a light yellow oil.
- [476] Step 3) (1S,2S)-2-fluoro-N-(6-(5-(2-hydroxypropan-2-yl)-2-methylphenyl) benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- A mixture of **Compound 4** (300 mg, 1.01 mmol, 1 *eq*) in DCM (10 mL) was added TEA (203.46 mg, 2.01 mmol, 279.87 μL, 2 *eq*) at 0 °C under N₂ atmosphere, then added (1R,2S)-2-fluorocyclopropanecarbonyl chloride (147.82 mg, 1.21 mmol, 1.2 *eq*) into the mixture, then stirred at 25 °C for 0.5 hr. The residue was purified by pre-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.05%HCl)-ACN];B%: 40%-60%,7.8min). Then purified by pre-HPLC (column: Phenomenex Gemini 150*25mm*10um; mobile phase: [water(10mM NH₄HCO₃)-ACN];B%: 45%-75%,10min)
- [478] **Example 15** (23 mg, 59.82 μ mol, 6% yield, 100% purity) was obtained as a light yellow solid.
- [479] ¹H NMR (400 MHz, DMSO- d_6) δ = 1.29 (dq, J=15.12, 6.42 Hz, 1 H), 1.43 (s, 6 H), 1.66 1.84 (m, 1 H), 2.16 2.22 (m, 1 H), 2.23 (s, 3 H), 4.91 5.14 (m, 1 H), 4.98 (s, 1 H), 7.22 (d, J=8.53 Hz, 1 H), 7.32 7.36 (m, 2 H), 7.38 (dd, J=8.28, 1.51 Hz, 1 H), 7.76 (d, J=8.28 Hz, 1 H), 7.92 (s, 1 H), 12.61 (br s, 1 H); LCMS (electrospray) m/z 385.3 (M+H)+.
- **Example 16** (52 mg, 126.58 μmol, 12% yield, 97% purity) was obtained as a light vellow solid.
- [481] ¹H NMR (400 MHz, DMSO- d_6) δ = 1.23 1.36 (m, 1 H), 1.46 (s, 6 H), 1.67 1.82 (m, 1 H), 2.16 2.23 (m, 1 H), 2.25 (s, 3 H), 3.00 (s, 3 H), 4.91 5.16 (m, 1 H), 7.24 (s, 1 H), 7.28 (s, 2 H), 7.40 (br d, J=8.28 Hz, 1 H), 7.77 (d, J=8.28 Hz, 1 H), 7.95 (s, 1 H), 11.92 13.28 (m, 1 H); LCMS (electrospray) m/z 399.4 (M+H)+.
- [482] **Example 17** (9.5 mg, 24.37 μ mol, 2% yield, 94% purity) was obtained as a light yellow solid.
- [483] ¹H NMR (400 MHz, DMSO- d_6) δ = 1.29 (br s, 1 H), 1.64 1.80 (m, 1 H), 2.11 (s, 3 H), 2.18 (br s, 1 H), 2.24 (s, 3 H), 4.93 5.12(m, 1 H), 5.07 (s, 1 H), 5.44 (s, 1 H), 7.29 (d, J=7.91 Hz, 1 H), 7.35 (s, 1 H), 7.38 (br d, J=8.53 Hz, 1 H), 7.42 (br d, J=7.91 Hz, 1

H), 7.74 (br d, J=8.16 Hz, 1 H), 7.93 (s, 1 H), 11.65 - 13.53 (m, 1 H); LCMS (electrospray) m/z 367.3 (M+H)+.

[484] Synthetic Method F

[485] Example 18. (1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)thiazolo[4,5-b]pyridin-2-yl)cyclopropane -1-carboxamide

5

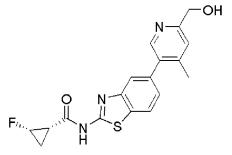
Example 18

- [487] Step 1) tert-butyl (6-bromothiazolo[4,5-b]pyridin-2-yl)carbamate
- [488] To a solution of **Compound 1** (500 mg, 2.17 mmol, 1 *eq*) and Di-tert-butyl Dicarbonate (711 mg, 3.26 mmol, 1.5 *eq*) in THF (10 mL) was added 4-Dimethylaminopyridine (398 mg, 3.25 mmol, 1.5 *eq*) and triethylamine (0.6 mL,

WO 2019/070093 PCT/KR2018/011660

- 4.34 mmol, 2.0 eq). The mixture was stirred at 25 °C for 12 h. The reaction mixture was concentrated under reduced pressure to remove solvent. Water (20 mL) was added in the reaction mixture, then the mixture was extracted with EA, the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, MC: MeOH=95:5) to give **Compound 2** (454 mg, 63% yield) as a white solid.
- [489] Step 2) tert-butyl (6-(4-methylpyridin-3-yl)thiazolo[4,5-b]pyridin-2-yl)carbamate
- To a solution of **Compound 2** (65 mg, 0.20 μmol, 1 eq) and **Compound 3** (40 mg, 0.30 μmol, 1.5 eq) in 1,4-dioxane (2 mL) was added Pd(dppf)Cl₂ (7 mg, 0.01 mmol, 0.05 eq) and Na₂CO₃ (42 mg, 0.40 mmol, 2 eq) in H₂O(0.2 mL). The mixture was stirred at 120 °C for 1 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by MPLC (EA:Hex=1:1 to MC:MeOH=95:5) to give **Compound 4** (46 mg, 67% yield) as a white solid. LCMS (electrospray) m/z =343.1 (M+H)+
- [491] Step 3) 6-(4-methylpyridin-3-yl)thiazolo[4,5-b]pyridin-2-amine. 2HCl salt
- [492] A solution of **Compound 4** (41 mg, 0.12 mmol) in tetrahydrofuran (0.6 mL) was added 4M HCl in dioxane. The mixture was stirred at the room temperature for 12 hr. Then, the residue was concentrated in vacuo. **Compound 5** (45 mg, clean crude, Red brown oil) was used without further purification. LCMS (electrospray) m/z 343.1 (M+H)+
- [493] Step 4)
 (1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)thiazolo[4,5-b]pyridin-2-yl)cyclopropane
 -1-carboxamide
- [494] A mixture of **Compound 5** (45 mg, 0.14 mmol, 1 eq), **Compound 6** (30 mg, 0.28 mmol, 2.0 eq), HATU (109 mg, 0.28 mmol, 2 eq) and DIPEA (93 mg, 0.72 mmol, 5 eq) in DMF (1 mL) was stirred at 70 °C for 12 hr. Solvent was removed by evaporation, diluted with H2O, extracted with DCM and MeOH, the combined organic phase was washed with brine(15 mL), dried with Na₂SO₄, filtered, concentrated to give a residue. The residue was purified by silica gel column chromatograph(MC:MeOH=95:5~9:1). **Example 18** (12 mg, 24% yield, 97% purity) was obtained as a white solid.
- [495] ¹H NMR (400MHz, DMSO- d_6) δ = 13.06(s, 1H), 8.57-8.55(m, 2H), 8.49-8.47(m, 2H), 7.40-7.38(m, 1H), 5.16-4.99(m, 1H), 2.23(s, 3H), 2.28-2.25(m, 1H), 1.80-1.74(m, 1H), 1.37-1.32(m, 1H); LCMS (electrospray) m/z 329.0 (M+H)+.
- [496] Synthetic Method G
- [497] Example 28. (1S,2S)-2-fluoro-N-(5-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide

Example 28


- [499] To a solution of **Example 21** (100 mg, 270.70 μmol, 1 *eq*) in MeOH (5 mL) was added NaBH₄ (30.72 mg, 812.10 μmol, 3 *eq*) at 0 °C, then stirred at 25 °C for 1 hr . The reaction mixture was concentrated under reduced pressure to remove solvent. Then the reaction mixture was diluted with H₂O (20 mL), then the mixture was extracted with EA (50 mL * 3). The combined organic layers were washed with brine (50mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Phenomenex Gemini 150*25mm*10um; mobile phase: [water(10mM NH₄HCO₃)-ACN];B%: 22%-52%,10min). **Example 28** (51 mg, 137.31 μmol, 50% yield, 100% purity) was obtained as a light yellow solid.
- [500] ¹H NMR (400 MHz, CDCl₃) δ = 1.29 1.39 (m, 1 H), 1.58 (d, *J*=6.60 Hz, 3 H), 1.94 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 4.92 (m, 1 H), 4.93 5.00 (m, 1 H), 7.24 (s, 1 H), 7.26 7.28 (m, 1 H), 7.72 (d, *J*=1.34 Hz, 1 H), 7.90 (d, *J*=8.07 Hz, 1 H), 8.41 (s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+.
- [501] Synthetic Method H

Example 21

[502] Example 29. (1S,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide

[503]

DMF, 0 - 25 °C, 3 h

Example 29

[504] Step 1)

5-(4-methyl-6-(((triisopropylsilyl)oxy)methyl)pyridin-3-yl)benzo[d]thiazol-2-amine

A mixture of **Compound 2** (600 mg, 1.67 mmol, 1 eq), **Compound 1** (461.19 mg, 1.67 mmol, 1 eq), Pd(PPh₃)₂Cl₂ (117.22 mg, 167.00 μmol, 0.1 eq), Na₂CO₃ (265.50 mg, 2.51 mmol, 1.5 eq) in DIOXANE (20 mL) H₂O (5 mL) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 110 °C for 16 hr under N₂ at-

mosphere. The reaction mixture was diluted with H2O (20 mL), then the mixture was extracted with ethyl acetate (30 mL * 3). The combined organic layers were washed with brine (20mL * 2), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, Petroleum ether/Ethyl acetate=2:1). **Compound 3** (380 mg, 888.52 μ mol, 53% yield) was obtained as a light yellow solid.

- [506] Step 2) (1S,2S)-2-fluoro-N-(5-(4-methyl-6-(((triisopropylsilyl)oxy)methyl) pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- To a solution of **Compound 3** (180.00 mg, 420.88 μmol, 1 *eq*) in DMF (10 mL) was added **Compound 4** (52.57 mg, 505.05 μmol, 1.2 *eq*), 3-methylpyridine (195.98 mg, 2.10 mmol, 204.92 μL, 5 *eq*), MsCl (96.42 mg, 841.76 μmol, 65.15 μL, 2 *eq*) at 0°C under N₂. The mixture was stirred at 25°C for 3 hr. The reaction mixture was diluted with H₂O (20 mL), then the mixture was extracted with EA (50 mL * 3). The combined organic layers were washed with brine (50mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (silica gel, Petroleum ether/Ethyl acetate=1:1). **Compound 5** (200 mg, 389.30 μmol, 92% yield) was obtained as a light yellow liquid.
- [508] ¹H NMR (400 MHz, CDCl₃) δ = 1.06 (s, 1 H), 1.11 1.15 (m, 18 H), 1.18 1.22 (m, 3 H), 1.30 1.37 (m, 1 H), 1.78 1.81 (m, 1 H), 2.35 (s, 3 H), 4.71 4.74 (m, 1 H), 4.98 (s, 2 H), 7.29 (br d, J=1.22 Hz, 1 H), 7.53 (s, 1 H), 7.64 (s, 1 H), 7.87 (d, J=8.07 Hz, 1 H), 8.40 (s, 1 H).
- [509] Step 3)
 (1S,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)
 cyclopropane-1-carboxamide
- To a solution of **Compound 5** (180.00 mg, 350.37 μmol, 1 *eq*) in THF (6 mL) was added pyridine;hydrofluoride (3.30 g, 23.31 mmol, 3 mL, 70% purity, 66.52 *eq*). The mixture was stirred at 25 °C for 2 hr. The reaction mixture was diluted with H₂O (20 mL), then the mixture was extracted with EA (20mL * 3). The combined organic layers were washed with brine (20mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Phenomenex Gemini 150*25mm*10um;mobile phase: [water(10mM NH₄HCO₃)-ACN]; B%: 20%-50%, 12min).
- **Example 29** (12 mg, 29.55 μ mol, 8% yield, 88% purity) was obtained as a light yellow solid.
- [512] ¹H NMR (400 MHz, DMSO- d_6) δ = 1.31 (dq, J=15.10, 6.46 Hz, 1 H), 1.69 1.82 (m, 1 H), 2.18 2.26 (m, 1 H), 2.31 (s, 3 H), 4.58 (br d, J=3.79 Hz, 2 H), 4.91 5.17 (m, 1 H), 5.42 (br s, 1 H), 7.31 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.72 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3

WO 2019/070093 PCT/KR2018/011660

(M+H)+.


[513] Synthetic Method I

[514] Example 31. (1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide

- To a solution of **Example 25** (170 mg, 342.96 μmol, 1 eq) in THF (3 mL) was added TBAF (269.01 mg, 1.03 mmol, 3 eq)and ethane-1,2-diamine (103.06 mg, 1.71 mmol, 114.76 μL, 5 eq) The mixture was stirred at 80 °C for 24 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water (20 mL) and extracted with ethyl acetate (20 mL * 2). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (Silica gel, Petroleum ether: Ethyl acatate = 1:1). The residue was purified by prep-HPLC (basic condition; column: Waters Xbridge 150*25 5u;mobile phase: [water (0.05% ammonia hydroxide v/v)-ACN];B%: 35%-65%,10min).
- [517] **Example 31** (52.2 mg, 142.85 μ mol, 41% yield, 100% purity) was obtained as a white solid.
- [518] ¹H NMR (400MHz, DMSO- d_6) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 4.89 (m, 1H), 2.28 2.18 (m, 4H), 1.83 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.

[519] Synthetic Method J

[520] Example 32. (1S,2S)-N-(6-(1-acetyl-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)-2-fluoro cyclopropane-1-carboxamide

[522] To a solution of **Example 24** (59 mg, 149.33 μmol, 1 eq) in DCM (3 mL) was added

TEA (15.11 mg, 149.33 μmol, 20.79 μL, 1 eq). The mixture was cooled to 0 °C and was dropwise added acetyl chloride (11.72 mg, 149.33 μmol, 10.66 μL, 1 eq). The mixture was stirred at 25 °C for 1 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 20 mL and extracted with DCM (20 mL * 2). The combined organic layers were dried over Na₂SO 4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (TFA condition; column: Boston pH-lex 150*25 10um;mobile phase: [water(0.1%TFA)-ACN];B%: 40%-70%,10min). **Example 32** (8.9 mg, 16.15 μmol, 10% yield, 95% purity, TFA) was obtained as a white solid.

[523] ¹H NMR (400MHz, DMSO- d_6) δ = 12.74 (s, 1H), 7.95 (d, J=8.3 Hz, 1H), 7.88 (d, J =1.4 Hz, 1H), 7.80 (d, J=8.3 Hz, 1H), 7.29 (dd, J=1.7, 8.2 Hz, 1H), 7.10 (d, J=8.5 Hz, 1H), 5.18 - 4.91 (m, 1H), 4.02 (br t, J=8.4 Hz, 2H), 2.85 (br s, 2H), 2.27 - 2.19 (m, 1H), 2.13 (s, 3H), 2.05 (s, 3H), 1.82 - 1.67 (m, 1H), 1.37 - 1.21 (m, 1H); LCMS (electrospray) m/z 410.1 (M+H)+.

[524] Synthetic Method K

[526]

[525] Example 33. (1S,2R)-N-(5-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclo propane-1-carboxamide

MsCl, 3-methylpyridine pyridine, 0-25°C, 2 h

Example 33

[527] Step 1) methyl (1R,2S)-2-((5-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)carbamoyl)cyclopropane -1-carboxylate

[528] To a solution of **Compound 1** (200 mg, 774.25 μ mol, 1 eq) and **Compound 2** (cis)

50

- (111.59 mg, 774.25 μ mol, 1 eq) in MeCN (5 mL) was added MsCl (177.38 mg, 1.55 mmol, 119.85 μ L, 2 eq) and 3-methylpyridine (360.52 mg, 3.87 mmol, 376.95 μ L, 5 eq) at 0 °C. The mixture was stirred at 25 °C for 2 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 30 mL and extracted with ethyl acetate (20 mL * 2). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate=10/1 to 1:1). **Compound 3** (cis) (222 mg, 577.49 μ mol, 74% yield) was obtained as a light yellow solid.
- [529] ¹H NMR (400MHz, CDCl₃) δ = 7.86 (d, *J*=8.1 Hz, 1H), 7.61 (d, *J*=0.6 Hz, 1H), 7.24 (dt, *J*=1.8, 8.0 Hz, 2H), 7.09 (d, *J*=7.7 Hz, 1H), 7.00 (t, *J*=8.6 Hz, 1H), 3.70 (s, 3H), 2.32 2.21 (m, 2H), 2.17 (s, 3H), 1.94 1.87 (m, 1H), 1.48 1.41 (m, 1H).
- [530] Step 2) (1S,2R)-N-(5-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl) cyclopropane-1-carboxamide
- To a solution of **Compound 3** (cis) (100 mg, 260.13 μmol, 1 *eq*) in THF (5 mL) was added LiBHEt3 (1 M, 1.04 mL, 4 *eq*). The mixture was stirred at -40 °C for 0.5 hr. The reaction mixture was quenched by addition water 1 mL at -40 °C. The mixture was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate=1:1). The combined organic layers was filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Gemini 150*25 5u; mobile phase: [water (0.05% ammonia hydroxide v/v)-ACN];B%: 37%-67%, 12min). **Example 33** (cis) (6 mg, 16.83 μmol, 6% yield) was obtained as a white solid.
- [532] ¹H NMR (400MHz, DMSO- d_6) δ = 7.95 (br d, J=7.9 Hz, 1H), 7.54 (s, 1H), 7.36 7.27 (m, 1H), 7.17 (d, J=7.6 Hz, 1H), 7.15 7.09 (m, 2H), 3.69 (dd, J=5.6, 11.3 Hz, 1H), 3.54 3.45 (m, 1H), 2.14 (s, 3H), 2.05 1.95 (m, 1H), 1.60 1.48 (m, 1H), 1.12 0.98 (m, 2H); LCMS (electrospray) m/z 357.1 (M+H)+.
- [533] Synthetic Method L
- [534] Example 46. (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methyl-3-(methylamino)phenyl)benzo[d] thiazol-2-yl)cyclopropane-1-carboxamide

2

3

[536] Step 1) 3-bromo-2-fluoro-4-methylbenzoic acid

To a solution of **Compound 1** (10 g, 52.90 mmol, 1 *eq*) in THF (200 mL) was added LDA (2 M, 27.77 mL, 1.05 *eq*) at -78°C under N₂. The reaction mixture was stirred at -78°C for 0.5hr. The CO₂ (6.98 g, 158.71 mmol, 3 *eq*) (solid) was added. The mixture was stirred at 20°C for 1.5hr. TLC (PE: EA=1:1) showed the starting material disappeared and a new main spot was detected. Water (100 mL) was added and the aqueous phase was extracted with EA (50 mL*2). The aqueous phase was treated with 1M HCl until PH =3~4, then the mixture was filtered and the filter cake was concentrated in vacuum to give product. **Compound 2**(12 g, 51.49 mmol, 97% yield) as a white solid which was used in next step directly.

[538] 1 H NMR (400MHz, METHANOL-d4) δ = 7.80 (t, J=7.6 Hz, 1H), 7.22 (d, J=8.1 Hz,

- 1H), 2.62 2.41 (m, 3H).
- [539] Step 2) tert-butyl (3-bromo-2-fluoro-4-methylphenyl)carbamate
- To a solution of **Compound 2** (1 g, 4.29 mmol, 1 eq) in toluene (20 mL) was added TEA (477.65 mg, 4.72 mmol, 657.02 μL, 1.1 eq) and DPPA (1.30 g, 4.72 mmol, 1.02 mL, 1.1 eq). The reaction mixture was stirred at 120°C for 1.5hr. Then the t-BuOH (477.11 mg, 6.44 mmol, 615.62 μL, 1.5 eq) was added. The mixture was stirred at 120°C for 3.5hr. TLC (PE: EA=3:1) showed the starting material disappeared and a new main spot was detected. LCMS showed 44% desired mass and no starting material. The reaction was concentrated in vacuum. Water (50 mL) was added and the aqueous phase was extracted with DCM (50 mL*2). The combined organic phase was washed with saturated brine (10 mL*2) and the organic layer was dried over anhydrous Na₂SO₄. The mixture was concentrated in vacuum. The crude product was purified by prep-TLC (PE: EA=3:1) to give product. **Compound 5** (520 mg, 1.66 mmol, 38% yield, 97% purity) as a white solid which was used in next step directly.
- [541] ¹ H NMR (400MHz, CDCl₃) δ = 8.08 7.76 (m, 1H), 7.00 (d, J=8.3 Hz, 1H), 6.68 6.46 (m, 1H), 2.41 2.33 (m, 3H), 1.53 (s, 9H).
- [542] Step 3) tert-butyl (3-bromo-2-fluoro-4-methylphenyl)(methyl)carbamate
- To a solution of **Compound 3** (0.42 g, 1.34 mmol, 1 eq) in THF (15 mL) was added NaH (64.29 mg, 1.61 mmol, 60% purity, 1.2 eq). The reaction mixture was stirred at 0°C for 0.5hr. Then the MeI (228.14 mg, 1.61 mmol, 100.06 μL, 1.2 eq) was added. The mixture was stirred at 20°C for 1.5hr. TLC (PE: EA=3:1) showed the starting material disappeared and a new main spot was detected. LCMS showed 88% desired mass and no starting material. The reaction was concentrated in vacuum. Water (50 mL) was added and the aqueous phase was extracted with EA (30 mL*2). The combined organic phase was washed with saturated brine (30 mL*2) and the organic layer was dried over anhydrous Na₂SO₄. The mixture was concentrated in vacuum. The crude product was purified by prep-TLC (PE: EA=3:1) to give product. **Compound 4** (350 mg, 1.10 mmol, 82% yield) as a light yellow liquid which was used in next step directly.
- [544] ¹H NMR (400MHz, CDCl₃) δ =7.16 6.95 (m, 2H), 3.26 3.16 (m, 3H), 2.49 2.31 (m, 3H), 1.39 1.10 (m, 9H).
- [545] Step 4) tert-butyl (3-(2-aminobenzo[d]thiazol-6-yl)-2-fluoro-4-methylphenyl)(methyl)carbamate
- To a solution of **Compound 5** (343.70 mg, 1.24 mmol, 1.2 eq) in dioxane /H₂O (10 mL) was added Pd(PPh₃)₂Cl₂ (72.80 mg, 103.71 μmol, 0.1 eq), **Compound 4** (330 mg, 1.04 mmol, 1 eq) and Na₂CO₃ (219.85 mg, 2.07 mmol, 2 eq) under N₂. The mixture was stirred at 80°C for 16hr. LCMS showed 36% desired mass and 26% starting material 2.Water (10 mL)was added and the aqueous phase was extracted with EA (10

- mL*2). The combined organic phase was washed with saturated brine (10 mL*2), and concentrated in vacuum. The crude product was purified by prep-TLC (PE: EA=2:1) to give product. **Compound6** (280 mg, 375.77 μ mol, 36% yield, 52% purity) as a light yellow liquid.
- [547] Step 5) tert-butyl (2-fluoro-3-(2-((1S,2S)-2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)-4-methylphenyl)(methyl)carbamate
- To a solution of **Compound 6** (260 mg, 348.93 μmol, 1 *eq*) in MeCN (10 mL) was added MsCl (79.94 mg, 697.86 μmol, 54.01 μL, 2 *eq*), **Compound 7** (79.90 mg, 767.65 μmol, 2.2 *eq*) and 3-methylpyridine (64.99 mg, 697.86 μmol, 67.95 μL, 2 *eq*) under N₂. The mixture was stirred at 20°C for 2hr.LCMS showed 34% desired mass and no starting material. Water (10 mL) was added and the aqueous phase was extracted with EA (10 mL*2). The combined organic phase was washed with saturated brine (10 mL*2), and concentrated in vacuum. The crude product was purified by prep-TLC (PE: EA=1:1) to give **Example 45** (256 mg, 47% purity). The crude product (56 mg) was purified by prep-HPLC (column: Phenomenex Gemini 150*25mm*10um;mobile phase: [water(10mM NH₄HCO₃)-ACN];B%: 40%-70%,9min). **Example 45** (5 mg, 86% purity) as a white solid.
- [549] ¹H NMR (400MHz, METHANOL-d4) δ = 7.98 7.66 (m, 2H), 7.47 7.03 (m, 3H), 5.20 4.99 (m, 1H), 3.23 3.09 (m, 3H), 2.25 2.02 (m, 4H), 1.97 1.77 (m, 1H), 1.60 1.24 (m, 10H); LCMS (electrospray) m/z 474.7 (M+H)+.
- [550] Step 6)
 (1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methyl-3-(methylamino)phenyl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide
- To a solution of **Example 45** (200 mg, 198.51 μmol, 1 *eq*) in DCM (10 mL) was added TFA (67.90 mg, 595.52 μmol, 44.09 μL, 3 *eq*). The mixture was stirred at 20°C for 1hr. The reaction mixture was concentrated in vacuum. The crude product was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um; mobile phase: [water (0.1%TFA)-ACN]; B%: 35%-58%,7min) to give product. **Example 46** (46.3 mg, 73.90 μmol, 37% yield, 96% purity, 2 및 FA) as a white solid.
- [552] 1 H NMR (400MHz, METHANOL-d4) δ = 7.88 7.80 (m, 1H), 7.68 7.62 (m, 1H), 7.58 7.54 (m, 1H), 7.35 (br d, J=7.8 Hz, 1H), 7.27 7.19 (m, 1H), 5.14 5.01 (m, 1H),3.19 2.83 (m, 3H), 2.43 2.06 (m, 4H), 2.01 1.76 (m, 1H),1.44 1.09 (m, 1H); LCMS (electrospray) m/z 374.1 (M+H)+.
- [553] Synthetic Method M
- [554] Example 53. N-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-amine

Example 53 Example 54

- [556] Step 1) tert-butyl (6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)carbamate
- [557] To a solution of **Compound 1** (100 mg, 414.40 μ mol, 1 eq) in THF/H₂O (5 mL) was added Na₂CO₃ (87.84 mg, 828.81 μ mol, 2 eq) and tert-butoxycarbonyl tert-butyl carbonate (108.53 mg, 497.28 μ mol, 114.24 μ L, 1.2 eq). The mixture was stirred at 25 °C for 12 hr . The residue was purified by column chromatography (SiO₂, Petroleum ether/Ethyl acetate=1:1). **Compound 2** (120 mg, 351.47 μ mol, 84% yield) was obtained as a light yellow solid.
- [558] Step 2) tert-butyl methyl(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)carbamate
- [559] To a solution of **Compound 2** (120 mg, 351.47 μmol, 1 *eq*) in THF (5 mL) was added NaH (28.11 mg, 702.93 μmol, 60% purity, 2 *eq*) at 0 °C for 0.5 hr, then added MeI (74.83 mg, 527.20 μmol, 32.82 μL, 1.5 *eq*) into the mixture, after stirred at 25 °C for 1.5 hr. The residue was purified by column chromatography (SiO₂, Petroleum ether/Ethyl acetate=3:1). **Compound 3** (100 mg, 281.33 μmol, 80% yield) was obtained as a light yellow solid.
- [560] Step 3) N-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-amine
- To a solution of **Compound 3** (100 mg, 281.33 μmol, 1 eq) in DCM (2 mL) was added TFA (0.4 mL). The mixture was stirred at 25 °C for 1 hr. The residue was purified by pre-HPLC (column: Boston pH-lex 150*25 10um; mobile phase: [water(0.1%TFA)-ACN]; B%: 1%-30%,10min). **Example 53** (9.8 mg, 19.46 μmol, 6% yield, 96% purity, 2TFA) was obtained as a light yellow solid.

- [562] 1 H NMR (400 MHz, METHANOL- d_4) $\delta = 2.62$ (s, 3 H), 3.19 (s, 3 H), 7.51 (dd, J =8.31, 1.71 Hz, 1 H), 7.66 (d, J=8.31 Hz, 1 H), 7.88 (d, J=1.47 Hz, 1 H), 8.03 (d, J =5.87 Hz, 1 H), 8.66 8.78 (m, 2 H); LCMS (electrospray) m/z 256.2 (M+H)+.
- **Example 54** (10.3 mg, 25.66 μmol, 9% yield, 92% purity, TFA) was obtained as a light yellow solid.
- [564] ¹H NMR (400 MHz, METHANOL- d_4) δ = 2.57 (s, 3 H), 3.87 (s, 3 H), 7.71 (dd, J =8.56, 1.71 Hz, 1 H), 7.82 (d, J=8.56 Hz, 1 H), 7.96 8.03 (m, 2 H), 8.68 8.76 (m, 2 H).
- [565] Synthetic Method N
- [566] Example 55. (1S,2S)-2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide

[567]

$$F_{2}$$
OH

Br

MsCI, 3-methylpyridine

MeCN, 0 - 25 °C, 1 h

 F_{2} N

 F_{3}
 F_{4} N

 F_{4

Example 55

- [568] Step 1) (1S,2S)-N-(6-bromobenzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide
- [569] To a solution of **Compound 1** (1.2 g, 5.24 mmol, 1.2 *eq*) in MeCN (15 mL) was added **Compound 2** (454.30 mg, 4.36 mmol, 1 *eq*), 3-methylpyridine (2.03 g, 21.82

mmol, 2.13 mL, 5 eq), MsCl (1.00 g, 8.73 mmol, 675.69 μ L, 2 eq) at 0°C, then the mixture was stirred at 25°C for 1 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The reaction mixture was diluted with H₂O (20 mL), then the mixture was extracted with ethyl acetate (30 mL * 3). The combined organic layers were washed with brine (20mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give **Compound 3** (1.2 g, 3.81 mmol, 87% yield) as a light yellow solid which was used in next step directly.

- [570] ¹H NMR (400 MHz, DMSO- d_6) δ = 1.31 (ddt, J=12.79, 9.00, 6.40, Hz, 1 H), 1.65 1.83 (m, 1 H), 2.13 2.29 (m, 1 H), 4.87 5.18 (m, 1 H), 7.51 7.60 (m, 1 H), 7.68 (d, J=8.56 Hz, 1 H), 8.25 (d, J=1.96 Hz, 1 H), 12.78 (s, 1 H).
- [571] Step 2) (1S,2S)-2-fluoro-N-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- [572] A mixture of **Compound 3** (1.1 g, 3.49 mmol, 1 *eq*), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan e (1.33 g, 5.24 mmol, 1.5 *eq*), KOAc (1.03 g, 10.47 mmol, 3 *eq*), Pd(dppf)Cl₂.CH₂Cl₂ (285.03 mg, 349.03 μmol, 0.1 *eq*) in dioxane (20 mL) was degassed and purged with N ² for 3 times, and then the mixture was stirred at 110 °C for 16 hr under N₂ atmosphere. The reaction mixture was diluted with H₂O (20 mL), then the mixture was extracted with ethyl acetate (30 mL * 3). The combined organic layers were washed with brine (20mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate = 2 : 1). **Compound 4** (1.15 g, 3.17 mmol, 90% yield) was obtained as a light yellow solid.
- [573] ¹H NMR (400 MHz, METHANOL- d_4) δ = 1.20 (s, 12 H), 1.33 1.27 (m, 1H), 1.93 1.80 (m, 1H), 2.22 2.12 (m, 1H), 4.87 5.18 (m, 1 H), 7.69 7.75 (m, 1 H), 7.76 7.82 (m, 1 H), 8.23 (s, 1 H).
- [574] Step 3)
 (1S,2S)-2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-c arboxamide
- [575] A mixture of **Compound 4** (150 mg, 414.11 μmol, 1 *eq*), 3-bromo-4-methoxy-pyridine (77.86 mg, 414.11 μmol, 1 *eq*), Pd(PPh₃)₂Cl₂ (29.07 mg, 41.41 μmol, 0.1 *eq*), Na₂CO₃ (87.78 mg, 828.21 μmol, 2 *eq*) in dioxane/H₂O (10 mL) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 110 °C for 3 hr under N₂ atmosphere. The reaction mixture was diluted with H₂O (20 mL), then the mixture was extracted with EA (20 mL * 3). The combined organic layers were washed with brine (20mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chro-

matography (Silica gel, Petroleum ether/Ethyl acetate = 0:1). Then the residue was purified by prep-HPLC(column: Phenomenex Gemini 150*25mm*10um;mobile phase: [water(10mM NH₄HCO₃)-ACN];B%: 24%-54%,10min). **Example 55** (23 mg, 63.63 µmol, 15% yield, 95% purity) was obtained as a light yellow solid.

- [576] ¹H NMR (400 MHz, CDCl₃) δ = 1.33 1.44 (m, 1 H), 1.91 2.13 (m, 2 H), 3.94 (s, 3 H), 4.79 5.05 (m, 1 H), 6.96 (d, J=5.87 Hz, 1 H), 7.63 (dd, J=8.38, 1.65 Hz, 1 H), 7.87 (d, J=8.44 Hz, 1 H), 8.02 (d, J=1.47 Hz, 1 H), 8.51 8.55 (m, 2 H), 10.35 (br s, 1 H); LCMS (electrospray) m/z 344.3 (M+H)+.
- [577] Synthetic Method O
- [578] Example 58.

 (2-((1S,2S)-2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)boronic acid.

 HCl salt

- To a solution of **Compound 1** (200 mg, 552.14 μmol, 1 *eq*) in ACETONE (5 mL) and H₂O (5 mL) was added NaIO₄ (708.59 mg, 3.31 mmol, 183.57 μL, 6 *eq*) and NH₄ HCO₃ (261.90 mg, 3.31 mmol, 272.81 μL, 6 *eq*). The mixture was stirred at 40 °C for 1 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with H₂O (20 mL), then the mixture was extracted with ethyl acetate (20 mL * 3). The combined organic layers were washed with brine (20mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by pre-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.05%HCl)-ACN];B%: 15%-41%,8min). **Example 58** (58 mg, 172.24 μmol, 31% yield, 94% purity, HCl) was obtained as a light yellow solid.
- [581] ¹H NMR (400 MHz, METHANOL- d_4) $\delta = 1.26$ 1.39 (m, 1 H), 1.81 1.94 (m, 1 H), 2.19 (dtd, J=9.19, 6.87, 6.87, 4.34 Hz, 1 H), 4.87 5.18 (m, 1 H), 7.69 7.75 (m, 1 H), 7.81 (br d, J=7.82 Hz, 1 H), 8.22 (s, 1 H); LCMS (electrospray) m/z 281.2 (M+H)+.
- [582] Synthetic Method P
- [583] Example 71. (1S,2R)-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-((methylamino) methyl)cyclopropane-1-carboxamide

- To a solution of **Example 63** (210 mg, 589.20 μmol, 1 *eq*) in THF (10 mL) was added TEA (59.62 mg, 589.20 μmol, 82.01 μL, 1 *eq*) and MsCl (67.49 mg, 589.20 μmol, 45.60 μL, 1 *eq*) at 0°C. The mixture was stirred at 25 °C for 2 hr. Then the methanamine (2 M, 2.95 mL, 10 *eq*) was added. The mixture was stirred at 40°C for 16hr. LCMS showed 40% desired Mass and 25% starting material. Water (10 mL) was added and the aqueous phase was extracted with EA (10 mL*2). The combined organic phase was washed with saturated brine (20 mL*2), and concentrated in vacuum. The crude product was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um; mobile phase: [water (0.05%HCl)-ACN];B%: 20%-40%,7.8min) to give product. **Example 71** (47 mg, 100.93 μmol, 17% yield, 95% purity, 2 HCl) was obtained as a light yellow solid.
- [586] ¹ H NMR (400MHz, METHANOL-d4) δ = 7.74 (s, 1H), 7.87 7.71 (m, 1H), 7.61 (d, J=8.4 Hz, 1H), 7.49 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.
- [587] Synthetic Method Q
- [588] Example 80. (1S,2S)-2-fluoro-N-(4-fluoro-6-(4-methylpyridin-3-yl)benzo [d]thiazol-2-yl) cyclopropane-1-carboxamide

Example 80

[590] Step 1) 6-bromo-4-fluorobenzo[d]thiazol-2-amine

To a solution of **Compound 1** (1 g, 5.26 mmol, 1 eq) in AcOH (10 mL) was added thiocyanatopotassium (2.05 g, 21.05 mmol, 2.05 mL, 4 eq). To the solution was dropped at 25 °C for 15 minutes bromine (1.68 g, 10.53 mmol, 542.61 μL, 2 eq) in AcOH (3 mL). After the end of dropping, the mixture was stirred at 25 °C for 2 hr. The reaction mixture was concentrated under reduced pressure to remove AcOH. The PH was adjusted to 7 with 1M NaOH, and the mixture extracted with EA (50 mL * 2). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate=20/1 to 0:1). **Compound 2** (307 mg, 1.24 mmol, 23% yield) was obtained as a white solid.

[592] ¹H NMR (400MHz, DMSO- d_6) $\delta = 7.86$ (s, 2H), 7.77 (d, J=1.2 Hz, 1H), 7.35 (dd, J=1.2 H

- =1.8, 10.5 Hz, 1H).
- [593] Step 2)
 4-fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]thiazol-2-amine
- To a solution of **Compound 2** (307 mg, 1.24 mmol, 1 eq) and B₂pin₂ (473.27 mg, 1.86 mmol, 1.5 eq) in dioxane (5 mL) was added Pd(dppf)Cl₂.CH₂Cl₂ (101.47 mg, 124.25 μmol, 0.1 eq) and AcOK (365.82 mg, 3.73 mmol, 3 eq). The mixture was stirred at 110 °C for 12 hr under N₂. Then the mixture was stirred at 110 °C for 3 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate=10/1 to 1:1). **Compound 3** (322 mg, 1.09 mmol, 88% yield) was obtained as a light yellow solid.
- [595] ¹H NMR (400MHz, DMSO- d_6) δ = 7.89 (s, 2H), 7.77 (s, 1H), 7.21 (d, J=11.1 Hz, 1H), 1.29 (s, 12H).
- [596] Step 3) 4-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-amine
- [597] To a solution of **Compound 3** (150 mg, 509.94 μmol, 1 eq) and **Compound 4** (105.27 mg, 611.93 μmol, 67.91 μL, 1.2 eq) in dioxane (5 mL) and H₂O (1 mL)was added Pd(PPh₃)₂Cl₂ (35.79 mg, 50.99 μmol, 0.1 eq) and Na₂CO₃ (162.14 mg, 1.53 mmol, 3 eq). The mixture was stirred at 110 °C for 12 hr under N₂. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with 20 mL and extracted with ethyl acetate (20 mL * 2). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (Silica gel plate, Petroleum ether: Ethyl acetate = 0:1). **Compound 5** (50 mg, 160.05 μmol, 31% yield, 83% purity) was obtained as a white solid
- [598] Step 4) (1S,2S)-2-fluoro-N-(4-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide
- To a solution of **Compound 5** (50 mg, 160.05 μmol, 1 *eq*) and **Compound 6** (19.99 mg, 192.05 μmol, 1.2 *eq*) in DMF (2 mL) was added EDCI (61.36 mg, 320.09 μmol, 2 *eq*) and HOBt (43.25 mg, 320.09 μmol, 2 *eq*) at 0 °C. The mixture was stirred at 60 °C for 12 hr. The reaction mixture was diluted with water 20 mL and extracted with ethyl acetate (20 mL * 2). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.1%TFA)-ACN];B%: 15%-36%,7min). **Example 80** (8.9 mg, 13.94 μmol, 8% yield, 89% purity, 2TFA) was obtained as a white solid.
- [600] ¹H NMR (400MHz, DMSO- d_6) δ = 13.07 (s, 1H), 8.64 (br d, J=7.7 Hz, 2H), 7.95 (br d, J=1.2 Hz, 1H), 7.68 (br s, 1H), 7.47 (br d, J=11.5 Hz, 1H), 5.17 4.96 (m, 1H), 2.43 (br s, 3H), 2.23 (td, J=6.9, 13.5 Hz, 1H), 1.83 1.70 (m, 1H), 1.34 (qd, J=6.4, 15.1 Hz,

- 1H); LCMS (electrospray) m/z 346.3 (M+H)+.
- [601] Example 85. (1S,2S)-N-(6-(5-ethynyl-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluoro cyclopropane-1-carboxamide
- [602] Using ((3-bromo-4-methylphenyl)ethynyl)trimethylsilane, the title compound was obtained as described for the synthetic method B
- [603] Synthetic Method R
- [604] Example 91.

 $3-(2-((1S,2S)-2-fluorocyclopropane-1-carboxamido) thiazolo [5,4-b] pyridin-5-yl)-N, 4-dimethylbenzamide. \ 2\ HCl\ salt$

Example 91

[606] Step 1) 1-(triisopropylsilyl)-1H-pyrrole

n-BuLi (2.2 M, 16.21 mL, 1.20 eq) was added dropwise to the solution of **Compound 1** (2 g, 29.81 mmol, 2.07 mL, 1 eq) in THF (40 mL) at -65 °C, and the whole mixture was stirred for 0.5 hr at -65 °C. TIPSCl (6.32 g, 32.76 mmol, 7.01 mL, 1.10 eq) was added to the mixture, and the whole mixture was stirred for 4 hr. at -65 °C. Saturated ammonium chloride aqueous solution (40 mL) was added to the mixture at 0 °C, and the whole mixture was extracted with EtOAc (40 mL * 3). The combined organic layers were washed with brine (20 mL), dried over sodium sulfate, filtered and

concentrated in vacuum to give a residue. The residue was purified by silica gel chromatography (100-200 mesh silica gel, Petroleum ether) to afford **Compound 2** (5.6 g, 25.06 mmol, 84% yield) as colorless oil.

- [608] 1 H NMR (400 MHz, CDCl₃) δ = 6.81 (t, J=1.8 Hz, 2H), 6.32 (t, J=1.9 Hz, 2H), 1.52 1.39 (m, 3H), 1.10 (d, J=7.5 Hz, 18H).
- [609] Step 2) 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(triisopropylsilyl)-1H-pyrrole
- [610] To a solution of (1,5-Cyclooctadiene)(methoxy)iridium(I) Dimer (47.47 mg, 71.61 μmol, 0.02 eq) in THF (15 mL) were added 3,4,7,8-tetramethyl-1,10-phenanthroline (33.84 mg, 143.22 μmol, 0.04 eq) and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (45.82 mg, 358.06 μmol, 51.95 μL, 0.1 eq). The mixture was degassed and purged with nitrogen for 3 times, and then the mixture was stirred at 15 °C for 0.5 h under nitrogen atmosphere. Then Compound 2 (800 mg, 3.58 mmol, 884.96 µL, 1 eq) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)-1,3,2-dioxaborolane (909.24 mg, 3.58 mmol, 1 eq) were added. The mixture was degassed and purged with nitrogen for 3 times, and then the mixture was stirred at 70 °C for 16 h under nitrogen atmosphere. The reaction mixture was quenched by diluting with EtOAc (40 mL), and then filtered through celite. The filtrate were washed with water (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and the filtrate was concentrated in vacuum to give a residue. The residue was purified by flash silica gel chromatography (100~200 mesh silica gel, Petroleum ether/Ethyl acetate=1/0 to 100/1, product came out at Petroleum ether/Ethyl acetate=100/1) to afford **Compound** 3 (900 mg, 2.58 mmol, 71% yield) as white solid.
- [611] 1 H NMR (400 MHz, CDCl₃) δ = 7.23 (t, J=1.4 Hz, 1H), 6.81 (t, J=2.2 Hz, 1H), 6.62 (dd, J=1.2, 2.5 Hz, 1H), 1.46 (quin, J=7.5 Hz, 3H), 1.32 (s, 12H), 1.09 (d, J=7.5 Hz, 19H).
- [612] Step 3) 3-(3-bromo-4-methylphenyl)-1-(triisopropylsilyl)-1H-pyrrole
- To a solution of **Compound 3** (180 mg, 515.18 μmol, 1 eq) and **Compound 4** (137.68 mg, 463.67 μmol, 0.9 eq) in dioxane (4 mL) and H₂O (1 mL) was added Na₂ CO₃ (109.21 mg, 1.03 mmol, 2 eq) and Pd(dppf)Cl₂ (37.70 mg, 51.52 μmol, 0.1 eq). The mixture was degassed and purged with nitrogen for 3 times, and then the mixture was stirred at 60 °C for 4 h under nitrogen atmosphere. The reaction mixture was quenched by diluting with EtOAc (40 mL), and then filtered through celite. The filtrate were washed with water (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (Petroleum ether/Ethyl acetate= 20/1, Rf=0.8) to afford **Compound 5** as colorless oil.
- [614] ¹H NMR (400 MHz, CDCl₃) δ = 7.70 (d, J=1.7 Hz, 1H), 7.36 (dd, J=1.7, 7.8 Hz, 1H), 7.17 (d, J=7.9 Hz, 1H), 7.01 (t, J=1.7 Hz, 1H), 6.79 (t, J=2.4 Hz, 1H), 6.56 (dd, J=1.4,

2.6 Hz, 1H), 2.37 (s, 3H), 1.48 (quin, J=7.5 Hz, 3H), 1.12 (d, J=7.5 Hz, 19H).

- [615] Step 4)
 (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)phenyl)
 benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- [616] To a solution of **Compound 5** (130 mg, 311.38 μmol, 1 eq) and **Compound 6** (112.79 mg, 311.38 μmol, 1 eq) in dioxane (3 mL) and H₂O (0.6 mL) was added Na₂ CO₃ (66.01 mg, 622.76 μmol, 2 eq) and Pd(dppf)Cl₂ (22.78 mg, 31.14 μmol, 0.1 eq). The mixture was degassed and purged with nitrogen for 3 times, and then the mixture was stirred at 60 °C for 16 h under nitrogen atmosphere. The reaction mixture was diluted with EtOAc (40 mL), and then the resulting organic phase was washed with water (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and then the resulting organic phase was concentrated in vacuum to give a residue. The residue was purified by silica gel chromatography (300-400 mesh silica gel, Petroleum ether/Ethyl acetate=10/1 to 1/1, product came out at Petroleum ether/Ethyl acetate=2/1) to afford **Compound 7** as brown oil.
- [617] Step 5) (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-3-yl)phenyl)benzo [d]thiazol-2-yl) cyclopropane-1-carboxamide. 2 HCl salt
- To a solution of **Compound 7** (110 mg, 190.76 μmol, 1 eq) in THF (4 mL) was added pyridine;hydrofluoride (1.10 g, 11.10 mmol, 1 mL). The mixture was stirred at 35 °C for 3 h. LC-MS showed 2% of **Compound 7** remained. The mixture was stirred at 35 °C for 2 h. The reaction mixture was diluted with ethyl acetate (20 mL), and then the resulting organic phase was washed with HCl aqueous solution (4 mL, 0.5 M), brine (4 mL), dried over sodium sulfate, filtered and the filtrate was concentrated in vacuum to give a residue. The residue was purified by prep-HPLC (HCl condition, column: Phenomenex Synergi C18 150*25*10um; mobile phase: [water(0.05%HCl)-ACN]; B%: 41%-61%, 11min), followed by lyophilization. But HNMR showed the product was not clean, so it was diluted with water and lyophilizated again to afford **Example 91** as off-white solid.
- [619] ¹H NMR (400 MHz, DMSO- d_6) δ = 12.70 (s, 1H), 10.87 (br s, 1H), 7.98 (d, J=1.6 Hz, 1H), 7.79 (d, J=8.3 Hz, 1H), 7.48 7.36 (m, 3H), 7.27-7.18 (m, 2H), 6.77 (q, J=2.3 Hz, 1H), 6.43 (d, J=1.7 Hz, 1H), 5.17-4.91 (m, 1H), 2.27-2.23 (m, 1H), 2.21 (s, 3H), 1.83-1.67 (m, 1H), 1.31 (tdd, J=6.4, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 392.1 (M+H)+.
- [620] Synthetic Method S
- [621] Example 92. (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(thiazol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide. 2 HCl salt

[622]

[623] Step 1) (3-bromo-4-methylphenyl)boronic acid

Compound 1 (3 g, 10.10 mmol, 1 eq) in THF (30 mL) was placed into 250 ml round bottom flask. The reaction solution was cooled to -65 °C under a nitrogen atmosphere. n-BuLi (2.2 M, 5.05 mL, 1.1 eq) to the cooled solution was slowly added dropwise, the mixture was stirred for 1 h at the same temperature. TRIMETHYL BORATE (1.26 g, 12.12 mmol, 1.37 mL, 1.2 eq) were added dropwise to the above solution at the same temperature. The mixture was stirred at -65 °C for 1 h. Then cool bath was removed and the mixture was stirred at -65 ~ 10 °C for 16 h. The mixture was acidified by dropwise addition of HCl solution (2 M, 5 mL) to the reaction solution, which was stirred for 1.5 hour. The mixture were concentrated in vacuum to afford a residue. The residue was purified by reverse-MPLC (FA condition, A:water, B:MeCN, 40% B). The fraction were concentrated to remove solvent, and aqueous phase was extracted with ethyl acetate (50 mL * 3). The combined organic layers were washed with brine (50 mL), dried over sodium sulfate, filtered and the filtrate was concentrated in vacuum to give Compound 2 (1.3 g, 6.05 mmol, 59% yield) as white solid.

- [625] 1 H NMR (400MHz, DMSO- d_6) δ = 8.15 (s, 0.5H), 7.95 (s, 0.3H), 7.93 (s, 1H), 7.73 (d, J=7.5 Hz, 1H), 7.66 (d, J=7.5 Hz, 0.3H), 7.37 (d, J=7.5 Hz, 1H), 7.32 (d, J=7.6 Hz, 0.3H), 2.37 (s, 3H), 2.34 (s, 0.9H).
- [626] Step 2) 2-(3-bromo-4-methylphenyl)thiazole
- [627] To a solution of **Compound 2** (255 mg, 1 eq) and 2-bromothiazole (220 mg, 1.34 mmol, 120.88 μL, 1.13 eq) in dioxane (5 mL) and H₂O (1 mL) were added Pd(dppf)Cl₂ (86.84 mg, 118.69 μmol, 0.1 eq) and Na₂CO₃ (251.59 mg, 2.37 mmol, 2 eq) .The mixture was degassed and purged with nitrogen for 3 times, and then the mixture was stirred at 80 °C for 6 h under nitrogen atmosphere. The reaction mixture was diluted with ethyl acetate (40 mL), and then the resulting organic phase was filtered through celite. The filtrate were washed with water (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and concentrated in vacuum to give a residue. The residue was purified by silica gel chromatography (300-400 mesh silica gel, Petroleum ether/Ethyl acetate=1/0 to 100/1, product came out at Petroleum ether/Ethyl acetate=100/1) to afford crude product. The crude product was purified by reverse-MPLC (FA condition, A:water, B:MeCN, 55% B) to afford **Compound 4** (40 mg, 157.39 μmol, 13% yield) as off-white solid.
- [628] 1 H NMR (400 MHz, CDCl3) δ = 8.16 (d, J=1.6 Hz, 1H), 7.86 (d, J=3.2 Hz, 1H), 7.78 (dd, J=1.8, 7.9 Hz, 1H), 7.33 (d, J=3.2 Hz, 1H), 7.30 (d, J=7.9 Hz, 1H), 2.44 (s, 3H).
- [629] Step 3)
 (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(thiazol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide. 2 HCl salt
- To a solution of (1S,2S)-2-fluoro-N-[6-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)-1,3-benzothiazol-2-yl]cyclopropanecarboxamide (57.01 mg, 157.39 μmol, 1 eq) and **Compound 4** (40 mg, 157.39 μmol, 1 eq) in dioxane (1 mL) and H₂O (0.2 mL) were added Na₂CO₃ (33.36 mg, 314.78 μmol, 2 eq) and Pd(dppf)Cl₂ (11.52 mg, 15.74 μmol, 0.1 eq). The mixture was degassed and purged with nitrogen for 3 times, and then the mixture was stirred at 60 °C for 16 h under nitrogen atmosphere. The reaction mixture was diluted with EtOAc (40 mL), and then the resulting organic phase was washed with water (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and concentrated in vacuum to give a residue. The residue was purified by silica gel chromatography (200-300 mesh silica gel, Petroleum ether/Ethyl acetate=5/1 to 0/1) to afford product. The product was purified by prep-HPLC (HCl condition, column: Phenomenex Synergi C18 150*25*10um; mobile phase: [water(0.05%HCl)-ACN]; B%: 48%-65%, 10min), followed by lyophilization to afford **Example 92** (25.8 mg, 53.00 μmol, 33% yield, 99% purity, 2HCl) as light yellow solid.
- [631] ¹H NMR (400 MHz, DMSO- d_6) δ = 12.88 (br s, 1H), 8.16 (d, J=1.3 Hz, 1H), 8.02 (d, J=3.2 Hz, 1H), 7.98 (dd, J=1.8, 7.9 Hz, 1H), 7.95-7.90 (m, 2H), 7.88 (d, J=3.2 Hz, 1H),

7.63-7.53 (m, 2H), 5.33 - 5.01 (m, 1H), 2.42 (s, 3H), 2.40-2.33 (m, 1H), 1.96-1.77 (m, 1H), 1.53-1.36 (m, 1H); LCMS (electrospray) m/z 410.2 (M+H)+.

[632] Synthetic Method T

[633] Example 95. (1S,2S)-2-fluoro-N-(6-(4-methyl-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide

[634]

Example 94

Example 95

- [635] Step 1) 4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole
- [636] To a solution of **Compound 1** (2 g, 24.36 mmol, 1.96 mL, 1 eq) in DCM (30 mL) was added PPTS (612.16 mg, 2.44 mmol, 0.1 eq) and 3,4-dihydro-2H-pyran (6.15 g, 73.08 mmol, 6.68 mL, 3 eq). The mixture was stirred at 55 °C for 12 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with 80 mL and extracted with ethyl acetate (80 mL * 2). The combined

organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silica gel, Petroleum ether/Ethyl acetate=50/1 to 5:1). **Compound 2** (2.5 g, 15.04 mmol, 61% yield) was obtained as a colorless oil.

- [637] ¹H NMR (400MHz, CDCl₃) δ = 7.37 (d, *J*=6.0 Hz, 2H), 5.32 (dd, *J*=2.4, 9.7 Hz, 1H), 4.09 3.99 (m, 1H), 3.69 (dt, *J*=2.8, 11.3 Hz, 1H), 2.08 (s, 3H), 2.07 1.99 (m, 2H), 1.78 1.51 (m, 4H).
- [638] Step 2) 3-bromo-4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole
- [639] To a solution of **Compound 2** (2.3 g, 13.84 mmol, 1 eq) in MeCN (23 mL) was added NBS (2.46 g, 13.84 mmol, 1 eq). The mixture was stirred at 55 °C for 12 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by column chromatography (silica gel, Petroleum ether/Ethyl acetate=1:0 to 50:1). **Compound 3** (2.4 g, 9.79 mmol, 70% yield) was obtained as a yellow oil.
- [640] ¹H NMR (400MHz CDCl₃) δ = 7.34 (s, 1H), 5.26 (dd, J=2.4, 9.4 Hz, 1H), 4.09 3.99 (m, 1H), 3.72 3.62 (m, 1H), 2.06 2.03 (m, 2H), 2.02 (d, J=0.7 Hz, 3H), 1.78 1.54 (m, 4H).
- [641] Step 3)
 6-(4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-3-yl)benzo[d]thiazol-2-amine
- To a solution of **Compound 3** (1 g, 4.08 mmol, 1 eq) and **Compound 4** (1.13 g, 4.08 mmol, 1 eq) in dioxane (10 mL) and H₂O (3 mL) was added Na₂CO₃ (864.81 mg, 8.16 mmol, 2 eq) and Pd(dppf)Cl₂ (298.51 mg, 407.97 μmol, 0.1 eq). The mixture was stirred at 90 °C for 12 hr under N₂. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by column chromatography (silica gel, Petroleum ether/Ethyl acetate=20/1 to 1:1). **Compound 5** (780 mg, 2.11 mmol, 51% yield, 85% purity) was obtained as a yellow solid.
- [643] Step 4)
 (1S,2S)-2-fluoro-N-(6-(4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-3-yl)
 benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- To a solution of **Compound 5** (350 mg, 946.23 μmol, 1 *eq*) and **Compound 6** (136.43 mg, 1.31 mmol, 1.39 *eq*) in DMF (5 mL) was added EDCI (418.80 mg, 2.18 mmol, 2.31 *eq*) and HOBt (295.20 mg, 2.18 mmol, 2.31 *eq*) at 0 °C. The mixture was stirred at 60 °C for 2 hr. The reaction mixture was diluted with water 30 mL and extracted with ethyl acetate (30 mL * 2). The combined organic layers were washed with brine (30 mL * 2), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Luna C18 150*25 5u;mobile phase: [water(0.225%FA)-ACN];B%: 48%-68%,7.8min). **Example 94** (200 mg, 482.83 μmol, 51% yield, 96% purity) was obtained as a white solid. (50

mg would be delivered).

- [645] ¹H NMR (400MHz, DMSO- d_6) δ = 12.72 (br s, 1H), 8.22 (s, 1H), 7.81 7.71 (m, 3H), 5.36 (dd, J=2.1, 10.0 Hz, 1H), 5.16 4.92 (m, 1H), 3.94 (br d, J=11.9 Hz, 1H), 3.68 3.58 (m, 1H), 2.28 2.19 (m, 4H), 2.16 2.05 (m, 1H), 2.02 1.89 (m, 2H), 1.81 1.65 (m, 2H), 1.60 1.50 (m, 2H), 1.31 (tdd, J=6.4, 8.9, 12.8 Hz, 1H); LCMS (electrospray) m/z 401.1 (M+H)+.
- [646] Step 5)
 (1S,2S)-2-fluoro-N-(6-(4-methyl-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopropane1-carboxamide
- Example 94 (140 mg, 338.61 μmol, 1 eq) was added to HCl/dioxane (4 M, 3 mL, 35.44 eq). The mixture was stirred at 25 °C for 2 hr. LCMS showed ~59% of starting material was remained and ~40% of desired mass was detected. Then the mixture was stirred at 40 °C for 12 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 20 mL and extracted with DCM (20 mL * 2). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Luna C18 150*25 5u; mobile phase: [water(0.225%FA)-ACN];B%: 31%-51%,7.8min). Example 95 (41.4 mg, 130.87 μmol, 38% yield, 100% purity) was obtained as a white solid.
- [648] ¹H NMR (400MHz, DMSO- d_6) δ = 12.46 (br s, 2H), 8.15 (s, 1H), 7.80 7.75 (m, 1H), 7.74 7.66 (m, 1H), 7.47 (br s, 1H), 5.12 4.88 (m, 1H), 2.30 2.19 (m, 4H), 1.85 1.70 (m, 1H), 1.36 1.22 (m, 1H); LCMS (electrospray) m/z 317.2 (M+H)+.
- [649] Synthetic Method U
- [650] Example 99. (1S,2S)-2-fluoro-N-(4-methyl-2-oxo-2,3-dihydro-[5,6'-bibenzo[d]thiazol]-2'-yl)cyclopr opane-1-carboxamide

WO 2019/070093 PCT/KR2018/011660

- Example 99
- [652] Step 1) 4-bromo-3-methyl-2-nitrobenzenethiol

60 °C, 16 h

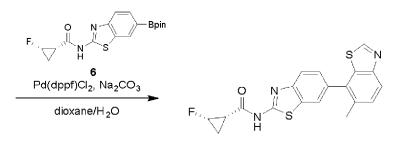
- [653] To a solution of Na₂S.9H₂O (16.42 g, 68.37 mmol, 11.48 mL, 2 eq) in EtOH (80 mL) was dropwise added **Compound 1** (8 g, 34.18 mmol, 1 eq). The mixture was stirred at 50 °C for 2 hr. The reaction was quenched by HCl to pH =5 slowly and then extracted with Ethyl acetate(80mL*2). The combined organic phase was washed with water (80 mL *2), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. **Compound 2** (2.5 g, crude) as a green solid.
- [654] ¹H NMR (400MHz, CDCl₃) δ = 7.21 (d, J=8.3 Hz, 1H), 6.93 (d, J=8.3 Hz, 1H), 4.53 (br s, 1H), 2.32 2.29 (m, 3H).
- [655] Step 2) 2-amino-4-bromo-3-methylbenzenethiol
- To a solution of **Compound 2** (2.5 g, 10.08 mmol, 1 eq) (crude)in EtOH (25 mL) was added HCl (55.11 g, 151.15 mmol, 54.03 mL, 10% purity, 15 eq) at 0°C. Then Zn (7.06 g, 107.92 mmol, 10.71 eq) was added and the mixture was stirred at 35 °C for 2 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. Then water phase was washed with Petroleum ether(100 mL*2). Then water phase by solid NaHCO₃ to pH =5 slowly and filtered, the filter cake was concentrated in vacuum, then filtrate was extracted with Ethyl acetate(100mL*2). The combined organic phase was washed with brine (50 mL *2), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. **Compound 3** (0.99 g, 4.54 mmol, 45% yield) was obtained as a white solid.
- [657] ¹H NMR (400MHz, DMSO- d_6) $\delta = 7.14 7.09$ (m, 1H), 6.94 6.86 (m, 1H), 5.59 -

WO 2019/070093 PCT/KR2018/011660 71

- 5.49 (m, 2H), 2.28 (s, 3H).
- [658] Step 3) 5-bromo-4-methylbenzo[d]thiazol-2(3H)-one
- To a solution of CDI (661.64 mg, 4.08 mmol, 1 eq) in THF (9 mL) was dropwise added Compound 3 (0.89 g, 4.08 mmol, 1 eq) at 0 °C. Then reaction mixture was added and the mixture was stirred at 35 °C for 16 hr. The reaction mixture was filtered and the filtrate was concentrated in vacuum. The residue was extracted with Ethyl acetate (100 mL*2). The combined organic phase was washed with water (100mL*2). The organic layer was dried over anhydrous Na₂SO₄. The solution was filtered and concentrated in vacuum. Compound 4 (1.05 g, crude) was obtained as a off-white solid.
- [660] ¹H NMR (400MHz, DMSO- d_6) δ = 12.28 11.73 (m, 1H), 7.33 (d, J=4.0 Hz, 2H), 2.39 (s, 3H)
- [661] Step 4)
 (1S,2S)-2-fluoro-N-(4-methyl-2-oxo-2,3-dihydro-[5,6'-bibenzo[d]thiazol]-2'-yl)cyclopr opane-1-carboxamide
- A mixture of **Compound 4** (500 mg, 2.05 mmol, 1 eq), **Compound 5** (506.47 mg, 1.40 mmol, 6.82e-1 eq), Pd(dppf)Cl₂ (75.00 mg, 102.50 μmol, 0.05 eq), Na₂CO₃ (434.55 mg, 4.10 mmol, 2 eq) in dioxane (10 mL) and H₂O (2 mL) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 80 °C for 16 hr under N₂ atmosphere. The reaction mixture was concentrated in vacuum. The crude product was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.05%HCl)-ACN];B%: 35%-55%,11min) to give product. **Example 99** (53 mg, 117.93 μmol, 5% yield, 97% purity, HCl) as a white solid.
- [663] ¹H NMR (400MHz, DMSO- d_6) δ = 12.75 12.70 (m, 1H), 11.78 11.74 (m, 1H), 7.95 (d, J=1.5 Hz, 1H), 7.79 (d, J=8.3 Hz, 1H), 7.47 (d, J=8.1 Hz, 1H), 7.41 7.37 (m, 1H), 7.08 (s, 1H), 5.17 4.94 (m, 1H), 2.29 2.18 (m, 4H), 1.81 1.71 (m, 1H), 1.36 1.28 (m, 1H): LCMS (electrospray) m/z 400.1 (M+H)+.
- [664] Synthetic Method V
- [665] Example 107. (1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide

WO 2019/070093 PCT/KR2018/011660

- [667] Step 1) 1-bromo-2,4-dimethyl-3-nitrobenzene
- To a solution of **Compound 1** (5 g, 33.08 mmol, 4.50 mL, 1 eq), FeBr₃ (195.52 mg, 661.54 μmol, 0.02 eq) and Fe (461.80 mg, 8.27 mmol, 0.25 eq) in DCM (50 mL) was added Br₂ (5.81 g, 36.38 mmol, 1.88 mL, 1.1 eq) of DCM (5 mL) dropwise at 15 °C. The mixture was stirred at 30 °C for 20 hr. TLC showed the reaction was completed. The mixture was washed by saturated sodium sulfite water solution (100 mL*2), the organic phase was washed with brine (150 mL) and dried with anhydrous sodium sulfate (Na₂SO₄), filtered and concentrated in vacuum. The residue was used to the next step without any purification. **Compound 2** (7.2 g, 31.30 mmol, 94% yield) was obtained as white solid.
- [669] ¹H NMR (400MHz, CDCl₃) δ = 7.56 (d, J=8.2 Hz, 1H), 7.02 (d, J=8.2 Hz, 1H), 2.35 (s, 3H), 2.26 (s, 3H).
- [670] Step 2) 3-bromo-2,6-dimethylaniline
- [671] To a solution of **Compound 2** (7.2 g, 31.30 mmol, 1 eq) in AcOH (80 mL) was


added Fe (6.99 g, 125.19 mmol, 4 eq) at 10 °C. The mixture was stirred at 80 °C for 18 hr. TLC indicated the reaction was completed. The mixture was filtered and the filtrate was neutralized with saturated sodium hydroxide aqueous solution. The aqueous phase was extracted with Ethyl acetate (100 mL*2), the organic phase was washed with brine (150 mL) and dried with anhydrous sodium sulfate (Na₂SO₄), filtered and concentrated in vacuum. The residue was purified by silica gel chromatography eluted with Petroleum ether/Ethyl acetate=5:1. **Compound 3** (4.6 g, 22.99 mmol, 73% yield) was obtained as brown oil.

- [672] ¹H NMR (400MHz, CDCl₃) δ = 6.94 (d, *J*=8.1 Hz, 1H), 6.80 (d, *J*=8.1 Hz, 1H), 3.84 3.49 (m, 2H), 2.30 (s, 3H), 2.14 (s, 3H).
- [673] Step 3) 4-bromo-7-methyl-1H-indazole
- To a solution of **Compound 3** (4.1 g, 20.49 mmol, 1 *eq*) in AcOH (50 mL) was added NaNO₂ (1.70 g, 24.59 mmol, 1.2 *eq*) in H₂O (10 mL) dropwise at 0 °C for 30 min. The mixture was stirred at 15 °C for 18 hr. LC-MS showed the reaction was completed. The mixture was poured into H2O(100 mL), the aqueous phase was extracted with ethyl acetate (150 mL*2). The combined organic phase was washed with brine (200 mL), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to afford 5 g crude product. 2 g of the crude product was purified by prep-HPLC (column: Phenomenex luna C18 250*50mm*10 μm;mobile phase: [water(0.05%HCl)-ACN];B%: 30%-60%,30min,40%min), followed by lyophilization to afford 0.3 g white solid, 0.3 g white solid was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.05%HCl)-ACN];B%: 30%-50%,11min), followed by lyophilization. **Compound 4** (75 mg, 355.35 μmol, 1% yield) was obtained as white solid. **Compound 4A** (195 mg, 923.92 μmol, 4% yield) was obtained as white solid.
- [675] **Compound 4** ¹H NMR (400MHz, METHANOL-d₄) δ = 8.02 (s, 1H), 7.50 (d, J=8.6 Hz, 1H), 7.29 (d, J=8.6 Hz, 1H), 2.61 (s, 3H).
- [676] **Compound 4A** ¹H NMR (400MHz, METHANOL-d₄) δ = 7.99 (s, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.04 (dd, J=0.9, 7.5 Hz, 1H), 2.52 (d, J=0.6 Hz, 3H).
- [677] Step 4)
 (1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane1-carboxamide
- To a solution of **Compound 4A** (195 mg, 923.92 μmol, 1 *eq*) and **Compound 5** (401.60 mg, 1.11 mmol, 1.2 *eq*) in dioxane (3 mL) and H₂O (0.5 mL) were added Na₂ CO₃ (293.77 mg, 2.77 mmol, 3 *eq*) and Pd(dppf)Cl₂ (135.21 mg, 184.78 μmol, 0.2 *eq*) at 10 °C. The mixture was stirred at 60 °C for 18 hr. LC-MS showed the reaction was completed. The mixture was poured into H₂O (10 mL), a lot of yellow solid formed, filtered and the filter cake was concentrated in vacuum. The filter cake was

WO 2019/070093 PCT/KR2018/011660 74

- purified by triturated with Methanol (10 mL), filtered and the filter cake was concentrated. **Example 107** (149.2 mg, 385.61 μ mol, 41% yield, 94% purity) was obtained as yellow solid.
- [679] ¹H NMR (400MHz, DMSO-- d_6) δ = 13.30 (br s, 1H), 12.74 (br s, 1H), 8.35 8.20 (m, 2H), 7.90 7.83 (m, 1H), 7.81 7.74 (m, 1H), 7.21 (br s, 2H), 5.17 4.93 (m, 1H), 2.57 (s, 3H), 2.24 (br s, 1H), 1.83 1.69 (m, 1H), 1.31 (br s, 1H) : LCMS (electrospray) m/z 367.0 (M+H)+.
- [680] Example 108. (1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-6-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- [681] Step 1) (1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-6-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide
- To a solution of **Compound 4** (75 mg, 355.35 μmol, 1 *eq*) and **Compound 5** (154.46 mg, 426.42 μmol, 1.2 *eq*) in dioxane (2 mL) and H₂O (0.5 mL) were added Na ₂CO₃ (112.99 mg, 1.07 mmol, 3 *eq*) and Pd(dppf)Cl₂ (52.00 mg, 71.07 μmol, 0.2 *eq*) at 10 °C. The mixture was stirred at 60 °C for 18 hr. LC-MS showed the reaction was completed. The mixture was poured into Petroleum ether (10 mL), filtered with silica gel and the filtrate was concentrated in vacuum. The residue was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.05%HCl)-ACN];B%: 30%-60%,10min), followed by lyophilization. **Example 108** (26.4 mg, 59.61 μmol, 16% yield, 99% purity, 2HCl) was obtained as white solid, which was checked by 2D NMR.
- [683] ¹H NMR (400MHz, METHANOL-d₄) δ = 8.31 (s, 1H), 7.90 (s, 1H), 7.84 (d, J=8.3 Hz, 1H), 7.73 (d, J=8.4 Hz, 1H), 7.48 (d, J=8.3 Hz, 1H), 7.22 (d, J=8.3 Hz, 1H), 5.09 4.97 (m, 1H), 5.09 4.94 (m, 1H), 2.51 (s, 3H), 2.24 2.16 (m, 1H), 1.95 1.82 (m, 1H), 1.39 1.27 (m, 1H) : LCMS (electrospray) m/z 367.1 (M+H)+.
- [684] Synthetic Method W
- [685] Example 111. (1S,2S)-2-fluoro-N-(6'-methyl-[6,7'-bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxam ide

WO 2019/070093 PCT/KR2018/011660 75

Example 111

[687] Step 1) N-((3-bromo-4-methylphenyl)carbamothioyl)benzamide

To a solution of **Compound 1** (5 g, 26.87 mmol, 1 *eq*) in acetone (50 mL) was added benzoyl isothiocyanate (4.39 g, 26.87 mmol, 3.62 mL, 1 *eq*) in acetone (10 mL) dropwise at 60 °C. The mixture was refluxed at 60 °C for 4 hr. TLC (Petroleum ether/Ethyl acetate = 5/1) showed **Compound 1** was consumed and a main spot. The mixture was concentrated. The residue was purified by triturated with Petroleum ether (60 mL) and Ethyl acetate (6 mL). **Compound 2** (8.77 g, 25.11 mmol, 93% yield) was obtained as white solid.

[689] 1 H NMR (400MHz, CDCl₃) δ = 12.58 - 12.23 (m, 1H), 9.20 - 9.02 (m, 1H), 8.01 - 7.85 (m, 3H), 7.72 - 7.64 (m, 1H), 7.60 - 7.54 (m, 3H), 7.30 (s, 1H), 2.46 - 2.40 (m, 3H).

- [690] Step 2) 1-(3-bromo-4-methylphenyl)thiourea
- To a solution of **Compound 2** (8.77 g, 25.11 mmol, 1 eq) in H₂O (80 mL) was added NaOH (4.02 g, 100.45 mmol, 4 eq) at 10 °C. The mixture was stirred at 70 °C for 18 hr. TLC (Petroleum ether/Ethyl acetate = 5/1) showed **Compound 2** was consumed and a main spot. T The mixture was acidified with hydrochloric acid solution (2 N) to PH= 2-3 and a lot of white solid formed. The reaction mixture was filtered and the filter cake was dried. The residue was purified by triturated with Ethyl acetate (40 mL). **Compound 3** (4.65 g, 18.97 mmol, 75% yield) was obtained as white solid.
- [692] ¹H NMR (400MHz, METHANOL-d₄) δ = 7.61 (s, 1H), 7.31 7.26 (m, 1H), 7.24 7.19 (m, 1H), 2.37 (s, 3H).
- [693] Step 3) 7-bromo-6-methylbenzo[d]thiazol-2-amine
- To a solution of **Compound 3** (4.65 g, 18.97 mmol, 1 eq) in CH3COOH (80 mL) was added Br₂ (3.33 g, 20.87 mmol, 1.08 mL, 1.1 eq) at 10 °C. The mixture was stirred at 80 °C for 18 hr. The mixture was poured into H₂O (80 mL), the aqueous phase was extracted with ethyl acetate (100 mL*2). The combined organic phase was washed with brine (100 mL), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by triturated with Petroleum ether (50 mL) and Ethyl acetate (10 mL), filtered and the filter cake was concentrated to afford 7-bromo-6-methyl-1,3-benzothiazol-2-amine. The filter liquor was concentrated, purified by silica gel chromatography eluted with Petroleum ether/Ethyl acetate=1:1 to afford 5-bromo-6-methyl-1,3-benzothiazol-2-amine. **Compound 4** (1.3 g, 5.34 mmol, 28% yield, 99% purity) was obtained as white solid. **Compound 4A** (870 mg, 3.58 mmol, 18% yield) was obtained as white solid.
- [695] **Compound 4** ¹H NMR (400MHz, DMSO- d_6) δ = 7.55 (s, 2H), 7.24 7.20 (m, 1H), 7.19 7.15 (m, 1H), 2.35 (s, 3H).
- [696] **Compound 4A** ¹H NMR (400MHz, CDCl₃) δ = 7.73 (s, 1H), 7.45 (s, 1H), 5.21 (br s, 2H), 2.45 (s, 3H).
- [697] Step 4) 7-bromo-6-methylbenzo[d]thiazole
- [698] To a solution of **Compound 4** (300 mg, 1.23 mmol, 1 *eq*) in THF (10 mL) was added ISOAMYL NITRITE (288.81 mg, 2.47 mmol, 331.97 μL, 2 *eq*) at 10 °C. The mixture was stirred at 70 °C for 18 hr. LC-MS showed **Compound 4** was consumed and a main peak of desired mass. The mixture was poured into H₂O (20 mL), the aqueous solution was extracted with ethyl acetate (30 mL*2).The combined organic phase was washed with brine (50 mL), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. TLC (Petroleum ether/Ethyl acetate = 10:1) showed a main spot. The residue was purified by silica gel chromatography eluted with Petroleum ether/Ethyl acetate = 10:1. **Compound 5** (180 mg, 788.31 μmol, 63% yield, 99% purity) was obtained as yellow solid.

WO 2019/070093 PCT/KR2018/011660

- [699] Step 5)
 (1S,2S)-2-fluoro-N-(6'-methyl-[6,7'-bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxam ide
- To a solution of **Compound 5** (160 mg, 700.72 μmol, 1 *eq*) and **Compound 6** (304.58 mg, 840.86 μmol, 1.2 *eq*) in dioxane (3 mL) and H₂O (0.6 mL) were added Pd(dppf)Cl₂ (102.54 mg, 140.14 μmol, 0.2 *eq*) and Na₂CO₃ (74.27 mg, 700.72 μmol, 1 *eq*) at 10 °C. The mixture was stirred at 60 °C for 18 hr. The mixture was poured into Petroleum ether (10 mL), filtered with silica gel and the filtrate was concentrated in vacuum. The residue was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.05%HCl)-ACN];B%: 44%-64%,9min), folllowed by lyophilization. **Example 111** (60 mg, 156.31 μmol, 22% yield, 99% purity) was obtained as yellow solid.
- [701] ¹H NMR (400MHz, METHANOL-d₄) δ = 9.60 (s, 1H), 8.02 (d, *J*=8.4 Hz, 1H), 7.99 (d, *J*=1.3 Hz, 1H), 7.94 (d, *J*=8.3 Hz, 1H), 7.69 (d, *J*=8.4 Hz, 1H), 7.52 (dd, *J*=1.7, 8.3 Hz, 1H), 5.05 (dt, *J*=3.9, 6.2 Hz, 1H), 2.39 (s, 3H), 2.22 (dtd, *J*=4.3, 6.9, 9.1 Hz, 1H), 1.96 1.83 (m, 1H), 1.39 1.28 (m, 1H) : LCMS (electrospray) m/z 384.0 (M+H)+.

[702] Synthetic Method X

[703] Example 112. (1S,2S)-2-fluoro-N-methyl-N-(6-(4-methylpyridin-3-yl) benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide

- [705] MeI (28 μl, 0.45 mmol, 1.5 eq.) was dissolved in N,N-dimethyl formamide (1 ml) and was dropwised to a stirred solution of **Example 4** (100 mg, 0.3 mmol, 1 *eq.*) and K $_2$ CO $_3$ (124 mg, 0.9 mmol, 3 *eq.*) in N,N-dimethyl formamide (2 ml). The mixture was stirred at 50 °C for 2 hrs under N $_2$. After completion of the reaction, the reaction mixture was extracted with Ethyl Acetate (20 ml x 2) and Water (20 ml), the combined organic layers were dried over Mg $_2$ SO $_4$, filtered and concentrated under reduced pressure to give a crude product. The residue was purified by short path silica gel column chromatography (EA 100% gradient). The resulting precipitations were collected by filtration and washed by Ether and dried to give **Example 112** as a white solid. (47 mg, 0.14 mmol, yield 46 %).
- [706] ¹H NMR (400MHz, DMSO- d_6) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (t, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3, 3H), 2.66-2.62 (m, 1H),

2.29 (s, Me, 3H), 1.83-1.79 (m, 1H), 1.35-1.31 (m, 1H) : LCMS (electrospray) m/z 342.1 (M+H)+.

- [707] Synthetic Method Y
- [708] Example 113. (1S,2S)-2-fluoro-N-(6-(6-(fluoromethyl)-4-methylpyridin-3-yl) benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. TFA salt

- To a solution of **Example 29** (380 mg, 1.06 mmol, 1 eq) in DCM (5 mL) was added DAST (685.52 mg, 4.25 mmol, 561.90 μL, 4 eq) at 0 °C. The mixture was stirred at 30°C for 3 hr under N2 atmosphere. The reaction mixture was diluted with DCM (5 mL), and then the resulting organic phase was washed with saturated sodium bicarbonate aqueous solution (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and the filtrate was concentrated in vacuum to give a residue. The residue was purified by pre-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.1%TFA)-ACN];B%: 20%-50%,10min).
- [711] **Example 113** (62 mg, 102.38 μmol, 9% yield, 97% purity, 2TFA) was obtained as a light yellow solid.
- [712] ¹H NMR (400 MHz, DMSO- d_6) δ = 1.32 (ddt, J=12.84, 8.99, 6.33, 6.33 Hz, 1 H), 1.69 1.82 (m, 1 H), 2.20 2.28 (m, 1 H), 2.36 (s, 3 H), 4.93 5.17 (m, 1 H), 5.46 (s, 1 H), 5.57 (s, 1 H), 7.48 (dd, J=8.31, 1.83 Hz, 1 H), 7.53 (s, 1 H), 7.84 (d, J=8.31 Hz, 1 H), 8.07 (d, J=1.59 Hz, 1 H), 8.48 (s, 1 H), 12.77 (br s, 1 H); LCMS (electrospray) m/z 360.0 (M+H)+.
- [713] Synthetic Method Z
- [714] Example 114. (1S,2S)-2-fluoro-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl) benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. 2HCl salt

WO 2019/070093 PCT/KR2018/011660

- [716] Step 1) 4-bromo-6-fluoro-1-(triisopropylsilyl)-1H-indole
- To a solution of **Compound 1** (900 mg, 4.20 mmol, 1 eq) in THF (9 mL) were added NaH (201.82 mg, 5.05 mmol, 60% purity, 1.2 eq) at 0 °C for 30 min. Then TIPSCl (972.86 mg, 5.05 mmol, 1.08 mL, 1.2 eq) was added to the mixture. The mixture was stirred at 25 °C for 1.5 hr. The reaction mixture was diluted with water 20 mL and extracted with ethyl acetate (20 mL * 2). The combined organic layers were washed with brine (20 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (Silical gel, Petroleum ether: Ethyl acetate=1:0 to 100:1). **Compound 2** (1.5 g, 4.05 mmol, 96% yield) was obtained as a yellow oil.
- [718] ¹H NMR (400MHz, CDCl₃) δ = 7.28 7.26 (m, 1H), 7.19 7.10 (m, 2H), 6.65 (dd, J=0.9, 3.3 Hz, 1H), 1.67 (m, J=7.5 Hz, 3H), 1.15 (d, J=7.6 Hz, 18H).
- [719] Step 2) 4-bromo-6-fluoro-5-methyl-1-(triisopropylsilyl)-1H-indole
- To a solution of **Compound 2** (500 mg, 1.35 mmol, 1 eq) in THF (5 mL) was added LDA (2 M, 1.01 mL, 1.5 eq) at -78 °C for 30 min under N2 atmosphere. Then MeI (287.42 mg, 2.02 mmol, 126.06 μL, 1.5 eq) was added to the mixture. The mixture was stirred at 25 °C for 2 hr. The reaction mixture was quenched by addition with saturated NH4Cl aqueous (3 mL) at 25 °C, and then diluted with water 20 mL and extracted with ethyl acetate (20 mL * 2). The combined organic layers were washed with brine (40 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a crude product. **Compound 3** (500 mg, crude) were obtained as a

- yellow oil, which used into the next step without further purification.
- [721] Step 3) 4-bromo-6-fluoro-5-methyl-1H-indole
- To a solution of Compound 3 (500 mg, 1.30 mmol, 1 eq) in THF (8 mL) was added [722] TBAF·THF (1 M, 1.30 mL, 1 eq) at 0 °C. The mixture was stirred at 0 °C for 0.5 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was diluted with water 20 mL and extracted with ethyl acetate (20 mL * 2). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (Silical gel plate, Petroleum ether: Ethyl acetate=5:1) to give a crude product. The crude product was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um; mobile phase: [water(0.1%TFA)-ACN];B%: 48%-78%,10min). The cut fraction was concentrated under reduced pressure to remove ACN, the residue was washed with saturated NaHCO3 aqueous (10 mL). The mixture was extracted with ethyl acetate (20 mL * 2). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a product. Compound 4 (100 mg, 438.48 µmol, 33% yield) was obtained as a yellow solid.
- [723] ¹H NMR (400MHz, CDCl₃) δ = 8.21 (s, 1H), 7.20 (dd, J=2.4, 3.2 Hz, 1H), 7.06 (d, J=9.8 Hz, 1H), 6.60 6.52 (m, 1H), 2.44 (d, J=2.6 Hz, 3H).
- [724] Step 4) (1S,2S)-2-fluoro-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d] thiazol-2-yl)cyclopropane-1-carboxamide. 2HCl salt
- To a solution of **Compound 4** (100 mg, 438.48 μmol, 1 eq) and **Compound 5** (190.59 mg, 526.18 μmol, 1.2 eq) in dioxane (2 mL) and H2O (0.5 mL) was added Pd(dppf)Cl2 (32.08 mg, 43.85 μmol, 0.1 eq) and Na2CO3 (92.95 mg, 876.96 μmol, 2 eq) under N2 atmosphere. The mixture was stirred at 60 °C for 16 hr under N2 atmosphere. The reaction mixture was diluted with water 20 mL and extracted with Ethyl acetate (10 mL * 2). The combined organic layers were washed with brine (20 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Phenomenex Synergi C18 150*25*10um;mobile phase: [water(0.05%HCl)-ACN];B%: 43%-63%,10 min). **Example 114** (14.4 mg, 27.77 μmol, 6% yield, 88% purity, 2HCl) was obtained as a purple solid.
- [726] ¹H NMR (400MHz, DMSO- d_6) δ = 12.75 (s, 1H), 11.14 (s, 1H), 7.98 (d, J=1.4 Hz, 1H), 7.85 (d, J=8.3 Hz, 1H), 7.45 7.40 (m, 1H), 7.29 7.25 (m, 1H), 7.19 (d, J=10.5 Hz, 1H), 6.04 6.00 (m, 1H), 5.16 4.94 (m, 1H), 2.30 2.19 (m, 1H), 2.14 (d, J=2.6 Hz, 3H), 1.84 1.68 (m, 1H), 1.38 1.25 (m, 1H); LCMS (electrospray) m/z 384.10 (M+H)+.
- [727] Table 1 below shows the compounds of Examples along with general synthetic

methods used to make the compounds and characterization data.

[728] Table 1. Compounds of Examples

[729] [Table 1]

Ex #	Structure / Name	¹ H NMR / MS (M+1)	Synthetic Method
1	(1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	1H NMR (400MHz, DMSO-d6) δ = 12.75 (br s, 1H), 7.92 (s, 1H), 7.81 (d, J=8.3 Hz, 1H), 7.33 (br d, J=8.2 Hz, 2H), 7.20 - 7.11 (m, 2H), 5.16 - 4.92 (m, 1H), 2.23 (td, J=6.7, 13.4 Hz, 1H), 2.14 (s, 3H), 1.82 - 1.68 (m, 1H), 1.37 - 1.25 (m, 1H); LCMS (electrospray) m/z 345.00 (M+H)+.	A
2	F. N HCOOH (1S,2S)-N-(6-(2-chloro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide. FA salt	1H NMR (400MHz, CDCl3) δ = 7.85 (d, J=8.3 Hz, 1H), 7.66 (s, 1H), 7.34 (dd, J=2.3, 7.0 Hz, 1H), 7.29 (d, J=1.5 Hz, 1H), 7.23 - 7.18 (m, 2H), 5.03 - 4.81 (m, 1H), 2.10 (d, J=2.0 Hz, 3H), 2.07 - 1.96 (m, 2H), 1.45 - 1.37 (m, 1H); LCMS (electrospray) m/z 361.20 (M+H)+.	В
3	HCOOH (1S,2S)-N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide. FA salt	1H NMR (400MHz, CDCl3) $\delta = 7.83$ (d, J=8.3 Hz, 1H), 7.60 (d, J=1.0 Hz, 1H), 7.24 (dd, J=1.6, 8.3 Hz, 2H), 7.20 - 7.17 (m, 1H), 7.15 - 7.11 (m, 2H), 5.03 - 4.81 (m, 1H), 2.04 (d, J=2.5 Hz, 6H), 1.97 (d, J=5.4 Hz, 1H), 1.43 - 1.35 (m, 1H), 1.26 (br s, 1H); LCMS (electrospray) m/z 341.20 (M+H)+.	В
4	F. 2 HCI (1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. 2 HCl salt	1H NMR (400MHz, DMSO-d6) δ = 12.81 (br s, 1H), 8.67 (br d, J=12.7 Hz, 2H), 8.12 (s, 1H), 7.87 (d, J=8.4 Hz, 1H), 7.53 (br d, J=8.7 Hz, 1H), 5.16 - 5.11 (m, 1H), 5.00 - 4.95 (m, 1H), 2.45 (br s, 3H), 2.29 - 2.20 (m, 2H), 1.81 - 1.69 (m, 1H), 1.38 - 1.28 (m, 1H); LCMS (electrospray) m/z 328.10 (M+H)+.	A
5	N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide	1H NMR (400 MHz, DMSO-d6); δ 12.69 (s, CONH), 8.44-8.42 (m, 2H), 8.02 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 9.2 Hz, 1H), 7.34 (d, J = 5.4 Hz, 1H), 2.29 (s, 3H), 2.03-2.00 (m, 1H), 0.98-0.96 (m, 4H); LCMS (electrospray) m/z 310.05 (M+H)+.	C
6*	(1S,2S)-2-fluoro-N-(5-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	1H NMR (400 MHz, DMSO-d6); δ 12.77 (s, CONH), 8.45 (s, 2H), 8.07 (d, J = 8.0 Hz, 1H), 7.74 (s, 1H), 7.36-7.31 (m, 2H), 5.05 (td, J12 = 3.3 Hz, J13 = 65.7 Hz, 1H), 2.24 (s, 3H), 2.23-2.24 (m, 1H), 1.76 (dd, J12 = 3.6 Hz, J13 = 23.2 Hz, 1H), 1.32 (dd, J12 = 4.4 Hz, J13 = 11.6 Hz, 1H); LCMS (electrospray) m/z 328.10 (M+H)+.	A

[730]

		111 NR (D. (100 N. (1) D. (100 N. (1) N. (100 N. (1) N. (1) N. (100 N. (1) N. (100 N. (1) N. (1) N. (100 N. (1)	
		1H NMR (400 MHz, DMSO-d6); δ 12.71 (s, CONH) 8 45 (c, 2H) 8 05 (d, L = 8.4 Hz, 1H)	
	N Y Y	CONH), 8.45 (s, 2H), 8.05 (d, J = 8.4 Hz, 1H), 7.73 (s, 1H), 7.36-7.30 (m, 2H), 2.29 (s, 3H),	
7*	s	2.01 (t, J = 5.6 Hz, 1H), 0.97 (t, J = 3.8 Hz, 4H);	
	N-(5-(4-methylpyridin-3-	LCMS (electrospray) m/z 310.05 (M+H)+.	
	yl)benzo[d]thiazol-2-	Lewis (electrospiay) m/z 310.03 (W1+11)+.	
	yl)cyclopropanccarboxamide		С
		1H NMR (400 MHz, DMSO-d6); δ 12.78 (s,	
	F. S	CONH), 8.50 (s, 1H), 8.35 (s, 1H), 7.84 (d, J =	
	F'' F	8.4 Hz, 1H), 7.51-7.47 (m, 1H), 4.08 (s, 1H),	
8	(1S,2S)-2-fluoro-N-(6-(5-fluoro-4-	5.05 (td, J12 = 3.8 Hz, J13 = 65.8 Hz, 1H), 2.24	
	methylpyridin-3-yl)benzo[d]thiazol-2-	(s, 3H), 2.23-2.24 (m, 1H), 1.75 (dd, J12 = 3.8	
	yl)cyclopropanc-1-carboxamide	Hz, J13 = 23.4 Hz, 1H), 1.32 (dd, J12 = 2.6 Hz,	
		J13 = 7.0 Hz, 1H); LCMS (electrospray) m/z	ъ
		328.10 (M+H)+.	В
	HO N S	1H NMR (400 MHz, METHANOL-d4) δ= 8.39 (br s, 2H), 8.24 (br s, 1H), 7.92 - 7.79 (m,	
	l s	2H), 7.49 - 7.33 (m, 2H), 3.87 (dd, J=5.9, 11.5	
9	(1R,2S)-2-(hydroxymethyl)-N-(6-(4-	Hz, 1H), 3.69 (dd, J=8.5, 11.6 Hz, 1H), 2.36	
9	methylpyridin-3-yl)benzo[d]thiazol-2-	(s, 3H), 2.12 (dt, J=5.7, 8.0 Hz, 1H), 1.81 -	
	yl)cyclopropane-1-carboxamide	1.66 (m, 1H), 1.29 - 1.14 (m, 2H); LCMS	
		(electrospray) m/z 340.00 (M+H)+.	17
			K
	O HN—∕	1H NMR (400 MHz, DMSO-d6); δ 12.66 (s,	
		CONH), 9.90 (s, CONH), 7.91 (s, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.50-7.46 (m, 1H), 7.36 (d, J =	
	O N	8.0 Hz, 1H), 2.18 (s, 3H), 2.02 (s, 3H), 1.98 (m,	
10	N S	1H), 0.96 (t, J = 4.0 Hz, 4H); LCMS	
	N-(6-(5-acetamido-2-methylphenyl)	(electrospray) m/z 349.00 (M+H)+.	
	benzo[d]thiazol-2-yl)cyclopropane	(crossing) and a raise (in ray).	
	carboxamide		В
	F. O	1H NMR (400MHz, DMSO-d6) $\delta = 12.78$ (br	
	N A	s, 1H), 8.29 (d, J=5.0 Hz, 1H), 7.91 (s, 1H), 7.84	
	" HN → L] L	(d, J=8.2 Hz, 1H), 7.41 (d, J=4.9 Hz, 1H), 7.31	
	CF ₃ COOH	(dd, J=1.2, 8.3 Hz, 1H), 5.17- 4.93 (m, 1H),	
11		2.29-2.21 (m, 1H), 2.10 (s, 3H), 1.83-1.69 (m,	
	CF₃COOH	1H), 1.38-1.27 (m, 1H); LCMS (electrospray)	
	(1S,2S)-N-(6-(2-chloro-4-methylpyridin-3-	m/z 362.10 (M+H)+.	
	yl)benzo[d]thiazol-2-yl)-2-fluorocyclo		D
	propane-1-carboxamide. 2TFA salt	THE NIME (400 MILE DAIGO 40) S 10 70 (В
	F _N N N	1H NMR (400 MHz, DMSO-d6); δ 12.78 (s,	
	N S	CONH), 8.43 (s, 1H), 7.87-7.84 (m, 2H), 7.40	
12	n -	(d, J = 5.6 Hz, 1H), 7.28 (dd, J12 = 0.8 Hz, J13 = 8.0 Hz, 1H), 5.05 (td, J12 = 3.3 Hz, J13 = 65.7	
12	(1S,2S)-N-(6-(2,4-dimethylpyridin-3-	Hz, 1H), 2.24 (s, 3H), 2.22-2.24 (m, 1H), 1.78-	
	yl)benzo[d]thiazol-2-yl)-2-	1.73 (m, 1H), 1.31-1.23 (m, 1H); LCMS	
	fluorocyclopropane-1-carboxamide	(electrospray) m/z 342.10 (M+H)+.	A
	O N	1H NMR (400 MHz, DMSO); δ 12.98 (brs,	л
	N N N	1H), 8.56 (d, J = 2.4 Hz, 1H), 8.53(d, J = 2.0 Hz,	
13*	l H s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1.7		7.39(d, J = 4.8 Hz, 1H), 2.31 (s, 3H), 2.05-1.98	
	N-(6-(4-methylpyridin-3-yl)thiazolo[4,5-	(m, 1H), 1.02-0.98 (m, 4H); LCMS	
	b]pyridin-2-yl)cyclopropanecarboxamide	(electrospray) m/z 311.0 (M+H)+.	С

[731]

14	OH ON N S CF ₃ COOH (1S,2S)-2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. TFA salt	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 7.92 (d, <i>J</i> =1.6 Hz, 1H), 7.77 (d, <i>J</i> =8.3 Hz, 1H), 7.36 (dd, <i>J</i> =1.8, 8.3 Hz, 1H), 7.08 (d, <i>J</i> =8.1 Hz, 1H), 6.72 - 6.64 (m, 2H), 5.17 - 4.93 (m, 1H), 2.27 - 2.17 (m, 1H), 2.12 (s, 3H), 1.82 - 1.68 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 8.9, 12.8 Hz, 1H); LCMS (electrospray) m/z 343.2 (M+H)+.	D
15	OH (1S,2S)-2-fluoro-N-(6-(5-(2-hydroxypropan-2-yl)-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400 MHz, DMSO- d_6) δ = 1.29 (dq, J =15.12, 6.42 Hz, 1 H), 1.43 (s, 6 H), 1.66 - 1.84 (m, 1 H), 2.16 - 2.22 (m, 1 H), 2.23 (s, 3 H), 4.91 - 5.14 (m, 1 H), 4.98 (s, 1 H), 7.22 (d, J =8.53 Hz, 1 H), 7.32 - 7.36 (m, 2 H), 7.38 (dd, J =8.28, 1.51 Hz, 1 H), 7.76 (d, J =8.28 Hz, 1 H), 7.92 (s, 1 H), 12.61 (br s, 1 H); LCMS (electrospray) m/z 385.3 (M+H)+.	E
16	NH HO N S N (1R,2S)-2-(hydroxymethyl)-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	LCMS (electrospray) m/z 378.46 (M+H)+.	K
17	(1S,2S)-2-fluoro-N-(6-(2-methyl-5-(prop-1-en-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400 MHz, DMSO- d_6) δ = 1.29 (br s, 1 H), 1.64 - 1.80 (m, 1 H), 2.11 (s, 3 H), 2.18 (br s, 1 H), 2.24 (s, 3 H), 4.93 - 5.12(m, 1 H), 5.07 (s, 1 H), 5.44 (s, 1 H), 7.29 (d, J =7.91 Hz, 1 H), 7.35 (s, 1 H), 7.38 (br d, J =8.53 Hz, 1 H), 7.42 (br d, J =7.91 Hz, 1 H), 7.74 (br d, J =8.16 Hz, 1 H), 7.93 (s, 1 H), 11.65 - 13.53 (m, 1 H); LCMS (electrospray) m/z 367.3 (M+H)+.	E
18*	(1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)thiazolo[4,5-b]pyridin-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400MHz, DMSO-d ₆) δ = 13.06(s, 1H), 8.57-8.55(m, 2H), 8.49-8.47(m, 2H), 7.40-7.38(m, 1H), 5.16-4.99(m, 1H), 2.23(s, 3H), 2.28-2.25(m, 1H), 1.80-1.74(m, 1H), 1.37-1.32(m, 1H); LCMS (electrospray) m/z 329.0 (M+H)+.	F
19	N-(6-(6-aminopyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide	¹ H NMR (400MHz, DMSO- d_6) δ = 12.62 (s, 1H), 8.29 (d, J =6 Hz, 1H), 8.15 (d, J =3 Hz, 1H), 7.74 (m, 2H), 7.62 (dd, J =4, 4 Hz, 1H), 6.53 (d, J =22 Hz, 1H), 6.05 (s, 2H), 2.00 (m, 1H), 0.96 (m, 4H); LCMS (electrospray) m/z 311.38 (M+H)+.	C

[732]

	F,	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 13.05(s, 1)$	
	N N	1H), 8.45(s, 2H), 7.40-7.35(m, 1H), 7.23-	
20	F ₁ , N	7.15(m, 2H), 5.14-4.98(m, 1H), 2.39-2.26(m,	
	V n	1H), 2.21(s, 3H), 1.78-1.73(m, 1H), 1.36-	
	(1S,2S)-2-fluoro-N-(6-(2-fluoro-6-	1.31(m, 1H); LCMS (electrospray) m/z 346.0 (M+H)+.	
	methylphenyl)thiazolo[4,5-b]pyridin-2-yl)cyclopropane-1-carboxamide	340.0 (M111)+.	_
	yr)cyclopropane-1-carooxamide	¹ H NMR (400 MHz, CHLOROFORM-d) δ =	F
	F. o	1.28 - 1.44 (m, 1 H), 1.93 - 2.10 (m, 2 H), 2.39	
	F. O N HN S	(s, 3 H), 2.77 (s, 3 H), 4.73 - 4.97 (m, 1 H), 7.29	
21*	N S	(dd, <i>J</i> =8.22, 1.57 Hz, 1 H), 7.74 (d, <i>J</i> =1.25 Hz,	
	(1S,2S)-N-(5-(6-acetyl-4-methylpyridin-3-	1 H), 7.94 (d, <i>J</i> =8.16 Hz, 1 H), 8.01 (s, 1 H),	
	yl)benzo d thiazol-2-yl)-2-	8.55 (s, 1 H), 10.23 (br s, 1 H); LCMS	
	fluorocyclopropane-1-carboxamide	(electrospray) m/z 370.3 (M+H)+.	В
	0 N	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.71 (br s,	
	F. OH CE COOL	1H), 9.43 (br s, 1H), 7.89 (s, 1H), 7.76 (d, <i>J</i> =8.3	
	N S OH CF ₃ COOH	Hz, 1H), 7.35 (dd, <i>J</i> =1.0, 8.3 Hz, 1H), 7.09 -	
22	(1S,2S)-2-fluoro-N-(6-(3-hydroxy-2-	7.01 (m, 1H), 6.82 (d, <i>J</i> =7.9 Hz, 1H), 6.70 (d, <i>J</i> =7.5 Hz, 1H), 5.16 - 4.92 (m, 1H), 2.23 (td, <i>J</i> =7.5 Hz, 1H), 5.16 - 4.92 (m, 1H), 2.23 (td, <i>J</i> =7.5 Hz, 1H), 5.16 - 4.92 (m, 1H), 2.23 (td, <i>J</i> =7.5 Hz, 1H), 5.16 - 4.92 (m, 1H), 2.23 (td, <i>J</i> =7.5 Hz, 1H), 5.16 - 4.92 (m, 1H), 2.23 (td, <i>J</i> =7.5 Hz, 1H), 6.70 (d, <i>J</i> =7.5 Hz, 1H)	
	methylphenyl)benzo[d]thiazol-2-	J=6.8, 13.5 Hz, 1H), 2.04 (s, 3H), 1.82 - 1.67	
	yl)cyclopropane-1-carboxamide. TFA salt	(m, 1H), 1.37 - 1.24 (m, 1H); LCMS	
		(electrospray) m/z 343.2 (M+H)+.	D
	→ N	1 H NMR (400MHz, CHLOROFORM-d) δ =	
	O N-N-NH2	12.36 (br s, 1H), 7.81 (dd, J=1.2, 8.3 Hz, 1H),	
	F. NH2	7.61 (d, J=1.2 Hz, 1H), 7.21 (dd, J=1.5, 8.3	
23		Hz, 1H), 6.32 (s, 1H), 4.97 - 4.70 (m, 1H), 4.57 (br s, 2H), 2.14 (d, J=2.7 Hz, 3H), 2.11 -	
	(1S,2S)-N-(6-(6-amino-2,4-	1.96 (m, 2H), 1.94 (d, J=3.2 Hz, 3H), 1.37 -	
	dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)- 2-fluorocyclopropane-1-carboxamide	1.22 (m, 1H); LCMS (clectrospray) m/z	
	2 Intorocycropropane i carooxamiae	357.20 (M+H)+	В
	NH	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.77$ -	
		12.67 (m, 1H), 7.85 (s, 1H), 7.80 (d, <i>J</i> =8.3 Hz,	
	F. N S	1H), 7.30 - 7.25 (m, 1H), 7.10 (d, <i>J</i> =8.3 Hz,	
24		1H), 5.16 - 4.93 (m, 1H), 3.83 (br t, <i>J</i> =8.6 Hz, 2H), 2.77 (br s, 2H), 2.23 (td, <i>J</i> =6.7, 13.5 Hz,	
	(1S,2S)-2-fluoro-N-(6-(5-methylindolin-4-	1H), 2.03 (s, 3H), 1.81 - 1.69 (m, 1H), 1.50 (br	
	yl)benzo[d]thiazol-2-yl)cyclopropane-1-	s, 9H), 1.35 - 1.27 (m, 1H); LCMS	
	carboxamide	(electrospray) m/z 468.3 (M+H)+	В
	E Si	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.77 (s,	
	E SI	1H), 8.06 (d, <i>J</i> =8.1 Hz, 1H), 7.69 - 7.64 (m,	
		1H), 7.47 (d, <i>J</i> =8.4 Hz, 1H), 7.39 (d, <i>J</i> =3.2 Hz, 1H), 7.31 - 7.26 (m, 1H), 7.14 (d, <i>J</i> =8.6 Hz,	
	HN N	1H), 7.31 - 7.26 (III, 1H), 7.14 (II, 3-8.6 HZ, 1H), 6.04 (II, 3-2.7 Hz, 1H), 5.54 (III, 3-8.6 H	
25*	s —()	- 4.93 (m, 1H), 3.51 - 3.42 (m, 2H), 2.28 - 2.18	
		(m, 4H), 1.83 - 1.69 (m, 1H), 1.37 - 1.27 (m,	
	(1S,2S)-2-fluoro-N-(5-(5-methyl-1-((2-	1H), 0.87 - 0.78 (m, 2H), -0.020.11 (m, 9H);	
	(trimethylsilyl)ethoxy)methyl)-1H-indol-4-	LCMS (electrospray) m/z 496.4 (M+H)+	
	yl)benzo[d]thiazol-2-yl)cyclopropane-1- carboxamide		В
	Carooxamide		ם

[733]

H. NMR (400MHz, DMSO-d ₀) & = 12.99(S, Hb), 8.12(S, 1H), 7.39-7.33(m, Hb), 7.18-7.11(m, 2H), 4.99-4.98(m, Hb), 2.24-2.23(m, Hb), 2.14-(S, 3H), 1.81-1.73(m, Hb), 1.36-1.31(m, Hb), 1.14(S, 3H), 1.81-1.73(m, Hb), 1.36-1.31(m, Hb), 1.15(Ms, Glectrospray) m/z 346.1 (M+H)+. H. NMR (400MHz, DMSO-d ₀) & = 8.39-8.37 (m, 2H), 7.70 (s, Hh), 7.55 (br, 2H), 7.40 (d, J=8.4 Hz, Hb), 7.30 (d, J=5.2 Hz, Hb), 7.21 (d, J=8.4 Hz, Hb), 7.30 (d, J=5.2 Hz, Hb), 7.21 (d, J=8.4 Hz, Hb), 1.38 (d, J=6.60 Hz, 3 Hb), 1.94 (J=2.10 (m, 2 Hb), 2.32 (s, 3 Hb), 3.34 (br, s, 1 Hb), 1.94 (J=2.10 (m, 2		_		
1H), 7.18-7.11(m, 2H), 4.99-4.98(m, 1H), 2.24-2.3(m, 1H), 2.14(s, 3H), 1.81-1.73(m, 1H), 2.34(s, 1H), 7.35 (br. 2H), 7.40 (d. J=8.4 Hz, 1H), 7.30 (d. J=5.2 Hz, 1H), 7.21 (d. J=8.4 Hz, 1H), 7.30 (d. J=5.2 Hz, 1H), 7.21 (d. J=8.4 Hz, 1H), 7.30 (d. J=5.2 Hz, 1H), 7.21 (d. J=8.4 Hz, 1H), 7.30 (d. J=5.2 Hz, 1H), 7.21 (d. J=8.4 Hz, 1H), 7.30 (d. J=5.2 Hz, 1H), 7.21 (d. J=8.4 Hz, 1H), 7.30 (d. J=6.60 Hz, 3 H), 1.94-2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br. s, 1 H), 4.71-4.92 (m, 1 H), 4.93-5.00 (m, 1 H), 7.24 (s, 1 H), 7.63 (s, 1 H), 7.22 (d. J=1.31 Hz, 1H), 7.90 (d. J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.95 (d. J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.95 (d. J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.95 (d. J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.95 (d. J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.95 (d. J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.95 (d. J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.95 (d. J=8.07 Hz, 1 Hz, 1 Hz), 1.95 (d. J=8.07 Hz), 1.95 (d. J=8		, F	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.99(s, $	
1.36-1.31(m. 1H); LCMS (electrospray) m/z 346.1 (M+H)+.			1H), 9.09(s, 1H), 8.12(s, 1H), 7.39-7.33(m,	
1.36-1.31(m. 1H); LCMS (electrospray) m/z 346.1 (M+H)+.			1H), 7.18-7.11(m, 2H), 4.99-4.98(m, 1H), 2.24-	
1.36-1.31(m. 1H); LCMS (electrospray) m/z 346.1 (M+H)+.	26	F _C N S /	2.23(m, 1H), 2.14(s, 3H), 1.81-1.73(m, 1H),	
346.1 (M+H)+. 346.1	20	V n		
The interrection of the				
H NMR (400MHz, DMSO-d _e) δ = 8.39-8.37 (m. 2H), 7.70 (s. 1H), 7.55 (br. 2H), 7.40 (d. J=8.4 Hz, 1H), 7.30 (d. J=5.2 Hz, 1H), 7.21 (d. J=8.4 Hz, 1H), 1.228 (s. 3H); LCMS (electrospray) m/z 242.0(M+H)+. A H NMR (400 MHz, CHLOROFORM-d) δ = 1.29 - 1.39 (m. 1 H), 1.58 (d. J=6.6 0 Hz, 3 H), 1.40 (d. J=8.1 Hz, 1H), 1.28 (s. 3 H), 4.33 (br. s. 1 H), 4.71 - 4.92 (m. 1 H), 4.93 - 5.00 (m. 1 H), 4.71 - 4.92 (m. 1 H), 4.93 - 5.00 (m. 1 H), 7.72 (d. J=1.34 Hz, 1 H), 7.90 (d. J=8.07 Hz, 1 H), 8.41 (s. 1 H), 1.063 (br. s. 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. B		methylphenyl)thiazolo[4,5-c]pyridin-2-	340.1 (W111)1.	
(m, 2H), 7.70 (s, 1H), 7.55 (br, 2H), 7.40 (d,		yl)cyclopropane-1-carboxamide		A
(m, 2H), 7.70 (s, 1H), 7.55 (br, 2H), 7.40 (d,		/==\ /=N	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 8.39-8.37$	
J=8.4 Hz, 1H), 7.30 (d, J=5.2 Hz, 1H), 7.21 (d, J=8.4 Hz, 1H), 2.28 (s, 3H); LCMS (electrospray) m/z 242.0(M+H)+. A		N√		
30* F ₃ G-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide J=8.4 Hz, 1H), 2.28 (s. 3H); LCMS (electrospray) m/z 242.0(M+H)+. A	27*			
(electrospray) m/z 242.0(M+H)+. A A H NMR (400 MHz, CHLOROFORM-d) & = 1.29 - 1.39 (m, 1 H), 1.58 (d, J=6.60 Hz, 3 H), 1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 - 4.92 (m, 1 H), 4.93 - 5.00 (m, 1 H), 1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 - 4.92 (m, 1 H), 4.93 - 5.00 (m, 1 H), 1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 - 4.92 (m, 1 H), 1.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.063 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. A H NMR (400 MHz, CHLOROFORM-d) & = 1.29 (m, 2 H), 4.71 - 4.92 (m, 1 H), 4.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.06 (do MHz, DMSO-ds) & = 1.31 (dq, J=15.10, 6.46 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.18 - 2.26 (m, 1 H), 2.31 (s, 3 H), 4.58 (br d, J=3.79 Hz, 2 H), 4.91 - 5.17 (m, 1 H), 5.42 (br s, 1 H), 7.72 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 7.33 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 7.33 (d, J=8.9 Hz, 1 H), 7.42 (s, 1 H), 7.43 (s, 1 H), 7.35 (d, J=8.2 Hz, 1 H), 7.63 (s, 1 H), 7.35 (d, J=8.2 Hz, 1 H), 7.67 (d, J=1.1 Hz, 1 H), 7.35 (d, J=8.2 Hz, 1 H), 7.05 (d, J=8.3 Hz, 1 H		_		
H NMR (400 MHz, CHLOROFORM-d) & = 1.29 - 1.39 (m, 1 H), 1.58 (d, J=6.60 Hz, 3 H), 1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 - 4.92 (m, 1 H), 4.73 - 5.00 (m, 1 H), 7.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.063 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G		6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-		
1.29 - 1.39 (m, 1 H), 1.58 (d, /=6.60 Hz, 3 H), 1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 - 4.92 (m, 1 H), 4.93 - 5.00 (m, 1 H), 7.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.0.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. 1.29 - 1.39 (m, 1 H), 1.58 (d, /=6.60 Hz, 3 H), 1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 - 4.92 (m, 1 H), 4.72 - 7.28 (m, 1 H), 7.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.0.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. 1.29 - 1.39 (m, 1 H), 1.58 (d, /=6.60 Hz, 3 H), 1.94 - 2.10 (m, 2 H), 4.71 - 4.92 (m, 1 H), 4.71 - 4.92 (m, 1 H), 4.71 - 4.92 (m, 1 H), 7.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 1.0.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (m, 1 H), 1.31 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 H), 8.34 (s, 1 H), 1.73 (d, J=8.07 Hz, 1 Hz,		amine	(electrospray) m/z 242.0(M+H)+.	A
1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1 H), 4.71 - 4.92 (m, 1 H), 4.93 - 5.00 (m, 1 H), 7.24 (s, 1 H), 7.26 - 7.28 (m, 1 H), 7.20 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. F.		F,	¹ H NMR (400 MHz, CHLOROFORM- d) δ =	
H, 4.71 - 4.92 (m, 1 H), 4.93 - 5.00 (m, 1 H), 7.24 (s, 1 H), 7.26 - 7.28 (m, 1 H), 7.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+ G H NMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=1.51, 0, 6.46 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.18 - 2.26 (m, 1 H), 2.14 (s, 1 H), 1.731 (d, J=8.07 Hz, 1 H), 5.42 (br s, 1 H), 7.731 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.731 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.731 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.73 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 338.3 (M+H)+ H NMR (400MHz, DMSO-d ₆) δ = 12.71 (s, 1 H), 8.04 (d, J=8.1 Hz, 1 H), 7.63 (s, 1 H), 7.33 (dt, J=5.9, 7.9 Hz, 1 H), 7.22 - 7.16 (m, 2 H), 7.13 (t, J=8.9 Hz, 1 H), 2.14 (s, 3 H), 2.05 - 1.96 (m, 1 H), 1.01 - 0.93 (m, 4 H); LCMS (electrospray) m/z 327.0 (M+H)+ A NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1 H), 11.06 (br s, 1 H), 8.04 (d, J=8.2 Hz, 1 H), 7.67 (d, J=1.1 Hz, 1 H), 7.35 - 7.22 (m, 3 H), 7.05 (d, J=8.3 Hz, 1 H), 6.00 (br s, 1 H), 5.18 - 4.89 (m, 1 H), 2.28 - 2.18 (m, 4 H), 1.83 - 1.70 (m, 1 H), 1.31 (idd, J=6.3, 9.0, 12.8 Hz, 1 H); LCMS (electrospray) m/z 366.2 (M+H)+.		N OH	1.29 - 1.39 (m, 1 H), 1.58 (d, <i>J</i> =6.60 Hz, 3 H),	
H, 4.71 - 4.92 (m, 1 H), 4.93 - 5.00 (m, 1 H), 7.24 (s, 1 H), 7.26 - 7.28 (m, 1 H), 7.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+ G H NMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=1.51, 0, 6.46 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.18 - 2.26 (m, 1 H), 2.14 (s, 1 H), 1.731 (d, J=8.07 Hz, 1 H), 5.42 (br s, 1 H), 7.731 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.731 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.731 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.73 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 338.3 (M+H)+ H NMR (400MHz, DMSO-d ₆) δ = 12.71 (s, 1 H), 8.04 (d, J=8.1 Hz, 1 H), 7.63 (s, 1 H), 7.33 (dt, J=5.9, 7.9 Hz, 1 H), 7.22 - 7.16 (m, 2 H), 7.13 (t, J=8.9 Hz, 1 H), 2.14 (s, 3 H), 2.05 - 1.96 (m, 1 H), 1.01 - 0.93 (m, 4 H); LCMS (electrospray) m/z 327.0 (M+H)+ A NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1 H), 11.06 (br s, 1 H), 8.04 (d, J=8.2 Hz, 1 H), 7.67 (d, J=1.1 Hz, 1 H), 7.35 - 7.22 (m, 3 H), 7.05 (d, J=8.3 Hz, 1 H), 6.00 (br s, 1 H), 5.18 - 4.89 (m, 1 H), 2.28 - 2.18 (m, 4 H), 1.83 - 1.70 (m, 1 H), 1.31 (idd, J=6.3, 9.0, 12.8 Hz, 1 H); LCMS (electrospray) m/z 366.2 (M+H)+.		HN	1.94 - 2.10 (m, 2 H), 2.32 (s, 3 H), 4.33 (br s, 1	
(15,2\$)-2-fluoro-N-(5-(6-(1-hydroxycthyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide 7.24 (s, 1 H), 7.26 - 7.28 (m, 1 H), 7.72 (d, J=1.34 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.41 (s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. F.	28*	S		
4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide F. O N OH S O'HN (4.5-(6.4)		(1C 2C) 2 flyono NI (5 (6 (1 by/decorrectby/)	1	
(s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. (IS,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. (IS,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide (IS,2S)-2-fluoro-N-(5-(5-(methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide (s, 1 H), 10.63 (br s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. (IS,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)-4-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide (IS,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-				
m/z 372.2 (M+H)+. G m/z 372.2 (M+H)+. G HNMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=15.10, 6.46 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.18 - 2.26 (m, 1 H), 2.31 (s, 3 H), 4.58 (br d, J=3.79 Hz, 2 H), 4.91 - 5.17 (m, 1 H), 5.42 (br s, 1 H), 7.31 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.72 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. H G M/z 372.2 (M+H)+. G H NMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=15.10, 6.46 Hz, 1 H), 2.18 (s, 3 H), 4.58 (br d, J=3.79 Hz, 2 H), 4.91 - 5.17 (m, 1 H), 5.42 (br s, 1 H), 7.31 (d, J=8.07 Hz, 1 H), 8.03 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. H H NMR (400 MHz, DMSO-d ₆) δ = 12.71 (s, 1 H), 8.04 (d, J=8.07 Hz, 1 H), 7.72 (s, 1 H), 7.22 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1 H), 7.23 (dt, J=5.9, 7.9 Hz, 1 H), 7.25 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1 H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A H NMR (400 MHz, DMSO-d ₆) δ = 12.73 (br s, 1 H), 7.25 - 7.12 (m, 3 H), 7.63 (s, 1 H), 7.13 (t, J=8.9 Hz, 1 H), 2.14 (s, 3 H), 2.05 - 1.96 (m, 1 H), 1.01 - 0.93 (m, 4 H); LCMS (electrospray) m/z 327.0 (m+H)+. A H NMR (400 MHz, DMSO-d ₆) δ = 12.71 (s, 1 H), 8.31 (t, J=8.9 Hz, 1 H), 7.21 (t, J=8.9 Hz, 1 H), 7.22 - 7.16 (m, 2 H), 7.23 (t, J=8.9 Hz, 1 H), 7.23 (t, J=8.9 Hz, 1 H), 7.23 (t, J=8.9 Hz, 1 H), 7.24 (s, J=8.9 Hz, J=9.12 (t, J=8.9 Hz, J=9.12 (t, J=9.9 Hz				
H NMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=15.10, 6.46 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.18 - 2.26 (m, 1 H), 2.31 (s, 3 H), 4.58 (br d, J=3.79 Hz, 2 H), 4.91 - 5.17 (m, 1 H), 5.42 (br s, 1 H), 7.31 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.72 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. H NMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=15.10, 6.46 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.18 (br d, J=3.79 Hz, 2 H), 4.91 - 5.17 (m, 1 H), 5.42 (br s, 1 H), 7.31 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.72 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.03 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. H NMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=3.79 Hz, 1 H), 7.42 (s, 1 H), 8.04 (d, J=8.1 Hz, 1 H), 7.63 (s, 1 H), 7.33 (dt, J=5.9, 7.9 Hz, 1 H), 7.63 (s, 1 H), 7.33 (dt, J=5.9, 7.9 Hz, 1 H), 7.63 (s, 1 H), 7.33 (dt, J=5.9, 7.9 Hz, 1 H), 7.64 (m, 1 H), 1.01 - 0.93 (m, 4 H); LCMS (electrospray) m/z 327.0 (M+H)+. H NMR (400 MHz, DMSO-d ₆) δ = 1.31 (dq, J=6.30, 0.182 (m, 1 H), 1.31 (dd, J=6.30, 0.182 (m, 1 H), 1.31 (dd		y1)cyclopropane-1-carboxamide	1	C
30* Second Note: Provided the content of the co		-	1 1	<u> </u>
29* (1S,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)- 4-methylpyridin-3-yl)benzo[d]thiazol-2- yl)cyclopropane-1-carboxamide 2.18 - 2.26 (m, 1 H), 2.31 (s, 3 H), 4.58 (br d, J=3.79 Hz, 2 H), 4.91 - 5.17 (m, 1 H), 5.42 (br s, 1 H), 7.31 (d, J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.72 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. H NMR (400MHz, DMSO-de) & = 12.71 (s, 1H), 8.04 (d, J=8.1 Hz, 1H), 7.63 (s, 1H), 7.13 (t, J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. H NMR (400MHz, DMSO-de) & = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.		N OH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
29* (1S,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)- 4-methylpyridin-3-yl)benzo[d]thiazol-2- yl)cyclopropane-1-carboxamide F (1S,2S)-2-fluoro-N-(5-(6-(hydroxymethyl)- 4-methylpyridin-3-yl)benzo[d]thiazol-2- yl)cyclopropane-1-carboxamide F (1S,2S)-2-fluoro-6- methylphenyl)benzo[d]thiazol-2- yl)cyclopropanecarboxamide. 12.71 (s, 1H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. 14 NMR (400MHz, DMSO-d ₆) δ = 12.71 (s, 1H), 7.33 (dt, J=5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. 15 (1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-		N N		
(IS,2S)-2-fluoro-N-(5-(6-(h)droxymethyl)- 4-methylpyridin-3-yl)benzo[d]thiazol-2- yl)cyclopropane-1-carboxamide F, γ,		N S		
4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide 8, 1 H), 7.31 (d. J=8.07 Hz, 1 H), 7.42 (s, 1 H), 7.72 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. 1 H NMR (400MHz, DMSO-d ₆) δ = 12.71 (s, 1H), 8.04 (d, J=8.1 Hz, 1H), 7.63 (s, 1H), 7.33 (dt, J=5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. 1 H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (idd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.	29*	(1\$ 2\$)-2-fluoro-N-(5-(6-(hydroxymethyl)-	J=3.79 Hz, 2 H), 4.91 - 5.17 (m, 1 H), 5.42 (br	
yl)cyclopropane-1-carboxamide 7. /2 (s, 1 H), 8.06 (d, J=8.07 Hz, 1 H), 8.33 (s, 1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. H NMR (400MHz, DMSO-d ₆) δ = 12.71 (s, 1H), 8.04 (d, J=8.1 Hz, 1H), 7.63 (s, 1H), 7.33 (dt, J=5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.			s, 1 H), 7.31 (d, <i>J</i> =8.07 Hz, 1 H), 7.42 (s, 1 H),	
1 H), 12.70 (br s, 1 H); LCMS (electrospray) m/z 358.3 (M+H)+. H NMR (400MHz, DMSO-d ₆) δ = 12.71 (s, 1H), 8.04 (d, J=8.1 Hz, 1H), 7.63 (s, 1H), 7.33 (dt, J=5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. LCMS (electrospray) m/z 327.0 (M+H)+. A 1 H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.		1	7.72 (s, 1 H), 8.06 (d, <i>J</i> =8.07 Hz, 1 H), 8.33 (s,	
H NMR (400MHz, DMSO-d ₆) δ = 12.71 (s, 1H), 8.04 (d, J=8.1 Hz, 1H), 7.63 (s, 1H), 7.33 (dt, J=5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.		yr)cyclopropane-r-carooxamide	1 H), 12.70 (br s, 1 H); LCMS (electrospray)	
12.71 (s, 1H), 8.04 (d, <i>J</i> =8.1 Hz, 1H), 7.63 (s, 1H), 7.33 (dt, <i>J</i> =5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, <i>J</i> =8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, <i>J</i> =8.2 Hz, 1H), 7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.			m/z 358.3 (M+H)+.	H
12.71 (s, 1H), 8.04 (d, <i>J</i> =8.1 Hz, 1H), 7.63 (s, 1H), 7.33 (dt, <i>J</i> =5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, <i>J</i> =8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, <i>J</i> =8.2 Hz, 1H), 7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.		F	¹ H NMR (400MHz, DMSO-d ₆) δ =	
7.63 (s, 1H), 7.33 (dt, J=5.9, 7.9 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A 1 H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (idd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.			12.71 (s. 1H), 8.04 (d. <i>J</i> =8.1 Hz, 1H).	
30* N-(5-(2-fluoro-6- methylphenyl)benzo[d]thiazol-2- yl)cyclopropanecarboxamide. TFA salt H N-(5-(2-fluoro-6- methylphenyl)benzo[d]thiazol-2- yl)cyclopropanecarboxamide. TFA salt H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, <i>J</i> =8.2 Hz, 1H), 7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.				
J=8.9 Hz, 1H), 2.14 (s, 3H), 2.05 - 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+. LCMS (electrospray) m/z 366.2 (M+H)+.	30*			
N-(5-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide. TFA salt 1.96 (m, 1H), 1.01 - 0.93 (m, 4H); LCMS (electrospray) m/z 327.0 (M+H)+. A 1 H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.		N S CE.COOH		
methylphenyl)benzo[d]thiazol-2- yl)cyclopropanecarboxamide. TFA salt LCMS (electrospray) m/z 327.0 (M+H)+. A H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, J=8.2 Hz, 1H), 7.67 (d, J=1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, J=8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+. (1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-		_		
yl)cyclopropanecarboxamide. TFA salt (M+H)+. A H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, <i>J</i> =8.2 Hz, 1H), 7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+. (1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-				
1 H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s, 1H), 11.06 (br s, 1H), 8.05 (d, <i>J</i> =8.2 Hz, 1H), 7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.				
1H), 11.06 (br s, 1H), 8.05 (d, <i>J</i> =8.2 Hz, 1H), 7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.				A
7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H), 7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.		H		
7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 - 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.				
31* 4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70 (m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.			7.67 (d, <i>J</i> =1.1 Hz, 1H), 7.35 - 7.22 (m, 3H),	
(m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+. (1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-			7.05 (d, <i>J</i> =8.3 Hz, 1H), 6.00 (br s, 1H), 5.18 -	
(m, 1H), 1.31 (tdd, <i>J</i> =6.3, 9.0, 12.8 Hz, 1H); LCMS (electrospray) m/z 366.2 (M+H)+. (1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-	31*		4.89 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.70	
LCMS (electrospray) m/z 366.2 (M+H)+. (1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-			(m, 1H), 1.31 (tdd, J=6.3, 9.0, 12.8 Hz, 1H);	
(1S,2S)-2-fluoro-N-(5-(5-methyl-1H-indol- 4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-				
4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-		(1S 2S)-2-fluoro-N-(5-(5-mathyl-1H-indol		
		I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Carooxamilde				т
		Carooxamuc		1

86

[734]

32	CF3COOH (1S,2S)-N-(6-(1-acetyl-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide. TFA salt	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.74 (s, 1H), 7.95 (d, <i>J</i> =8.3 Hz, 1H), 7.88 (d, <i>J</i> =1.4 Hz, 1H), 7.80 (d, <i>J</i> =8.3 Hz, 1H), 7.29 (dd, <i>J</i> =1.7, 8.2 Hz, 1H), 7.10 (d, <i>J</i> =8.5 Hz, 1H), 5.18 - 4.91 (m, 1H), 4.02 (br t, <i>J</i> =8.4 Hz, 2H), 2.85 (br s, 2H), 2.27 - 2.19 (m, 1H), 2.13 (s, 3H), 2.05 (s, 3H), 1.82 - 1.67 (m, 1H), 1.37 - 1.21 (m, 1H); LCMS (electrospray) m/z 410.1 (M+H)+.	J
33*	HO N N S S S S S S S S S S S S S S S S S	¹ H NMR (400MHz, DMSO-d ₆) δ = 7.95 (br d, J =7.9 Hz, 1H), 7.54 (s, 1H), 7.36 - 7.27 (m, 1H), 7.17 (d, J =7.6 Hz, 1H), 7.15 - 7.09 (m, 2H), 3.69 (dd, J =5.6, 11.3 Hz, 1H), 3.54 - 3.45 (m, 1H), 2.14 (s, 3H), 2.05 - 1.95 (m, 1H), 1.60 - 1.48 (m, 1H), 1.12 - 0.98 (m, 2H); LCMS (electrospray) m/z 357.1 (M+H)+.	K
34	N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobutanecarboxamide.TFA salt	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.26 (s, 1H), 7.92 (s, 1H), 7.79 (d, <i>J</i> =8.3 Hz, 1H), 7.36 - 7.29 (m, 2H), 7.20 - 7.09 (m, 2H), 3.43 (quin, <i>J</i> =8.3 Hz, 1H), 2.31 - 2.11 (m, 7H), 2.03 - 1.94 (m, 1H), 1.90 - 1.79 (m, 1H); LCMS (electrospray) m/z 341.1 (M+H)+.	A
35*	N-(6-(5-fluoro-4-methylpyridin-3-yl)thiazolo[4,5-b]pyridin-2-yl)cyclopropancearboxamide	¹ H NMR (400MHz, DMSO-d ₆) δ = 13.02(s, 1H), 8.59-8.56(m, 3H), 8.40(s, 1H), 2.25(s, 3H), 2.04-1.98(m, 1H), 1.02-0.99(m, 4H); LCMS (electrospray) m/z 329.0(M+H)+.	C
36	FOR HN S N 2,2-difluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400 MHz, DMSO- d_6) δ = 2.12 - 2.21 (m, 2 H), 2.31 (s, 3 H), 3.01 (dt, J =12.99, 9.46 Hz, 1 H), 7.36 (d, J =5.01 Hz, 1 H), 7.48 (dd, J =8.31, 1.83 Hz, 1 H), 7.86 (d, J =8.31 Hz, 1 H), 8.07 (d, J =1.59 Hz, 1 H), 8.42 - 8.47 (m, 2 H), 12.88 (br s, 1 H); LCMS (electrospray) m/z 346.0 (M+H)+.	A
37	(1s,3s)-3-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamide	¹ H NMR (400 MHz, CHLOROFORM- d) δ = 2.34 (s, 3 H), 2.62 - 2.75 (m, 5 H), 4.85 - 5.12 (m, 1 H), 7.24 (d, J =4.89 Hz, 1 H), 7.42 (dd, J =8.34, 1.69 Hz, 1 H), 7.78 - 7.85 (m, 2 H), 8.46 - 8.54 (m, 2 H), 9.63 (br s, 1 H); LCMS (electrospray) m/z 342.3 (M+H)+.	A
38	(1r,3r)-3-fluoro-N-(6-(4-methylpyridin-3-yl)benzo d thiazol-2-yl)cyclobutane-1-carboxamide	¹ H NMR (400 MHz, CHLOROFORM- <i>d</i>) δ = 2.35 (s, 3 H), 2.47 - 2.87 (m, 4 H), 3.21 - 3.41 (m, 1 H), 5.24 - 5.49 (m, 1 H), 7.25 (d, <i>J</i> =5.02 Hz, 1 H), 7.40 - 7.48 (m, 1 H), 7.78 - 7.86 (m, 2 H), 8.47 - 8.56 (m, 2 H), 10.43 (br s, 1 H); LCMS (electrospray) m/z 342.1 (M+H)+.	A

[735]

		11	
	_ F	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.91 (br s,	
		1H), 7.95 (s, 1H), 7.84 (d, <i>J</i> =8.3 Hz, 1H), 7.38	
		- 7.28 (m, 2H), 7.21 - 7.08 (m, 2H), 3.01 (td,	
39	F N S	<i>J</i> =9.5, 12.8 Hz, 1H), 2.22 - 2.11 (m, 5H); LCMS	
	2,2-difluoro-N-(6-(2-fluoro-6-	(electrospray) m/z 363.0 (M+H)+.	
	methylphenyl)benzo d thiazol-2-		
	yl)cyclopropane-1-carboxamide		
	ji)eyelepropule i euroomamide		A
	F	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.47$ (s,	
		1H), 7.94 (s, 1H), 7.80 (d, <i>J</i> =8.3 Hz, 1H), 7.36	
		- 7.29 (m, 2H), 7.21 - 7.09 (m, 2H), 5.19 - 4.95	
40	N	(m, 1H), 2.96 - 2.85 (m, 1H), 2.65 - 2.56 (m,	
		2H), 2.41 - 2.35 (m, 2H), 2.14 (s, 3H); LCMS	
	(1s,3s)-3-fluoro-N-(6-(2-fluoro-6-	(electrospray) m/z 359.1 (M+H)+.	
	methylphenyl)benzo[d]thiazol-2-		
	yl)cyclobutane-1-carboxamide	1	A
	F	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.46 (br s,	
	O N ()	1H), 7.93 (d, <i>J</i> =1.3 Hz, 1H), 7.80 (d, <i>J</i> =8.3 Hz,	
		1H), 7.36 - 7.29 (m, 2H), 7.20 - 7.09 (m, 2H),	
41		5.37 - 5.13 (m, 1H), 3.49 - 3.39 (m, 1H), 2.66 -	
	(1-2-) 2 (1-2-) 1 (6 (2 (1-2-)	2.55 (m, 2H), 2.48 - 2.39 (m, 2H), 2.14 (s, 3H);	
	(1r,3r)-3-fluoro-N-(6-(2-fluoro-6-	LCMS (electrospray) m/z 359.1 (M+H)+.	
	methylphenyl)benzo[d]thiazol-2-		
	yl)cyclobutane-1-carboxamide	HILD ED (400) FIL DI (50 1) S 10 50 4	A
	F	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.59 (br s,	
		1H), 7.95 (s, 1H), 7.82 (d, <i>J</i> =8.3 Hz, 1H), 7.37	
		- 7.28 (m, 2H), 7.21 - 7.09 (m, 2H), 3.31 (dquin,	
42	F H	J=2.8, 8.4 Hz, 1H), 2.95 - 2.81 (m, 4H), 2.14 (s,	
12	F F	3H); LCMS (electrospray) m/z 377.0 (M+H)+.	
	3,3-difluoro-N-(6-(2-fluoro-6-		
	methylphenyl)benzo[d]thiazol-2-		
	yl)cyclobutane-1-carboxamide		A
	/=\	¹ H NMR (400 MHz, METHANOL- d_4) δ = 1.91	
	O N	- 2.01 (m, 1 H), 2.05 - 2.14 (m, 1 H), 2.25 - 2.33	
		(m, 2 H), 2.36 (s, 3 H), 2.37 - 2.46 (m, 2 H),	
43	NI (C (A mode to midio 2	3.44 (quin, <i>J</i> =8.47 Hz, 1 H), 7.37 - 7.44 (m, 2	
	N-(6-(4-methylpyridin-3-	H), 7.82 (d, <i>J</i> =8.28 Hz, 1 H), 7.88 (d, <i>J</i> =1.63	
	yl)benzo[d]thiazol-2-	Hz, 1 H), 8.38 (t, <i>J</i> =2.51 Hz, 2 H); LCMS	
	yl)cyclobutanecarboxamide	(electrospray) m/z 324.1 (M+H)+.	A
		·	

[736]

	/==\	¹ H NMR (400 MHz, METHANOL- d_4) $\delta = 2.64$	
	O N	(s, 3 H), 2.85 - 3.01 (m, 4 H), 3.22 - 3.29 (m, 1	
	F N S	H), 7.55 (dd, <i>J</i> =8.38, 1.77 Hz, 1 H), 7.93 (d,	
44	E HCI	J=8.44 Hz, 1 H), 8.04 - 8.10 (m, 2 H), 8.72 (d,	
	3,3-difluoro-N-(6-(4-methylpyridin-3-	J=6.11 Hz, 1 H), 8.77 (s, 1 H); LCMS	
	yl)benzo[d]thiazol-2-yl)cyclobutane-1-	(electrospray) m/z 360.3 (M+H)+.	
	carboxamide. 2 HCl salt		,
	carboxamide. 2 Her sait	THANK (400) HE ACCULATION TO S. 7.00	A
		¹ H NMR (400MHz, METHANOL-d4) δ = 7.98	
) o	- 7.66 (m, 2H), 7.47 - 7.03 (m, 3H), 5.20 - 4.99	
	O=\	(m, 1H), 3.23 - 3.09 (m, 3H), 2.25 - 2.02 (m,	
		4H), 1.97 - 1.77 (m, 1H), 1.60 - 1.24 (m, 10H);	
45*	O N-()-()	LCMS (electrospray) m/z 474.7 (M+H)+.	
13.	F		
	F., N		
	tert-butyl (2-fluoro-3-(2-((1S,2S)-2-		
	fluorocyclopropane-1-		
	carboxamido)benzo[d]thiazol-6-yl)-4-		
	methylphenyl)(methyl)carbamate		L
	F. HN—	¹ H NMR (400MHz, METHANOL-d4) $\delta = 7.88$	
		- 7.80 (m, 1H), 7.68 - 7.62 (m, 1H), 7.58 - 7.54	
	O N A	(m, 1H), 7.35 (br d, J=7.8 Hz, 1H), 7.27 - 7.19	
	F. S	(m, 1H), 5.14 - 5.01 (m, 1H), 3.19 - 2.83 (m,	
46		3H), 2.43 - 2.06 (m, 4H), 2.01 - 1.76 (m,	
		1H),1.44 - 1.09 (m, 1H);); LCMS	
	(1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methyl-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	3-(methylamino)phenyl)benzo[d]thiazol-2-	(electrospray) m/z 374.1 (M+H)+.	
	yl)cyclopropanc-1-carboxamide. 2 TFA salt	1	L
	N N	¹ H NMR (400MHz, DMSO-d6) δ = 12.73 (s,	
		1H), 8.51 (s, 1H), 8.36 (s, 1H), 8.07 (d, J=1.5	
1.7	N S F	Hz, 1H), 7.84 (d, J=8.3 Hz, 1H), 7.48 (dd,	
47	N-(6-(5-fluoro-4-methylpyridin-3-	J=1.8, 8.3 Hz, 1H), 2.24 (d, J=2.1 Hz, 3H), 2.02	
	yl)benzo[d]thiazol-2-	(m, 1H), 1.00 - 0.94 (m, 4H); LCMS	
	yl)cyclopropanecarboxamide. 2 TFA salt	(electrospray) m/z 328.1 (M+H)+.	В
		¹ H NMR (400MHz, CHLOROFORM-d) δ =	ע
		· · · · · · · · · · · · · · · · · · ·	
		10.26 (br s, 1H), 8.42 (s, 1H), 8.36 (s, 1H), 7.89	
48	F	(d, J=7.9 Hz, 1H), 7.80 (s, 1H), 7.42 (d, J=8.3	
'0	2,2-difluoro-N-(6-(5-fluoro-4-	Hz, 1H), 2.68 - 2.52 (m, 1H), 2.38 (br dd, J=6.0,	
	methylpyridin-3-yl)benzo[d]thiazol-2-	12.3 Hz, 1H), 2.28 (s, 3H), 1.96 (br s, 1H);	
	yl)cyclopropane-1-carboxamide	LCMS (electrospray) m/z 364.2 (M+H)+.	В
	/=\ /=N,	¹ H NMR (400MHz, CHLOROFORM-d) δ =	
		8.85 (br s, 1H), 8.41 (s, 1H), 8.36 (s, 1H), 7.84	
	N S F	(d, J=7.7 Hz, 1H), 7.78 (s, 1H), 7.39 (d, J=8.5	
49	<u> </u>	Hz, 1H), 3.42 - 3.21 (m, 1H), 2.58 - 2.41 (m,	
	N-(6-(5-fluoro-4-methylpyridin-3-	2H), 2.42-2.27 (m, 2H), 2.28 (s, 3H), 2.17 - 1.95	
	yl)benzo[d]thiazol-2-	(m, 2H); LCMS (electrospray) m/z 342.1	
	yl)cyclobutanecarboxamide	(M+H)+.	В
		(1711-11)1.	IJ

[737]

50	S-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamide	¹ H NMR (400MHz, CHLOROFORM-d) δ = 9.73 (br s, 1H), 8.49 - 8.32 (m, 2H), 7.92 - 7.75 (m, 2H), 7.42 (td, J =1.8, 8.3 Hz, 1H), 5.51 - 5.24 (m, 0.5H), 5.12 - 4.87 (m, 0.5H), 3.38 - 3.22 (m, 0.5H), 2.89 - 2.50 (m, 4.5H), 2.28 (d, J =2.1 Hz, 3H); LCMS (electrospray) m/z 360.2 (M+H)+.	В
51	N S _{2TFA} 3,3-difluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamide. 2 TFA salt	1H NMR (400MHz, DMSO-d6) δ = 12.63 (s, 1H), 8.52 (s, 1H), 8.37 (s, 1H), 8.11 (d, J=1.6 Hz, 1H), 7.85 (d, J=8.3 Hz, 1H), 7.50 (dd, J=1.8, 8.3 Hz, 1H), 2.99 - 2.80 (m, 4H), 2.24 (d, J=2.0 Hz, 3H); LCMS (electrospray) m/z 378.1 (M+H)+.	В
52*	N-(6-(4-methylpyridin-3-yl) benzo[d]thiazol-2-yl)benzamide. 2 HCl salt	¹ H NMR (400 MHz, METHANOL- d_4) δ = 2.66 (s, 3 H), 7.56 - 7.62 (m, 3 H), 7.66 - 7.71 (m, 1 H), 7.97 (d, J =8.41 Hz, 1 H), 8.08 (d, J =5.90 Hz, 4 H), 8.73 (d, J =6.15 Hz, 1 H), 8.79 (s, 1 H); LCMS (electrospray) m/z 346.3 (M+H)+.	J
53*	N-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-amine. 2 TFA salt	¹ H NMR (400 MHz, METHANOL- <i>d</i> ₄) δ = 2.62 (s, 3 H), 3.19 (s, 3 H), 7.51 (dd, <i>J</i> =8.31, 1.71 Hz, 1 H), 7.66 (d, <i>J</i> =8.31 Hz, 1 H), 7.88 (d, <i>J</i> =1.47 Hz, 1 H), 8.03 (d, <i>J</i> =5.87 Hz, 1 H), 8.66 - 8.78 (m, 2 H); LCMS (electrospray) m/z 256.2 (M+H)+.	M
54*	3-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2(3H)-imine. TFA salt	¹ H NMR (400 MHz, METHANOL-d ₄) δ = 2.57 (s, 3 H), 3.87 (s, 3 H), 7.71 (dd, J=8.56, 1.71 Hz, 1 H), 7.82 (d, J=8.56 Hz, 1 H), 7.96 - 8.03 (m, 2 H), 8.68 - 8.76 (m, 2 H).	M
55	(1S,2S)-2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400 MHz, CHLOROFORM- <i>d</i>) δ = 1.33 - 1.44 (m, 1 H), 1.91 - 2.13 (m, 2 H), 3.94 (s, 3 H), 4.79 - 5.05 (m, 1 H), 6.96 (d, <i>J</i> =5.87 Hz, 1 H), 7.63 (dd, <i>J</i> =8.38, 1.65 Hz, 1 H), 7.87 (d, <i>J</i> =8.44 Hz, 1 H), 8.02 (d, <i>J</i> =1.47 Hz, 1 H), 8.51 - 8.55 (m, 2 H), 10.35 (br s, 1 H); LCMS (electrospray) m/z 344.3 (M+H)+.	N
56	HCI (1S,2S)-2-fluoro-N-(6-(3-methylthiophen-2-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. HCl salt	¹ H NMR (400 MHz, METHANOL- d_4) δ = 1.27 - 1.37 (m, 1 H), 1.81 - 1.94 (m, 1 H), 2.14 - 2.23 (m, 1 H), 2.33 (s, 3 H), 4.98 - 5.07 (m, 1 H), 6.96 (d, J =5.14 Hz, 1 H), 7.30 (d, J =5.14 Hz, 1 H), 7.54 (dd, J =8.44, 1.71 Hz, 1 H), 7.79 (d, J =8.44 Hz, 1 H), 7.95 (d, J =1.59 Hz, 1 H); LCMS (electrospray) m/z 333.0 (M+H)+.	N

[738]

1	F. o	1H NMR (400 MHz, DMSO-d6) δ = 12.81 (br	
	N N	s, 1H), 8.29 - 8.18 (m, 2H), 8.08 (br d, J = 1.3	
	HN-√ []	Hz, 1H), 7.87 - 7.80 (m, 1H), 7.53 - 7.41 (m,	
1	S N	2H), 5.18 - 4.94 (m, 1H), 2.25 - 2.31 (m, 1H),	
57	CF ₃ COOH	2.31 (s, 3H), 1.81 - 1.71 (m, 1H), 1.38 - 1.29 (m,	
		1H); LCMS (electrospray) m/z 344.10	
	3-(2-((1S,2S)-2-fluorocyclopropane-1-	(M+H)+.	
	carboxamido)benzo[d]thiazol-6-yl)-4-		
	methylpyridine 1-oxide. TFA salt		N
	/— _он	¹ H NMR (400 MHz, METHANOL- d_4) δ = 1.26	
	O N B	- 1.39 (m, 1 H), 1.81 - 1.94 (m, 1 H), 2.19 (dtd,	
	F. OH	J=9.19, 6.87, 6.87, 4.34 Hz, 1 H), 4.87 - 5.18	
58	N S HCI	(m, 1 H), 7.69 - 7.75 (m, 1 H), 7.81 (br d, J=7.82)	
	(2-((1S,2S)-2-fluorocyclopropane-1-	Hz, 1 H), 8.22 (s, 1 H); ; LCMS (electrospray)	
		m/z 281.2 (M+H)+.	
	carboxamido)benzo[d]thiazol-6-yl)boronic		_
	acid. HCl salt	IVAN ED (100) EL DA (20 1) 2 10 CO 1	0
	F ,	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.60 (br s,	
		1H), 7.89 (s, 1H), 7.79 (d, <i>J</i> =8.2 Hz, 1H), 7.36	
	O N	- 7.28 (m, 2H), 7.21 - 7.07 (m, 2H), 4.56 (br s,	
	HO or1 N S	1H), 3.68 (br dd, <i>J</i> =5.7, 11.2 Hz, 1H), 3.51 -	
59	V 11	3.41 (m, 1H), 2.15 - 2.06 (m, 4H), 1.67 - 1.55	
	(1R,2S)-N-(6-(2-fluoro-6-	(m, 1H), 1.14 (dt, J=4.0, 8.0 Hz, 1H), 1.05 -	
	methylphenyl)benzo[d]thiazol-2-yl)-2-	0.98 (m, 1H); LCMS (electrospray) m/z 357.3	
	(hydroxymethyl)cyclopropane-1-	$(M+H)+. [\alpha] = (+) 79.105$	
	carboxamide		K
	F _\	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.57 (br s,	
		1H), 7.89 (s, 1H), 7.79 (d, <i>J</i> =8.3 Hz, 1H), 7.36	
	0 N	- 7.28 (m, 2H), 7.20 - 7.08 (m, 2H), 4.59 (br s,	
	HO ora N S	1H), 3.68 (dd, <i>J</i> =5.8, 11.3 Hz, 1H), 3.46 (br dd,	
60	HO or3 H	J=8.5, 11.2 Hz, 1H), 2.16 - 2.05 (m, 4H), 1.66 -	
	(1S,2R)-N-(6-(2-fluoro-6-	1.55 (m, 1H), 1.13 (dt, <i>J</i> =4.2, 8.1 Hz, 1H), 1.06	
	methylphenyl)benzo[d]thiazol-2-yl)-2-	- 0.97 (m, 1H); LCMS (electrospray) m/z 357.2	
	(hydroxymethyl)cyclopropane-1-	(M+H)+.	
	carboxamide	$[\alpha] = (-) 77.479$	K
	NI	¹ H NMR (400 MHz, METHANOL- d_1) $\delta = 1.28$	17
		- 1.39 (m, 1 H), 1.83 - 1.96 (m, 1 H), 2.16 - 2.26	
	F. N S	(m, 1 H), 2.80 (s, 3 H), 5.00 - 5.08 (m, 1 H), 7.60 (dd, <i>J</i> =8.38, 1.65 Hz, 1 H), 7.94 (d, <i>J</i> =8.44	
61			
	(1S,2S)-2-fluoro-N-(6-(4-methylpyrimidin-	Hz, 1 H), 8.09 (d, <i>J</i> =1.47 Hz, 1 H), 9.13 (s, 1 H), 9.43 (c, 1 H), 4.60 (c)	
	5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-	H), 9.43 (s, 1 H); LCMS (electrospray) m/z	
	carboxamide. HCl salt	329.2 (M+H)+.	В
		¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.26 - 1.37$	
		(m, 1 H), 1.70 - 1.82 (m, 1 H), 2.24 (dt, <i>J</i> =13.57,	
		6.79 Hz, 1 H), 2.40 (s, 3 H), 2.67 (s, 3 H), 4.93	
	I T'	-5.18 (m, 1 H), 7.52 (dd, <i>J</i> =8.38, 1.65 Hz, 1 H),	
62	(1S,2S)-N-(6-(6-acetyl-4-methylpyridin-3-	7.86 (d, <i>J</i> =8.19 Hz, 1 H), 7.94 (s, 1 H), 8.12 (d,	
	yl)benzo[d[thiazol-2-yl)-2-	J=1.34 Hz, 1 H), 8.59 (s, 1 H), 12.79 (br s, 1 H);	
1	fluorocyclopropane-1-carboxamide	LCMS (electrospray) m/z 370.3 (M+H)+.	
	Huorocycropropane-1-carboxamide	Detvis (electrospiay) iliz 570.5 (W111)1.	В

[739]

	F,	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.60 (br s,	
		1H), 7.89 (d, <i>J</i> =1.2 Hz, 1H), 7.80 (d, <i>J</i> =8.2 Hz,	
	O N~\	1H), 7.36 - 7.27 (m, 2H), 7.20 - 7.07 (m, 2H),	
		4.55 (br s, 1H), 3.68 (dd, J=5.8, 11.3 Hz, 1H),	
63	HO' N'S	3.46 (br dd, <i>J</i> =8.6, 11.1 Hz, 1H), 2.16 - 2.08 (m,	
	(1S,2R)-N-(6-(2-fluoro-6-	4H), 1.67 - 1.55 (m, 1H), 1.14 (dt, <i>J</i> =4.2, 8.1	
	methylphenyl)benzo[d]thiazol-2-yl)-2-	Hz, 1H), 1.06 - 0.98 (m, 1H); LCMS	
	(hydroxymethyl)cyclopropane-1-	(electrospray) m/z 357.2 (M+H)+.	
	carboxamide	(,,,,,,	K
	Carboxaniqe	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.98 -	K
		1	
		12.30 (m, 1H), 8.51 (s, 1H), 8.36 (s, 1H), 8.05	
	HO N S	(d, J=1.5 Hz, 1H), 7.82 (d, J=8.3 Hz, 1H), 7.47	
		(dd, <i>J</i> =1.7, 8.3 Hz, 1H), 4.87 - 4.35 (m, 1H),	
64	(1S,2R)-N-(6-(5-fluoro-4-methylpyridin-3-	3.68 (br dd, <i>J</i> =5.8, 11.3 Hz, 1H), 3.46 (br dd,	
	yl)benzo[d]thiazol-2-yl)-2-	J=8.7, 11.1 Hz, 1H), 2.24 (d, J=1.8 Hz, 3H),	
	(hydroxymethyl)cyclopropane-1-	2.15 - 2.04 (m, 1H), 1.66 - 1.55 (m, 1H), 1.14	
	carboxamide	(dt, J=4.2, 8.1 Hz, 1H), 1.06 - 0.98 (m, 1H);	
		LCMS (electrospray) m/z 358.0 (M+H)+.	K
	F _o	1H NMR (400MHz, DMSO-d6) $\delta = 12.86$ (br	
	N N	s, 1H), 8.71 (s, 1H), 8.13 (d, <i>J</i> =1.5 Hz, 1H), 7.91	
	HN S	- 7.87 (m, 2H), 7.54 (dd, <i>J</i> =1.9, 8.4 Hz, 1H),	
	CF₃COOH	5.17 - 4.95 (m, 1H), 2.70 (s, 3H), 2.49 (s, 3H),	
65	, , ,	2.29 - 2.23 (m, 1H), 1.82 - 1.70 (m, 1H), 1.38 -	
	CF₃COOH	1.29 (m, 1H); LCMS (electrospray) m/z 341.10	
	(1S,2S)-N-(6-(4,6-dimethylpyridin-3-	(M+H)+.	
	yl)benzo[d]thiazol-2-yl)-2-fluorocyclo		
	propane-1-carboxamide. 2TFA salt		N
	F ₀ O	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.77 (s,	
	N N	1H), 8.27 (s, 1H), 8.05 (s, 1H), 7.83 (d, J=8.3	
	HN—	Hz, 1H), 7.53 (s, 1H), 7.46 (br d, J=8.3 Hz, 1H),	
	5 V N	5.17 - 4.93 (m, 1H), 2.31 (s, 3H), 2.28 - 2.20 (m,	
66	CF₃COOH CI	1H), 1.81 - 1.71 (m, 1H), 1.38 - 1.26 (m, 1H);	
	CF₃COOH	LCMS (electrospray) m/z 362.00 (M+H)+.	
	(1S,2S)-N-(6-(6-chloro-4-methylpyridin-3-		
	yl)benzo[d]thiazol-2-yl)-2-fluorocyclo		
	propane-1-carboxamide.2TFA salt		N
	F	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.79$ (s,	
	O N	1H), 8.62 (s, 1H), 8.11 (d, J=1.5 Hz, 1H), 7.90	
	HN—(")	(s, 1H), 7.86 (d, J=8.3 Hz, 1H), 7.52 (dd, J=1.7,	
	S N	8.3 Hz, 1H), 5.15 - 4.94 (m, 1H), 2.41 (s, 3H),	
	CF ₃	2.27 - 2.21 (m, 1H), 1.82 - 1.70 (m, 1H), 1.32	
67	CF₃COOH CF₃COOH	(tdd, J=6.4, 8.9, 12.8 Hz, 1H); LCMS	
	(1S,2S)-2-fluoro-N-(6-(4-methyl-6-	(electrospray) m/z 396.10 (M+H)+.	
	(trifluoromethyl)pyridin-3-	(G. C.	
	yl)benzo[d]thiazol-2-yl)cyclopropane-1-		
	carboxamide. 2TFA salt		N
	r vartyvaannuv. 4 11 /x salt	1	1,4

[740]

HNMR (400MHz, DMSO-d ₃) 8 = 1.2.86 (br s. H), 8.3 (d. J=6.6 Hz, IH), 8.76 (s. 1H), 8.13 (d. J=1.6 Hz, IH), 8.76 (s. 1H), 8.13 (d. J=1.6 Hz, IH), 8.76 (s. 1H), 1.33 (dd. J=2.6 (s.) 12.8 Hz, 1H), 7.54 (dd. J=1.7, 8.3 Hz, 1H), 5.16 - 4.95 (m. 1H), 4.66 (s. 2H), 2.29 - 2.23 (m. 1H), 1.81 - 1.72 (m. 1H), 1.33 (ddd. J=2.6, 6.3, 12.8 Hz, 1H), LCMS (electrospray) m/z 344.10 (M+H)+ H				
8.13 (d, J=1.6 Hz, 1H), 8.05 (d, J=5.6 Hz, 1H), 7.88 (d, J=6.5 Hz, 1H), 7.88 (d, J=8.3 Hz, 1H), 7.54 (dd, J=1.7, 8.3 Hz, 1H), 1.81 - 1.72 (m, 1H), 1.33 (ddd, J=2.6, 6.3, 12.8 Hz, 1H), 1.69 - 1.82 (m, 1H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.81 (d, J=8.31, 1.71 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 7.44 (dd, J=8.31, 1.71 Hz, 1 H), 7.82 (d, J=1.39 (m, 1H), 1.81 - 1.72 (m, 1H), 1.60 - 1.82 (m, 1H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.44 (dd, J=8.31, 1.71 Hz, 1 H), 7.82 (dd, J=8.31 Hz, 1 H), 7.44 (dd, J=8.31 Hz, 1 H), 7.49 (dd, J=8.31 Hz, 1 H), 7.49 (dd, J=8.31 Hz, 1 H), 8.33 (s, 1 H), 1.275 (br s, 1 H), 1.31 (dd, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 1.40 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 1.40 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H), 1.71 (dd, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 7.49 - 7.40 (m, 1H), 7.30 (d, J=5.7, 7.9 Hz, 1 H), 7.41 (d, J=7.7 Hz, 1 H), 7.02 (t, J=8.9 Hz, 1 H), 7.49 - 7.40 (m, 1H), 7.30 (d, J=5.7, 7.9 Hz, 1 H), 7.49 - 7.40 (m, 1H), 7.30 (d, J=5.7, 7.9 Hz, 1 H), 7.41 (d, J=7.7 Hz, 1 H), 7.01 (d, J=8.4 Hz, 1 H), 7.41 (d, J=7.7 Hz, 1 H), 7.01 (d, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); 1H), 7.41 (dd, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); 1H), 7.41 (dd, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); 1H), 7.30 (dd, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); 1H), 7.30 (dd, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); 1H), 7.30 (dd, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); 1H), 7.30 (dd, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); 1H), 7.30 (dd,		F. O	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.86 (br s,	
7.88 (d, J=8.3 Hz, 1H), 7.54 (dd, J=1.7, 8.3 Hz, 1H), 5.16 - 4.95 (m, 1H), 4.66 (s, 2H), 2.29 - 2.23 (m, 1H), 1.81 - 1.72 (m, 1H), 1.33 (ddd, J=2.6, 6.3, 12.8 Hz, 1H); LCMS (electrospray) m/z 344.10 (M+H)+ 14. methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-yl)cyclopropane-1-carboxamide 70		N N	1H), 8.83 (br d, J=5.6 Hz, 1H), 8.76 (s, 1H),	
High 1.5.16 -4.95 (m, 1H) 4.66 (s, 2H) 2.29 2.23 (m, 1H) 1.81 -1.72 (m, 1H) 1.33 (ddd, 1=2.6, 6.3, 12.8 Hz, 1H) 1.20 (m, 1H) 1.33 (ddd, 1=2.6, 6.3, 12.8 Hz, 1H) 1.20 (m, 1H) 1.33 (ddd, 1=2.6, 6.3, 12.8 Hz, 1H) 1.20 (m, 1H) 1.33 (ddd, 1=2.6, 6.3, 12.8 Hz, 1H) 1.20 (m, 1H) 1.34 (ddd, 1=2.79, 8.97, 6.36 Hz, 1 H) 1.69 1.82 (m, 1H) 1.69		MN → 1	8.13 (d, J=1.6 Hz, 1H), 8.05 (d, J=5.6 Hz, 1H),	
CF3COOH OH (18.28)-2-fluoro-N-(6-(4-(hydroxymethyl) pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. 2 TFA salt H NMR (400 MHz, DMSO-d ₆) δ = 1.32 (ddt, J=2.79, 8.97, 6.36 Hz, 1 H), 1.40 (d, J=8.31 Hz, 1 H), 7.41 (dd, J=8.31, 1.71 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 1.275 (br s, 1 H), 1.40 (d, J=6.56 Hz, 1 H), 1.40 (d, J=6.56 Hz, 1 H), 2.31 (s, 3 H), 4.90 - 5.13 (m, 1 H), 1.33 (ddd, J=2.79, 8.97, 6.36 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (d, J=8.31, 1.71 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 7.44 (dd, J=8.31, 1.71 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 1.275 (br s, 1 H); LCMS (electrospray) m/z 358 (m, 1 H), 1.20 (d, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G H NMR (400MHz, METHANOL-d4) δ=7.74 (s, 1H), 7.87 - 7.71 (m, 1H), 7.61 (d, J=8.4 Hz, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 1.87 (d, J=7.7 Hz, 1H), 7.90 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+. LCMS (ele		S V	7.88 (d, J=8.3 Hz, 1H), 7.54 (dd, J=1.7, 8.3 Hz,	
2.23 (m, 1H), 1.81 - 1.72 (m, 1H), 1.33 (ddd, J=2.6, 6.3, 12.8 Hz, 1H); LCMS (electrospray) m/z 344.10 (M+H)+ H NMR (400 MHz, DMSO-d ₆) δ = 1.32 (ddt, J=2.79, 8.97, 6.36 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.41 (dd, J=8.31, Hz, 1 H), 1.80 3 (d, J=1.47 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 1.275 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. N OH (15.2S)-2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide N OH (15.2S)-2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methyl	68	CF ₃ COOH	1H), 5.16 - 4.95 (m, 1H), 4.66 (s, 2H), 2.29 -	
(15,2\$)-2-fluoro-N-(6-(4-(hydroxymethyl) pyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. 2 TFA salt H NMR (400 MHz, DMSO-d ₆) & = 1.32 (ddt, J=1.279, 8.97, 6.36 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H NMR (400 MHz, DMSO-d ₆) & = 1.32 (ddt, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.42 (dd, J=8.31 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H NMR (400 MHz, DMSO-d ₆) & = 1.19 - 1.33 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. H NMR (400 MHz, DMSO-d ₆) & = 1.32 (ddt, J=5.75 Hz, 2 H), 4.59 (d, J=6.83 Hz, 1 H), 2.10 (d, J=8.31 Hz, 1 H), 8.03 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 7.42 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 7.47 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 7.49 (d, J=6.56 Hz, 2 H), 7.99 (s, 1 H), 7.49 (d, J=7.74 Hz, 1 H), 7.90 (t, J=8.9 Hz, 1 H), 7.14 (d, J=7.7 Hz, 1 H), 7.20 (t, J=8.9 Hz, 1 H), 7.49 (d, J=6.56 Hz, 2 H), 2.74 (s, 3 H), 2.16 (s, 3 H), 1.87 (d, J=5.7, 8.2 Hz, 1 H), 1.71 (qd, J=7.9, 15.3 Hz, 1 H), 1.30 - 1.06 (m, 2 H); LCMS (electrospray) m/z 370.0 (M+H)+.		CF₃COOH OH	2.23 (m, 1H). 1.81 - 1.72 (m, 1H), 1.33 (ddd.	
m/z 344.10 (M+H)+ m/z 344.10 (Mt, 14).231 (sd. m/z 141.11, 149.231 (sd. m/z			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
H NMR (400 MHz, DMSO-d _c) δ = 1.32 (ddt, J=12.79, 8.97, 6.36 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.41 (s, 1 H), 7.44 (dd, J=8.31, 1.71 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H H NMR (400 MHz, DMSO-d _c) δ = 1.32 (ddt, J=12.79, 8.97, 6.36 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.78 (dd, J=8.31, 1.71 Hz, 1 H), 7.41 (s, 1 H), 7.41 (dd, J=8.31, 1.71 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H H NMR (400 MHz, DMSO-d _c) δ = 1.19 - 1.33 (m, 1 H), 1.40 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G H NMR (400 MHz, DMSO-d _c) δ = 1.32 (ddt, J=5.75 Hz, 2 H), 2.76 (br, 2 H), 2.76 (br, 3 H), 2.16 (s, 3 H), 1.47 (s, 1 H), 1.490 - 5.10 (m, 1 H), 2.17 (s, 3 H), 1.47 (s, 1 H), 1.490 - 5.13 (m, 1 H), 1.490 - 5.13 (m, 1 H), 1.490 - 5.13 (m, 1 H), 1.490 - 7.40 (m, 1 H), 7.40 (d, J=8.31 Hz, 1 H), 7.49 (d, J=8.31 Hz, 1 H), 7.49 (s, 1 H), 1.787 - 7.71 (m, 1 H), 7.61 (d, J=8.4 Hz, 1 H), 7.49 - 7.40 (m, 1 H), 7.61 (d, J=8.4 Hz, 1 H), 7.49 - 7.40 (m, 1 H), 7.30 (d, J=8.4 Hz, 1 H), 7.49 - 7.40 (m, 1 H), 7.30 (d, J=8.4 Hz, 1 H), 1.400 (d, J=6.5 Hz, 2 H), 2.74 (s, 3 H), 1.400 (d, J=6.5 Hz, 2 H), 2.74 (s, 3 H), 1.400 (d, J=6.5 Hz, 2 H), 2.74 (s, 3 H), 1.400 (d, J=6.5 Hz, 2 H), 2.74 (s, 3 H), 1.400 (d, J=6.5 Hz, 2 H), 1				
H NMR (400 MHz, DMSO-d ₆) δ = 1.32 (ddt, J=12.79, 8.97, 6.36 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.42 (d, J=8.31 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H H NMR (400 MHz, DMSO-d ₆) δ = 1.32 (ddt, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.42 (d, J=8.31 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 1.80 (electrospray) m/z 358.1 (M+H)+. H H NMR (400 MHz, DMSO-d ₆) δ = 1.19 - 1.33 (m, 1 H), 1.40 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 1.40 (d, J=6.56 Hz, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G H NMR (400 MHz, DMSO-d ₆) δ = 1.32 (ddt, J=5.76 Hz, 1 H), 1.59 (d, J=8.31 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 1.74 (d, J=6.31 Hz, 1 H), 1.79 (d, J=6.56 Hz, 1 H), 1.79 (d, J=6.56 Hz, 1 H), 1.79 (d, J=7.71 Hz, 1 H), 7.79 (d, J=8.9 Hz, 1 H), 7.79 (d, J=8.9 Hz, 1 H), 7.79 (d, J=7.71 Hz, 1 H), 7.02 (t, J=8.9 Hz, 1 H), 7.41 (d, J=7.71 Hz, 1 H), 7.02 (t, J=8.9 Hz, 1 H), 1.30 - 1.06 (m, 2 H); LCMS (electrospray) m/z 370.0 (M+H)+.				
J=12.79, 8.97, 6.36 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.41 (s, 1 H), 7.44 (dd, J=8.31, 1.71 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H NMR (400 MHz, DMSO-de) δ = 1.19 - 1.33 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G F N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2- ((methylamino)methyl)cyclopropane-1-		yr)cyclopropane-1-carboxamide. 2 1 FA sait	HIND CD (400 MIL DMCO 1) 2 1 22 (14)	н
H), 2.17 - 2.27 (m, 1 H), 2.31 (s, 3 H), 4.58 (d, J=5.75 Hz, 2 H), 4.90 - 5.20 (m, 1 H), 5.41 (t, J=5.81 Hz, 1 H), 7.44 (dd, J=8.31, 1.71 Hz, 1 H), 7.82 (d, J=8.31 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H) H NMR (400 MHz, DMSO-d ₆) &= 1.19 - 1.33 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.47 (dd, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. The second of t				
1		ОН		
(1S,2S)-2-fluoro-N-(6-(6-(hydroxymethyl)- 4-methylpyridin-3-yl)benzo[d]thiazol-2- yl)cyclopropane-1-carboxamide J=5.81 Hz, 1 H), 7.41 (s, 1 H), 7.44 (dd, J=8.31, 1.71 Hz, 1 H), 8.03 (d, J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H NMR (400 MHz, DMSO-d ₆) δ = 1.19 - 1.33 (m, 1 H), 1.40 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G H NMR (400MHz, METHANOL-d4) δ= 7.74 (s, 1H), 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.		F _m , N S		
(1S,ZS)-2-fluoro-N-(6-(6-(n)droxymethyl)- 4-methylpyridin-3-yl)benzo[d]thiazol-2- yl)cyclopropane-1-carboxamide N ON In this provided in the provided in th	69	(10.20) 2.0 N. ((.4.1.1.1)		
yl)cyclopropane-1-carboxamide J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 358.1 (M+H)+. H H N N N N N N N N N N N				
LCMS (electrospray) m/z 358.1 (M+H)+. H LCMS (electrospray) m/z 358.1 (M+H)+. H H H H H H H H H H H H H				
70 H NMR (400 MHz, DMSO-d ₆) δ = 1.19 - 1.33 (m, 1 H), 1.40 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. O N		yl)cyclopropane-1-carboxamide	J=1.47 Hz, 1 H), 8.33 (s, 1 H), 12.75 (br s, 1 H);	
(m, 1 H), 1.40 (d, J=6.48 Hz, 3 H), 1.66 - 1.81 (m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G The state of the state				Н
(m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H), 4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G The Normal State of the State of State o		/=\ /=N OH		
4.74 (q, J=6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H), 5.37 (br s, 1 H), 7.41 (dd, J=8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, J=8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G H NMR (400MHz, METHANOL-d4) δ= 7.74 (s, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=8.4 Hz, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=8.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.		Ö N	(m, 1 H), 1.40 (d, <i>J</i> =6.48 Hz, 3 H), 1.66 - 1.81	
(1S,2S)-2-fluoro-N-(6-(6-(1-hydroxyethyl)- 4-methylpyridin-3-yl)benzo[d]thiazol-2- yl)cyclopropanc-1-carboxamide 5.37 (br s, 1 H), 7.41 (dd, <i>J</i> =8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, <i>J</i> =8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G 1 H NMR (400MHz, METHANOL-d4) δ= 7.74 (s, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, <i>J</i> =5.7, 7.9 Hz, 1H), 7.14 (d, <i>J</i> =7.7 Hz, 1H), 7.02 (t, <i>J</i> =8.9 Hz, 1H), 3.88 (br d, <i>J</i> =6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, <i>J</i> =5.7, 8.2 Hz, 1H), 1.71 (qd, <i>J</i> =7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.		F ₁	(m, 1 H), 2.12 - 2.25 (m, 1 H), 2.31 (s, 3 H),	
(1S,2S)-2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanc-1-carboxamide 5.37 (br s, 1 H), 7.41 (dd, <i>J</i> =8.31, 1.59 Hz, 1 H), 7.44 (s, 1 H), 7.77 (d, <i>J</i> =8.31 Hz, 1 H), 7.98 (s, 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G The Normal State of the State of State	70		4.74 (q, <i>J</i> =6.56 Hz, 1 H), 4.90 - 5.13 (m, 1 H),	
yl)cyclopropanc-1-carboxamide 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G 1 H NMR (400MHz, METHANOL-d4) δ= 7.74 (s, 1H), 7.87 - 7.71 (m, 1H), 7.61 (d, J=8.4 Hz, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.	'0	(1S,2S)-2-fluoro-N-(6-(6-(1-hydroxyethyl)-	5.37 (br s, 1 H), 7.41 (dd, <i>J</i> =8.31, 1.59 Hz, 1 H),	
yl)cyclopropanc-1-carboxamide 1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z 372.2 (M+H)+. G H NMR (400MHz, METHANOL-d4) δ= 7.74 (s, 1H), 7.87 - 7.71 (m, 1H), 7.61 (d, J=8.4 Hz, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.		4-methylpyridin-3-yl)benzo[d]thiazol-2-	7.44 (s, 1 H), 7.77 (d, <i>J</i> =8.31 Hz, 1 H), 7.98 (s,	
372.2 (M+H)+. G 1 H NMR (400MHz, METHANOL-d4) &= 7.74 (s, 1H), 7.87 - 7.71 (m, 1H), 7.61 (d, J=8.4 Hz, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.			1 H), 8.32 (s, 1 H); LCMS (electrospray) m/z	
(s, 1H), 7.87 - 7.71 (m, 1H), 7.61 (d, J=8.4 Hz, 1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.			372.2 (M+H)+.	G
1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9 Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.		Ę	¹ H NMR (400MHz, METHANOL-d4) δ = 7.74	
Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9 Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.			(s, 1H), 7.87 - 7.71 (m, 1H), 7.61 (d, J=8.4 Hz,	
71* Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.		O N 🔷 🔪	1H), 7.49 - 7.40 (m, 1H), 7.30 (dt, J=5.7, 7.9	
71* Hz, 1H), 3.88 (br d, J=6.5 Hz, 2H), 2.74 (s, 3H), 2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.			Hz, 1H), 7.14 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.9	
2.16 (s, 3H), 1.87 (dt, J=5.7, 8.2 Hz, 1H), 1.71 (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.	71*	N S		
N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-((methylamino)methyl)cyclopropane-1- (qd, J=7.9, 15.3 Hz, 1H), 1.30 - 1.06 (m, 2H); LCMS (electrospray) m/z 370.0 (M+H)+.	' -	3HCI		
methylphenyl)benzo[d]thiazol-2-yl)-2- ((methylamino)methyl)cyclopropane-1-				
((methylamino)methyl)cyclopropane-1-			1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			1	
Carpoxamide / HCI sail				D
			TH ND (400 MILE DMCO 4) S = 1.22 (44)	Р
1 H NMR (400 MHz, DMSO- d_6) δ = 1.33 (ddt,				
J=12.91, 9.00, 6.34, 6.34 Hz, 1 H), 1.70 - 1.82		O N /		
(m, 1 H), 2.20 - 2.29 (m, 1 H), 4.93 - 5.19 (m, 1 H), 7.85 (d. 1-9.21 H), 7.85 (d. 1-9		F ₀ , S		
H), 7.44 (br d, J=8.31 Hz, 1 H), 7.85 (d, J=8.31 Hz, 1 H), 7.85 (d, J=8.31 Hz, 1 H), 7.89 (d, J=8.31 Hz, 1 Hz, 1 Hz, 1 Hz), 7.89 (d, J=8.31 Hz, 1 Hz, 1 Hz), 7.89 (d, J=8.31 Hz, 1 Hz, 1 Hz), 7.89 (d, J=8.31 Hz), 7.89 (d, J=8.		H F3C		
72 Hz, 1 H), 7.88 (d, J=5.14 Hz, 1 H), 8.06 (d, J=1.23 H= 1 H), 8.77 (s. 1 H), 8.00 (d, J=5.14 Hz, 1 H), 8.77 (s. 1 H), 8.00 (d, J=5.14 Hz, 1 H), 8.77 (s. 1 H), 8.00 (d, J=5.14 Hz, 1 H), 8.77 (s. 1 Hz,	72	2 TFA		
J=1.22 Hz, 1 H), 8.77 (s, 1 H), 8.90 (d, J=5.14 (15,28)-2-fluoro-N-(6-(4-		(1S,2S)-2-fluoro-N-(6-(4-		
(trifluoromethyl)pyridin-3-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
yl)benzo[d]thiazol-2-yl)cyclopropane-1-			m/z 382.2 (M+H)+.	
carboxamide. 2 TFA salt	1			В

[741]

73	O N N NH (1S,2S)-N-(6-(1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)-2-	¹ H NMR (400 MHz, DMSO- d_6) δ = 1.24 - 1.36 (m, 1 H), 1.68 - 1.81 (m, 1 H), 2.22 (dt, J =13.48, 6.77 Hz, 1 H), 4.90 - 5.16 (m, 1 H), 6.67 - 6.80 (m, 1 H), 7.72 - 7.82 (m, 2 H), 7.93 (br d, J =7.58 Hz, 1 H), 8.29 - 8.42 (m, 1 H), 12.59 - 12.93 (m, 2 H); LCMS (electrospray) m/z 303.2 (M+H)+.	
74	fluorocyclopropane-1-carboxamide N N (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(pyridin-2-ylethynyl)phenyl) benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400 MHz, DMSO- d_6) δ =1.32 (ddt, J =12.76, 9.00, 6.30, 6.30 Hz, 1 H), 1.69 - 1.81 (m, 1 H), 2.18 - 2.26 (m, 1 H), 2.31 (s, 3 H), 4.93 - 5.16 (m, 1 H), 7.38 - 7.41 (m, 1 H), 7.42 - 7.44 (m, 1 H), 7.46 (dd, J =8.31, 1.71 Hz, 1 H), 7.49 (d, J =1.59 Hz, 1 H), 7.51 - 7.55 (m, 1 H), 7.64 (d, J =7.82 Hz, 1 H), 7.78 - 7.87 (m, 2 H), 8.04 (d, J =1.47 Hz, 1 H), 8.55 - 8.64 (m, 1 H), 12.75 (br s, 1 H); LCMS (electrospray) m/z 428.3 (M+H)+.	С
75	N-N (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-1-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400MHz, DMSO- <i>d</i> ₆) δ 12.75 (s, 1H), 8.54 (d, J=2.3 Hz, 1H), 8.05 (d, J=1.5 Hz, 1H), 7.82 (d, J=8.3 Hz, 1H), 7.79 - 7.70 (m, 3H), 7.48 (dd, J=1.7, 8.3 Hz, 1H), 7.43 (d, J=8.2 Hz, 1H), 6.55 - 6.49 (m, 1H), 5.18 - 4.90 (m, 1H), 2.29 (s, 3H), 2.27 - 2.21 (m, 1H), 1.83 - 1.69 (m, 1H), 1.32 (tdd, J=6.3, 8.9, 12.9 Hz, 1H); LCMS (electrospray) m/z 393.3 (M+H)+.	N
76*	N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-((methylamino)methyl)cyclopropane-1-carboxamidc. 3 HCl salt	¹ H NMR (400MHz, METHANOL-d4) δ 8.97 (br s, 1H), 8.73 (br s, 1H), 8.12 - 7.91 (m, 1H), 7.84 - 7.51 (m, 2H), 4.02 - 3.79 (m, 2H), 2.75 (s, 3H), 2.61 - 2.35 (m, 3H), 1.90 - 1.87 (m, 1H), 1.76 - 1.70 (m, 1H), 1.38 - 0.98 (m, 2H); LCMS (electrospray) m/z 371.2 (M+H)+.	P
77	NH NH (1S,2S)-2-fluoro-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.72 (br s, 1H), 11.05 (br s, 1H), 7.94 (d, J =1.5 Hz, 1H), 7.82 (d, J =8.2 Hz, 1H), 7.41 (dd, J =1.7, 8.3 Hz, 1H), 7.30 (d, J =8.3 Hz, 1H), 7.25 (t, J =2.8 Hz, 1H), 7.04 (d, J =8.3 Hz, 1H), 6.01 (br s, 1H), 5.17 - 4.92 (m, 1H), 2.28 - 2.18 (m, 4H), 1.83 - 1.67 (m, 1H), 1.37 - 1.22 (m, 1H); LCMS (electrospray) m/z 366.2 (M+H)+.	В

[742]

		[]VVN P (100) PT = 2722 112 12 22	
	F _	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.70 (br s,	
		1H), 7.89 (s, 1H), 7.79 (d, <i>J</i> =8.2 Hz, 1H), 7.36	
	O N	- 7.28 (m, 2H), 7.20 - 7.09 (m, 2H), 2.14 (s, 3H),	
		1.99 (br d, <i>J</i> =6.0 Hz, 1H), 1.01 - 0.90 (m, 4H);	
78	N 9 ,	LCMS (electrospray) m/z 327.2 (M+H)+.	
	CF ₃ COOH		
	N-(6-(2-fluoro-6-		
	methylphenyl)benzo[d]thiazol-2-		
	yl)cyclopropanecarboxamide. TFA salt		A
	/==\ /=N	¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44 (s, 1H),	
	$\mid $ o $ $ $ \mid $ $ \rangle $	8.32 (s, 1H), 7.69 (br s, 1H), 7.56 (br s, 1H),	
		7.19 (br d, <i>J</i> =7.5 Hz, 1H), 5.25 (br s, 1H), 4.99	
79	F. OH	- 4.73 (m, 1H), 4.60 (s, 2H), 2.23 (s, 3H), 1.96	
'	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(br s, 1H), 1.71 - 1.57 (m, 1H), 1.03 (br s, 1H);	
	(1S,2S)-2-fluoro-N-(6-(5-(hydroxymethyl)-		
	4-methylpyridin-3-yl)benzo[d]thiazol-2-	LCMS (electrospray) m/z 358.3 (M+H)+.	-
	yl)cyclopropane-1-carboxamide		В
	F	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 13.07$ (s,	
		1H), 8.64 (br d, <i>J</i> =7.7 Hz, 2H), 7.95 (br d, <i>J</i> =1.2	
	O N A	Hz, 1H), 7.68 (br s, 1H), 7.47 (br d, <i>J</i> =11.5 Hz,	
	F ₁ ,	1H), 5.17 - 4.96 (m, 1H), 2.43 (br s, 3H), 2.23	
80		(td, J=6.9, 13.5 Hz, 1H), 1.83 - 1.70 (m, 1H),	
	V H 2•CF₃COOH	1.34 (qd, J=6.4, 15.1 Hz, 1H); LCMS	
	(1S,2S)-2-fluoro-N-(4-fluoro-6-(4-	(electrospray) m/z 346.3 (M+H)+.	
	methylpyridin-3-yl)benzo[d]thiazol-2-	(0.000.00	
	yl)cyclopropane-1-carboxamide. 2 TFA salt		Q
	F F	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.99 (br s,	
		1H), 7.69 (s, 1H), 7.38 - 7.29 (m, 1H), 7.22 -	
		7.16 (m, 2H), 7.13 (t, J=8.9 Hz, 1H), 5.13 - 4.88	
		(m, 1H), 2.16 (s, 4H), 1.80 - 1.67 (m, 1H), 1.32	
81	Fr. N S	- 1.19 (m, 2H); LCMS (electrospray) m/z 363.2	
		(M+H)+.	
	(1S,2S)-2-fluoro-N-(4-fluoro-6-(2-fluoro-6-	(111.11).	
	methylphenyl)benzo[d]thiazol-2-		
	yl)cyclopropane-1-carboxamide		Q
	\(\mathbb{N}\)	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.73 (br s,	
		1H), 8.96 (s, 1H), 8.26 (d, <i>J</i> =1.2 Hz, 1H), 7.83	
	_ ĭ Ï	-7.72 (m, 2H), 5.15 - 4.92 (m, 1H), 2.62 (s, 3H),	
	F'(S' /	2.27 - 2.17 (m, 1H), 1.81 - 1.68 (m, 1H), 1.29	
82	V H		
	(1S,2S)-2-fluoro-N-(6-(5-methylthiazol-4-	(tdd, J=6.3, 9.0, 12.7 Hz, 1H); LCMS	
	yl)benzo[d]thiazol-2-yl)cyclopropane-1-	(electrospray) m/z 343.2 (M+H)+.	
	carboxamide		В
	\	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.26 - 1.38$	-
	<u> </u>	(m, 1 H), 1.69 - 1.83 (m, 1 H), 2.19 - 2.29 (m, 7	
	\mid ON \prec	H), 4.92 - 5.18 (m, 1 H), 7.36 (dd, <i>J</i> =8.25, 1.77	
		Hz, 1 H), 7.86 (d, <i>J</i> =8.31 Hz, 1 H), 7.95 (d,	
83	「''		
	HCI	J=1.47 Hz, 1 H), 8.95 (s, 1 H), 12.81 (br s, 1 H);	
	(1S,2S)-N-(6-(4,6-dimethylpyrimidin-5-	LCMS (electrospray) m/z 343.2 (M+H)+.	
1	· · · · · · · · · · · · · · · · · · ·		
	VIIDenzolalimazol-2-VII-2-IIIIoroeveio		
	yl)benzo[d]thiazol-2-yl)-2-fluorocyclo propanc-1-carboxamide. HCl salt		A

[743]

		¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.71$ (s,	
	F. N. S HCI	1H), 10.45 (s, 1H), 7.91 (d, J=1.5 Hz, 1H), 7.77	
	S HCI NOO	(d, J=8.4 Hz, 1H), 7.36 (dd, J=1.7, 8.3 Hz, 1H),	
84	у п	7.11 (d, J=7.6 Hz, 1H), 6.86 (d, J=7.6 Hz, 1H),	
07	(1S,2S)-2-fluoro-N-(6-(7-methyl-2-	5.17 - 4.92 (m, 1H), 3.54 (s, 2H), 2.23 (td,	
	oxoindolin-6-yl)benzo[d]thiazol-2-	J=6.9, 13.6 Hz, 1H), 2.11 (s, 3H), 1.82 - 1.69	
	yl)cyclopropane-1-carboxamide. HCl salt	(m, 1H), 1.36 - 1.26 (m, 1H);	
		LCMS (electrospray) m/z 382.2 (M+H)+.	N
	///	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.24 - 1.36$	
	HCI =	(m, 1 H), 1.63 - 1.84 (m, 1 H), 2.19 - 2.25 (m, 1	
		H), 2.27 (s, 3 H), 4.14 (s, 1 H), 4.88 - 5.22 (m,	
	O N	1 H), 7.31 - 7.36 (m, 2 H), 7.37 - 7.43 (m, 2 H),	
85	Fno N S	7.79 (d, <i>J</i> =8.31 Hz, 1 H), 7.98 (d, <i>J</i> =1.47 Hz, 1	
05	У Н	H), 12.74 (s, 1 H); LCMS (electrospray) m/z	
	(1S,2S)-N-(6-(5-ethynyl-2-	351.1 (M+H)+.	
	methylphenyl)benzo d thiazol-2-yl)-2-		
	fluorocyclopropane-1-carboxamide. HCl		
	salt		В
	/=\ /= N	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.33$ (ddt,	
	O N	<i>J</i> =12.79, 8.97, 6.36, 6.36 Hz, 1 H), 1.70 - 1.83	
	F ₀	(m, 1 H), 2.20 - 2.29 (m, 1 H), 4.94 - 5.18 (m,	
86	N S CI	1 H), 7.56 (dd, <i>J</i> =8.38, 1.77 Hz, 1 H), 7.70 (d,	
	(1S,2S)-N-(6-(4-chloropyridin-3-	J=5.26 Hz, 1 H), 7.86 (d, J=8.31 Hz, 1 H),	
	yl)benzo d thiazol-2-yl)-2-	8.15 (d, <i>J</i> =1.59 Hz, 1 H), 8.56 (d, <i>J</i> =5.26 Hz, 1	
	fluorocyclopropane-1-carboxamide	H), 8.66 (s, 1 H), 12.81 (br s, 1 H).; LCMS	
	The state of the s	(electrospray) m/z 347.9 (M+H)+.	N
	/=\ /= N .	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.33$ (dq,	
	0 N~\	<i>J</i> =15.30, 6.39 Hz, 1 H), 1.70 - 1.84 (m, 1 H),	
	F., NC	2.25 (dt, <i>J</i> =13.48, 6.89 Hz, 1 H), 4.90 - 5.18 (m,	
	F'' NC	1 H), 7.73 (dd, <i>J</i> =8.44, 1.83 Hz, 1 H), 7.93 (d,	
87	2 TFA	<i>J</i> =8.31 Hz, 1 H), 8.00 (d, <i>J</i> =5.14 Hz, 1 H), 8.33	
	(1S,2S)-N-(6-(4-cyanopyridin-3-	(d, J=1.47 Hz, 1 H), 8.83 (d, J=5.01 Hz, 1 H),	
	yl)benzo[d]thiazol-2-yl)-2-fluorocyclo	8.98 (s, 1 H), 12.86 (br s, 1 H); LCMS	
	propane-1-carboxamide. 2 TFA salt	(electrospray) m/z 339.1 (M+H)+.	В
	propane-1-carooxannide. 2 117A sait	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.28$ (br d,	ע
	, FNN	J=8.68 Hz. 1 H), 1.66 - 1.81 (m, 1 H), 2.23 (s,	
		4 H), 4.87 - 5.18 (m, 1 H), 7.33 - 7.43 (m, 2 H),	
	O N	7.81 (br d, <i>J</i> =7.95 Hz, 1 H), 7.98 (s, 1 H), 8.12	
88	F _n , S	(br d. <i>J</i> =4.77 Hz, 1 H), 12.69 (br s, 1 H); LCMS	
	У Н	(electrospray) m/z 346.10 (M+H)+.	
	(1S,2S)-2-fluoro-N-(6-(2-fluoro-4-	(vicea ospia) j ii z 540.10 (ivi 11) .	
	methylpyridin-3-yl)benzo[d]thiazol-2-		
	yl)cyclopropane-1-carboxamide		N
	/==\ /=N(¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.28 - 1.38$	
	O N A	(m, 1 H), 1.70 - 1.82 (m, 1 H), 2.24 (br s, 1 H),	
	F. N	4.91 - 5.18 (m, 1 H), 7.50 (br d, <i>J</i> =8.07 Hz, 1	
0.0	N S F ₃ C	H), 7.87 (d, <i>J</i> =8.31 Hz, 1 H), 8.11 (s, 1 H), 9.14	
89	(1S,2S)-2-fluoro-N-(6-(4-	(s, 1 H), 9.47 (s, 1 H), 12.82 (br s, 1 H); LCMS	
	(trifluoromethyl)pyrimidin-5-	(electrospray) m/z 383.2 (M+H)+.	
	yl)benzo[d]thiazol-2-yl)cyclopropane-1-		
	carboxamide		N
	- Caroominate		14

[744]

		THE PROPERTY DATES AS AS AS AS	
	0 N	¹ H NMR (400MHz, DMSO- d_6) $\delta = 12.66$ (s,	
	NH	1H), 11.70 (s, 1H), 8.57 (d, <i>J</i> =5 Hz, 1H), 8.31	
		(d, J=3 Hz, 1H), 8.25 (d, J=4 Hz, 1H), 7.81 (t,	
90	N-(6-(1H-pyrrolo[2,3-b]pyridin-5-	J=21 Hz, 1H), 7.77 (dd, J=5, 4 Hz, 1H), 7.52 (t,	
	yl)benzo[d]thiazol-2-	J=7 Hz, 1H), 6.51 (q, J=5 Hz, 1H), 2.02 (m,	
	yl)cyclopropanecarboxamide	1H), 0.97 (m, 4H); LCMS (electrospray) m/z	
		335.2 (M+H)+.	С
	Н	1H NMR (400 MHz, DMSO-d6) Shift = 12.70	
	N >	(s, 1H), 10.87 (br s, 1H), 7.98 (d, J=1.6 Hz, 1H),	
	<u>\\</u>	7.79 (d, J=8.3 Hz, 1H), 7.48 - 7.36 (m, 3H),	
		7.27-7.18 (m, 2H), 6.77 (q, J=2.3 Hz, 1H), 6.43	
0.1	Ö N 🗡	(d, J=1.7 Hz, 1H), 5.17-4.91 (m, 1H), 2.27-2.23	
91	F. N S		
	H 2HCI	(m, 1H), 2.21 (s, 3H), 1.83-1.67 (m, 1H), 1.31	
	(1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-	(tdd, J=6.4, 9.0, 12.8 Hz, 1H); LCMS	
	pyrrol-3-yl)phenyl)benzo[d]thiazol-2-	(electrospray) m/z 392.1 (M+H)+.	
	yl)cyclopropane-1-carboxamide. 2 HCl salt		R
	N/	1H NMR (400 MHz, DMSO-d6) Shift = 12.88	
	_s'	(br s, 1H), 8.16 (d, J=1.3 Hz, 1H), 8.02 (d,	
		J=3.2 Hz, 1H), 7.98 (dd, J=1.8, 7.9 Hz, 1H),	
	o N	7.95-7.90 (m, 2H), 7.88 (d, J=3.2 Hz, 1H),	
92	F. NH S	7.63-7.53 (m, 2H), 5.33 - 5.01 (m, 1H), 2.42	
	2HCI	(s, 3H), 2.40-2.33 (m, 1H), 1.96-1.77 (m, 1H),	
	(1S,2S)-2-fluoro-N-(6-(2-methyl-5-(thiazol-	1	
	2-yl)phenyl)benzo[d]thiazol-2-	1.53-1.36 (m, 1H); LCMS (electrospray) m/z	
	yl)cyclopropane-1-carboxamide, 2HCl salt	410.2 (M+H)+.	S
	,N	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.32$ (ddt,	
		<i>J</i> =12.84, 9.02, 6.31, 6.31 Hz, 1 H), 1.69 - 1.81	
	\circ	(m, 1 H), 2.20 - 2.28 (m, 1 H), 2.34 (s, 3 H),	
		4.93 - 5.17 (m, 1 H), 7.45 (dd, <i>J</i> =8.38, 1.77 Hz,	
93	H HCI	1 H), 7.54 (d, <i>J</i> =7.83 Hz, 1 H), 7.71 - 7.77 (m,	
	(1S,2S)-N-(6-(5-cyano-2-	2 H), 7.81 (d, <i>J</i> =8.31 Hz, 1 H), 8.03 (d, <i>J</i> =1.47	
	methylphenyl)benzo[d]thiazol-2-yl)-2-	Hz, 1 H), 12.79 (s, 1 H); LCMS (electrospray)	
	fluorocyclopropane-1-carboxamide, HCl	m/z 352.2 (M+H)+.	
	salt		N
		¹ H NMR (400MHz, DMSO-d ₆) δ = 12.72 (br s,	14
	N N THP	1H), 8.22 (s. 1H), 7.81 - 7.71 (m, 3H), 5.36 (dd,	
	F. J. J.		
	'\sqrt{\chi} \chi \chi \chi \chi \chi \chi \chi \chi	J=2.1, 10.0 Hz, 1H), 5.16 - 4.92 (m, 1H), 3.94	
94	(1S,2S)-2-fluoro-N-(6-(4-methyl-1-	(br d, <i>J</i> =11.9 Hz, 1H), 3.68 - 3.58 (m, 1H), 2.28	
	(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-3-	- 2.19 (m, 4H), 2.16 - 2.05 (m, 1H), 2.02 - 1.89	
	yl)benzo[d]thiazol-2-yl)cyclopropane-1-	(m, 2H), 1.81 - 1.65 (m, 2H), 1.60 - 1.50 (m,	
	carboxamide	2H), 1.31 (tdd, <i>J</i> =6.4, 8.9, 12.8 Hz, 1H); LCMS	_
		(electrospray) m/z 401.1 (M+H)+.	T
	N-NH	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.46 (br	
	o N	s, 2H), 8.15 (s, 1H), 7.80 - 7.75 (m, 1H), 7.74 -	
	F. Y. S	7.66 (m, 1H), 7.47 (br s, 1H), 5.12 - 4.88 (m,	
95	(1S.2S)-2-fluoro-N-(6-(4-methyl-1H-	1H), 2.30 - 2.19 (m, 4H), 1.85 - 1.70 (m, 1H),	
		1.36 - 1.22 (m, 1H); LCMS (electrospray) m/z	
	pyrazol-3-yl)benzo[d]thiazol-2-	317.2 (M+H)+.	T.
1	yl)cyclopropane-1-carboxamide		T

[745]

			-
		¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.26$ -	
		1.38 (m, 1 H), 1.67 - 1.82 (m, 1 H), 2.20 - 2.28	
		(m, 4 H), 4.92 - 5.17 (m, 1 H), 6.06 - 6.12 (m, 1	
		H), 6.49 (br s, 1 H), 6.80 (br d, <i>J</i> =1.34 Hz, 1 H),	
96	F. N S 2 HCI	7.27 (d, <i>J</i> =7.70 Hz, 1 H), 7.45 (dd, <i>J</i> =8.31, 1.71	
	(19.29) 2 flyoro N (6.42 mothyl 5.41H	Hz, 1 H), 7.50 - 7.56 (m, 2 H), 7.81 (d, <i>J</i> =8.31	
	(1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-	Hz, 1 H), 8.00 (d, <i>J</i> =1.34 Hz, 1 H), 11.23 (br s,	
	pyrrol-2-yl)phenyl)benzo[d]thiazol-2- yl)cyclopropane-1-carboxamide. 2HCl salt	1 H), 12.71 (s, 1 H)); LCMS (electrospray) m/z	
	yr)cyclopropane-1-carboxaniide. 2HCi sait	392.1 (M+H)+.	R
	H	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.32$ (ddt,	
	, , , , , , , , , , , , , , , , , , ,	<i>J</i> =12.64, 9.00, 6.30, 6.30 Hz, 1 H), 1.68 - 1.83	
		(m, 1 H), 2.19 - 2.29 (m, 4 H), 4.92 - 5.18 (m, 1	
		H), 6.72 (d, <i>J</i> =2.08 Hz, 1 H), 7.35 (d, <i>J</i> =8.68	
97		Hz, 1 H), 7.45 (dd, <i>J</i> =8.31, 1.83 Hz, 1 H), 7.66	
71	The state of the s	- 7.74 (m, 3 H), 7.81 (d, <i>J</i> =8.31 Hz, 1 H), 8.01	
	2 CF ₃ COOH	(d, J=1.47 Hz, 1 H), 12.72 (br s, 1 H); LCMS	
	(1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-	(electrospray) m/z 393.2 (M+H)+.	
	pyrazol-3-yl)phenyl)benzo[d]thiazol-2-		
	yl)cyclopropanc-1-carboxamide. 2 TFA salt		R
	O	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.31$	
	NH	(ddt, J=12.78, 8.99, 6.30, 6.30 Hz, 1 H), 1.68 -	
		1.82 (m, 1 H), 2.08 (s, 3 H), 2.19 - 2.26 (m, 1	
	O N	H), 3.25 (s, 2 H), 4.90 - 5.19 (m, 1 H), 6.74 (d,	
98	F. N S	<i>J</i> =7.82 Hz, 1 H), 7.13 (d, <i>J</i> =7.95 Hz, 1 H), 7.35	
	∨ н сғзсоон	(dd, <i>J</i> =8.25, 1.65 Hz, 1 H), 7.79 (d, <i>J</i> =8.31 Hz,	
	(1S,2S)-2-fluoro-N-(6-(5-methyl-2-	1 H), 7.93 (d, <i>J</i> =1.47 Hz, 1 H), 10.33 (s, 1 H),	
	oxoindolin-4-yl)benzo[d]thiazol-2-	12.72 (s, 1 H); LCMS (electrospray) m/z 382.1	
	yl)cyclopropane-1-carboxamide. TFA salt	(M+H)+.	N
		¹ H NMR (400MHz, DMSO-d6) δ= 12.75 -	
	O N S	12.70 (m, 1H), 11.78 - 11.74 (m, 1H), 7.95 (d,	
	H HCI H O	J=1.5 Hz, 1H), 7.79 (d, J=8.3 Hz, 1H), 7.47 (d,	
99	(1S,2S)-2-fluoro-N-(4-methyl-2-oxo-2,3-	J=8.1 Hz, 1H), 7.41 - 7.37 (m, 1H), 7.08 (s, 1H),	
	dihydro-[5,6'-bibenzo[d]thiazol]-2'-	5.17 - 4.94 (m, 1H), 2.29 - 2.18 (m, 4H), 1.81 -	
	yl)cyclopropane-1-carboxamide. HCl salt	1.71 (m, 1H), 1.36 - 1.28 (m, 1H); LCMS	
	jayog stopropulie i eurooxamide. Her sait	(electrospray) m/z 400.1 (M+H)+.	U
		¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.66(s, $	
	HN—(N)	1H), 11.35(s, 1H), 8.55 (d, <i>J</i> =4 Hz, 1H), 8.33(d,	
	S	J=5 Hz, 1H), 8.22(d, J=6 Hz, 1H), 7.81(s, 2H),	
100	NII.	7.27(s, 1H), 2.31(s, 3H), 2.05-1.99(m, 1H),	
100	NH	0.98-0.96(m, 4H); LCMS (electrospray) m/z	
	N-(6-(3-methyl-1H-pyrrolo[2,3-b]pyridin-	349.1 (M+H)+.	
	5-yl)benzo[d]thiazol-2-		
	yl)cyclopropanecarboxamide		С
	F. O	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.72(s,$	
	, O N	1H), 11.71(s, 1H), 8.57 (d, <i>J</i> =6 Hz, 1H), 8.33(d,	
	HN — N	J=4 Hz, 1H), 8.26(d, J=4 Hz, 1H), 7.84-7.77(m,	
	s N	2H), 7.52(t, <i>J</i> =8 Hz, 1H), 6.51(q, <i>J</i> =6 Hz, 1H),	
101		5.15-5.11(m, 0.5H), 4.98-4.94(m, 0.5H), 2.67-	
	NH	2.20(m, 1H), 1.81-1.70(m, 1H), 1.36-1.27(m,	
	(1S,2S)-N-(6-(1H-pyrrolo[2,3-b]pyridin-5-	1H); LCMS (electrospray) m/z 353.0 (M+H)+.	
	yl)benzo[d]thiazol-2-yl)-2-	111), 20110 (clottospiay) iii 2 355.0 (M111).	
	fluorocyclopropane-1-carboxamide		A

[746]

	_		
		¹ H NMR (400MHz, DMSO-d ₆) $\delta = 13.72(s,$	
	HN—N	1H), 8.89(d, <i>J</i> =4 Hz, 1H), 8.52(d, <i>J</i> =6 Hz, 1H),	
	S	8.37(d, <i>J</i> =2 Hz, 1H), 8.20(s, 1H), 7.85-7.80(m,	
		2H), 2.06-2.00(m, 1H), 0.99-0.96(m, 4H);	
102	NH	LCMS (electrospray) m/z 336.0 (M+H)+.	
	N-(6-(1H-pyrazolo[3,4-b]pyridin-5-		
	yl)benzo[d]thiazol-2-		
	yl)cyclopropanecarboxamide		C
	O ~	¹ H NMR (400MHz, DMSO-d ₆) $\delta = 12.67(s,$	
	N	11 Note (400M12, 15M30-46) 0 = 12.0 (s, 1H), 11.07(s, 1H), 8.41(d, J=6 Hz, 1H), 8.25(d,	
	N S	J=4 Hz, 1H), 7.92(s, 1H), 7.79(d, J=21 Hz, 1H),	
	NH	7.71-7.69(m, 1H), 3.62(s, 2H), 2.04-1.98(m,	
103		1H), 0.99-0.95(m, 4H); LCMS (electrospray)	
	O	m/z 351.1 (M+H)+.	
	N-(6-(2-oxo-2,3-dihydro-1H-pyrrolo[2,3-	111/2 331.1 (N1+11)+.	
	b]pyridin-5-yl)benzo[d]thiazol-2-		C
	yl)cyclopropanecarboxamide	THE NR CO. L. C. 12 CT	С
	N N	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.61(s,	
	HN-(T)	1H), 8.13(d, <i>J</i> =4 Hz, 1H), 8.05(d, <i>J</i> =6 Hz, 1H),	
	S N	7.72(d, <i>J</i> =21 Hz, 1H), 7.62-7.59(m, 2H), 6.51(s,	
104	NH	1H), 3.52(t, <i>J</i> =21 Hz, 1H), 3.03(t, <i>J</i> =21 Hz,	
		1H), 2.03-1.97(m, 1H), 0.98-0.93(m, 4H);	
	N-(6-(2,3-dihydro-1H-pyrrolo[2,3-	LCMS (electrospray) m/z 337.1 (M+H)+.	
	b]pyridin-5-yl)benzo[d]thiazol-2-		
	yl)cyclopropanecarboxamide		C
	S-N	¹ H NMR (400MHz, DMSO-d ₆) δ = 12.86 (br s,	
		1H), 8.39 (s, 1H), 7.83 - 7.78 (m, 1H), 7.77 -	
	F'	7.71 (m, 1H), 7.61 (s, 1H), 5.17 - 4.93 (m,	
105	нсі нсі	1H), 2.46 (s, 3H), 2.29 - 2.22 (m, 1H), 1.82 -	
	(1S,2S)-2-fluoro-N-(6-(3-methylisothiazol-	1.68 (m, 1H), 1.39 - 1.26 (m, 1H); LCMS	
	5-yl)benzo[d]thiazol-2-yl)cyclopropane-1-	(electrospray) m/z 334.0 (M+H)+.	
	carboxamide. 2 HCl salt		N
	∕≕∖ S _{`N}	¹ H NMR (400MHz, METHANOL-d ₄) $\delta = 8.24$	
		(s, 1H), 7.87 (d, <i>J</i> =8.3 Hz, 1H), 7.73 (br d,	
	l F. S cl	J=8.7 Hz, 1H), 5.02 (br d, J=3.8 Hz, 1H), 2.51	
106	HCI HCI	(s, 3H), 2.18 (br s, 1H), 1.95 - 1.81 (m, 1H),	
	(1S,2S)-N-(6-(4-chloro-3-methylisothiazol-	1.30 (br d, <i>J</i> =6.2 Hz, 1H); LCMS	
	5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclo	(electrospray) m/z 368.1 (M+H)+.	
	propanc-1-carboxamide. 2HCl salt		N
		¹ H NMR (400MHz, DMSO-d ₆) δ = 13.30 (br s,	
	O N	1H), 12.74 (br s, 1H), 8.35 - 8.20 (m, 2H), 7.90	
	NH S' NH	- 7.83 (m, 1H), 7.81 - 7.74 (m, 1H), 7.21 (br s,	
107	(15.25) 2 fluoro N (6.77 methyl 111	2H), 5.17 - 4.93 (m, 1H), 2.57 (s, 3H), 2.24 (br	
107	(1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-	s, 1H), 1.83 - 1.69 (m, 1H), 1.31 (br s, 1H);	
	yl)cyclopropane-1-carboxamide	LCMS (electrospray) m/z 367.0 (M+H)+.	
	y 1/cyclopropane-1-carooxamide		* *
			V

[747]

1		¹ H NMR (400MHz, METHANOL-d ₄) $\delta = 8.31$	
	O N	(s, 1H), 7.90 (s, 1H), 7.84 (d, <i>J</i> =8.3 Hz, 1H),	
	F N S N N N	7.73 (d, <i>J</i> =8.4 Hz, 1H), 7.48 (d, <i>J</i> =8.3 Hz, 1H),	
	HCI HCI	7.22 (d, <i>J</i> =8.3 Hz, 1H), 5.09 - 4.97 (m, 1H),	
108	(1S,2S)-2-fluoro-N-(6-(7-methyl-1H-	5.09 - 4.94 (m, 1H), 2.51 (s, 3H), 2.24 - 2.16	
	indazol-6-yl)benzo[d]thiazol-2-	(m, 1H), 1.95 - 1.82 (m, 1H), 1.39 - 1.27 (m,	
	yl)cyclopropane-1-carboxamide. 2HCl salt	1H); LCMS (electrospray) m/z	
		367.1 (M+H)+.	V
	∕=\ S-N	¹ H NMR (400MHz, DMSO-d6) δ 12.81 (s, 1H),	
	O N	8.16 (d, J=1.6 Hz, 1H), 7.86 (d, J=8.3 Hz, 1H),	
	F N S	7.52 (dd, J=1.8, 8.4 Hz, 1H), 5.18 - 4.93 (m,	
109		1H), 2.42 (s, 3H), 2.25 (m, 4H), 1.84 - 1.68 (m,	
	(1S,2S)-N-(6-(3,4-dimethylisothiazol-5-	1H), 1.39 - 1.25 (m, 1H); LCMS (electrospray)	
	yl)benzo[d]thiazol-2-yl)-2-	m/z 348.2 (M+H)+.	
	fluorocyclopropane-1-carboxamide		N
	N _i	¹ H NMR (400 MHz, DMSO- d_6) $\delta = 1.27 - 1.39$	
	NH NH	(m, 1 H), 1.69 - 1.82 (m, 1 H), 2.21 - 2.27 (m, 1	
		H), 2.38 (s, 3 H), 4.94 - 5.18 (m, 1 H), 7.51 (dd,	
		J=8.31, 1.71 Hz, 1 H), 7.61 (d, J=8.19 Hz, 1 H),	
110	N S /	7.81 (s, 2 H), 7.86 (d, <i>J</i> =8.31 Hz, 1 H), 7.90 -	
	(1S,2S)-N-(6-(5-(1H-imidazol-2-yl)-2-	7.95 (m, 1 H), 7.99 (d, <i>J</i> =1.71 Hz, 1 H), 8.06 (d,	
	methylphenyl)benzo[d]thiazol-2-yl)-2-	J=1.47 Hz, 1 H), 12.78 (s, 1 H), 14.63 (br s, 1	
	fluorocyclopropane-1-carboxamide. 2TFA	H); LCMS (electrospray) m/z 393.3 (M+H)+.	
	salt		R
	s^\n	¹ H NMR (400MHz, METHANOL-d ₄) $\delta = 9.60$	
		(s, 1H), 8.02 (d, <i>J</i> =8.4 Hz, 1H), 7.99 (d, <i>J</i> =1.3	
	o N >	Hz, 1H), 7.94 (d, <i>J</i> =8.3 Hz, 1H), 7.69 (d, <i>J</i> =8.4	
	F. S	Hz, 1H), 7.52 (dd, <i>J</i> =1.7, 8.3 Hz, 1H), 5.05 (dt,	
111	V H HCI HCI	J=3.9, 6.2 Hz, 1H), 2.39 (s, 3H), 2.22 (dtd,	
	(1S,2S)-2-fluoro-N-(6'-methyl-[6,7'-	7-4.2 (0 0 1 H- 1H) 1 0(1 92 (m 1H)	
		J=4.5, 6.9, 9.1 HZ, 1HJ, 1.90 - 1.85 (III, 1H),	
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-	J=4.3, 6.9, 9.1 Hz, 1H), 1.96 - 1.83 (m, 1H), 1.39 - 1.28 (m, 1H); LCMS (electrospray) m/z	
			W
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-	1.39 - 1.28 (m, 1H); LCMS (electrospray) m/z	W
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-	1.39 - 1.28 (m, 1H); LCMS (electrospray) m/z 384.0 (M+H)+.	W
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-	1.39 - 1.28 (m, 1H); LCMS (electrospray) m/z 384.0 (M+H)+. 1 H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41	W
112	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt	$ \begin{array}{c} 1.39 - 1.28 \ (m, 1H) \ ; \ LCMS \ (electrospray) \ m/z \\ 384.0 \ (M+H)+. \\ \\ ^{1}H \ NMR \ (400MHz, \ DMSO-d_{6}) \ \delta = 8.44-8.41 \\ (m, 2H), \ 8.04 \ (d, \ J=1.6 \ Hz, \ 1H), \ 7.89 \ (d, \ J=1.6 \ Hz, \ 1H), \end{array} $	W
112	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N N S N S N S N S N S N S N S N S N S	1.39 - 1.28 (m, 1H); LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (I, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3,	W
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N S S S S S S S S S S S S S S S S S S	1.39 - 1.28 (m, 1H); LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (I, J = 7.35 Hz, 1H), 5.21 (J12 =	W
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N N S N S N S N S N S N S N S N S N S	1.39 - 1.28 (m, 1H); LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (I, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3,	W
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N S S S S S S S S S S S S S S S S S S	$\begin{array}{c} 1.39 - 1.28 \ (m, 1H) \ ; LCMS \ (electrospray) \ m/z \\ 384.0 \ (M+H)+. \\ \\ {}^{1}H \ NMR \ (400MHz, DMSO-d_6) \ \delta = 8.44-8.41 \\ (m, 2H), \ 8.04 \ (d, \ J=1.6 \ Hz, \ 1H), \ 7.89 \ (d, \ J=8.4 \ Hz, \ 1H), \ 7.47 \ (dd, \ J12=1.6 \ Hz, \ J13=8.4 \\ Hz, \ 1H), \ 7.35 \ (I, \ J=7.35 \ Hz, \ 1H), \ 5.21 \ (J12=2.9 \ Hz, \ J13=66.27 \ Hz, \ 1H), \ 3.95 \ (s, \ N-CH3, \ 3H), \ 2.66-2.62 \ (m, \ 1H), \ 2.29 \ (s, \ Me, \ 3H), \ 1.83- \end{array}$	W
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N S S S S S S S S S S S S S S S S S S	1.39 - 1.28 (m, 1H) ; LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (t, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3, 3H), 2.66-2.62 (m, 1H), 2.29 (s, Me, 3H), 1.83-1.79 (m, 1H), 1.35-1.31 (m, 1H) ; LCMS (electrospray) m/z 342.1 (M+H)+. 1H NMR (400 MHz, DMSO-d6) δ = 1.32 (ddt,	
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N S S S S S S S S S S S S S S S S S S	$\begin{array}{c} 1.39 - 1.28 \ (m, 1H) \ ; \ LCMS \ (electrospray) \ m/z \\ 384.0 \ (M+H)+. \\ \\ {}^{1}H \ NMR \ (400MHz, DMSO-d_6) \ \delta = 8.44-8.41 \\ (m, 2H), \ 8.04 \ (d, \ J=1.6 \ Hz, \ 1H), \ 7.89 \ (d, \ J=8.4 \ Hz, \ 1H), \ 7.47 \ (dd, \ J12=1.6 \ Hz, \ J13=8.4 \\ Hz, \ 1H), \ 7.35 \ (i, \ J=7.35 \ Hz, \ 1H), \ 5.21 \ (J12=2.9 \ Hz, \ J13=66.27 \ Hz, \ 1H), \ 3.95 \ (s, \ N-CH3, \ 3H), \ 2.66-2.62 \ (m, \ 1H), \ 2.29 \ (s, \ Me, \ 3H), \ 1.83-1.79 \ (m, \ 1H), \ 1.35-1.31 \ (m, \ 1H) \ ; \ LCMS \ (electrospray) \ m/z \ 342.1 \ (M+H)+. \\ 1H \ NMR \ (400 \ MHz, \ DMSO-d6) \ \delta = 1.32 \ (ddt, \ J=12.84, \ 8.99, \ 6.33, \ 6.33 \ Hz, \ 1H), \ 1.69-1.82 \\ \end{array}$	
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N S S S S S S S S S S S S S S S S S S	1.39 - 1.28 (m, 1H) ; LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (I, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3, 3H), 2.66-2.62 (m, 1H), 2.29 (s, Me, 3H), 1.83-1.79 (m, 1H), 1.35-1.31 (m, 1H) ; LCMS (electrospray) m/z 342.1 (M+H)+. 1H NMR (400 MHz, DMSO-d6) δ = 1.32 (ddt, J=12.84, 8.99, 6.33, 6.33 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.20 - 2.28 (m, 1 H), 2.36 (s, 3 H),	
*	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N S S S S S S S S S S S S S S S S S S	$\begin{array}{c} 1.39 - 1.28 \ (m, 1H) \ ; \ LCMS \ (electrospray) \ m/z \\ 384.0 \ (M+H)+. \\ \\ {}^{1}H \ NMR \ (400MHz, DMSO-d_6) \ \delta = 8.44-8.41 \\ (m, 2H), \ 8.04 \ (d, \ J=1.6 \ Hz, \ 1H), \ 7.89 \ (d, \ J=8.4 \ Hz, \ 1H), \ 7.47 \ (dd, \ J12=1.6 \ Hz, \ J13=8.4 \\ Hz, \ 1H), \ 7.35 \ (i, \ J=7.35 \ Hz, \ 1H), \ 5.21 \ (J12=2.9 \ Hz, \ J13=66.27 \ Hz, \ 1H), \ 3.95 \ (s, \ N-CH3, \ 3H), \ 2.66-2.62 \ (m, \ 1H), \ 2.29 \ (s, \ Me, \ 3H), \ 1.83-1.79 \ (m, \ 1H), \ 1.35-1.31 \ (m, \ 1H) \ ; \ LCMS \ (electrospray) \ m/z \ 342.1 \ (M+H)+. \\ 1H \ NMR \ (400 \ MHz, \ DMSO-d6) \ \delta = 1.32 \ (ddt, \ J=12.84, \ 8.99, \ 6.33, \ 6.33 \ Hz, \ 1H), \ 1.69-1.82 \\ \end{array}$	
	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt O N S S S S S S S S S S S S S S S S S S	1.39 - 1.28 (m, 1H) ; LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (I, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3, 3H), 2.66-2.62 (m, 1H), 2.29 (s, Me, 3H), 1.83-1.79 (m, 1H), 1.35-1.31 (m, 1H) ; LCMS (electrospray) m/z 342.1 (M+H)+. 1H NMR (400 MHz, DMSO-d6) δ = 1.32 (ddt, J=12.84, 8.99, 6.33, 6.33 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.20 - 2.28 (m, 1 H), 2.36 (s, 3 H),	
*	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt ONSTRUCTION STATES OF	1.39 - 1.28 (m, 1H) ; LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (t, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3, 3H), 2.66-2.62 (m, 1H), 2.29 (s, Me, 3H), 1.83-1.79 (m, 1H), 1.35-1.31 (m, 1H) ; LCMS (electrospray) m/z 342.1 (M+H)+. 1H NMR (400 MHz, DMSO-d6) δ = 1.32 (ddt, J=12.84, 8.99, 6.33, 6.33 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.20 - 2.28 (m, 1 H), 2.36 (s, 3 H), 4.93 - 5.17 (m, 1 H), 5.46 (s, 1 H), 5.57 (s, 1 H), 7.48 (dd, J=8.31, 1.83 Hz, 1 H), 7.53 (s, 1 H), 7.84 (d, J=8.31 Hz, 1 H), 8.07 (d, J=1.59 Hz, 1	
*	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt ONSTRUCTION S (1S,2S)-2-fluoro-N-methyl-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide ONSTRUCTION S ONSTR	1.39 - 1.28 (m, 1H) ; LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (t, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3, 3H), 2.66-2.62 (m, 1H), 2.29 (s, Me, 3H), 1.83-1.79 (m, 1H), 1.35-1.31 (m, 1H) ; LCMS (electrospray) m/z 342.1 (M+H)+. 1H NMR (400 MHz, DMSO-d6) δ = 1.32 (ddt, J=12.84, 8.99, 6.33, 6.33 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.20 - 2.28 (m, 1 H), 2.36 (s, 3 H), 4.93 - 5.17 (m, 1 H), 5.46 (s, 1 H), 5.57 (s, 1 H), 7.48 (dd, J=8.31 Hz, 1 H), 8.07 (d, J=1.59 Hz, 1 H), 8.48 (s, 1 H), 12.77 (br s, 1 H); LCMS	X
*	bibenzo[d]thiazol]-2-yl)cyclopropane-1-carboxamide. 2 HCl salt ONSTRUCTION STATES OF	1.39 - 1.28 (m, 1H) ; LCMS (electrospray) m/z 384.0 (M+H)+. ¹ H NMR (400MHz, DMSO-d ₆) δ = 8.44-8.41 (m, 2H), 8.04 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.47 (dd, J12 = 1.6 Hz, J13 = 8.4 Hz, 1H), 7.35 (t, J = 7.35 Hz, 1H), 5.21 (J12 = 2.9 Hz, J13 = 66.27 Hz, 1H), 3.95 (s, N-CH3, 3H), 2.66-2.62 (m, 1H), 2.29 (s, Me, 3H), 1.83-1.79 (m, 1H), 1.35-1.31 (m, 1H) ; LCMS (electrospray) m/z 342.1 (M+H)+. 1H NMR (400 MHz, DMSO-d6) δ = 1.32 (ddt, J=12.84, 8.99, 6.33, 6.33 Hz, 1 H), 1.69 - 1.82 (m, 1 H), 2.20 - 2.28 (m, 1 H), 2.36 (s, 3 H), 4.93 - 5.17 (m, 1 H), 5.46 (s, 1 H), 5.57 (s, 1 H), 7.48 (dd, J=8.31, 1.83 Hz, 1 H), 7.53 (s, 1 H), 7.84 (d, J=8.31 Hz, 1 H), 8.07 (d, J=1.59 Hz, 1	

[748]

114	NH S 2HCI (1S,2S)-2-fluoro-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. 2HCl salt	1H NMR (400MHz, DMSO-d6) δ = 12.75 (s, 1H), 11.14 (s, 1H), 7.98 (d, J=1.4 Hz, 1H), 7.85 (d, J=8.3 Hz, 1H), 7.45 - 7.40 (m, 1H), 7.29 - 7.25 (m, 1H), 7.19 (d, J=10.5 Hz, 1H), 6.04 - 6.00 (m, 1H), 5.16 - 4.94 (m, 1H), 2.30 - 2.19 (m, 1H), 2.14 (d, J=2.6 Hz, 3H), 1.84 - 1.68 (m, 1H), 1.38 - 1.25 (m, 1H); LCMS (electrospray) m/z 384.10 (M+H)+.	z
115	N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxamide	LCMS (electrospray) m/z 366.43 (M+H)+.	Z
116	HO NH S F (1R,2S)-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)-2- (hydroxymethyl)cyclopropane-1- carboxamide	LCMS (electrospray) m/z 396.45 (M+H)+.	K
117	(1R,2S)-2-hydroxy-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	LCMS (electrospray) m/z 325.39 (M+H)+.	
118	(1R,2R)-2-hydroxy-N-(6-(4-methylpyridin-3-yl)benzold thiazol-2-yl)cyclopropane-1-carboxamide	LCMS (electrospray) m/z 325.39 (M+H)+.	
119	F. N N F N N (1S,2S)-2-fluoro-N-(5-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide	LCMS (electrospray) m/z 346.10 (M+H)+.	Q

101

[749]	120	F. O N N N N HCI LIQU	1H NMR (400 MHz, DMSO-d6) δ = 12.87 - 12.68 (m, 1H), 8.14 - 8.10 (m, 1H), 8.07 - 8.02 (m, 1H), 7.86 - 7.81 (m, 1H), 7.49 - 7.43 (m, 1H), 7.21 - 7.18 (m, 1H), 5.18 - 4.94 (m, 1H), 2.24 - 2.23 (m, 2H), 2.23 (h, s, 1H), 1.82 - 1.70	
		HCI F (1S,2S)-2-fluoro-N-(6-(6-fluoro-4-methylpyridin-3-yl)benzoldJthiazol-2-yl)cyclopropane-1-carboxamide. 2HCl salt	2.34 - 2.33 (m, 3H), 2.23 (br s, 1H), 1.82 - 1.70 (m, 1H), 1.37 - 1.26 (m, 1H); LCMS (electrospray) m/z 346.10 (M+H)+.	N
	121	N 12 HCI (1R,2R)-2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. 2HCl salt	1H NMR (400 MHz, DMSO-d6) δ= 8.76 (s, 1H), 8.71 (dd, J=0.7, 6.1 Hz, 1H), 8.07 (d, J=6.0 Hz, 1H), 8.03 (d, J=1.3 Hz, 1H), 7.92 (d, J=8.4 Hz, 1H), 7.54 (dd, J=1.8, 8.4 Hz, 1H), 5.03 (dt, J=3.8, 6.2 Hz, 1H), 2.64 (s, 3H), 2.19 (dtd, J=4.3, 6.8, 9.2 Hz, 1H), 1.95 - 1.80 (m, 1H), 1.40 - 1.27 (m, 1H); LCMS (electrospray) m/z 328.20 (M+H)+.	A
	122	HN 2 HCI (1S,2R)-2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide. 2HCl salt	1H NMR (400 MHz, METHANOL-d4) δ= 8.77 (s, 1H), 8.72 (d, J=6.1 Hz, 1H), 8.07 (d, J=6.1 Hz, 1H), 8.03 (d, J=1.6 Hz, 1H), 7.93 (d, J=8.3 Hz, 1H), 7.55 (dd, J=1.8, 8.4 Hz, 1H), 5.02 (ddd, J=1.6, 3.5, 6.1 Hz, 1H), 2.70 - 2.57 (m, 3H), 2.46 (dddd, J=1.5, 6.6, 10.4, 17.0 Hz, 1H), 1.65 (tddd, J=3.5, 6.9, 10.6, 17.9 Hz, 1H), 1.48 (qd, J=6.5, 13.1 Hz, 1H); LCMS (electrospray) m/z 328.20 (M+H)+.	A
		F ₂ 0	1H NMR (400 MHz, METHANOL-d4) δ = 8.76	

(s, 1H), 8.72 (d, J=6.1 Hz, 1H), 8.07 (d, J=6.0 Hz, 1H), 8.03 (d, J=1.5 Hz, 1H), 7.93 (d, J=8.4 Hz, 1H), 7.55 (dd, J=1.8, 8.4 Hz, 1H), 5.02

(ddd, J=1.6, 3.5, 6.1 Hz, 1H), 2.72 - 2.59 (m,

3H), 2.46 (dddd, J=1.5, 6.6, 10.4, 17.0 Hz, 1H), 1.65 (tddd, J=3.4, 6.9, 10.6, 17.9 Hz, 1H), 1.48

(qd, J=6.5, 13.0 Hz, 1H); LCMS (electrospray)

m/z 328.20 (M+H)+.

[750] * denotes a compound used for a comparison study.

(1R,2S)-2-fluoro-N-(6-(4-methylpyridin-3-

yl)benzo[d]thiazol-2-yl)cyclopropane-1-

carboxamide. 2HCl salt

[751]

[752] Evaluation of Compounds

[753] c-abl Kinase Assay

123

[754] ADP-Glo assay kit was purchased from Promega. Magnesium chloride (MgCl₂), bovine serum albumin (BSA), ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), tween-20, 1,4-dithiothreitol (DTT) and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich. HEPES buffer was purchased from Gibco. ABL1 kinase and Abltide were purchased from Signalchem.

[755] c-abl kinase activity was measured by Promega's ADP-GloTM Assay. In this assay, His-tagged recombinant human ABL1 (0.25 ng/ μ l) is incubated with 5 μ L of compounds (0.5% DMSO), 5 μ L of Abltide (0.01 μ g/ μ l) and 5 μ L of ATP (25 μ M) in buffer (50 mM HEPES,7.5; 10 mM MgCl₂; 1 mM EGTA; 0.05% BSA; 0.01% Tween-20; 2 mM DTT.). The assay was started by incubating the reaction mixture in a 96-well

WO 2019/070093 PCT/KR2018/011660

plate at 30° C for 30-min. After the incubation, 25 μ L ADP-Glo reagent was added and the reaction was incubated at room temperature for 40-min to stop the reaction and degrade residual ATP. The ADP product was then converted to ATP by adding 50 μ L per well of detection reagent. Luminescence was detected after 30-min room temperature incubation with the Molecular device I3X plate reader. The IC₅₀ values were calculated from a series of percent inhibition values determined at a range of inhibitor concentration using software routines as implemented in the GraphPad Prism 7 software or SigmaPlot 13.0.

- [756] Table 2 shows IC_{50} values for the compounds of Examples.
- [757] Table 2. *In vitro* activity against c-abl data.

[758] [Table 2]

1 18.4 42 875.5 83 90.6 2 29.8 43 56.4 84 18.8 3 11.9 44 161.4 85 3.6 4 4.1 45 5311.2 86 7.4 5 9.0 46 16.8 87 50.9 6 >10,000 47 2.5 88 5.1 7 >10,000 48 7.9 89 119. 8 2.7 49 11.6 90 1.6 9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 >10,000 94 757. 13 9500 54 >10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND	IC ₅₀
3 11.9 44 161.4 85 3.6 4 4.1 45 5311.2 86 7.4 5 9.0 46 16.8 87 50.9 6 >10,000 47 2.5 88 5.1 7 >10,000 48 7.9 89 119.9 8 2.7 49 11.6 90 1.6 9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757. 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000<	6
4 4.1 45 5311.2 86 7.4 5 9.0 46 16.8 87 50.9 6 >10,000 47 2.5 88 5.1 7 >10,000 48 7.9 89 119. 8 2.7 49 11.6 90 1.6 9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 >10,000 94 757. 13 9500 54 >10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 >2,000 59 38.8 100 2.5 19 7.4	8
5 9.0 46 16.8 87 50.9 6 >10,000 47 2.5 88 5.1 7 >10,000 48 7.9 89 119.9 8 2.7 49 11.6 90 1.6 9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757. 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5	 5
6 >10,000 47 2.5 88 5.1 7 >10,000 48 7.9 89 119: 8 2.7 49 11.6 90 1.6 9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757. 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2	 1
7 >10,000 48 7.9 89 119. 8 2.7 49 11.6 90 1.6 9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757. 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1	9
8 2.7 49 11.6 90 1.6 9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757. 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.6 23	 [
9 34.6 50 24.4 91 9.9 10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757. 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.6 23 4.0 64 17.0 105 11.5 24 <	.9
10 22.6 51 35.7 92 9.3 11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757. 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 > 2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 > 2000 66 20.3 107 14.8	 5
11 8.3 52 5773.5 93 7.1 12 32.3 53 > 10,000 94 757.3 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8)
12 32.3 53 > 10,000 94 757.9 13 9500 54 > 10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	3
13 9500 54 >10,000 95 21.1 14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 >2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	<u> </u>
14 1.3 55 5.9 96 10.1 15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	.9
15 116.0 56 7.9 97 1.2 16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	1
16 ND 57 74.2 98 2.1 17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	1
17 7.8 58 130.8 99 102. 18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	2
18 > 2,000 59 38.8 100 2.5 19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	l
19 7.4 60 127.5 101 3.2 20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	.8
20 729.0 61 50.1 102 5.1 21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	5
21 >2000 62 19.9 103 20.3 22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	2
22 0.6 63 58.2 104 21.0 23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	l
23 4.0 64 17.0 105 11.5 24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	3
24 2.3 65 21.3 106 116. 25 >2000 66 20.3 107 14.8	0
25 >2000 66 20.3 107 14.8	5
	.1
	8
26 422.6 67 454.7 108 3.8	3
27 >2000 68 17.8 109 13.7	7
28 >2000 69 25.4 110 7.7	7

WO 2019/070093 PCT/KR2018/011660

29	>2000	70	24.6	111	3.0
30	>2000	71	> 2,000	112	> 10,000
31	>2000	72	63.5	113	21.2
32	47.2	73	57.6	114	ND
33	>2000	74	171.5	115	ND
34	364.2	75	8.3	116	ND
35	1155.7	76	1663.8	117	ND
36	11.4	77	1.6	118	ND
37	76.2	78	4.2	119	ND
38	102.7	79	20.0	120	13.3
39	27.5	80	39.3	121	12.7
40	215.0	81	141.9	122	23.7
41	339.3	82	40.4	123	ND

- [759] ND = not determined
- [760] c-KIT Kinase Assay
- [761] ADP-Glo assay kit was purchased from Promega. Magnesium chloride (MgCl₂), Manganese(II) chloride(MnCl₂), Bovine serum albumin (BSA) and dimethylsulfoxide (DMSO) were purchased from Sigma-Aldrich. Tris-HCl buffer was purchased from Biosesang. c-Kit kinase and Poly (4:1 Glu, Tyr) Peptide were purchased from Signalchem.
- c-Kit kinase activity was measured by Promega's ADP-GloTM Assay. In this assay, Recombinant human c-Kit (100 ng) is incubated with 5 μL of compounds (0.5% DMSO), 5 μL of Poly (4:1 Glu, Tyr) (250 ng/μl) and 5 μL of ATP (250 μM) in buffer (40mM Tris,7.5; 20mM MgCl₂; 0.1mg/ml BSA; 2mM MnCl₂; 50μM DTT.). The assay was started by incubating the reaction mixture in a 96-well plate at 30° C for 2 hr. After the incubation, 25 μL ADP-Glo reagent was added and the reaction was incubated at 30° C for 45 min to stop the reaction and degrade residual ATP. The ADP product was then converted to ATP by adding 50 μL per well of detection reagent. Luminescence was detected after 30 min room temperature incubation with the Molecular device I3X plate reader. The IC₅₀ values were calculated from a series of percent inhibition values determined at a range of inhibitor concentration using software routines as implemented in the GraphPad Prism 7 software or SigmaPlot 13.0.
- [763] PDGFRα Kinase Assay
- [764] ADP-Glo assay kit was purchased from Promega. Magnesium chloride (MgCl₂),

Bovine serum albumin (BSA) and dimethylsulfoxide (DMSO) were purchased from Sigma-Aldrich. Tris-HCl buffer was purchased from Biosesang. PDGFR α kinase and Poly (4:1 Glu, Tyr) Peptide were purchased from Signalchem.

- [765] PDGFRα kinase activity was measured by Promega's ADP-GloTM Assay. In this assay, Recombinant human PDGFRα (40 ng) is incubated with 5 μL of compounds (0.5% DMSO), 5 μL of Poly (4:1 Glu, Tyr) (0.5 μg/μl) and 5 μL of ATP (125 μM) in buffer (40mM Tris,7.5; 20mM MgCl₂; 0.1mg/ml BSA; 50μM DTT.). The assay was started by incubating the reaction mixture in a 96-well plate at 30° C for 1 hr. After the incubation, 25 μL ADP-Glo reagent was added and the reaction was incubated at room temperature for 45 min to stop the reaction and degrade residual ATP. The ADP product was then converted to ATP by adding 50 μL per well of detection reagent. Luminescence was detected after 30-min room temperature incubation with the Molecular device I3X plate reader. The IC₅₀ values were calculated from a series of percent inhibition values determined at a range of inhibitor concentration using software routines as implemented in the GraphPad Prism 7 software or SigmaPlot 13.0.
- [766] In Table 3, IC₅₀ values present against c-abl, c-Kit and PDGFRa Kinases, and the following designations are used ND=not determined.
- [767] Table 3. Biochemical activities to test kinase selectivity

PCT/KR2018/011660

[768] [Table 3]

Example	c-ablIC50 (nM)	c-KitIC ₅₀ (nM)	PDGFRaIC ₅₀ (nM)
1	18.4	>10,000	>3099
2	29.8	4,022	>10,000
3	11.9	3,853	8,384
4	4.1	>10,000	1,966
5	9.0	ND	1,614
8	2.7	3,129	391
9	34.6	ND	ND
10	22.6	ND	ND
11	8.3	ND	ND
12	32.3	>10,000	>10,000
14	1.8	1,338	143
17	7.8	>10,000	1,300
22	0.6	1,018	177
24	2.3	>10,000	1,156
36	11.4	>10,000	5,760

[769]

[770] Kinase Inhibition Assay

- [771] The kinase inhibition profiles of the compounds (Examples 1, 4, 8 and 17) were tested using SelectScreen Kinase Profiling service (93 kinase panel or 485 kinase panel) by ThermoFisher SCIENTIFIC. We tested percentage of inhibition against diverse human kinases activity. Using these panel, the compounds were screened at a final concentration of 100-fold to IC₅₀ of c-abl kinase or 500 nM. The assay protocols of each kinase are published on the ThermoFisher SCIENTIFIC.
- [772] This kinase screening assay is a competition binding assay that profiled the selectivity of the compounds. The compounds showed c-abl kinase inhibition more than 80%, but PI3K, c-kit and PDGFR kinase activity less than 20%.
- [773] The compounds showed a percentage of inhibition less than 40% against AAK1, ACVR1 (ALK2), ACVR1B (ALK4), ACVR2A, ADCK3, ADRBK1 (GRK2), ADRBK2 (GRK3), AKT1 (PKB alpha), AKT2 (PKB beta), AKT3 (PKB gamma), ALK, ALK C1156Y, ALK F1174L, ALK L1196M, ALK R1275Q, ALK T1151_L1152insT, AMPK (A1/B1/G2), AMPK (A1/B1/G3), AMPK (A1/B2/G1),

AMPK (A1/B2/G2), AMPK (A1/B2/G3), AMPK (A2/B1/G2), AMPK (A2/B1/G3), AMPK (A2/B2/G1), AMPK (A2/B2/G2), AMPK (A2/B2/G3), AMPK A1/B1/G1, AMPK A2/B1/G1, AURKA (Aurora A), AURKB (Aurora B), AURKC (Aurora C), AXL, AXL R499C, BLK, BMPR1A (ALK3), BMPR1B (ALK6), BMPR2, BMX, BRAF (lantha), BRAF (Z-LYTE), BRAF V599E (lantha), BRAF V599E (Z-LYTE), BRSK1 (SAD1), BRSK2, BTK, CAMK1 (CaMK1), CAMK1D (CaMKI delta), CAMK1G (CAMKI gamma), CAMK2A (CaMKII alpha), CAMK2B (CaMKII beta), CAMK2D (CaMKII delta), CAMK2G (CaMKII gamma), CAMK4 (CaMKIV), CAMKK1 (CAMKKA), CAMKK2 (CaMKK beta), CASK, CDC42 BPA (MRCKA), CDC42 BPB (MRCKB), CDC42 BPG (MRCKG), CDC7/DBF4, CDK1/cyclin B, CDK11 (Inactive), CDK11/cyclin C, CDK13/cyclin K, CDK14 (PFTK1)/cyclin Y, CDK16 (PCTK1)/cyclin Y, CDK17/cyclin Y, CDK18/cyclin Y, CDK2/cyclin A, CDK2/cyclin A1, CDK2/cyclin E1, CDK2/cyclin O, CDK3/cyclin E1, CDK4/Cyclin D1, CDK4/cyclin D3, CDK5 (Inactive), CDK5/p25, CDK5/p35, CDK6/Cyclin D1, CDK7/cyclin H/MNAT1, CDK8/cyclin C, CDK9 (Inactive), CDK9/cyclin K, CDK9/cyclin T1, CDKL5, CHEK1 (CHK1), CHEK2 (CHK2), CHUK (IKK alpha), CLK1, CLK2, CLK4, CSK, CSNK1A1 (CK1 alpha 1), CSNK1A1L, CSNK1D (CK1 delta), CSNK1E (CK1 epsilon) R178C, CSNK1G1 (CK1 gamma 1), CSNK1G2 (CK1 gamma 2), CSNK1G3 (CK1 gamma 3), CSNK2A1 (CK2 alpha 1), CSNK2A2 (CK2 alpha 2), DAPK1, DAPK2, DAPK3 (ZIPK), DCAMKL1 (DCLK1), DCAMKL2 (DCK2), DDR1, DDR2, DDR2 T654M, DMPK, DYRK1A, DYRK1B, DYRK2, DYRK3, DYRK4, EEF2K, EGFR (ErbB1), EGFR (ErbB1) C797S, EGFR (ErbB1) d746-750, EGFR (ErbB1) d747-749 A750P, EGFR (ErbB1) G719C, EGFR (ErbB1) G719S, EGFR (ErbB1) L858R, EGFR (ErbB1) L861Q, EGFR (ErbB1) T790M, EGFR (ErbB1) T790M C797S L858R, EGFR (ErbB1) T790M L858R, EIF2AK2 (PKR), EPHA1, EPHA6, EPHA7, EPHB1, EPHB3, EPHB4, ERBB2 (HER2), ERBB4 (HER4), ERN1, ERN2, FER, FES (FPS), FGFR1, FGFR1 V561M, FGFR2, FGFR2 N549H, FGFR3, FGFR3 G697C, FGFR3 K650E, FGFR3 K650M, FGFR3 V555M, FGFR4, FLT1 (VEGFR1), FLT3, FLT3 D835Y, FLT3 ITD, FLT4 (VEGFR3), FRAP1 (mTOR), FRK (PTK5), FYN A, GAK, GRK1, GRK4, GRK5, GRK6, GRK7, GSG2 (Haspin), GSK3A (GSK3 alpha), GSK3B (GSK3 beta), HCK, HIPK1 (Myak), HIPK2, HIPK3 (YAK1), HIPK4, HUNK, ICK, IGF1R, IKBKB (IKK beta), IKBKE (IKK epsilon), INSR, INSRR (IRR), IRAK4, ITK, JAK1, JAK2, JAK2 JH1 JH2, JAK2 JH1 JH2 V617F, JAK3, KDR (VEGFR2), KIT, KIT A829P, KIT D816H, KIT D816V, KIT D820E, KIT N822K, KIT T670E, KIT T670I, KIT V559D, KIT V559D T670I, KIT V559D V654A, KIT V560G, KIT V654A, KIT Y823D, KSR2, LATS1, LATS2, LIMK1, LIMK2, LRRK2 I2020T, LRRK2 R1441C, LTK (TYK1), MAP2K1 (MEK1) (lantha), MAP2K1 (MEK1) (Z-LYTE), MAP2K1 (MEK1) S218D S222D, MAP2K2

(MEK2) (lantha), MAP2K2 (MEK2) (Z-LYTE), MAP2K4 (MEK4), MAP2K5 (MEK5), MAP2K6 (MKK6) (lantha), MAP2K6 (MKK6) (Z-LYTE), MAP2K6 (MKK6) S207E T211E, MAP3K10 (MLK2), MAP3K11 (MLK3), MAP3K14 (NIK), MAP3K19 (YSK4), MAP3K2 (MEKK2), MAP3K3 (MEKK3), MAP3K5 (ASK1), MAP3K7/MAP3K7IP1 (TAK1-TAB1), MAP3K8 (COT), MAP3K9 (MLK1), MAP4K2 (GCK), MAP4K3 (GLK), MAP4K5 (KHS1), MAPK1 (ERK2), MAPK10 (JNK3) (lantha), MAPK10 (JNK3) (Z-LYTE), MAPK11 (p38 beta), MAPK12 (p38 gamma), MAPK13 (p38 delta), MAPK14 (p38 alpha), MAPK14 (p38 alpha) Direct, MAPK15 (ERK7), MAPK3 (ERK1), MAPK7 (ERK5), MAPK8 (JNK1) (lantha), MAPK8 (JNK1) (Z-LYTE), MAPK9 (JNK2) (lantha), MAPK9 (JNK2) (Z-LYTE), MAPKAPK2, MAPKAPK3, MAPKAPK5 (PRAK), MARK1 (MARK), MARK2, MARK3, MARK4, MASTL, MATK (HYL), MELK, MERTK (cMER), MERTK (cMER) A708S, MET (cMet), MET (cMET) Y1235D, MET M1250T, MKNK1 (MNK1), MKNK2 (MNK2), MLK4, MST1R (RON), MST4, MUSK, MYLK (MLCK), MYLK4, MYO3A (MYO3 alpha), NEK1, NEK2, NEK4, NEK6, NEK7, NEK8, NEK9, NIM1K, NLK, NUAK1 (ARK5), NUAK2, PAK1, PAK2 (PAK65), PAK3, PAK4, PAK6, PAK7 (KIAA1264), PASK, PDGFRA (PDGFR alpha), PDGFRA D842V, PDGFRA T674I, PDGFRB (PDGFR beta), PDK1, PDK1 Direct, PHKG1, PHKG2, PI4K2A (PI4K2 alpha), PI4K2B (PI4K2 beta), PI4KA (PI4K alpha), PI4KB (PI4K beta), PIM1, PIM2, PIM3, PIP4K2A, PIP5K1A, PIP5K1B, PIP5K1C, PKMYT1, PKN1 (PRK1), PKN2 (PRK2), PLK1, PLK2, PLK3, PLK4, PRKACA (PKA), PRKACB (PRKAC beta), PRKACG (PRKAC gamma), PRKCA (PKC alpha), PRKCB1 (PKC beta I), PRKCB2 (PKC beta II), PRKCD (PKC delta), PRKCE (PKC epsilon), PRKCG (PKC gamma), PRKCH (PKC eta), PRKCI (PKC iota), PRKCN (PKD3), PRKCQ (PKC theta), PRKCZ (PKC zeta), PRKD2 (PKD2), PRKG1, PRKG2 (PKG2), PRKX, PTK2 (FAK), PTK2B (FAK2), PTK6 (Brk), RAF1 (cRAF) Y340D Y341D (lantha), RAF1 (cRAF) Y340D Y341D (Z-LYTE), RET, RET A883F, RET G691S, RET M918T, RET S891A, RET V804E, RET V804L, RET V804M, RET Y791F, ROCK1, ROCK2, ROS1, RPS6KA1 (RSK1), RPS6KA2 (RSK3), RPS6KA3 (RSK2), RPS6KA4 (MSK2), RPS6KA5 (MSK1), RPS6KA6 (RSK4), RPS6KB1 (p70S6K), RPS6KB2 (p70S6Kb), SBK1, SGK (SGK1), SGK2, SGKL (SGK3), SIK1, SIK3, SLK, SNF1LK2, SPHK1, SPHK2, SRMS (Srm), SRPK1, SRPK2, STK16 (PKL12), STK17A (DRAK1), STK17B (DRAK2), STK22B (TSSK2), STK22D (TSSK1), STK23 (MSSK1), STK24 (MST3), STK25 (YSK1), STK3 (MST2), STK32B (YANK2), STK32C (YANK3), STK33, STK38 (NDR), STK38L (NDR2), STK39 (STLK3), STK4 (MST1), TAOK1, TAOK3 (JIK), TBK1, TEC, TEK (TIE2) R849W, TEK (TIE2) Y1108F, TEK (TIE2) Y897S, TESK1, TESK2, TGFBR1 (ALK5), TGFBR2, TLK1, TLK2, TNK1, TNK2 (ACK), TTK, TXK, TYK2, TYRO3

- (RSE), ULK1, ULK2, ULK3, VRK2, WEE1, WNK1, WNK2, WNK3, ZAK, ZAP70.
- [774] Oral dose pharmacokinetic study in mice
- [775] Oral dose pharmacokinetic parameters of Examples 1, 4, 5, 6, 8 and nilotinib were evaluated in mice.
- [776] Male ICR mice fasted for 15 h before beginning pharmacokinetic experiment and received single oral doses of compounds dissolved in 20% dimethyl sulfoxide (DMSO) / 1% Tween-20 / 79% NS solution at a dose of 5 mg/kg. To observe pharmacokinetics of compounds, blood from each mouse was collected from retro-orbital plexus at specific time points (5, 15, 30 and 60 min., 1.5, 2, 3, 4, 6, 8, 10 and 24 hr, n=3 for each time point) after administration using sodium heparinized capillary tube. The plasma samples were separated by centrifugation at 10,000 rpm for 5 min. and stored at -80 °C until analysis. To exposure of compounds, mice brains were collected at 30 and 60 min., 2, 4 and 24 hr (n=1 for each time point) after treatment of compounds with 5 mg/kg and also collected matched plasma samples and then stored at -80 °C until analysis. Freshly thawed brain samples were weighted and homogenized in 3 volumes of PBS.
- Plasma and homogenized brain were treated with acetonitrile to precipitate proteins. After shaking and centrifugation, the supernatant was diluted 3-fold with distilled water and analyzed using ExionLCTM ultra-high-performance liquid chromatograph (SCIEX, USA) coupled with an SCIEX 6500+ triple-quadrupole mass spectrometry (SCIEX, USA) (LC-MS/MS). Ten microliters of each sample were injected onto a CORTECS® C18+ 2.1 mm×50 mm I.D., 2.7 um column (Water, USA) and separated by gradient conditions using mobile phase (A: 0.1% formic acid in water, B: 0.1% formic acid in ACN) at a flow rate of 0.3 mL/min. Peak integrations and areas were determined using Analyst software (SIEX, USA) and non-compartmental pharmacokinetic analysis with mean concentration was performed using Pheonix WinNonlin® software version 8.0 (Pharsight Corp, USA).
- [778] The plasma AUC_{INF} (min*ng/mL) and brain/plasma concentration ratio (BP ratio) following oral dosing at dose of 5 mg/kg were shown in Table 4. All examples exhibit better brain exposure than nilotinib.
- [779] Table 4. Pharmacokinetic parameters of Examples 1, 4, 5, 6, 8 and nilotinib.

[780] [Table 4]

Example	Matrix	Route	Dose(mg/kg)	AUC _{INF} (min*	BP ratio ^a
	•			ng/mL)	
1	Plasma	PO	5	61506.8	-
	Brain	РО	5	152143.0	2.03
4	Plasma	PO	5	682041.7	-
	Brain	PO	5	248386.8	0.41
5	Plasma	PO	5	509093.6	-
	Brain	PO	5	118802.8	0.16
6	Plasma	PO	5	291672.8	-
	Brain	РО	5	236835.9	0.50
8	Plasma	PO	5	871230.0	-
	Brain	РО	5	1202940.1	0.94
Nilotinib	Plasma	PO	5	631652.5	-
	Brain	РО	5	11778.6	0.01

[781] a BP ratios were calculated based on AUC_{INF} value from brain and matched plasma.

[782]

[783] Validation of *in vitro* Efficacy

[784] c-abl is active in Parkinson's disease and recent studies show that c-abl is activated by treatment of α -synuclein preformed fibrils (PFF) in a time-dependent manner and α -synuclein PFF was significantly decreased in the neurons with treatment of c-abl inhibitor, nilotinib. (Zui-Hua Zhou et at. *Neurol Sci.* 2016)

[785] However, nilotinib has been known to cause cardiovascular adverse events such as QTc prolongation and irregular heartbeat which may lead to sudden death. These adverse events (black box warning) could be due to its hERG activity. Nilotinib, ponatinib, and dasatinib have hERG IC₅₀ of 0.13, 2.33 and 14.3 μM, respectively. Moreover, nilotinib neither shows c-abl kinase selectivity nor high BBB penetration. It may mean that nilotinib is not suitable for usage in chronic neurodegenerative disease.

[786] Examples 4 and 8 showed little hERG activity (23.87% and 12.61% inhibition at 10 μM, respectively) and it indicated the compounds are unlikely to cause cardiovascular adverse events. Example 4 decreased the α-synuclein PFF-induced pathologic aggregation (Lewy body-like pathology) and Examples 4 and 8 also inhibited PFF-induced neuronal toxicity in a dose dependent manner (dose: 0.5, 1, 5, 10, 100nM).

[787] Examples 4 and 8 have good PK profiles in mice and better brain exposure than

WO 2019/070093 PCT/KR2018/011660

nilotinib.

Table 5. Comparison of nilotinib and Examples 4 and 8

[789] [Table 5]

[788]

Drug	Dose(mg	Route	T _{max} (mi	C _{max} (ng/m	AUC _{INF} (min*	Brain/plasma
	/kg)		n)	L)	ng/mL)	ratio
						(AUC)Total/Fre
						e
Nilotinib	5	РО	60	4409.1	631652.5	0.01/0.002
Example 4	5	РО	30	3585.9	682041.7	0.42/0.27
Example 8	5	РО	60	4165.6	1514891.9	0.71/0.21

[790]

[791] Validation of *in vivo* efficacy in AD and PD model

[792] The pharmacology activity of Examples 4 and 8 was estimated in the A β_{25-35} induced Alzheimer's disease (AD) and α -synuclein pre-formed fibrils (PFF) induced Parkinson's disease (PD) mice model.

[793] *in vivo* efficacy in PD model

Phosphorylation of α -synuclein at ser129 was increased in α -synuclein PFF induced PD model and it was statistically reduced by oral administration of Example 4 (3 and 10 mg/kg, q.d.) about 50% and 80%, respectively. However, nilotinib (3 and 10 mg/kg, q.d.) was not effective on phosphorylation of α -synuclein statistically. It means that Example 4 is potent candidate to ameliorate Lewy body pathogenesis.

In α-synuclein PFF induced PD mice, Example 4 (0.3, 1, 3 and 10 mg/kg) and nilotinib (3, 10 and 30 mg/kg) was administered orally once daily for 5 months and pole test was performed to evaluate the movement disorder of α-synuclein PFF induced PD mice. Increased pole climb down time (sec) by α-synuclein PFF injection was recovered by treatment of Example 4 in a dose-dependent manner. 0.3 mg/kg of Example 4 resulted in 50% improvement of pole climb down time and 10 mg/kg completely recovered. However, nilotinib showed just a slight improvement at 10 mg/kg.

[796] It indicates that the compounds confer behavioral recovery of mice from motor dysfunction induced by α-synuclein PFF in a dose dependent way and the compounds are disease modifying agents for neurodegenerative disorders including Parkinson's disease and potentially dementia with Lewy body.

[797] in vivo efficacy in AD model

[798] Example 4 (1, 3 and 10 mg/kg), Example 8 (1 and 3 mg/kg) and nilotinib (3 mg/kg) was administered orally once daily to the $A\beta_{25-35}$ induced AD mice for 10 days and

spontaneous alternation performance in the Y-maze, an index of spatial working memory and step-through passive avoidance (STPA) test were performed. Y-maze test as a behavioral test was used to assess memory function and the willingness of rodents to explore new environments

- [799] ICV injection of oligomeric $A\beta_{25-35}$ peptide triggered neurotoxic effects and behavioral deficit in Y-maze test evaluating short term memory, by measurement of spontaneous alternation, while any change of motor symptom was not observed by measurement of locomotion.
- [800] 10 Days after ICV injection of oligomeric $A\beta_{25-35}$ peptide, the hippocampus was dissected out. And lipid peroxidation level was quantified in the hippocampus homogenates. ICV injection of oligomeric $A\beta_{25-35}$ peptide induced lipid peroxidation, a marker for oxidative stress. Once daily oral dosing of 3 mg/kg and 10 mg/kg of Example 4 completely inhibited lipid peroxidation, meaning the reduction of oxidative stress. (Fig. 7)
- [801] Oxidative stress is considered to be a major mechanism of neuronal toxicity induced by A β_{25-35} peptide through mitochondrial dysfunction (Ref: Meunier et al. *Eur J. Pharm* 2012), which is successfully inhibited by Example 4.
- [802] This indicates that Example 4 very significantly and fully alleviated deficits of alternation behavior and contextual long-term memory in a dose-response manner, while nilotinib partially alleviated spatial working memory deficits or showed no significant effect on contextual long-term memory deficits.
- [803] The results are shown in Figures 1 to 7. The result indicates that the compounds have high neuroprotective activity and low cardiovascular events and thus can be useful to treat or inhibit neurodegenerative disease such as Parkinson's disease, Alzheimer's disease and/or ALS.

WO 2019/070093 PCT/KR2018/011660

Claims

[Claim 1] A compound of Formula (I):

$$R^{1}$$
 S
 R^{2}
 R^{3}
 R^{4}
 R^{4}

or a pharmaceutically acceptable salt thereof, wherein:

R¹ is cyclopropyl, cyclobutyl, or 3- or 4-membered heterocyclyl, wherein R1 is optionally substituted with one or more groups selected from the group consisting of halo, alkyl hydroxyalkyl and haloalkyl, R² and R³ are independently -H, halo, alkyl, alkoxy, -CF₃, or -OCF₃, R⁴ is aryl, heteroaryl, cycloalkyl, heterocyclyl, or heteroalkyl, wherein R⁴ is optionally substituted with one or more groups selected from the group consisting of halo, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, trimethylsilylethoxymethyl, -NO₂, -NR_aR_b, -NR_aC(=O)R_b $, -NR_aC(=O)NR_aR_b, -NR_aC(=O)OR_b, -OR_a, -CN, -C(=O)R_a, -C(=O)OR_a$ $, -C(=O)NR_aR_b, -OC(=O)R_a, -OC(=O)OR_a, -OC(=O)NR_aR_b, -SR_a,$ azetidinyl, oxetanyl, tetrahydrofuranyl, furanyl, pyrrolidinyl, pyrrolyl, pyrazolyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, furazanyl, oxadiazolyl, thiadiazolyl, phenyl, tetrahydropyranyl, pyranyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and R_a and R_b are independently -H, halo, amino, alkyl, or haloalkyl. The compound of Claim 1, wherein

[Claim 2]

 R^1 is cyclopropyl, cyclobutyl, or 3- or 4-membered heterocyclyl, wherein R^1 is optionally substituted with one or more groups selected from the group consisting of halo, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl and C_1 - C_3 haloalkyl;

 R^2 and R^3 are independently -H, halo, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, -CF₃, or -OCF₃;

 R^4 is aryl, heteroaryl, cycloalkyl, heterocyclyl, or heteroalkyl, wherein R^4 is optionally substituted with one or more groups selected from the group consisting of halo, hydroxyl, C_1 - C_3 alkyl, C_2 - C_3 alkenyl, C_2 - C_3 alkynyl, C_1 - C_3 haloalkyl, mono- C_1 - C_3 alkylamino, di- C_1 - C_3 alkylamino, -NO₂, -NR_aR_b, -NR_aC(=O)R_b, -NR_aC(=O)NR_aR_b, -NR_aC(=O)OR_b, -OR_a,

 $-CN, -C(=O)R_a, -C(=O)OR_a, -C(=O)NR_aR_b, -OC(=O)R_a, -OC(=O)OR_a, -OC(=O)OR_A,$ -OC(=O)NR_aR_b, -SR_a, azetidinyl, oxetanyl, tetrahydrofuranyl, furanyl, pyrrolidinyl, pyrrolyl, pyrazolyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, furazanyl, oxadiazolyl, thiadiazolyl, phenyl, tetrahydropyranyl, pyranyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and

 R_a and R_b are independently -H, halo, amino, C_1 - C_3 alkyl, or C_1 - C_3 haloalkyl.

[Claim 3] The compound of Claim 1, wherein

> R₁ is cyclopropyl or cyclobutyl, optionally substituted with one or more selected from the group consisting of fluoro, C₁-C₃ alkyl C₁-C₃ hydroxyalkyl and C₁-C₃ fluoroalkyl,

> R² and R³ are independently -H, -F, -Br, -Cl, C₁-C₃ alkyl, or -CF₃, R⁴ is phenyl, pyridinyl, thiophenyl, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, pyrimidinyl, pyrazinyl, oxazolyl, isoxazolyl, pyrrolyl, indolyl, benzimidazolyl, azaindolyl, pyridazinyl, indolinyl, oxindolyl or 1,3-dihydro-2*H*-pyrrolo[2,3-b]pyridin-2-onyl, wherein R⁴ is optionally substituted with one or more groups selected from the group consisting of halo, hydroxyl, C₁-C₃ alkyl, C₁-C₃ haloalkyl, mono(C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, -NR_aR_b, -OR_a, -CN, -C(=O)R_a, -C(=O)OR_a, -OC(=O)R_a, -OC(=O)OR_a, -SR_a, pyrazolyl, imidazolyl, isothiazolyl, thiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl and pyrrolyl,

 R_a and R_b are independently -H, halo, amino, C_1 - C_3 alkyl, or C_1 - C_3 haloalkyl.

The compound of Claim 1, wherein R¹ is cyclopropyl or cyclobutyl, wherein R1 is optionally substituted with one or more groups selected from the group consisting of fluoro, methyl, ethyl, hydroxymethyl, hydroxyethyl, and methylaminomethyl.

The compound of Claim 1, wherein R¹ is cyclopropyl, fluorocyclopropyl, hydroxycyclopropyl, hydroxymethylcyclopropyl, difluorocyclopropyl, methylaminomethylcyclopropyl, cyclobutyl, fluorocyclobutyl, or difluorocyclobutyl; and R² and R³ are independently -H, methyl, or fluoro.

The compound of Claim 1, wherein R⁴ is fluoro-methylphenyl, chloromethylphenyl, dimethylphenyl, acetamido-methylphenyl, hydroxymethylphenyl, hydroxypropanyl-methylphenyl, methyl-

[Claim 4]

[Claim 5]

[Claim 6]

propenylphenyl, methyl-pyridinylethynylphenyl, methylpyrrolylphenyl, methyl-thiazolylphenyl, imidazolyl-methylphenyl, cyano-methylphenyl, methyl-pyrazolylphenyl, ethynyl-methylphenyl, methylpyridinyl, fluoro-methyl-methylaminophenyl, dimethylpyridinyl, fluoro-methylpyridinyl, fluoromethyl-methylpyridinyl, cyanopyridinyl, trifluoromethyl-methylpyridinyl, hydroxymethylpyridinyl, hydroxymethyl-methylpyridinyl, hydroxyethyl-methylpyridinyl, chloromethylpyridinyl, aminopyridinyl, acetyl-methylpyridinyl, aminodimethylpyridinyl, hydroxyethyl-methylpyridinyl, methylindolyl, trimethylsilylethoxymethylindolyl, acetyl-methylindolinyl, methylpyrimidinyl, dimethylpyrimidinyl, trifluoromethylpyrimidinyl, pyrazolyl, methylthiazolyl, methyloxoindolinyl, pyrrolopyridinyl, methylpyrrolopyridinyl, methyl-tetrahydropyranyl, methylpyrazolyl, methyl-oxodihydrobibenzothiazolyl, pyrazolopyridinyl, oxodihydropyrrolopyridinyl, methylisothiazolyl, chloro-methylisothiazolyl, dimethylisothiazolyl, or fluoro-methylindolyl.

[Claim 7]

The compound of Claim 1, wherein R⁴ is fluoro-methylphenyl, chloromethylphenyl, bimethylphenyl, acetamido-methylphenyl, hydroxylmethylphenyl, methyl-propenylphenyl, ethynyl-methylphenyl, fluoromethyl-methylaminophenyl, methyl-pyrrolylphenyl, methylthiazolylphenyl, cyano-methylphenyl, imidazolyl-methylphenyl, methylpyridinyl, chloro-methylpyridinyl, fluoro-methylpyridinyl, fluoromethyl-methylpyridinyl, bimethylpyridinyl, aminopyridinyl, aminodimethylpyridinyl, methoxypyridinyl, acetyl-methylpyridinyl, hydroxymethylpyridinyl, hydroxymethyl-methylpyridinyl, hydroxyethylmethylpyridinyl, cyanopyridinyl, trifluoromethylpyridinyl, methylthiophenyl, methylindolinyl, methylpyrimidinyl, dimethylpyrimidinyl, pyrazolyl, methylpyrazolyl, methylindolinyl, methyloxoindolinyl, pyrrolopyridinyl, methylpyrrolopyridinyl, methylpyrrolyl, pyrazolopyridinyl, dihydropyrrolopyridinyl, methylisothiazolyl, dimethylisothiazolyl, methylindazolyl, or methyl-bibenzothiazolyl. The compound of Claim 1, wherein R⁴ is selected from the group consisting of phenyl, pyridinyl, pyrimidinyl, indolinyl, pyrazolyl, thiazolyl, oxoindolinyl, pyrrolopyridinyl, pyrazolyl, pyrazolopyridinyl, oxodihydropyrrolopyridinyl, thiophenyl, and isothiazolyl, wherein R⁴ is optionally substituted with one or more groups selected from the group consisting of halo, alkyl, alkynyl, hydroxyalkyl, amino, cyano, acetyl, hydroxy, and haloalkyl.

[Claim 8]

[Claim 9] The compound of Claim 1, wherein R⁴ is selected from the group consisting of:

[Claim 10] [Claim 11] The compound of Claim 1, wherein R¹ is unsubstituted cyclopropyl.

The compound of Claim 10, wherein the compound is selected from the group consisting of:

N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxa mide;

N-(6-(5-acetamido-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopropane carboxamide;

N-(6-(6-aminopyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxa mide;

N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopropanecarb oxamide;

N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropan ecarboxamide;

N-(6-(3-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cy clopropane carboxamide;

N-(6-(1H-pyrazolo[3,4-b]pyridin-5-yl)benzo[d]thiazol-2-yl)cyclopropa necarboxamide;

N-(6-(2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazo l-2-yl) cyclopropanecarboxamide;

N-(6-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl) cyclopropane carboxamide;

N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cycloprop anecarboxamide; and

N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropan ecarboxamide.

[Claim 12]

The compound of Claim 1, wherein R¹ is fluorocyclopropyl.

[Claim 13]

The compound of Claim 12, wherein the compound is selected from the group consisting of:

2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;

N-(6-(2-chloro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;

N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropanel-carboxamide;

2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;

2-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;

2-fluoro-N-(6-(2-methyl-5-(prop-1-en-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;

N-(6-(2-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyc lopropane-1-carboxamide;

N-(6-(2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;

2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;

2-fluoro-N-(6-(5-(2-hydroxypropan-2-yl)-2-methylphenyl)benzo[d]thia zol-2-yl) cyclopropane-1-carboxamide;

2-fluoro-N-(6-(3-hydroxy-2-methylphenyl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;

N-(6-(6-amino-2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluoro

cyclopropane-1-carboxamide;

- 2-fluoro-N-(6-(5-methylindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- 2-fluoro-N-(6-(2-fluoro-6-methylphenyl)thiazolo[4,5-c]pyridin-2-yl)cy clopropane-1-carboxamide;
- N-(6-(1-acetyl-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)-2-fluorocycl opropane-1-carboxamide;
- 2-fluoro-N-(6-(2-fluoro-6-methyl-3-(methylamino)phenyl)benzo[d]thia zol-2-yl) cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropa ne-1-carboxamide;
- 2-fluoro-N-(6-(3-methylthiophen-2-yl)benzo[d]thiazol-2-yl)cyclopropa ne-1-carboxamide;
- 3-(2-(2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)-4-me thylpyridine 1-oxide;
- (2-(2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)boronic acid;
- 2-fluoro-N-(6-(4-methylpyrimidin-5-yl)benzo[d]thiazol-2-yl)cycloprop ane-1-carboxamide;
- N-(6-(6-acetyl-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocycl opropane-1-carboxamide;
- N-(6-(4,6-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- N-(6-(6-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyc lopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methyl-6-(trifluoromethyl)pyridin-3-yl)benzo[d]thiaz ol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-(hydroxymethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cy clopropane-1-carboxamide;
- 2-fluoro-N-(6-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiaz ol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo[d]thiaz ol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-(trifluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)cy clopropane-1-carboxamide;
- N-(6-(1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- 2-fluoro-N-(6-(2-methyl-5-(pyridin-2-ylethynyl)phenyl)benzo[d]thiazol

- -2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-1-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cycloprop ane-1-carboxamide;
- 2-fluoro-N-(6-(5-(hydroxymethyl)-4-methylpyridin-3-yl)benzo[d]thiaz ol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(4-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- 2-fluoro-N-(4-fluoro-6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(5-methylthiazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane -1-carboxamide;
- N-(6-(4,6-dimethylpyrimidin-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclop ropane-1-carboxamide;
- 2-fluoro-N-(6-(7-methyl-2-oxoindolin-6-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- N-(6-(5-ethynyl-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopr opane-1-carboxamide;
- N-(6-(4-chloropyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane -1-carboxamide;
- N-(6-(4-cyanopyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane -1-carboxamide;
- 2-fluoro-N-(6-(2-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- 2-fluoro-N-(6-(4-(trifluoromethyl)pyrimidin-5-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-3-yl)phenyl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(2-methyl-5-(thiazol-2-yl)phenyl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;
- N-(6-(5-cyano-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- 2-fluoro-N-(6-(4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methyl-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- 2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-2-yl)phenyl)benzo[d]thiazol-2-y

1)cyclopropane-1-carboxamide;

- 2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-3-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(5-methyl-2-oxoindolin-4-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- 2-fluoro-N-(4-methyl-2-oxo-2,3-dihydro-[5,6'-bibenzo[d]thiazol]-2'-yl) cyclopropane-1-carboxamide;
- N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)-2-fluorocycl opropane-1-carboxamide;
- 2-fluoro-N-(6-(3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)cycloprop ane-1-carboxamide;
- N-(6-(4-chloro-3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluoroc yclopropane-1-carboxamide;
- 2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- 2-fluoro-N-(6-(7-methyl-1H-indazol-6-yl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- N-(6-(3,4-dimethylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluorocyclop ropane-1-carboxamide;
- N-(6-(5-(1H-imidazol-2-yl)-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fl uorocyclopropane-1-carboxamide;
- 2-fluoro-N-(6'-methyl-[6,7'-bibenzo[d]thiazol]-2-yl)cyclopropane-1-car boxamide;
- 2-fluoro-N-(6-(6-(fluoromethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;
- 2-fluoro-N-(5-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- 2-fluoro-N-(6-(6-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- 2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- 2-fluoro-N-(6-(2-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropan

- e-1-carboxamide;
- 2-fluoro-N-(6-(3-methylpyridin-4-yl)benzo[d]thiazol-2-yl)cyclopropan
- e-1-carboxamide;
- 2-fluoro-N-(6-(3-methylpyridin-2-yl)benzo[d]thiazol-2-yl)cyclopropan
- e-1-carboxamide;
- N-(6-(4-ethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-vinylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- N-(6-(4-ethynylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropan e-1-carboxamide:
- N-(6-(4-bromopyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane -1-carboxamide;
- 2-fluoro-N-(6-(4-(trifluoromethoxy)pyridin-3-yl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;
- N-(6-(4-(difluoromethyl)pyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyc lopropane-1-carboxamide;
- N-(6-(5-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyc lopropane-1-carboxamide;
- N-(6-(4,5-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- 2-fluoro-N-(6-(6-fluoro-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- 2-fluoro-N-(6-(o-tolyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxami de;
- N-(6-(2-ethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-car boxamide;
- 2-fluoro-N-(6-(2-vinylphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-car boxamide;
- N-(6-(2-ethynylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-c arboxamide;
- N-(6-(2-bromophenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-ca rboxamide;
- 2-fluoro-N-(6-(2-methoxyphenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(2-(trifluoromethoxy)phenyl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- 2-fluoro-N-(6-(2-(trifluoromethyl)phenyl)benzo[d]thiazol-2-yl)cyclopr

- opane-1-carboxamide;
- N-(6-(2-(difluoromethyl)phenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- 2-fluoro-N-(6-(2-(hydroxymethyl)phenyl)benzo[d]thiazol-2-yl)cyclopr opane-1-carboxamide;
- 2-fluoro-N-(6-(3-fluoro-2-methylphenyl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;
- N-(6-(3-chloro-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- N-(6-(2,3-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- N-(4-chloro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyc lopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methylpyridin-3-yl)-4-(trifluoromethyl)benzo[d]thiaz ol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(4-methoxy-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;
- 2-fluoro-N-(4-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cy clopropane-1-carboxamide;
- N-(5-chloro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyc lopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methylpyridin-3-yl)-5-(trifluoromethyl)benzo[d]thiaz ol-2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(5-methoxy-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;
- 2-fluoro-N-(5-methyl-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cy clopropane-1-carboxamide;
- N-(6-(1H-imidazol-2-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methyl-1H-imidazol-2-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- N-(6-(1H-imidazol-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(2-methyl-1H-imidazol-4-yl)benzo[d]thiazol-2-yl)cyclop ropane-1-carboxamide;
- 2-fluoro-N-(6-(3-methylpyrazin-2-yl)benzo[d]thiazol-2-yl)cyclopropan e-1-carboxamide;
- 2-fluoro-N-(6-(4-methyloxazol-5-yl)benzo[d]thiazol-2-yl)cyclopropane

- -1-carboxamide;
- 2-fluoro-N-(6-(3-methyl-1H-pyrrol-2-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;

N-(6-(1H-benzo[d]imidazol-4-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopr opane-1-carboxamide;

2-fluoro-N-(6-(5-methyl-1H-benzo[d]imidazol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;

N-(6-(1H-pyrrolo[2,3-b]pyridin-4-yl)benzo[d]thiazol-2-yl)-2-fluorocycl opropane-1-carboxamide;

- 2-fluoro-N-(6-(5-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)benzo[d]thiazol -2-yl)cyclopropane-1-carboxamide;
- 2-fluoro-N-(6-(4-methylpyridazin-3-yl)benzo[d]thiazol-2-yl)cycloprop ane-1-carboxamide;
- 2-fluoro-N-(6-(5-methylpyridazin-4-yl)benzo[d]thiazol-2-yl)cycloprop ane-1-carboxamide; and
- 2-fluoro-N-(6-(5-methyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-4-yl)be nzo[d]thiazol-2-yl)cyclopropane-1-carboxamide.

[Claim 14]

The compound of Claim 1, wherein R¹ is hydroxymethylcyclopropyl.

[Claim 15]

The compound of Claim 14, wherein the compound is selected from the group consisting of:

- 2-(hydroxymethyl)-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cy clopropane-1-carboxamide;
- 2-(hydroxymethyl)-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;

N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropane-1-carboxamide;

N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropane-1-carboxamide;

N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-(hydroxymethyl)cyclopropane-1-carboxamide;

N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-(hydroxy methyl)cyclopropane-1-carboxamide; and

N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)-2-(hydro xymethyl) cyclopropane-1-carboxamide.

[Claim 16]

The compound of Claim 1, wherein R¹ is hydroxycyclopropyl or difluorocyclopropyl.

[Claim 17]

The compound of Claim 16, wherein the compound is selected from the group consisting of:

2-hydroxy-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycloprop ane-1-carboxamide;

PCT/KR2018/011660

2-hydroxy-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycloprop ane-1-carboxamide;

2,2-difluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopro pane-1-carboxamide;

2,2-difluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclo propane-1-carboxamide;

2,2-difluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;

N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-((methyla mino)methyl) cyclopropane-1-carboxamide; and

N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)-2-((methylamino)methyl) cyclopropane-1-carboxamide.

[Claim 18]

The compound of Claim 1, wherein R¹ is unsubstituted cyclobutyl.

[Claim 19]

The compound of Claim 18, wherein the compound is selected from the group consisting of:

N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobutanecarbo xamide:

 $N\hbox{-}(6\hbox{-}(4\hbox{-methylpyridin-}3\hbox{-}yl)benzo[d] thiazol-2\hbox{-}yl) cyclobutane carbox amide; and$

N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutanec arboxamide.

[Claim 20]

The compound of Claim 1, wherein R¹ is fluorocyclobutyl.

[Claim 21]

The compound of Claim 20, wherein the compound is selected from the group consisting of:

3-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamide;

3-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobutane-1-carboxamide;

3-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobut ane-1-carboxamide;

3-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclobut ane-1-carboxamide;

3-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl obutane-1-carboxamide;

3,3-difluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclobut ane-1-carboxamide;

[Claim 17

3,3-difluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)cyclo butane-1-carboxamide; and

3,3-difluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl) cyclobutane-1-carboxamide.

The compound of Claim 1, wherein the compound is selected from the group consisting of:

(1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;

N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropanecarboxa mide; and

(1S,2S)-2-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide.

The compound of Claim 1, wherein the compound is a compound of Formula (II):

$$R^{5}$$
 HN
 S
 R^{4}
 R^{4}
 R^{4}

or pharmaceutically acceptable salt thereof,

wherein R^5 is selected from the group consisting of halo, C_1 - C_3 alkyl, C_1 - C_3 hydroxyalkyl and C_1 - C_3 haloalkyl.

The compound of Claim 23, wherein R⁴ is fluoro-methylphenyl, chloro-methylphenyl, bimethylphenyl, acetamido-methylphenyl, hydroxyl-methylphenyl, methyl-propenylphenyl, ethynyl-methylphenyl, fluoro-methyl-methylaminophenyl, methyl-pyrrolylphenyl, methyl-thiazolylphenyl, cyano-methylphenyl, imidazolyl-methylphenyl, methylpyridinyl, chloro-methylpyridinyl, fluoro-methylpyridinyl, fluoro-methylpyridinyl, bimethylpyridinyl, aminopyridinyl, amino-dimethylpyridinyl, methoxypyridinyl, acetyl-methylpyridinyl, hydroxymethylpyridinyl, hydroxymethylpyridinyl, cyanopyridinyl, trifluoromethylpyridinyl, methylthiophenyl, methylpyridinyl, methylpyrimidinyl, methylpyrimidinyl, pyrazolyl, methylpyrazolyl, methylindolinyl, methylindolinyl, methylpyrimidinyl, me

[Claim 22]

[Claim 23]

[Claim 24]

pyrrolopyridinyl, methylpyrrolopyridinyl, methylpyrrolyl, pyrazolopyridinyl, dihydropyrrolopyridinyl, methylisothiazolyl, dimethylisothiazolyl, methylindazolyl, or methyl-bibenzothiazolyl.

[Claim 25]

The compound of Claim 23, wherein the compound is selected from the group consisting of:

PCT/KR2018/011660

(1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;

(1S,2S)-N-(6-(2-chloro-6-methylphenyl) benzo[d] thiazol-2-yl)-2-fluoro cyclopropane-1-carboxamide;

(1S,2S)-N-(6-(2,6-dimethylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclo propane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(5-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(2-methyl-5-(prop-1-en-2-yl)phenyl)benzo[d]thi azol-2-yl)cyclopropane-1-carboxamide;

(1S,2S)-N-(6-(2-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fl uorocyclopropane-1-carboxamide;

(1S,2S)-N-(6-(2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluoro cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(5-hydroxy-2-methylphenyl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(5-(2-hydroxypropan-2-yl)-2-methylphenyl)benz o[d]thiazol-2-yl)cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(3-hydroxy-2-methylphenyl)benzo[d]thiazol-2-y l)cyclopropane-1-carboxamide;

(1S,2S)-N-(6-(6-amino-2,4-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(5-methylindolin-4-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methylphenyl)thiazolo[4,5-c]pyridin -2-yl)cyclopropane-1-carboxamide;

(1S,2S)-N-(6-(1-acetyl-5-methylindolin-4-yl)benzo[d]thiazol-2-yl)-2-fl uorocyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(2-fluoro-6-methyl-3-(methylamino)phenyl)benz o[d]thiazol-2-yl)cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(4-methoxypyridin-3-yl)benzo[d]thiazol-2-yl)cy

- clopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(3-methylthiophen-2-yl)benzo[d]thiazol-2-yl)cy clopropane-1-carboxamide;
- 3-(2-((1S,2S)-2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl)-4-methylpyridine 1-oxide;
- (2-((1S,2S)-2-fluorocyclopropane-1-carboxamido)benzo[d]thiazol-6-yl) boronic acid;
- (1S,2S)-2-fluoro-N-(6-(4-methylpyrimidin-5-yl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;
- (1S,2S)-N-(6-(6-acetyl-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fl uorocyclopropane-1-carboxamide;
- (1S,2S)-N-(6-(4,6-dimethylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluoro cyclopropane-1-carboxamide;
- (1S,2S)-N-(6-(6-chloro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)-2-fl uorocyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-methyl-6-(trifluoromethyl)pyridin-3-yl)benzo [d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-(hydroxymethyl)pyridin-3-yl)benzo[d]thiazol -2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(6-(hydroxymethyl)-4-methylpyridin-3-yl)benzo [d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(6-(1-hydroxyethyl)-4-methylpyridin-3-yl)benzo [d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-(trifluoromethyl)pyridin-3-yl)benzo[d]thiazol -2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-N-(6-(1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclopro pane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(pyridin-2-ylethynyl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-1-yl)phenyl)benzo[d]t hiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(5-methyl-1H-indol-4-yl)benzo[d]thiazol-2-yl)c yclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(5-(hydroxymethyl)-4-methylpyridin-3-yl)benzo [d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(4-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(4-fluoro-6-(2-fluoro-6-methylphenyl)benzo[d]thia

WO 2019/070093 PCT/KR2018/011660

- zol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(5-methylthiazol-4-yl)benzo[d]thiazol-2-yl)cycl opropane-1-carboxamide;
- (1S,2S)-N-(6-(4,6-dimethylpyrimidin-5-yl)benzo[d]thiazol-2-yl)-2-fluo rocyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(7-methyl-2-oxoindolin-6-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-N-(6-(5-ethynyl-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluor ocyclopropane-1-carboxamide;
- (1S,2S)-N-(6-(4-chloropyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclo propane-1-carboxamide;
- (1S,2S)-N-(6-(4-cyanopyridin-3-yl)benzo[d]thiazol-2-yl)-2-fluorocyclo propane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-(trifluoromethyl)pyrimidin-5-yl)benzo[d]thia zol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-3-yl)phenyl)benzo[d]thi azol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(thiazol-2-yl)phenyl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-N-(6-(5-cyano-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluoroc yclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-methyl-1-(tetrahydro-2H-pyran-2-yl)-1H-pyr azol-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(4-methyl-1H-pyrazol-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrrol-2-yl)phenyl)benzo[d]thi azol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(2-methyl-5-(1H-pyrazol-3-yl)phenyl)benzo[d]t hiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(5-methyl-2-oxoindolin-4-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(4-methyl-2-oxo-2,3-dihydro-[5,6'-bibenzo[d]thiaz ol]-2'-yl)cyclopropane-1-carboxamide;
- (1S,2S)-N-(6-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzo[d]thiazol-2-yl)-2-fl uorocyclopropane-1-carboxamide;
- (1S,2S)-2-fluoro-N-(6-(3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)cy

[Claim 27]

[Claim 28]

[Claim 29]

clopropane-1-carboxamide;

(1S,2S)-N-(6-(4-chloro-3-methylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2 -fluorocyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-4-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(7-methyl-1H-indazol-6-yl)benzo[d]thiazol-2-yl) cyclopropane-1-carboxamide;

(1S,2S)-N-(6-(3,4-dimethylisothiazol-5-yl)benzo[d]thiazol-2-yl)-2-fluo rocyclopropane-1-carboxamide;

(1S,2S)-N-(6-(5-(1H-imidazol-2-yl)-2-methylphenyl)benzo[d]thiazol-2-yl)-2-fluorocyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6'-methyl-[6,7'-bibenzo[d]thiazol]-2-yl)cyclopropa ne-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(6-(fluoromethyl)-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(6-(6-fluoro-5-methyl-1H-indol-4-yl)benzo[d]thiaz ol-2-yl)cyclopropane-1-carboxamide;

(1S,2S)-2-fluoro-N-(5-fluoro-6-(4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide; and

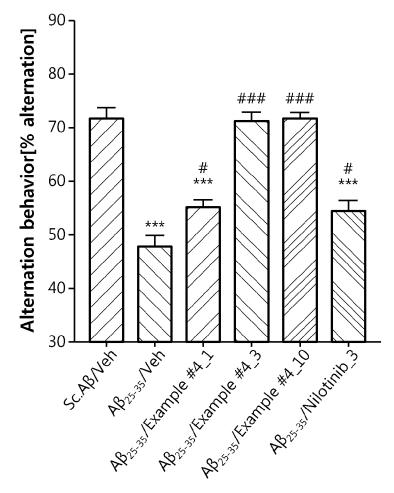
(1S,2S)-2-fluoro-N-(6-(6-fluoro-4-methylpyridin-3-yl)benzo[d]thiazol-2-yl)cyclopropane-1-carboxamide.

[Claim 26] The compound of any one of Claim 1 to 25, wherein the salt is hydrochloric acid salt, formic acid salt, or trifluoroacetic acid salt.

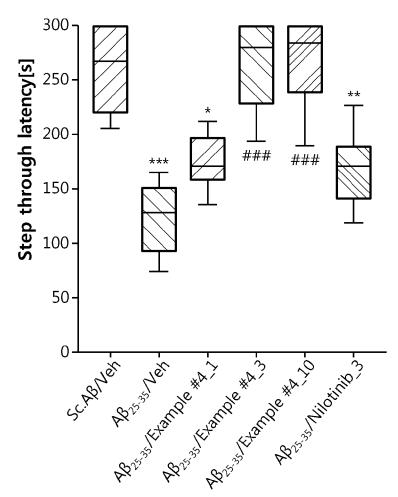
A pharmaceutical composition comprising a therapeutically effective amount of a compound of any one of Claim 1 to 25 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

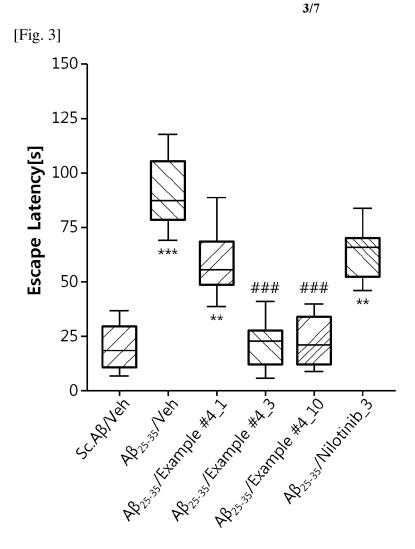
The pharmaceutical composition of Claim 27, further comprising one or more active ingredient that is useful to treat a neurodegenerative disease.

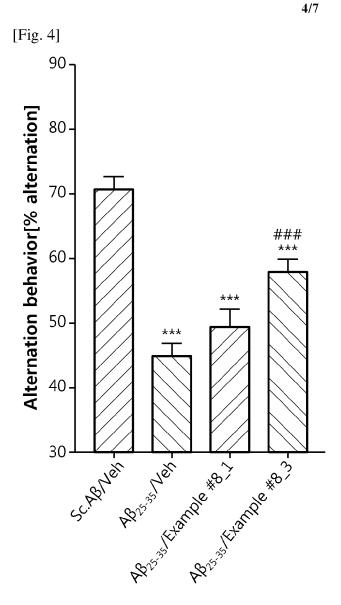
A method for treating a neurodegenerative disease in a subject, comprising:

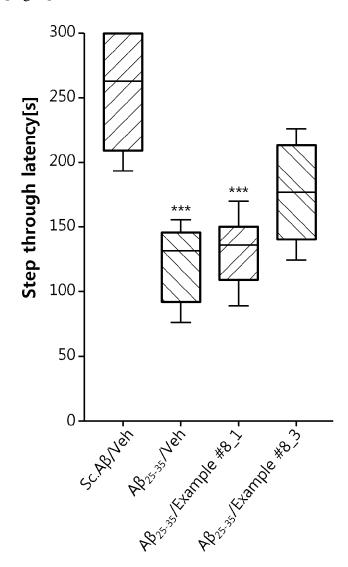

administering to the subject in need thereof a therapeutically effective amount of a compound of any one of Claim 1 to 25 or a pharmaceutically acceptable salt thereof.

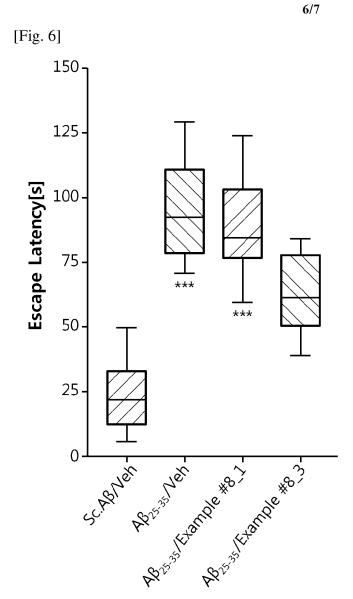
[Claim 30] The method of Claim 29, wherein the neurodegenerative disease is α-synucleinopathy, Parkinson's disease, dementia with Lewy body, multiple system atrophy (MSA), Alzheimer's disease or amyotrophic

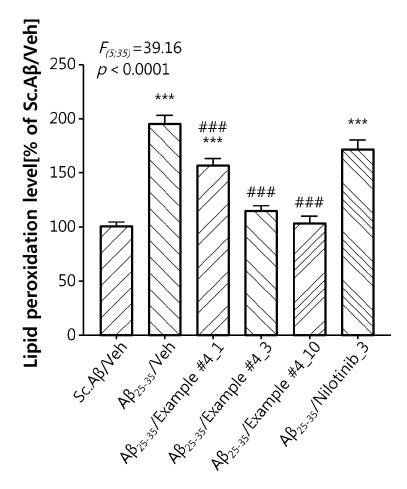

WO 2019/070093 PCT/KR2018/011660

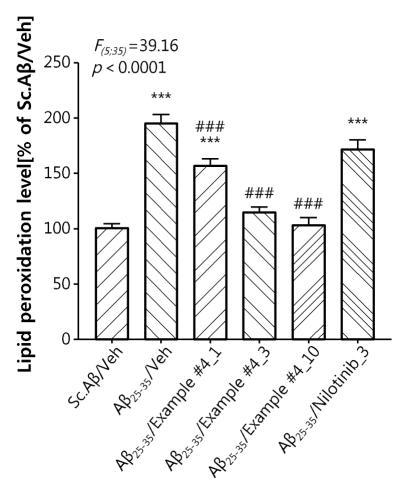

lateral sclerosis (ALS).










[Fig. 5]

[Fig. 7]

