(86) Date de dépôt PCT/PCT Filing Date: 2004/09/03
(87) Date publication PCT/PCT Publication Date: 2005/03/17
(85) Entrée phase nationale/National Entry: 2006/02/27
(86) N° demande PCT/PCT Application No.: US 2004/029128
(87) N° publication PCT/PCT Publication No.: 2005/024044
(30) Priorité/Priority: 2003/09/05 (US60/500,910)

(51) Cl.Int./Int.Cl. C07K 1/00 (2006.01),
 C12P 21/00 (2006.01), C12N 15/00 (2006.01),
 A01N 43/04 (2006.01), C12N 5/00 (2006.01),
 C07H 21/04 (2006.01), A61K 38/00 (2006.01)

(71) Demandeur/Applicant:
 GTC BIO THERAPEUTICS, INC., US

(72) Inventeurs/Inventors:
 MEADE, HARRY, US;
 COX, GEOFFREY F., US

(74) Agent: SMART & BIGGAR

(54) Titre : PROCÉDE DE PRODUCTION DE PROTEINES DE FUSION DANS LE LAIT DE MAMMIFERES
TRANSGENIQUES
(54) Title: METHOD FOR THE PRODUCTION OF FUSION PROTEINS IN TRANSGENIC MAMMAL MILK

(57) Abrégé/Abstract:
Desirable fusion proteins can be produced in and purified from the milk of transgenic animals. The peptides are made as fusion proteins with a suitable fusion partner such as human alpha-fetoprotein. The fusion partner protein acts to promote and increase the half-life of the overall molecule as well as having therapeutic effects on its own. The fusion protein is typically produced through the use of transgenic animals and can be purified away from the now the milk or other bodily fluid of such an animal by an affinity purification method. A particular advantage of producing peptides via this route, in addition to the obvious advantages of high yield and biocompatibility, is that specific post-translational modifications, such as carboxy terminal amidation, can be performed in the mammary gland. Biologically active polypeptides comprising a therapeutically active polypeptide fused to human alpha-fetoprotein fragment or a variant thereof, methods for the preparation thereof, nucleotide sequences encoding such fusion polypeptides, expression cassettes comprising such nucleotide sequences, self-replicating plasmids containing such expression cassettes, and pharmaceutical compositions containing said fusion polypeptides.
Title: METHOD FOR THE PRODUCTION OF FUSION PROTEINS IN TRANSGENIC MAMMAL MILK

Abstract: Desirable fusion proteins can be produced in and purified from the milk of transgenic animals. The peptides are made as fusion proteins with a suitable fusion partner such as human alpha-fetoprotein. The fusion partner protein acts to promote and increase the half-life of the overall molecule as well as having therapeutic effects on its own. The fusion protein is typically produced through the use of transgenic animals and can be purified away from the now milk or other bodily fluid of such an animal by an affinity purification method. A particular advantage of producing peptides via this route, in addition to the obvious advantages of high yield and biocompatibility, is that specific post-translational modifications, such as carboxy terminal amidation, can be performed in the mammary gland. Biologically active polypeptides comprising a therapeutically active polypeptide fused to human alpha-fetoprotein fragment or a variant thereof, methods for the preparation thereof, nucleotide sequences encoding such fusion polypeptides, expression cassettes comprising such nucleotide sequences, self-replicating plasmids containing such expression cassettes, and pharmaceutical compositions containing said fusion polypeptides.
DEMANDES OU BREVETS VOLUMINEUX

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVETS COMPREND PLUS D’UN TOME.

CECI EST LE TOME ___1___ DE ___2___

NOTE: Pour les tomes additionnels, veillez contacter le Bureau Canadien des Brevets.

JUMBO APPLICATIONS / PATENTS

THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE THAN ONE VOLUME.

THIS IS VOLUME ___1___ OF ___2___

NOTE: For additional volumes please contact the Canadian Patent Office.
METHOD FOR THE PRODUCTION OF FUSION PROTEINS IN TRANSGENIC MAMMAL MILK

FIELD OF THE INVENTION

[001] The present invention relates to the production of bi-functional fusion proteins which are biologically active and can be used pharmaceutically. In particular the current invention provides for the production of a β-interferon and α-fetoprotein fusion protein sequences linked to a recombinant human Alpha-Fetoprotein sequence in the milk of transgenic mammals, particularly non-human placental mammals and provides for the use of such fusion proteins in therapeutic applications or disease conditions.

BACKGROUND OF THE INVENTION

[002] As stated above, the present invention relates generally to the field of the transgenic production of fusion proteins in the milk of transgenic animals. More particularly, it concerns improved methods for generating transgenic non-human mammalian animals, of various species, capable of producing a variety of fusion proteins of interest.

[003] Currently, there are numerous polypeptides, macromolecules and/or proteins ("proteins of interest") possessing one or more potential therapeutic activities cannot be exploited pharmaceutically. There may be various reasons for this inability, such as low stability in vivo, altered glycosylation patterns found in proteins from non-eukaryotic cells, improper translational processing, tertiary structure, fragile structure, immunogenicity, the difficulty of producing them on an industrially acceptable scale or the like. Moreover, some therapeutically interesting proteins do not give the expected results in vivo because of problems related to the method of their purification, administration or pharmacokinetics.

[004] The present invention makes it possible to overcome these disadvantages. The instant invention provides new fusion molecules which permits the exploitation of the physiological properties or effects of the proteins of interest. The present invention results especially from the demonstration that it is possible to fuse a
physiologically active sequence derived from a biologically active protein to another recombinant protein structure consisting of a protein sequence retaining the physiological activity of human alpha-fetoprotein to derive a bi-functional fusion protein, without impairing the biological properties of either the alpha-fetoprotein or the second protein moiety thereof. It also results from the demonstration by the Inventors that the recombinant human alpha-fetoprotein protein sequence of the invention ("AFP") can improve the half-life of the fusion proteins of the invention, and add synergistic therapeutic efficacy as well.

[005] The physiological effects of AFP have been shown in the prior art to include both stimulative and inhibitory effects on various cell types. These effects in large part are determined by the target cell type, the relative concentration of AFP, and the presence of other cytokines and growth factors. For example, AFP can inhibit the growth of many types of tumor cells, and, in particular, inhibits estrogen-stimulated or estrogen-sensitive cell growth. Conversely, AFP stimulates the growth of normal embryonic fibroblasts. AFP has also been shown to have both immunosuppressive and immunoproliferative effects. Therefore the therapeutic effectiveness of an AFP fusion protein can be utilized in such a way as to maximize the pharmacologic effectiveness of treatments for various disease states, especially using bi-functional molecules.

[006] The fusion proteins according to the current invention make it possible to maintain, in the body of an animal, a desirable biological activity for a prolonged period. The proteins of interest according to the current invention can also be expressed secreted by recombinant organisms, such as in cell culture production facilities, or transgenic mammals, at levels permitting their commercial exploitation. Along this line, transgenic mammals are a preferred manufacturing and expression vehicle for the fusion proteins of the invention.

[007] Mammals having certain desired traits or characteristics, such as increased weight, milk content, milk production volume, length of lactation interval and disease resistance have long been desired. Traditional breeding processes are capable of producing animals with some specifically desired traits, but often these traits these are often accompanied by a number of undesired characteristics, and are often too time-consuming, costly and unreliable to develop. Moreover, these processes are completely incapable of allowing a specific animal line from producing gene products, such as desirable protein therapeutics that are otherwise entirely absent from the genetic complement of the species in question (i.e., human or humanized plasma protein or
other molecules in ungulate milk). The development of technology capable of
generating transgenic animals provides a means for exceptional precision in the
production of animals that are engineered to carry specific traits or are designed to
express certain proteins or other novel molecular compounds of therapeutic, scientific
or commercial value. That is, transgenic animals are animals that carry the gene(s) of
interest that has been deliberately introduced into existing somatic cells and/or germ
line cells at an early stage of development. As the animals develop and grow the
protein product or specific developmental change engineered into the animal is
expressed, and at that point is present in the genetic complement of that animal and its
offspring.

[008] In a preferred embodiment the current invention provides for the bulk
production of a bi-functional fusion protein of interest in the milk of transgenic
mammals. The production of a fusion protein of interest in milk is ideal as a bulk
process because very large volumes of milk that can be produced, collected and
purified using known dairy technology. A second advantage of using a transgenic
mammalian process is that some reactions which can be essential for biological activity
in humans, for example carboxy-terminal amidation, are difficult to perform in good
yield by currently available chemical means or in bacterial or other in vitro situations.
For example, carboxy-terminal amidation is catalyzed by a specific enzyme which
recognizes and modifies a fusion protein of interest or proteins with a glycine residue at
the carboxy terminus. Therefore, suitably designed fusion proteins of the invention can
be specifically amidated before secretion into the milk of transgenic animals. This is
only one example of a range of post-translational modifications which can be carried
out by the biosynthetic pathways in the mammary gland and which can potentially be
harnessed for the synthesis of particular fusion proteins. Other examples of desirable
post-translational modifications include di-sulfide bridge formation, γ-carboxylation of
glutamic acid residues and the addition of O- and N-linked glycosylation.

[009] With regard to a physiologically active fragment of AFP it should also
be noted that the non-glycosylated form of recombinant AFP exhibits similar biological
properties to the normally glycosylated form and provides a standardized consistent
product due to the lack of glycosylation variability. It may also be more easily
produced in in vitro or transgenic systems. Therefore, non-glycosylated AFP is a
preferred form for commercial production.
According to the prior art, the generation of an animal capable of producing a recombinant protein of interest is known. However, what remained unknown prior to the current invention was the level of genetic manipulation required for the current invention, the modified sequences of the various fusion protein components available, the synergistic effect of the current bi-functional molecules, and the disease states or pathologies in which they are useful.

Accordingly, a need exists for improved methods of therapeutic composition generation. The methods of the invention are typically applied to primary somatic cells, in the context of nuclear transfer, for the generation of transgenic animals useful in the production of recombinant fusion bi-functional proteins of interest in their milk.

SUMMARY OF THE INVENTION

Briefly stated, the current invention provides a method for the production of bi-functional fusion proteins of interest, preferably through the use of transgenic animals. The method involves transfecting a non-human mammalian cell-line with a given transgene construct, the construct containing at least one recombinant DNA coding sequence encoding a desired first desired peptide fragment and a second desired peptide fragment each of which retain the biological activity of an individual protein of interest. The process involves developing the DNA construct; selecting a cell line(s) in which the desired recombinant sequence has been inserted into the genome of that cell or cell-line; performing a nuclear transfer procedure to generate a transgenic animal heterozygous for the desired fusion protein. Thereafter the fusion protein expressing the bi-functional fusion protein may be collected from the milk or other bodily fluid of the transgenic animal and purified for use as a therapeutic agent.

An additional step that may be performed according to the invention is to biopsy the heterozygous transgenic animal. Thereafter, according to the current invention the cell line can be expanded in vitro with the biopsied cell-line obtained from the heterozygous animal used to develop multiple transgenic animals in a shorter time period.

Alternatively or in addition to, a nuclear transfer procedure can be conducted to generate a mass of transgenic cells useful for research, serial cloning, or other in vitro use. In a preferred embodiment of the current invention surviving cells
are characterized by one of several known molecular biology methods including without limitation FISH, Southern Blot, or PCR. The methods provided above will allow for the accelerated production of a transgenic herd of animals homozygous for desired transgene(s) and thereby the more efficient production of a desired biopharmaceutical. In this way the current invention allows for the production of genetically desirable livestock or non-human mammals themselves expressing a bi-functional fusion protein of interest.

[0015] In addition, the methods of the current invention will also allow the development of one or more homozygous animals that carry a particularly beneficial or valuable fusion protein, potentially increasing herd yield of a desired protein much more quickly than previous methods. Likewise the methods of the current invention will also provide for the replacement of specific transgenic animals lost through disease or their own mortality. They will also facilitate and accelerate the production of transgenic animals constructed with a variety of DNA constructs so as to optimize the production and lower the cost for the production of a desirable biopharmaceutical composition.

[0016] Therefore according to an embodiment of the current invention it may be useful to make transgenic animals homozygous for a fusion protein of interest. In this embodiment it is preferable that the transgene of interest and the genetic composition of the heterozygous transgenic animal are characterized. Thereafter cells homozygous for the desired transgene are selected through the use of marker agents; characterizing surviving cells using known molecular biology methods; picking surviving cells or cell colonies cells for use in a second round of nuclear transfer or embryo transfer; and producing an animal homozygous for a desired fusion protein.

[0017] One subject of the present invention therefore relates to bi-functional fusion proteins containing an active part derived from a peptide fragment having a therapeutic activity, coupled to a human alpha-fetoprotein or a variant of human alpha-fetoprotein having a separate and, in some cases, synergistic effect.

[0018] Another subject of the invention relates to a process for preparing the chimeric molecules described above. More specifically, this process consists in causing a eukaryotic or prokaryotic cellular host to express a nucleotide sequence encoding the desired fusion protein, and then in harvesting the fusion protein product.

[0019] Accordingly, it is an object of the invention to provide a medicament that is capable of treating myasthenia gravis.
[0020] It is yet another object of the invention to provide a medicament that inhibits the proliferation of a cancer cell and/or is anti-angiogenic to endothelial cells that may develop into blood vessels capable of feeding a tumor.

[0021] It is still another object of the invention to provide a method for treating a patient suffering from rheumatoid arthritis.

[0022] It is another object of the invention to provide a method of treating cancer by employing the medicaments described herein.

[0023] It is another object of the invention to provide a method of treating skin conditions or damaged skin by applying bi-functional proteins according to the invention.

[0024] These and other objects which will be more readily apparent upon reading the following disclosure may be achieved by the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS
[0025] FIG. 1 Shows a flowchart of the methods involved in practicing the invention.

[0026] FIG. 2 Shows a Generalized Diagram of the Process of Creating Cloned Animals through Nuclear Transfer.

[0027] FIG. 3 Shows a diagram of the amino acid sequence of β-interferon.

[0028] FIG. 4 Shows a fusion protein of interest

DETAILED DESCRIPTION
[0029] The following abbreviations have designated meanings in the specification:

Abbreviation Key:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatic Cell Nuclear Transfer</td>
<td>(SCNT)</td>
</tr>
<tr>
<td>Cystic Fibrosis Transmembrane Conductance Regulator</td>
<td>(CFTR)</td>
</tr>
<tr>
<td>Nuclear Transfer</td>
<td>(NT)</td>
</tr>
<tr>
<td>Synthetic Oviductal Fluid</td>
<td>(SOF)</td>
</tr>
<tr>
<td>Fetal Bovine Serum</td>
<td>(FBS)</td>
</tr>
<tr>
<td>Polymerase Chain Reaction</td>
<td>(PCR)</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>(BSA)</td>
</tr>
</tbody>
</table>
Explanation of Terms:

AFP secretory signal or "AFP signal peptide" or "AFP leader" or "AFP signal sequence" – A peptide having substantially the same amino acid sequence as amino acids 1-18 set forth in Genbank Accession No. V01514 (encoded by nucleotides 45-98). The protein secretory signal is cleaved from AFP during processing or maturation processes;

Bovine – Of or relating to various species of cows.

Biological Activity/Physiological Activity – is intended to be interpreted broadly. In the case of the interferon-like proteins, it includes all known (or to be discovered) properties including properties specific to human IFN-α's or to human IFN-β, or common to both, such as their antiviral activity and their capability to modulate antigens of the major histocompatibility complex (MHC).

Biological Fluid - an aqueous solution produced by an organism, such as a mammal, bird, amphibian, or reptile, which contains proteins that are secreted by cells that are bathed in the aqueous solution. Examples include: milk, urine, saliva, seminal fluid, vaginal fluid, synovial fluid, lymph fluid, amniotic fluid, blood, sweat, and tears; as well as an aqueous solution produced by a plant, including, for example, exudates and guttation fluid, xylem, phloem, resin, and nectar.

Biological-fluid producing cell – A cell that is bathed by a biological fluid and that secretes a protein into the biological fluid.

Biopharmaceutical – shall mean any medicinal drug, therapeutic, vaccine or any medically useful composition whose origin, synthesis, or manufacture involves the use of microorganisms, recombinant animals (including, without limitation, chimeric or transgenic animals), nuclear transfer, microinjection, or cell culture techniques.

Caprine – Of or relating to various species of goats.

Encoding – refers generally to the sequence information being present in a translatable form, usually operably linked to a promoter (e.g., a beta-casein or beta-lacto globulin promoter). A sequence is operably linked to a promoter when the functional promoter enhances transcription or expression of that sequence. An anti-sense strand is considered to also encode the sequence, since the same informational content is present in a readily accessible form, especially when linked to a sequence which promotes expression of the sense strand. The information is convertible using the standard, or a modified, genetic code.

Expression Vector – A genetically engineered plasmid or virus, derived from, for example, a bacteriophage, adenovirus, retrovirus, poxvirus, herpesvirus, or artificial chromosome, that is used to transfer an AFP fusion protein coding sequence, operably linked to a promoter, into a
host cell, such that the encoded recombinant AFP fusion protein is expressed within the host cell.

Functional Proteins - Proteins which have a biological or other activity or use, similar to that seen when produced endogenously.

Fusion Slide – A glass slide for parallel electrodes that are placed a fixed distance apart. Cell couplets are placed between the electrodes to receive an electrical current for fusion and activation.

Homologous Sequences — refers to genetic sequences that, when compared, exhibit similarity. The standards for homology in nucleic acids are either measures for homology generally used in the art or hybridization conditions. Substantial homology in the nucleic acid context means either that the segments, or their complementary strands, when compared, are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 60% of the residues, usually at least about 70%, more usually at least about 80%, preferably at least about 90%, and more preferably at least about 95 to 98% of the nucleotides. Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions, to a strand, or its complement. Selectivity of hybridization exists when hybridization occurs which is more selective than total lack of specificity. Typically, selective hybridization will occur when there is at least about 55% homology over a stretch of at least about 14 nucleotides, preferably at least about 65%, more preferably at least about 75%, and most preferably at least about 90%.

Human alpha-fetoprotein or “AFP” or “rAFP” — a peptide having substantially the same amino acid sequence as the mature alpha-fetoprotein (amino acids 19-609) set forth in Genbank Accession No. V01514 (SEQ ID NO: 4) and encoded by nucleotides 99-1874 of the cDNA sequence set forth in Genbank Accession No. V01514 (SEQ ID NO: 3) and reported in Morinaga et al. (PROC. NATL. ACAD. SCI. USA 80:4604-4608, (1983)).

Human alpha-fetoprotein precursor – a peptide having substantially the same amino acid sequence as amino acids 1-609 set forth in Genbank Accession No. V01514 (SEQ ID NO: 2) and encoded by nucleotides 45-1874 of the cDNA sequence set forth in Genbank Accession No. V01514 (SEQ ID NO: 1).

Leader sequence or a “signal sequence” — a nucleic acid sequence that encodes a protein secretory signal, and, when operably linked to a downstream nucleic acid molecule encoding an AFP fusion protein and directs AFP secretion. The leader sequence may be the native human AFP leader, an artificially-derived leader, or may obtained from the same gene as the promoter used to direct transcription of the AFP coding sequence, or from another protein that is normally secreted from a cell.
Milk-producing cell – A cell (e.g., a mammary epithelial cell) that secretes a protein into milk.

Milk-specific promoter – A promoter that naturally directs expression of a gene in a cell that secretes a protein into milk (e.g., a mammary epithelial cell) and includes, for example, the casein promoters, e.g., alpha casein promoter (e.g., alpha S-1 casein promoter and alpha S2-casein promoter), beta casein promoter (e.g., the goat beta casein gene promoter (DiTullio, BIOTECHNOLOGY 10:74-77, 1992), gamma casein promoter, and kappa casein promoter; the whey acidic protein (WAP) promoter (Gorton et al., BIOTECHNOLOGY 5: 1183-1187, 1987); the beta-lactoglobulin promoter (Clark et al., BIOTECHNOLOGY 7: 487-492, 1989); and the alpha-lactalbumin promoter (Soulier et al., FEBS LETTS. 297:13, 1992). Also included are promoters that are specifically activated in mammary tissue and are thus useful in accordance with this invention, for example, the long terminal repeat (LTR) promoter of the mouse mammary tumor virus (MMTV).

Non-glycosylated human AFP – a peptide having substantially the same amino acid sequence as the mature human alpha-fetoprotein described above, except including a mutation at amino acid position 233 of SEQ ID NO: 4 from an asparagine residue to a glutamine residue (as set forth in SEQ ID NO: 6), thereby eliminating the single glycosylation site. The nucleic acid sequence of the precursor non-glycosylated human alpha-fetoprotein includes nucleotides 45 through 1874 of the sequence set forth in SEQ ID NO: 5.

Nuclear Transfer – refers to a method of cloning wherein the nucleus from a donor cell is transplanted into an enucleated oocyte.

Operably Linked – A gene and one or more regulatory sequences are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences.

Ovine – of, relating to or resembling sheep.

Parthenogenic – The development of an embryo from an oocyte without the penetration of sperm.

Pharmaceutically Pure – Refers to fusion protein that is suitable for unequivocal biological testing as well as for appropriate administration to effect treatment of a human patient. Substantially pharmaceutically pure means at least about 90% pure.

Porcine – of or resembling pigs or swine.

Promoter – A minimal sequence sufficient to direct transcription. Also included in the invention are those promoter elements which are sufficient to render promoter-dependent gene expression controllable for
cell type-specific, tissue-specific, temporal-specific, or inducible by external signals or agents; such elements may be located in the 5' or 3' or intron sequence regions of the native gene.

Protein — as used herein is intended to include glycoproteins, as well as proteins having other additions. This also includes fragmentary or truncated polypeptides that retain physiological function.

Recombinant — refers to a nucleic acid sequence which is not naturally occurring, or is made by the artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by either chemical synthesis means, or by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques. Such is usually done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a sequence recognition site. Alternatively, it is performed to join together nucleic acid segments of desired functional polypeptide sequences to generate a single genetic entity comprising a desired combination of functions not found in the common natural forms. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., a bi-functional fusion protein according to the instant invention.

Therapeutically-effective amount — An amount of a therapeutic molecule or a fragment thereof that, when administered to a patient, inhibits or stimulates a biological activity modulated by that molecule.

Transformation, “Transfection,” or “Transduction” — Any method for introducing foreign molecules into a cell. Lipofection, DEAE-dextran-mediated transfection, microinjection, nuclear transfer (see, e.g., Campbell et al. BIOL. REPROD. 49:933-942, 1993; Campbell et al., NATURE 385:810-813, 1996), protoplast fusion, calcium phosphate precipitation, transduction (e.g., bacteriophage, adenoviral retroviral, or other viral delivery), electroporation, and biolistic transformation are just a few of the methods known to those skilled in the art which may be used.

Transformed cell or Transfected cell — A cell (or a descendent of a cell) into which a nucleic acid molecule encoding AFP has been introduced by means of recombinant DNA techniques. The nucleic acid molecule may be stably incorporated into the host chromosome, or may be maintained episomally.

Transgene — Any piece of a nucleic acid molecule that is inserted by artifice into a cell, or an ancestor thereof, and becomes part of the genome of the animal which develops from that cell. Such a transgene may include a gene which is partly or entirely exogenous (i.e., foreign) to the
transgenic animal, or may represent a gene having identity to an endogenous gene of the animal.

Transgenic – Any cell that includes a nucleic acid molecule that has been inserted by artifice into a cell, or an ancestor thereof, and becomes part of the genome of the animal which develops from that cell.

Transgenic Organism – An organism into which genetic material from another organism has been experimentally transferred, so that the host acquires the genetic information of the transferred genes in its chromosomes in addition to that already in its genetic complement.

Ungulate – of or relating to a hooved typically herbivorous quadruped mammal, including, without limitation, sheep, swine, goats, cattle and horses.

Vector – As used herein means a plasmid, a phage DNA, or other DNA sequence that (1) is able to replicate in a host cell, (2) is able to transform a host cell, and (3) contains a marker suitable for identifying transformed cells.

[0030] According to the present invention, there is provided a method for the production of a fusion protein of interest, the process comprising expressing in the milk of a transgenic non-human placental mammal a fusion protein comprising a first polypeptide of interest linked to a second polypeptide of interest both of which have independent physiological effects.

[0031] One protein family of interest for use in the bi-functional molecule of the current invention is the interferon family of proteins. Interferon’s (“IFN’s”) constitute a group of naturally occurring proteins which are known to exhibit antiviral, anti-tumor and immunoregulatory behavior. This class of cytokines has immune stimulating/modulating activity. The interferon’s are a family of small proteins and glycoprotein’s with molecular weights of approximately 15,000 to 28,000 Daltons (15-28 kDa) produced and secreted \textit{in vivo} by cells primarily in response to viral infection, and also in response to synthetic or biological inducers. The nomenclature conventions used to describe and name interferon’s is complex. This is largely due to advancing knowledge and technology which has shown various interferons’s to be produced by the same cell types, the discovery of different species and forms of interferon, and the discovery that some forms are identical to others previously reported. Because human native interferon has long been expensive to extract, techniques have been developed for preparing recombinant forms of human interferon.
[0032] Interferon’s exert their cellular activities by binding to specific membrane receptors on the cell surface. Once bound to the cell membrane, interferon’s initiate a complex sequence of intracellular events, including the up-regulation of certain other cytokines, induction of certain enzymes, suppression of cell proliferation, immunomodulating activities such as enhancement of the phagocytic activity of macrophages and augmentation of the specific cytotoxicity of lymphocytes (e.g., cellular immunity) for target cells, and inhibition of virus replication in virus-infected cells.

[0033] A range of biological activities are associated with IFNs including antiviral, anti-proliferative and immunoregulatory activities. Therapeutic uses include the treatment of Hairy Cell leukemia, Chronic myelogenous leukemia, low grade non-Hodgkin lymphoma, cutaneous T cell lymphoma carcinoid tumors, renal cell carcinoma, squamous epithelial tumors of the head and neck, multiple myeloma, and malignant melanoma. With regards to viral disease, IFN-α has been found to aid the treatment of chronic active hepatitis, caused by either Hepatitis B or C viruses.

[0034] In 1993 the Food and Drug Administration (FDA) approved beta interferon (IFN-β) as a therapy for multiple sclerosis (MS). The administration of β-interferon slows the progression of this chronic and often disabling neurologic disease, which affects about 350,000 people in the United States. The availability of the drug is a milestone for patients with MS, who often derive scant benefit from corticosteroids and other therapies.

[0035] MS is an autoimmune disease, in which the body’s defense system attacks the myelin sheath, the fatty substance that protects nerve fibers of the brain and spinal cord much as insulation covers electrical wire. The transmission of electrical impulses to and from the brain is disrupted as MS lesions create breaks in the myelin sheath. As a result, people with MS experience symptoms including weakness, fatigue, incontinence, visual impairment, slurred speech, or sometimes paralysis. Beta interferon has been shown in the prior art to positively effect the treatment of multiple sclerosis. Ambulatory patients with relapsing-remitting MS who took high doses of beta interferon had about 30% fewer attacks, and half as many severe ones, as people who took a placebo. Therefore, a molecule of interest made through the methods of the current invention is an AFP-IFN-β bi-functional fusion protein, with beneficial synergistic effects when used therapeutically against MS. That is, the therapeutic effect
of β-IFN is synergistically heightened by the presence of a functional alpha-fetoprotein moiety – itself having beneficial effectiveness against MS.

[0036] Suitable host organisms for possible prokaryotic or eukaryotic in vitro production include: *E. coli*, *Pseudomonas*, *Bacillus subtilis*, *Bacillus thuringiensis*, various strains of yeast, *Bacillus thermophilus*, animal cells such as mice, rat or Chinese hamster ovary (CHO) cells, plant cells, animal and plant hosts and the like. It must be recognized that when a host of choice is transformed with the vector, appropriate promoter-operator sequences are also introduced in order for a protein sequence to be expressed. Hosts may be prokaryotic or eukaryotic, *E. coli* and CHO cells are the preferred hosts for in vitro systems. The fusion proteins expressed in accordance with the present invention may be glycosylated or unglycosylated depending on the glycosylation occurring in the host organism used to produce the protein and the DNA sequence of the genetically engineered sequences according to the current invention. If desired, unglycosylated the expressed protein obtained when *E. coli* or a *Bacillus* is the host organism may be optionally glycosylated in vitro by chemical, enzymatic and other types of modifications known in the art.

[0037] In accordance with the methods of the current invention for transgenic animals a transgenic primary cell line (from either caprine, bovine, ovine, porcine or any other non-human vertebrate origin) suitable for somatic cell nuclear transfer is created by transfection of the fusion protein nucleic acid construct of interest (for example, a mammary gland-specific transgene(s) targeting expression of a human alpha-fetoprotein - β-interferon fusion protein to the mammary gland). The transgene construct can either contain a selection marker (such as neomycin, kanamycin, tetracycline, puromycin, zeocin, hygromycin or any other selectable marker) or be cotransfected with a cassette able to express the selection marker in cell culture.

[0038] The invention provides expression vectors containing a nucleic acid sequence described herein, operably linked to at least one regulatory sequence. Many such vectors are commercially available, and other suitable vectors can be readily prepared by the skilled artisan. "Operably linked" or "operatively linked" is intended to mean that the nucleic acid molecule is linked to a regulatory sequence in a manner which allows expression of the nucleic acid sequence by a host organism. Regulatory sequences are art recognized and are selected to produce the encoded polypeptide or protein. Accordingly, the term "regulatory sequence" includes promoters, enhancers,
and other expression control elements which are described in Goeddel, GENE
EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLGY 185, (Academic Press, San
Diego, Calif. (1990)). For example, the native regulatory sequences or regulatory
sequences native to the transformed host cell can be employed.

[0039] It should be understood that the design of the expression vector may
depend on such factors as the choice of the host cell to be transformed and/or the type
of protein desired to be expressed. For instance, the polypeptides of the present
invention can be produced by ligating the cloned gene, or a portion thereof, into a
vector suitable for expression in either prokaryotic cells, eukaryotic cells or both. (A
LABORATORY MANUAL, 2nd Ed., ed. Sambrook et al. (Cold Spring Harbor Laboratory

[0040] Following selection of colonies recombinant for the desired nucleic
acid construct, cells are isolated and expanded, with aliquots frozen for long-term
preservation according to procedures known in the field. The selected transgenic cell-
lines can be characterized using standard molecular biology methods (PCR, Southern
blotting, FISH). Cell lines carrying nucleic acid constructs of the bi-functional fusion
protein of interest, of the appropriate copy number, generally with a single integration
site (although the same technique could be used with multiple integration sites) can
then be used as karyoplast donors in a somatic cell nuclear transfer protocol known in
the art. Following nuclear transfer, and embryo transfer to a recipient animal, and
gestation, live transgenic offspring are obtained. Typically this transgenic offspring
carries only one transgenic integration on a specific chromosome, the other homologous
chromosome not carrying an integration in the same site. Hence the transgenic
offspring is heterozygous for the transgene, maintaining the current need for at least
two successive breeding cycles to generate a homozygous transgenic animal.

Example 1

AFP - β Interferon

[0041] Another feature of the invention is a method of treating a patient in
need of the bi-functional fusion protein of the invention by administering to the patient
a therapeutically-effective amount of a biological fluid (e.g., milk, urine, saliva,
seminal or vaginal fluid, synovial fluid, lymph fluid, amniotic fluid, the fluid within the
yolk sac, the chorion, or the allantois of an egg, blood, sweat, and tears; or an aqueous solution produced by a plant, including, for example, exudates or guttation fluid, xylem, phloem, resin, and nectar), or extract thereof, that includes the bi-functional fusion protein of the invention that is obtained from a transgenic non-human organism (e.g., a mammal (e.g., a mouse, goat, sheep, camel, cow, pig, rabbit, horse, ox, or llama), a bird, a reptile, an amphibian, or a plant). In a desired embodiment, the bi-functional protein of the invention has the sequence set forth in the combination of SEQ ID NOS: 4, 10 and 24. In another embodiment, the biological fluid is milk. In yet another embodiment, the bi-functional fusion protein of the invention is purified from the transgenic non-human organism’s biological fluid (e.g., the bi-functional fusion protein of the invention purified from the milk, urine, blood, or lymph of a mammal). In various desired embodiments, the method may be used to inhibit or treat an immunologic disorder, e.g., infection with the human immunodeficiency virus (HIV), cancer cell growth, to induce bone marrow cell proliferation (for example, after a bone marrow transplant or after administration of a myelotoxic treatment such as chemotherapy or radiation treatment), or as an immunosuppressive agent (for example, to inhibit autoreactive immune cell proliferation, to inhibit rejection of a transplanted organ (e.g., graft-versus-host disease), or to inhibit or treat an autoimmune disorder, e.g., rheumatoid arthritis, muscular dystrophy, systemic lupus erythematosus, myasthenia gravis, multiple sclerosis, insulin-dependent diabetes mellitus, or psoriasis). human AFP gene (GenBank Accession #M16110).

Example 2

Fusion Protein Sequences of Interest

A. Alpha Feto Protein

Seq. Id.: 1 The entire cDNA sequence set forth in Genbank Accession No. V01514.

Seq. Id.: 2 Genbank Accession No. V01514 (amino acids 1-609).

Seq. Id.: 3 Genbank Accession No. V01514 (nucleic acids 99-1874) from the cDNA of Seq. Id. 1.

Seq. Id.: 6 Genbank Accession No. V01514 (amino acids 19-609) except including a mutation at amino acid position 233 of SEQ ID NO: 4 from an asparagine residue to a glutamine residue to remove the single glycosylation site in AFP.

Seq. Id.: 7 Genbank Accession No. V01514 (amino acids 1-18) the AFP secretory signal.

Seq. Id.: 8 Genbank Accession No. V01514 (nucleotides 45-98 of the AFP secretory signal, DNA sequence).

Seq. Id.: 9 human AFP gene (GenBank Accession #M16110)

B. Partner Protein Sequences of Interest

Seq. Id.: 10 Genbank/EMBL/DDBJ Accession No. AAC41702, from the National Center for Biotechnology Information - human β-interferon variant 1 (1 – 187 amino acid residues)

Seq. Id.: 11 Genbank/EMBL/DDBJ Accession No. CAA00839, from the National Center for Biotechnology Information - human α-interferon variant 2A (1 – 212 amino acid residues)

Seq. Id.: 12 Genbank/EMBL/DDBJ Accession No. AAP20099, from the National Center for Biotechnology Information - human α-interferon variant 2B (1 – 166 amino acid residues)

16
Seq. Id.: 13 Protein Sequence Record Genbank Accession No. NP_795372, from the National Center for Biotechnology Information - human τ-interferon (1 - 189 amino acid residues)

Seq. Id.: 14 Protein Sequence Record Genbank Accession No. NP_76918 from the National Center for Biotechnology Information - human α-interferon variant 1 (1 - 189 amino acid residues)

Seq. Id.: 15 Protein Sequence Record Genbank Accession No. NP_000610 from the National Center for Biotechnology Information - human γ-interferon (1 - 166 amino acid residues)

Seq. Id.: 16 Genbank/EMBL/DDBJ Accession No. AAH18990, from the National Center for Biotechnology Information – light chain human ferritin (1 - 175 amino acid residues)

Seq. Id.: 17 Genbank/EMBL/DDBJ Accession No. AAH16857, from the National Center for Biotechnology Information – heavy chain human ferritin (1 - 183 amino acid residues)

Seq. Id.: 18 Genbank/EMBL DDBJ Accession No. AAH05322, from the National Center for Biotechnology Information - human Decorin (1 – 359 amino acid residues)

Seq. Id.: 19 Genbank Accession No. 113936 - human antithrombin (1 – 464 amino acid residues)

Seq. Id.: 20 Genbank Accession No. 113936 – “cleaved” human antithrombin (1 – 464 amino acid residues) generated by enzyme cleavage of antithrombin between Arginine residue 393 and Serine residue 394.
C. Optimized Codons

Expression of protein in a host organism, and most particularly in a transgenic organism, can in part depend on how well the start codon of the DNA construct matches the host organism’s optimum (or consensus) start site, how well the mRNA’s codon usage matches the “codon bias” of the host organism, the presence of cryptic intron splice sites (potentially resulting in truncated or nonsense proteins), and presence of stabilizing or destabilizing signals (i.e. PEST degradation signals) in the protein of interest.

Proteins of interest derived from organisms that have a nucleic acid profile highly divergent from that of the host organism may benefit from re-engineering the cDNA sequence so as to optimize codons of key amino acids so that they more closely match the “preferred” or common nucleic acid codons for given amino acids. For example, a protein of interest from a high A-T content organism (Dictyostelium discoideum or Plasmodium falciparum for example) could more easily be expressed by
optimizing the codons towards G-C heavy codons, while leaving the amino acid sequence unchanged.

In transgenic animal production systems the use of optimized expression systems for the production of large quantities of proteins of interest may be necessary to make enough of a compound available to make it therapeutically feasible. To this end it is possible to re-engineer synthetic genes utilizing optimized codons for all of the bi-functional fusion proteins under provided according to the current invention.

MATERIALS AND METHODS

Transgenic Goats & Cattle.

[0042] The herds of pure- and mixed-breed scrapie-free Alpine, Saanen and Toggenburg dairy goats used as cell and cell line donors for this study were maintained under Good Agricultural Practice (GAP) guidelines. Similarly, cattle used should be maintained under Good Agricultural Practice (GAP) guidelines and be certified to originate from a scrapie and bovine encephalitis free herd.

Isolation of Caprine Fetal Somatic Cell Lines.

[0043] Primary caprine fetal fibroblast cell lines to be used as karyoplast donors were derived from 35- and 40-day fetuses. Fetuses were surgically removed and placed in equilibrated phosphate-buffered saline (PBS, Ca\(^{++}/Mg\)\(^{++}\)-free). Single cell suspensions were prepared by mincing fetal tissue exposed to 0.025 % trypsin, 0.5 mM EDTA at 38°C for 10 minutes. Cells were washed with fetal cell medium [equilibrated Medium-199 (M199, Gibco) with 10% fetal bovine serum (FBS) supplemented with nucleosides, 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine and 1% penicillin/streptomycin (10,000 I.U. each/ml)], and were cultured in 25 cm\(^2\) flasks. A confluent monolayer of primary fetal cells was harvested by trypsinization after 4 days of incubation and then maintained in culture or cryopreserved.

Homogenous Fusion Proteins

[0044] As used herein, the terms substantially pure and homogenous describe a protein or polypeptide which has been separated from components which naturally accompany it. Typically, a monomeric protein is substantially pure when at least about 60 to 75% of a sample exhibits a single polypeptide backbone. Minor variants or
chemical modifications typically share the same polypeptide sequence. A substantially pure protein will typically comprise over about 85 to 90% of a protein sample, more usually will comprise at least about 95%, and preferably will be over about 99% pure. Normally, purity is measured on a polyacrylamide gel, with homogeneity determined by staining. For certain purposes high resolution will be used and HPLC or a similar means for purification utilized. For most purposes, a simple chromatography column or polyacrylamide gel will be used to determine purity.

[0045] A protein is substantially free of naturally associated components when it is separated from the native contaminants which accompany it in its natural state. Thus, a protein which is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be substantially free from its naturally associated components. The term is used to describe polypeptides and nucleic acids which have been synthesized in heterologous mammalian cells or plant cells, E. coli, and other prokaryotes. The present invention provides for substantially pure preparations for therapeutic use. Various methods for their isolation from biological material may be devised, based in part upon the structural and functional descriptions contained herein.

Construction of the “AFP – Partner Polypeptide” Fusion Protein

[0046] According to the current invention, the term "fusion protein" is intended to describe a fused protein comprising two polypeptides of interest fused by a linker sequence amino acid sequence. According to the current invention, the generation of bi-functional fusion proteins is a useful tool in providing enhanced therapeutic options for specific disease conditions. Therefore the development of needed fusion techniques have become an increasingly important. In structural biology, the construction of recombinant fusion proteins has often been used as a means to increase the expression of soluble proteins and to facilitate protein purification. The technique has been used to study the functional activity of proteins in in vitro assays and for in vivo production. In recent years, a wide range of applications of the gene fusion technique have been reported in the field of biotechnology. These applications include the selection and production of antibodies and the engineering of bifunctional enzymes.

[0047] The construction of a fusion protein involves the linking of two macromolecules by a linker sequence. According to the current invention the
macromolecules of interest include proteins or the globular domains of proteins. The selection of the linker sequence is particularly important in the construction of functional fusion proteins. In addition to the necessity of an appropriate amino acid composition, the overall folding of the linker sequence must be taken into consideration. In practice, it is often unfavorable to have a linker sequence with high propensity for forming helix or strand structures, because these would limit the flexibility of the fusion protein and consequently affect its functional activity. Therefore, the design of a linker sequence often requires careful consideration in order to avoid such secondary structural elements. A set of sample linker sequences that are known to adopt extended conformations as determined by X-ray crystallography and NMR is provided below:

Sample Linker Sequences:

<table>
<thead>
<tr>
<th>SEQ. No.</th>
<th>Residues</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALA GLU ASP GLY GLU ARG VAL LEU PRO GLY SER GLY</td>
<td>0.25 -0.62 -0.72 -0.18 -0.62 -1.80 0.54 0.53 -0.07 -0.18 -0.26 -0.18</td>
<td>0.25 -0.07 -0.62 -1.10 -0.18 -1.10 -0.64 0.16 0.53 -0.18 -0.26 -0.18</td>
<td>0.25 -0.07 -0.26 -0.26 -1.10 -0.26 0.16 -0.26 -0.18 -0.18 -0.26 -0.18</td>
<td>0.25 -1.10 -0.07 -0.18 0.53 0.54 -0.72 -0.64 -0.69 -0.18 -0.26 -0.18</td>
<td>0.25 0.61 -0.18 -0.64 0.25 -0.64 -0.26 0.25 -1.80 -0.18 -0.26 -0.18</td>
<td>0.25 -0.07 -0.26 -0.72 -1.10 -0.62 0.18 0.02 -0.26 -0.18 -0.26 -0.18</td>
<td>0.25 -1.10 -0.07 -0.64 -0.07 0.16 -0.18 0.16 0.54 -0.18 -0.26 -0.18</td>
<td>0.25 0.73 -0.46 -0.62 0.02 0.61 -1.80 -0.18 -0.18 -0.18 -0.26 -0.18</td>
<td>0.25 0.53 -0.46 -0.18 -1.80 -0.18 -0.18 -0.62 -0.72 -0.18 -0.26 -0.18</td>
<td>0.25 -0.26 -0.26 -0.07 -0.72 0.54 0.25 -1.10 -0.18 -0.18 -0.26 -0.18</td>
</tr>
</tbody>
</table>

These are the amino acid sequences and the hydrophobicities of the residues.
[0048] The linker sequence useful for the current invention comprise at least one amino acid residue or more, those provided above are 12 amino acid residues long. The orientation of the first and second polypeptides of interest (ex: AFP and β-interferon fragments respectively), can be altered according to convenience with the N-terminal sequence of AFP being fused to a linker and the C-terminal end of a second polypeptide of interest or vice versa. Two biologically active molecules are fused to provide heightened therapeutic function as well as to enhance molecular half-life. The choice of carrier protein is frequently ruled by the application of the fusion protein constructed. In the current invention AFP functions as a carrier protein polypeptide, while retaining its own therapeutic effects and offering synergistic improvements in activity.

[0049] The joining of the various genomic or cDNA fragments encoding the transgene, is performed in accordance with conventional techniques, employing blunt-ended or staggered-ended termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkali and phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. The genetic construct may optionally encode a leader sequence to allow efficient expression of the fusion protein.

[0050] The DNA construct of human AFP is fused to a linker sequence and a second polynucleotide sequence of interest. The overall nucleotide sequence may have its codons optimized to enhance expression and/or to be more compatible with the chosen expression platform (ex: transgenic mammal, prokaryote cell culture, mammalian cell culture etc.). Since glycosylation of the fusion protein of interest is a characteristic of the eukaryotic system, a bi-functional recombinant protein sequence useful for therapeutic applications is preferably produced in eukaryotic cells or transgenic mammals. In these production platforms a plasmid selected for amplification of the fusion protein of interest and made transgenic for the cDNA construct of the bi-functional protein of interest may be subcloned into a gene-amplification system of choice. Thereafter the DNA construct it is cut out and transfected into the genome of a target nucleus.

[0051] Expression of a desired fusion protein in mammalian cells is preferred according to the current invention in order to ensure the production of biologically functional protein because of factors such as the presence of native leader sequences.
that ensure successful secretion of the protein, the presence of appropriate folding factors and the capacity for posttranslational modifications. In addition, the expression of a bi-functional fusion protein in mammalian cells is essential for use in the production of biopharmaceuticals.

The invention relates to a method of production of peptides having a specifically desired sequence and to the protein and nucleic acid intermediates necessary for the practice of the method. The bi-functional fusion protein sequence to be produced can be identical to the desired end product (the peptide of interest) or it can contain one or more tandem copies of the peptide of interest and/or it can contain sequences associated with a selectively cleavable bond. Most preferably, the method of the invention comprises the steps of:

a) providing a cDNA or genomic DNA construct which encodes a fusion protein having a first polypeptide of interest, a peptide linker sequence and a second polypeptide of interest, which gene is operably connected to a first locus control region and a first promoter;

b) making a transgenic animal having the operably connected fusion gene integrated into its genome, whereby the fusion protein is expressed and incorporated into the milk of the transgenic animal upon lactation or hormonal induction of lactation; and

c) isolating the fusion protein from the milk of the transgenic animal.

[0052] In cell culture production of the transgene vectors containing replicon and control sequences derived from species compatible with a host cell are used in connection with the host. The vector ordinarily carries a replicon site, as well as specific genes which are capable of providing phenotypic selection in transformed cells. The expression of the fusion protein can also be placed under control with other regulatory sequences which may be homologous to the organism in its untransformed state. For example, in transgenic goats a goat β-casein promoter can be used which will activate expression of the transgene of interest upon the initiation of lactation. Other promoters/operator systems or portions thereof can be employed as well. For example, whey acid promoters, beta-lactoglobulin, alkaline phosphatase, and the like can be used.

[0053] For mammalian hosts, several possible vector systems are available for initial expression. One class of vectors utilize DNA elements which are derived from
animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (RSV, MMTV or MOMLV), or SV40 virus. Cells which have stably integrated the DNA into their chromosomes may be selected by introducing one or more markers which allow selection of transfected host cells. The marker may provide for prototropy to an auxotrophic host, antibiotic resistance, or resistance to heavy metals such as copper or the like. The selectable marker gene can be either directly linked to the DNA sequences to be expressed, or introduced into the same cell by co-transformation. Additional elements may also be needed for optimal synthesis of mRNA. These elements may include splice signals, as well as transcriptional promoters, enhancers, and termination signals.

Preparation of Donor Cells for Embryo Reconstruction.

[0054] Transfected fetal somatic cells were seeded in 4-well plates with fetal cell medium and maintained in culture (5% CO₂, 39°C). After 48 hours, the medium was replaced with fresh low serum (0.5% FBS) fetal cell medium. The culture medium was replaced with low serum fetal cell medium every 48 to 72 hours over the next 2 - 7 days following low serum medium, somatic cells (to be used as karyoplast donors) were harvested by trypsinization. The cells were re-suspended in equilibrated M199 with 10% FBS supplemented with 2 mM L-glutamine, 1% penicillin/streptomycin (10,000 I. U. each/ml) for at least 6 hours prior to fusion to the enucleated oocytes. The current experiments for the generation of desirable transgenic animals are preferably carried out with goat cells or mouse cells for the generation of goats or mice respectively but, according to the current invention, could be carried out with any mammalian cell line desired.

Oocyte Collection.

[0055] Oocyte donor does were synchronized and super ovulated as previously described (Ogeri, et al., 2001), and were mated to vasectomized males over a 48-hour interval. After collection, oocytes were cultured in equilibrated M199 with 10% FBS supplemented with 2 mM L-glutamine and 1% penicillin/streptomycin (10,000 IU. each/ml).
Cytoplasm Preparation and Enucleation.

[0056] All oocytes were treated with cytochalasin-B (Sigma, 5 µg/ml in SOF with 10% FBS) 15 to 30 minutes prior to enucleation. Metaphase-II stage oocytes were enucleated with a 25 to 30 µm glass pipette by aspirating the first polar body and adjacent cytoplasm surrounding the polar body (~ 30 % of the cytoplasm) to remove the metaphase plate. After enucleation, all oocytes were immediately reconstructed.

Nuclear Transfer and Reconstruction

[0057] Donor cell injection was conducted in the same medium used for oocyte enucleation. One donor cell was placed between the zona pellucida and the ooplasmic membrane using a glass pipet. The cell-oocyte couplets were incubated in SOF for 30 to 60 minutes before electrofusion and activation procedures. Reconstructed oocytes were equilibrated in fusion buffer (300 mM mannitol, 0.05 mM CaCl₂, 0.1 mM MgSO₄, 1 mM K₂HPO₄, 0.1 mM glutathione, 0.1 mg/ml BSA) for 2 minutes. Electrofusion and activation were conducted at room temperature, in a fusion chamber with 2 stainless steel electrodes fashioned into a “fusion slide” (500 µm gap; BTX-Genetronics, San Diego, CA) filled with fusion medium.

[0058] Fusion was performed using a fusion slide. The fusion slide was placed inside a fusion dish, and the dish was flooded with a sufficient amount of fusion buffer to cover the electrodes of the fusion slide. Couplets were removed from the culture incubator and washed through fusion buffer. Using a stereomicroscope, couplets were placed equidistant between the electrodes, with the karyoplast/cytoplasm junction parallel to the electrodes. It should be noted that the voltage range applied to the couplets to promote activation and fusion can be from 1.0 kV/cm to 10.0 kV/cm. Preferably however, the initial single simultaneous fusion and activation electrical pulse has a voltage range of 2.0 to 3.0 kV/cm, most preferably at 2.5 kV/cm, preferably for at least 20 µsec duration. This is applied to the cell couplet using a BTX ECM 2001 Electrocell Manipulator. The duration of the micropulse can vary from 10 to 80 µsec. After the process the treated couplet is typically transferred to a drop of fresh fusion buffer. Fusion treated couplets were washed through equilibrated SOF/FBS, then transferred to equilibrated SOF/ FBS with or without cytochalasin-B. If cytochalasin-B is used its concentration can vary from 1 to 15 µg/ml, most preferably at 5 µg/ml. The couplets were incubated at 37-39°C in a humidified gas chamber.
containing approximately 5% CO₂ in air. It should be noted that mannitol may be used in the place of cytocholasin-B throughout any of the protocols provided in the current disclosure (HEPES-buffered mannitol (0.3 mm) based medium with Ca²⁺ and BSA).

Nuclear Transfer Embryo Culture and Transfer to Recipients.

[0059] Significant advances in nuclear transfer have occurred since the initial report of success in the sheep utilizing somatic cells (Wilmut et al., 1997). Many other species have since been cloned from somatic cells (Baguisi et al., 1999 and Cibelli et al., 1998) with varying degrees of success. Numerous other fetal and adult somatic tissue types (Zou et al., 2001 and Wells et al., 1999), as well as embryonic (Meng et al., 1997), have also been reported. The stage of cell cycle that the karyoplast is in at time of reconstruction has also been documented as critical in different laboratories methodologies (Kasinathan et al., BIOL. REPROD. 2001; Yong et al., 1998; and Kasinathan et al., NATURE BIOTECH. 2001).

[0060] All nuclear transfer embryos of the current invention were cultured in 50 µl droplets of SOF with 10% FBS overlaid with mineral oil. Embryo cultures were maintained in a humidified 39°C incubator with 5% CO₂ for 48 hours before transfer of the embryos to recipient does. Recipient embryo transfer was performed as previously described (Baguisi et al., 1999).

[0061] Paramount to the success of any nuclear transfer program is having adequate fusion of the karyoplast with the enucleated cytoplast. Equally important however is for that reconstructed embryo (karyoplast and cytoplast) to behave as a normal embryo and cleave and develop into a viable fetus and ultimately a live offspring. Results from this lab detailed above show that both fusion and cleavage either separately or in combination have the ability to predict in a statistically significant fashion which cell lines are favorable to nuclear transfer procedures. While alone each parameter can aid in pre-selecting which cell line to utilize, in combination the outcome for selection of a cell line is strengthened.

Pregnancy and Perinatal Care.

[0062] For goats, pregnancy was determined by ultrasonography starting on day 25 after the first day of standing estrus. Does were evaluated weekly until day 75 of gestation, and once a month thereafter to assess fetal viability. For the pregnancy that
continued beyond 152 days, parturition was induced with 5 mg of PGF2µ (Lutalyse, Upjohn). Parturition occurred within 24 hours after treatment. Kids were removed from the dam immediately after birth, and received heat-treated colostrum within 1 hour after delivery. Time frames appropriate for other ungulates with regard to pregnancy and perinatal care (e.g., bovines) are known in the art.

Genotyping of Cloned Animals.

[0063] Shortly after birth, blood samples and ear skin biopsies are obtained from cloned animals (e.g., goats or cattle) and the surrogate dams for genomic DNA isolation. According to the current invention each sample may be first analyzed by PCR using primers for a specific transgenic target protein, and then subjected to Southern blot analysis using the cDNA for that specific target protein. For each sample, 5 µg of genomic DNA was digested with EcoRI (New England Biolabs, Beverly, MA), electrophoresed in 0.7 % agarose gels (SeaKem®, ME) and immobilized on nylon membranes (MagnaGraph, MSI, Westboro, MA) by capillary transfer following standard procedures known in the art. Membranes were probed with the 1.5 kb Xho I to Sal I hAT cDNA fragment labeled with 32P dCTP using the Prime-It® kit (Stratagene, La Jolla, CA). Hybridization was executed at 65°C overnight. The blot is washed with 0.2 X SSC, 0.1 % SDS and exposed to X-OMAT™ AR film for 48 hours.

[0064] The present invention also includes a method of cloning a genetically engineered or transgenic mammal, by which a desired gene is inserted, removed or modified in the differentiated mammalian cell or cell nucleus prior to insertion of the differentiated mammalian cell or cell nucleus into the enucleated oocyte.

[0065] Also provided by the present invention are mammals obtained according to the above method, and the offspring of those mammals. The present invention is preferably used for cloning caprines or bovines but could be used with any mammalian species. The present invention further provides for the use of nuclear transfer fetuses and nuclear transfer and chimeric offspring in the area of cell, tissue and organ transplantation.

[0066] Suitable mammalian sources for oocytes include goats, sheep, cows, pigs, rabbits, guinea pigs, mice, hamsters, rats, primates, etc. Preferably, the oocytes will be obtained from ungulates, and most preferably goats or cattle. Methods for isolation of oocytes are well known in the art. Essentially, this will comprise isolating
oocytes from the ovaries or reproductive tract of a mammal, e.g., a goat. A readily available source of ungulate oocytes is from hormonally induced female animals.

[0067] For the successful use of techniques such as genetic engineering, nuclear transfer and cloning, oocytes may preferably be matured in vivo before these cells may be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo. Metaphase II stage oocytes, which have been matured in vivo, have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes are collected surgically from either non-super ovulated or super ovulated animals several hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone.

[0068] Moreover, it should be noted that the ability to modify animal genomes through transgenic technology offers new alternatives for the manufacture of recombinant proteins. The production of human recombinant pharmaceuticals in the milk of transgenic farm animals solves many of the problems associated with microbial bioreactors (e.g., lack of post-translational modifications, improper protein folding, high purification costs) or animal cell bioreactors (e.g., high capital costs, expensive culture media, low yields). The current invention enables the use of transgenic production of biopharmaceuticals, fusion proteins, plasma proteins, and other molecules of interest in the milk or other bodily fluid (i.e., urine or blood) of transgenic animals homozygous for a desired gene. Fusion proteins capable of being produced in through the method of the invention include those containing an alpha-fetoprotein polypeptide and a fusion protein partner including: antithrombin III, truncated ATIII, lactoferrin, urokinase, Platelet Factor 4 ("PF4"), alpha-fetoprotein, alpha-1-antitrypsin, C-1 esterase inhibitor, decorin, alpha interferon, beta interferon, ferritin, prolactin, CFTR, blood Factor X, blood Factor VIII, as well as erythropoietin.

[0069] According to an embodiment of the current invention when multiple or successive rounds of transgenic selection are utilized to generate a cell or cell line homozygous for more than one trait such a cell or cell line can be treated with compositions to lengthen the number of passes a given cell line can withstand in in vitro culture. Telomerase would be among such compounds that could be so utilized.

[0070] The use of living organisms as the production process means that all of the material produced will be chemically identical to the natural product. In terms of basic amino acid structures this means that only L-optical isomers, having the natural configuration, will be present in the product. Also the number of wrong sequences will
be negligible because of the high fidelity of biological synthesis compared to chemical routes, in which the relative inefficiency of coupling reactions will always produce failed sequences. The absence of side reactions is also an important consideration with further modification reactions such as carboxy-terminal amidation. Again, the enzymes operating in vivo give a high degree of fidelity and stereospecificity which cannot be matched by chemical methods. Finally the production of a fusion protein of interest in a biological fluid means that low-level contaminants remaining in the final product are likely to be far less toxic than those originating from a chemical reactor.

[0071] One of the most important considerations in the practice of the invention is the choice of fusion partner with which to make the fusion protein. The fusion partner may be, and for preference usually will be, a natural protein or physiologically active fragment thereof, but it does not have to be. Proteins which themselves can be produced in high yields in milk, such as alpha-1-antitrypsin, are likely to be useful fusion partners in the invention. A list of desirable of proteins includes: antithrombin III, truncated ATIII, lactoferrin, urokinase, Platelet Factor 4 ("PF4"), alpha-fetoprotein, alpha-1-antitrypsin, C-1 esterase inhibitor, decorin, alpha interferon, beta interferon, ferritin, prolactin, CFTR, blood Factor X, blood Factor VIII, as well as erythropoietin. For preference, though, the fusion partner may additionally be a protein which is naturally produced in milk, as it is reasonable to assume that a protein which is normally secreted into milk, and which can be produced at high levels, will continue to be so secreted and produced after another functional polypeptide has been fused to its carboxy terminus. A particularly preferred fusion partner for the production of a fusion protein of interest in milk is human alpha-fetoprotein.

[0072] According to the instant invention there may be some variation in the sequence of a fusion partner protein from a natural sequence. Although natural, wild-type sequences (and consensus sequences in the case of allelic variants) of human alpha-fetoprotein or other fusion partners are usually preferred, some variation from the natural sequence may be accommodated or, in some cases at least, desired, provided that the properties of the fusion partner are not compromised to an unacceptable degree. Amino acid homology of at least 90 or 95% will usually be appropriate, and generally not more than one or two amino acid changes will be preferred.

[0073] As previously mentioned, expression levels of three grams per liter of ovine milk are well within the reach of existing transgenic animal technology. Such levels should also be achievable for a human alpha-fetoprotein fusion protein, which is
a non-toxic endogenous protein. In addition there is no reason to believe that such a level should not be feasible in the milk of other species. Required linker sequences may contain more than the absolute minimum sequence necessary to allow separation of the two functional moieties:

1). For example, IRES linker sequence variant 1, SEQ. ID. 24.

2). Any C-terminal extension to the first fusion partner, such as the human alpha-fetoprotein extension discussed above, may also be regarded as part of the linker.

[0074] In the practice of the present invention, bi-functional fusion proteins are produced in the milk of transgenic animals. The human alpha-fetoprotein coding sequences can be obtained by screening libraries of genomic material or reverse-translated messenger RNA derived from the animal of choice (such as cattle or mice). These sequences along with the desired polypeptide sequence of the fusion partner protein are then cloned into an appropriate plasmid vector and amplified in a suitable host organism, usually *E. coli*. The DNA sequence encoding the peptide of choice can then be constructed, for example, by polymerase chain reaction amplification of a mixture of overlapping annealed oligonucleotides.

[0075] After amplification of the vector, the DNA construct would be excised with the appropriate 5' and 3' control sequences, purified away from the remains of the vector and used to produce transgenic animals that have integrated into their genome the desired bi-functional fusion protein. Conversely, with some vectors, such as yeast artificial chromosomes (YACs), it is not necessary to remove the assembled construct from the vector; in such cases the amplified vector may be used directly to make transgenic animals. In this case bi-functional refers to the presence of a first polypeptide encoded by enough of a protein sequence nucleic acid sequence to retain its biological activity, this first polypeptide is then joined to a the coding sequence for a second polypeptide also containing enough of a polypeptide sequence of a protein to retain its physiological activity. The coding sequence being operatively linked to a control sequence which enables the coding sequence to be expressed in the milk of a transgenic non-human placental mammal.
[0076] A DNA sequence which is suitable for directing production to the milk of transgenic animals carries a 5'-promoter region derived from a naturally-derived milk protein and is consequently under the control of hormonal and tissue-specific factors. Such a promoter should therefore be most active in lactating mammary tissue. According to the current invention the promoter so utilized can be followed by a DNA sequence directing the production of a protein leader sequence which would direct the secretion of the fusion protein across the mammary epithelium into the milk. At the other end of the fusion protein construct a suitable 3'-sequence, preferably also derived from a naturally secreted milk protein, and may be added to improve stability of mRNA. An example of suitable control sequences for the production of proteins in the milk of transgenic animals are those from the caprine beta casein promoter.

[0077] The production of transgenic animals can now be performed using a variety of methods. The method preferred by the current invention is nuclear transfer.

Fusion Protein Sequences.

[0078] Preferred fusion proteins of the invention will be illustrated by the following examples. The preferred embodiment of this invention is a fusion protein made from a human alpha-fetoprotein polypeptide joined via a single methionine residue at its carboxy terminus to an β interferon polypeptide (IFN-β). In an alternate embodiment of this fusion protein of the invention the IFN-β polypeptide would carry an extra glycine at the carboxy terminus to act as a substrate for the alpha-amidating enzyme. The sequence of this preferred embodiment of the invention is provided below:

[0079] In a preferred embodiment of the current invention the DNA sequence encoding this construct would carry the 5'-beta-casein promoter region, the entire human alpha-fetoprotein coding sequence with all of the coding exons, a linker and then the human IFN-β coding sequence. A fusion protein has the same fusion partners as that provided above but uses a different linker sequence. This requires the fusion protein to carry the amino acid linker sequence between the carboxy terminus of the human alpha-fetoprotein and the IFN-β.

[0080] This would have to be produced by making appropriate changes in the DNA coding region. A fusion protein may be prepared as described above but under the control of the human or bovine 5'- and 3'-control sequences either from beta-
lactoglobulin or from any other suitable promoter involved in controlling the expression of milk proteins.

[0081] A large number of DNA sequences corresponding to the various fusion proteins of interest are presented and identified. The fusion proteins of the invention provide for use of a physiologically active alpha-fetoprotein polypeptide as a first domain linked to various second polypeptide fusion partners. This invention contemplates and includes all interferon's native, natural, modified, or recombinant DNA interferon-like proteins as the potential fusion partner of the alpha-fetoprotein domain. All of these interferon's and others known proteins are in the art or to be known are within the contemplation of the invention. The present invention is principally concerned with various modified fusion proteins or polypeptides of alpha and beta interferon's fused to an alpha-fetoprotein domain. Glycosylated interferon's have been reported to be obtained by expressing the proteins in animal cells or in yeast.

[0082] The selection of the position of the molecule best suited for a modification depends on the particular protein. Thus, in accordance with the invention, recognition of desirable sequences that retain their native physiological activity can be introduced at any point in a naturally occurring protein sequence providing such introduced sequences do not adversely affect biological activity where such activity is desired. It is only necessary in accordance with the invention that there be incorporated that much of the amino acid consensus sequence that will contain or be the site for the desired biological activity.

[0083] The following describes illustrative, but not limiting, specific embodiments.

Preferred Human Bi-Functional AFP Fusion Proteins

- AFP - β Interferon
- AFP - α Interferon
- AFP - tau Interferon
- AFP - antithrombin III
- AFP - Decorin
- AFP - Prolactin
- AFP - γ Interferon
- AFP - PF4
AFP – Calcitonin
AFP – Alpha-1-Antitrypsin

Construction of the Antithrombin III – Alpha-fetoprotein Fusion Protein

[0084] Antithrombin or Antithrombin III (ATIII) is a single chain glycoprotein involved in the coagulation process. It is synthesized primarily in the liver with a signal peptide of 32 amino acids necessary for its intracellular transport through the endoplasmic reticulum; the peptide is then cleaved prior to secretion. Mourey et al., BIOCHIMIE 72:599-608 (1990).

[0085] ATIII is a member of the serpin family of proteins and functions as an inhibitor of thrombin and other enzymes involved in the clotting cascade. As used herein, the active native intact form of ATIII is designated the S (stressed) form (S-ATIII). S-ATIII forms a tight binding complex with thrombin (markedly enhanced by the presence of heparin) and other enzymes (not all serpins have heparin affinity).

[0086] S-ATIII can be cleaved to the relaxed (R)-conformation (R-ATIII) by a variety of enzymes, including thrombin. ATIII can be derived from any organism which produces the protein in nature. In a particular embodiment the organism is bovine or human. The amino acid sequence of bovine ATIII is available under GenBank Accession No. 1168462, and the amino acid sequence of human ATIII is available under GenBank Accession No. 113936.

[0087] The particular portions and conformations of ATIII or its biological equivalents, which are the subject of this invention, may also be produced by the use of an enzyme (e.g. elastase) in vivo. For example, an enzyme may be used in vivo, with or without plasma or native ATIII to serve as an additional substrate, to produce a fragment, conformation, biological equivalent, or derivative of ATIII that inhibits endothelial cell proliferation, angiogenesis and/or tumor growth. It has been determined that certain conformations of ATIII reduce angiogenesis, endothelial cell proliferation, and tumor growth. (As used herein, endothelial cell proliferation also includes endothelial cell migration and tube formation.) As described herein, ATIII and/or a fragment, conformation, biological equivalent, or derivative can be made or isolated by numerous methods known in the art, including, but not limited to, purification, transgenic and recombinant methods.
[0088] However, the insertion of the nucleotide sequence is preferably made at a site in the nucleotide sequence encoding IFN-β so as to minimize an undesirable effect on the biological activity of the resultant recombinant protein, when such biological activity is critical.

Milk Specific Promoters.

[0089] The transcriptional promoters useful in practicing the present invention are those promoters that are preferentially activated in mammary epithelial cells, including promoters that control the genes encoding milk proteins such as caseins, beta-lacto globulin (Clark et al., (1989) BIO/TECHNOLOGY 7: 487-492), whey acid protein (Gorton et al. (1987) BIO/TECHNOLOGY 5: 1183-1187), and lactalbumin (Soulier et al., (1992) FEBS LETT. 297: 13). Casein promoters may be derived from the alpha, beta, gamma or kappa casein genes of any mammalian species; a preferred promoter is derived from the goat beta casein gene (DiTullio, (1992) BIO/TECHNOLOGY 10:74-77). The milk-specific protein promoter or the promoters that are specifically activated in mammary tissue may be derived from either cDNA or genomic sequences. Preferably, they are genomic in origin.

be readily cloned using the existing sequences as probes. Mammary-gland specific regulatory sequences from different organisms are likewise obtained by screening libraries from such organisms using known cognate nucleotide sequences, or antibodies to cognate proteins as probes.

Signal Sequences.

[0091] Among the signal sequences that are useful in accordance with this invention are milk-specific signal sequences or other signal sequences which result in the secretion of eukaryotic or prokaryotic proteins. Preferably, the signal sequence is selected from milk-specific signal sequences, i.e., it is from a gene which encodes a product secreted into milk. Most preferably, the milk-specific signal sequence is related to the milk-specific promoter used in the expression system of this invention. The size of the signal sequence is not critical for this invention. All that is required is that the sequence be of a sufficient size to effect secretion of the desired recombinant protein, e.g., in the mammary tissue. For example, signal sequences from genes coding for caseins, e.g., alpha, beta, gamma or kappa caseins, beta lactoglobulin, whey acid protein, and lactalbumin are useful in the present invention. The preferred signal sequence is the goat beta-casein signal sequence.

[0092] Signal sequences from other secreted proteins, e.g., proteins secreted by liver cells, kidney cell, or pancreatic cells can also be used.

Amino-Terminal Regions of Secreted Proteins.

[0093] The efficacy with which a non-secreted protein is secreted can be enhanced by inclusion in the protein to be secreted all or part of the coding sequence of a protein which is normally secreted. Preferably the entire sequence of the protein which is normally secreted is not included in the sequence of the protein but rather only a portion of the amino terminal end of the protein which is normally secreted. For example, a protein which is not normally secreted is fused (usually at its amino terminal end) to an amino terminal portion of a protein which is normally secreted.

[0094] Preferably, the protein which is normally secreted is a protein which is normally secreted in milk. Such proteins include proteins secreted by mammary epithelial cells, milk proteins such as caseins, beta lactoglobulin, whey acid protein, and lactalbumin. Casein proteins include alpha, beta, gamma or kappa casein genes of
any mammalian species. A preferred protein is beta casein, e.g., a goat beta casein.
The sequences which encode the secreted protein can be derived from either cDNA or
genomic sequences. Preferably, they are genomic in origin, and include one or more
introns.

DNA Constructs.

[0095] The expression system or construct, described herein, can also include a
3' untranslated region downstream of the DNA sequence coding for the non-secreted
protein. This region apparently stabilizes the RNA transcript of the expression system
and thus increases the yield of desired protein from the expression system. Among the
3' untranslated regions useful in the constructs of this invention are sequences that
provide a poly A signal. Such sequences may be derived, e.g., from the SV40 small t
antigen, the casein 3' untranslated region or other 3' untranslated sequences well known
in the art. Preferably, the 3' untranslated region is derived from a milk specific protein.
The length of the 3' untranslated region is not critical but the stabilizing effect of its
poly A transcript appears important in stabilizing the RNA of the expression sequence.

[0096] Optionally, the expression system or construct includes a 5' untranslated
region between the promoter and the DNA sequence encoding the signal sequence.
Such untranslated regions can be from the same control region from which promoter is
taken or can be from a different gene, e.g., they may be derived from other synthetic,
semi-synthetic or natural sources. Again their specific length is not critical, however,
they appear to be useful in improving the level of expression.

[0097] The construct can also include about 10%, 20%, 30%, or more of the N-
terminal coding region of the gene preferentially expressed in mammary epithelial
cells. For example, the N-terminal coding region can correspond to the promoter used,
e.g., a goat β-casein N-terminal coding region.

[0098] The above-described expression systems may be prepared using
methods well known in the art. For example, various ligation techniques employing
conventional linkers, restriction sites etc. may be used to good effect. Preferably, the
expression systems of this invention are prepared as part of larger plasmids. Such
preparation allows the cloning and selection of the correct constructions in an efficient
manner as is well known in the art. Most preferably, the expression systems of this
invention are located between convenient restriction sites on the plasmid so that they

36
can be easily isolated from the remaining plasmid sequences for incorporation into the desired mammal.

[0099] Prior art methods often include making a construct and testing it for the ability to produce a product in cultured cells prior to placing the construct in a transgenic animal. Surprisingly, the inventors have found that such a protocol may not be of predictive value in determining if a normally non-secreted protein can be secreted, e.g., in the milk of a transgenic animal. Therefore, it may be desirable to test constructs directly in transgenic animals, e.g., transgenic mice, as some constructs which fail to be secreted in CHO cells are secreted into the milk of transgenic animals.

Transgenic Mammals.

[00100] Preferably, the DNA constructs of the invention are introduced into the germ line of a mammal. For example, one or several copies of the construct may be incorporated into the genome of a mammalian embryo by standard transgenic techniques known in the art.

[00101] Any non-human mammal can be usefully employed in this invention. Mammals are defined herein as all animals, excluding humans, which have mammary glands and produce milk. Preferably, mammals that produce large volumes of milk and have long lactating periods are preferred. Preferred mammals are cows, sheep, goats, mice, oxen, camels and pigs. Of course, each of these mammals may not be as effective as the others with respect to any given expression sequence of this invention. For example, a particular milk-specific promoter or signal sequence may be more effective in one mammal than in others. However, one of skill in the art may easily make such choices by following the teachings of this invention.

[00102] The litters of transgenic mammals may be assayed after birth for the incorporation of the construct into the genome of the offspring. Preferably, this assay is accomplished by hybridizing a probe corresponding to the DNA sequence coding for the desired recombinant protein product or a segment thereof onto chromosomal material from the progeny. Those mammalian progeny found to contain at least one copy of the construct in their genome are grown to maturity. The female species of these progeny will produce the desired protein in or along with their milk. Alternatively, the transgenic mammals may be bred to produce other transgenic progeny useful in producing the desired proteins in their milk.
[00103] Transgenic females may be tested for protein secretion into milk, using any of the assay techniques that are standard in the art (e.g., Western blots or enzymatic assays).

Other Expression Systems

[00104] While presently preferred procedures to express the modified interferon – alpha-fetoprotein combination, to make various nucleotide sequences, and to transform specific hosts have been illustrated, it is evident that the invention is not in any way limited by these illustrations. Both eukaryotic and prokaryotic host cells may be used. Several procedures for the isolation of genes and expression of interferon’s in bacterial cells and heterologous cells are quite well-suited for production of modified interferons of the invention.

[00105] Likewise, the modified interferon’s can be produced from vertebrate cell cultures, for instance, a COS-7 line of monkey kidney fibroblasts can be used as the host for the production of the modified interferon’s with appropriate expression vectors. Many other examples of eukaryotic expression vectors have been described and are known in the art.

[00106] Vectors useful in the invention to replicate in a transformed host cell have a DNA segment containing a functional origin of replication (replicon). Plasmids and phage DNA by their very nature contain replicons facilitating replication in a host cell. The vector will have a DNA segment which conveys to a transformable host cell a property useful for selection of transformed cells from non-transformed cells. Any of a wide range of properties can be used for selection purposes. One of the most commonly used properties is antibiotic resistance, e.g., neomycin resistance or tetracycline resistance.

Purification of AFP-fusion Protein from a Biological Fluid

[00107] The AFP fusion protein of the invention may be purified from the biological fluid of a transgenic organism using standard protein purification techniques, such as affinity chromatography (see, e.g., Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1998; see also Lubon et al., UNITED STATES PATENT: 5,831,141) or other methods known to those skilled in the art of protein purification. Once isolated, the AFP-fusion protein can, if desired, be further purified by e.g., by high performance liquid chromatography (HPLC; e.g.,
see Fisher, Laboratory Techniques in Biochemistry and Molecular Biology, eds. Work and Burdon, Elsevier, 1980), and/or tangential flow filtration. Following purification, the AFP fusion protein is at least 80% pure, preferably 90% pure, more preferably 95% pure, and most preferably 99% pure.

Animal Promoters

[00108] Useful promoters for the expression of AFP in mammary tissue include promoters that naturally drive the expression of mammary-specific polypeptides, such as milk proteins, although any promoter that permits secretion of AFP into milk can be used. These include, e.g., promoters that naturally direct expression of whey acidic protein (WAP), alpha S1-casein, alpha S2-casein, beta-casein, kappa-casein, beta-lactoglobulin, alpha-lactalbumin (see, e.g., Drohan et al., U.S. Patent No. 5,589,604; Meade et al., U.S. Patent No. 4,873,316; and Karatzas et al., U.S. Patent No. 5,780,009), and others described in U.S. Patent No. 5,750,172. Whey acidic protein (WAP; Genbank Accession No. X01153), the major whey protein in rodents, is expressed at high levels exclusively in the mammary gland during late pregnancy and lactation (Hobbs et al., J. BIOL. CHEM. 257:3598-3605, 1982). For additional information on desired mammary gland-specific promoters, see, e.g., Richards et al., J. BIOL. CHEM. 256:526-532, 1981 (α-lactalbumin rat); Campbell et al., NUCLEIC ACIDS RES. 12:8685-8697, 1984 (rat WAP); Jones et al., J. BIOL. CHEM. 260:7042-7050, 1985 (rat β-casein); Yu-Lee & Rosen, J. BIOL. CHEM. 258:10794-10804, 1983 (rat γ-casein); Hall, BIOCHEM. J. 242:735-742, 1987 (human α-lactalbumin); Stewart, NUCLEIC ACIDS RES. 12:3895-3907, 1984 (bovine α-s1 and κ-casein cDNAs); Gorodetsky et al., GENE 66:87-96, 1988 (bovine β-casein); Alexander et al., EUR. J. BIOCHEM. 178:395-401, 1988 (bovine κ-casein); Brignon et al., FEBS LETT. 188:48-55, 1977 (bovine α-S2 casein); Jamieson et al., GENE 61:85-90, 1987, Ivanov et al., BIOL. CHEM. Hoppe-Seyler 369:425-429, 1988, and Alexander et al., NUCLEIC ACIDS RES. 17:6739, 1989 (bovine β-lactoglobulin); and Vilotte et al., BIOCHIMIE 69:609-620, 1987 (bovine α-lactalbumin). The structure and function of the various milk protein genes are reviewed by Mercier & Vilotte, J. DAIRY SCI. 76:3079-3098, 1993. If additional flanking sequences are useful in optimizing expression, such sequences can be cloned using the existing sequences as probes. Mammary-gland specific regulatory sequences from different organisms can be obtained by screening
libraries from such organisms using known cognate nucleotide sequences, or antibodies
to cognate proteins as probes.

[00109] Useful signal sequences for expression and secretion of AFP into milk
are milk-specific signal sequences. Desirably, the signal sequence is selected from
milk-specific signal sequences, i.e., from a gene which encodes a product secreted into
milk. Most desirably, the milk-specific signal sequence is related to a milk-specific
promoter described above. The size of the signal sequence is not critical for this
invention. All that is required is that the sequence be of a sufficient size to effect
secretion of AFP, e.g., in the mammary tissue. For example, signal sequences from
genes coding for caseins, e.g., alpha, beta, gamma, or kappa caseins, beta lactoglobulin,
 whey acidic protein, and lactalbumin are useful in the present invention. Signal
sequences from other secreted proteins, e.g., proteins secreted by liver cells, kidney
cell, or pancreatic cells can also be used.

[00110] Useful promoters for the expression of a recombinant polypeptide
transgene in urinary tissue are the uroplakin and uromodulin promoters (Kerr et al.,
NAT. BIOTECHNOL. 16:75-79, 1998; Zbikowska, et al., BIOCHEM. J. 365:7-11, 2002; and
Zbikowski et al., TRANSGENIC RES. 11:425-435, 2002), although any promoter that
permits secretion of the transgene product into urine may be used.

[00111] A useful promoter for the expression and secretion of AFP into blood
by blood-producing or serum-producing cells (e.g., liver epithelial cells) is the albumin
promoter (see, e.g., Shen et al., DNA 8:101-108, 1989; Tan et al., DEV. BIOL. 146:24-
37, 1991; McGrane et al., TIBS 17:40-44, 1992; Jones et al., J. BIOL. CHEM.
265:14684-14690, 1990; and Shimada et al., FEBS LETTERS 279:198-200, 1991),
although any promoter that permits secretion of the transgene product into blood may
be used. The native alpha-fetoprotein promoter can also be used (see, e.g., Genbank
Accession Nos.: AB053574; AB053573; AB053572; AB053571; AB053570; and
AB053569). Useful promoters for the expression of AFP in semen are described in
U.S. Patent No. 6,201,167. Useful avian-specific promoters are the ovalbumin
promoter and the apo-B promoter. Other avian-specific promoters are known in the art.
The ovalbumin promoter can be used to direct expression of AFP that is then deposited
in the egg white of the egg. The apo-B promoter can also be used to direct expression
of a recombinant polypeptide in the liver, where it will eventually be deposited into the
egg yolk. Avian eggs are an optimal vehicle for expressing large quantities of
recombinant polypeptides for the following reasons: (1) a large amount of protein is
packed into each egg, (2) eggs are easy to collect non-invasively and can be stored for extended periods of time, and (3) eggs are sterile and, unlike milk, do not contain bacterial contaminants. Specifically, for each egg, a bird can produce three grams of albumin in the oviduct, of which greater than 50% is ovalbumin. Another three grams is produced in the liver (serum lipoproteins) and deposited in the egg yolk. In addition, since birds do not typically recognize mammalian proteins immunologically because of their evolutionary distance from mammals, the expression of AFP in birds is less likely to have any deleterious effect on the viability and health of the bird.

[00112] Other promoters that are useful in the methods of the invention include inducible promoters. Generally, recombinant proteins are expressed in a constitutive manner in most eukaryotic expression systems. The addition of inducible promoters or enhancer elements provides temporal or spatial control over expression of AFP, and provides an alternative mechanism of expression. Inducible promoters include heat shock protein, metallothionenien, and MMTV-LTR, while inducible enhancer elements include those for ecdysone, muristerone A, and tetracycline/doxycycline.

[00113] The Tet-On and Tet-Off Gene Expression Systems (Clontech) is one example of an inducible system that is useful in the methods of the invention. This system uses a tetracycline (Tc) responsive element to maintain AFP expression in either an on (constitutively off, induced with Tc) or off (constitutively on, repressed with Tc or doxycycline) mode. Selectable markers can also be incorporated into the AFP transgene for easy identification of cells that have been transformed. Selectable markers generally fall into two functional categories: recessive and dominant. The recessive markers are usually genes that encode products that are not produced in the host cells (cells that lack the “marker” product or function). Marker genes for thymidine kinase (TK), dihydrofolate reductase (DHFR), adenine phosphoribosyl transferase (APRT), and hypoxanthine-guanine phosphoribosyl transferase (HGPRT) are in this category. Dominant markers include genes that encode products that confer resistance to growth-suppressing compounds (antibiotics, drugs) and/or permit growth of the host cells in metabolically restrictive environments. Commonly used markers within this category include a mutant DHFR gene that confers resistance to methotrexate; the gpt gene for xanthine-guanine phosphoribosyl transferase, which permits host cell growth in mycophenolic acid/xanthine containing media; and the neo gene for aminoglycoside 3'-phosphotransferase, which can confer resistance to G418, gentamycin, kanamycin, and neomycin.
Nucleic Acid Vectors

[00114] In certain embodiments the invention concerns vectors, or recombinant expression vectors, comprising any of the nucleic acid molecules described herein. Vectors are used herein either to amplify DNA or RNA encoding fusion proteins and/or to express DNA which encodes SSTR-fusion proteins. Vectors include, but are not limited to, plasmids, phages, cosmids, episomes, viral particles or viruses, and integratable DNA fragments (i.e., fragments integratable into the host genome by homologous recombination). Viral particles include, but are not limited to, adenoviruses, baculoviruses, parvoviruses, herpesviruses, poxviruses, adeno-associated viruses, Semliki Forest viruses, vaccinia viruses, retroviruses, microparticles and naked DNA. In various embodiments, expression may be targeted to a particular cell type or cell population by a targeting ligand. Expression vectors include, but are not limited to, pcDNA3 (Invitrogen) and pSVL (Pharmacia Biotech). Other expression vectors include, but are not limited to, pSPORT™ vectors, pGEM™ vectors (Promega), pPROEX vectors™ (LTI, Bethesda, Md.), Bluescript™ vectors (Stratagene), pQE.™ vectors (Qiagen), pSE420™ (Invitrogen), and pYES2™ (Invitrogen). Expression constructs may comprise a fusion protein encoding polynucleotides operatively linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator. Because of limited space for nucleic acid insertion in many vectors it may be desirable to insert smaller reporters or reporter fusion constructs. For example, deletion of all or part of the somatostatin receptor carboxy terminus may be used. Expression control DNA sequences include promoters, enhancers, operators, and regulatory element binding sites generally, and are typically selected based on the expression systems in which the expression construct is to be utilized.

[00115] Promoter and enhancer sequences are generally selected for the ability to increase gene expression, while operator sequences are generally selected for the ability to regulate gene expression. Expression constructs of the invention may also include sequences encoding one or more selectable markers that permit identification of host cells bearing the construct. Expression constructs may also include sequences that facilitate homologous recombination in a host cell. In various embodiments constructs may also include sequences necessary for replication in a host cell.

[00116] Various exemplary tissue-specific promoters are listed herein (Pearse and Takor, 1979; Nylen and Becker, 1995). Although not a complete list, these promoters are exemplary of the types of promoters and enhancers that may be used in
certain embodiments of the invention. Additional promoters, useful in the present invention, will be readily known to those of skill in the art.

[00117] Inducible promoters include but are not limited to MT II, MMTV (mouse mammary tumor virus), c-jun, Collagenase, Stromelysin, Murine MX Gene, GRP78 Gene, α-2-Macroglobulin, Vimentin, MHC Class I Gene H-2 kb, HSP70, Proliferin, Tumor Necrosis Factor and Thyroid Stimulating Hormone-α. Cell or tissue specific expression can be achieved by using cell-specific enhancers and/or promoters. (See generally, Huber et al., ADV. DRUG DELIVERY REVIEWS 17:279-292, 1995).

[00118] Expression constructs may be utilized for production of an encoded protein, but may also be utilized simply to amplify an SSTR-fusion protein encoding polynucleotide sequence. In some embodiments, the vector is an expression vector wherein the polynucleotide is operatively linked to a polynucleotide comprising an expression control sequence. In certain embodiments autonomously replicating recombinant expression constructs such as plasmid and viral DNA vectors incorporating polynucleotides. Expression vectors may be replicable DNA constructs in which a DNA sequence encoding SSTR-fusion protein is operably linked or connected to suitable control sequences capable of effecting the expression of an SSTR-fusion protein in a suitable host. DNA regions are operably linked or connected when they are functionally related to each other. For example, a promoter is operably linked or connected to a coding sequence if it controls the transcription of the sequence. Amplification vectors do not require expression control domains, but rather need only the ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants. The need for control sequences in the expression vector will vary depending upon the host selected and the transformation method chosen. Generally, control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding and sequences that controls the termination of transcription and translation.

[00119] In various embodiments vectors may contain a promoter that is recognized by the host organism. The promoter sequences may be prokaryotic, eukaryotic, synthetic or viral. Examples of suitable prokaryotic sequences include the promoters of bacteriophage lambda (THE BACTERIOPHAGE LAMBDA, Hershey, A. D., Ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1973); LAMBDII, Hendrix,

[00120] Additional regulatory sequences may also be included in vectors. Examples of suitable regulatory sequences are represented by the Shine-Dalgarno of the replicase gene of the phage MS-2 and of the gene cII of bacteriophage lambda. The Shine-Dalgarno sequence may be directly followed by DNA encoding SSTR-fusion protein and result in the expression of the mature SSTR-fusion protein.

[00121] Moreover, suitable expression vectors can include an appropriate marker that allows the screening of the transformed host cells. The transformation of the selected host is carried out using any one of the various techniques well known to the expert in the art and described in Sambrook et al., *supra*.

[00122] An origin of replication may also be provided either by construction of the vector to include an exogenous origin or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter may be sufficient. Alternatively, rather than using vectors which contain viral origins of replication, one skilled in the art can transform mammalian cells by the method of co-transformation with a selectable marker and SSTR-fusion protein encoding DNA. An example of a suitable marker is dihydrofolate reductase or thymidine kinase (see, U.S. Pat. No. 4,399,216).

[00123] Nucleotide sequences encoding reporter protein fusions, such as SSTR2-fusion proteins, may be recombined with vector DNA in accordance with conventional techniques, including blunt-ended or staggered-ended termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. Techniques for such manipulation are disclosed by Sambrook et al., *supra* and are well known in the art. Methods for construction of mammalian expression vectors are disclosed in, for example, Okayama et al., *Mol. Cell. Biol.*, 3:280, (1983); Cosman et al., *Mol. Immunol.*, 23:935, (1986); and, Cosman et al., *Nature*, 312: 768, (1984).
[00124] The transgene construct preferably includes a leader sequence downstream from the promoter. The leader sequence is a nucleic acid sequence that encodes a protein secretory signal, and, when operably linked to a downstream nucleic acid molecule encoding the AFP-fusion protein of the invention, and directs AFP-fusion secretion. The leader sequence may be obtained from the same gene as the promoter used to direct transcription of the nucleic acid molecule encoding AFP (for example, a gene that encodes a milk-specific protein). Alternatively, a leader sequence encoding the native human AFP protein secretory signal (amino acids 1-19 of Genbank Accession No. V01514) may be employed.

Therapeutic Uses.

[00125] The combination herein is preferably employed for in vitro use in treating these tissue cultures. The combination, however, is also be effective for in vivo applications. Depending on the intended mode of administration in vivo the compositions used may be in the dosage form of solid, semi-solid or liquid such as, e.g., tablets, pills, powders, capsules, gels, ointments, liquids, suspensions, or the like. Preferably the compositions are administered in unit dosage forms suitable for single administration of precise dosage amounts. The compositions may also include, depending on the formulation desired, pharmaceutically acceptable carriers or diluents, which are defined as aqueous-based vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the human alpha-fetoprotein. Examples of such diluents are distilled water, physiological saline, Ringer's solution, dextrose solution, and Hank's solution. The same diluents may be used to reconstitute lyophilized human alpha-fetoprotein. In addition, the pharmaceutical composition may also include other medicinal agents, pharmaceutical agents, carriers, adjuvants, nontoxic, non-therapeutic, non-immunogenic stabilizers, etc. Effective amounts of such diluent or carrier will be amounts which are effective to obtain a pharmaceutically acceptable formulation in terms of solubility of components, biological activity, etc.

[00126] The compositions herein may be administered to human patients via oral, parenteral or topical administrations and otherwise systemic forms for anti-melanoma and anti-breast cancer treatment.
Fusion Protein: Multiple Functional Domains.

[00127] In accordance with the invention, bi-functional fusion proteins are contemplated that have unique dual therapeutic effects on Myasthenia Gravis, Rheumatoid Arthritis, Osteoporosis, Cancer, topical applications, and Multiple Sclerosis. Other areas of effectiveness include antiviral activity, immunoregulatory activity and anti-angiogenic activity (cleaved ATIII fusion-AFP protein).

[00128] Conservative variants according to the invention generally conserve the overall molecular structure of the protein domains. Given the properties of the individual amino acids comprising the disclosed protein products, some rational substitutions will be apparent. Amino acid substitutions, i.e. "conservative substitutions," may be made, for instance, on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.

[00129] For example: (a) nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; (b) polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; (c) positively charged (basic) amino acids include arginine, lysine, and histidine; and (d) negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Substitutions typically may be made within groups (a)-(d). In addition, glycine and proline may be substituted for one another based on their ability to disrupt .alpha.-helices. Similarly, certain amino acids, such as alanine, cysteine, leucine, methionine, glutamic acid, glutamine, histidine and lysine are more commonly found in a-helices, while valine, isoleucine, phenylalanine, tyrosine, tryptophan and threonine are more commonly found in .beta.-pleated sheets. Glycine, serine, aspartic acid, asparagine, and proline are commonly found in turns. Some preferred substitutions may be made among the following groups: (i) S and T; (ii) P and G; and (iii) A, V, L and I. Given the known genetic code, and recombinant and synthetic DNA techniques, the skilled scientist readily can construct DNAs encoding the conservative amino acid variants.

Preparing Bi-Functional Molecules.

[00130] A bi-functional protein contemplated by this invention is one that contains each of the previously mentioned domains, wherein upon such fusing, both domains substantially retain their associated characteristics and may have a synergistic
effect on certain therapeutic applications such as myasthenia gravis or rheumatoid arthritis. Although typically produced as fusion proteins, the domains also may be fused by conventional chemical means, using multifunctional cross-linkers, for example. When fusion proteins are made, either domain may be placed C-terminal or N-terminal to the other. Suitable methods for creating the fusion protein should be ones that do not substantially change the biological activity of either of the two polypeptides of the desired fusion protein.

[00131] The present invention is not limited to any particular method of producing the desired fusion protein contemplated herein. According to the contemplated recombinant methods of production, however, the invention provides recombinant DNA constructs comprising one or more of the nucleotide sequences of the domains described in the present invention. The recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a DNA or DNA fragment, typically bearing an open reading frame, is inserted, in either orientation. The invention further contemplates cells containing these vectors.

Bacterial Expression.

[00132] Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, if desirable, to provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may, also be employed as a matter of choice. In a preferred embodiment, the prokaryotic host is *E. coli*.

[00133] Bacterial vectors may be, for example, bacteriophage-, plasmid- or cosmid-based. These vectors can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids typically containing elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, GEM 1 (Promega Biotec, Madison, Wis., USA), pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pKK232-8, pDR540, and pRIT5
(Pharmacia). A preferred vector according to the invention is THE Pt7I expression vector.

[00134] These "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Bacterial promoters include lac, T3, T7, lambda PR or PL, trp, and ara. T7 is a preferred bacterial promoter.

[00135] Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is de-repressed/induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Eukaryotic Expression

[00136] Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include selected mouse L cells, such as thymidine kinase-negative (TK) and adenine phosphoribosul transferase-negative (APRT) cells. Other examples include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. In particular, as regards yeasts, there may be mentioned yeasts of the genus *Saccharomyces*, *Kluveromyces*, *Pichia*, *Schwanniomyces*, or *Hansenula*. Among the fungi capable of being used in the present invention, there may be mentioned more particularly *Aspergillus* ssp, or *Trichoderma* ssp.

[00137] Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required non-transcribed genetic elements.

[00138] Mammalian promoters include beta-casein, beta-lactoglobulin, whey acid promoter others include: HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Exemplary mammalian vectors include
pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, and pSVL (Pharmacia). In a preferred embodiment, the mammalian expression vector is pUCIG-MET. Selectable markers include CAT (chloramphenicol transferase).

[00139] The nucleotide sequences which can be used within the framework of the present invention can be prepared in various ways. Generally, they are obtained by assembling, in reading phase, the sequences encoding each of the functional parts of the polypeptide. The latter may be isolated by the techniques of persons skilled in the art, and for example directly from cellular messenger RNAs (mRNAs), or by recloning from a complementary DNA (cDNA) library, or alternatively they may be completely synthetic nucleotide sequences. It is understood, furthermore, that the nucleotide sequences may also be subsequently modified, for example by the techniques of genetic engineering, in order to obtain derivatives or variants of the said sequences.

Fluorescence In Situ Hybridization (FISH) Analysis.

[00140] Standard culture and preparation procedures are used to obtain metaphase and interphase nuclei from cultured cells derived from animals carrying the desirable transgene. Nuclei are deposited onto slides and were hybridized with a digoxigenin-labeled probe derived from a construct containing 8kb of the genomic sequence for the bi-functional protein of interest. Bound probe was amplified using a horseradish peroxidase-conjugated antibody and detected with tyramide-conjugated fluorescein isothiocyanate (FITC, green fluorochrome). Nuclei were counterstained with 4', 6-diamidino-2-phenylindole (DAPI, blue dye). FISH images were obtained using MetaMorph software.

Therapeutic Compositions.

[00141] The proteins of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the inventive molecules, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the proteins of the present invention, together with a suitable amount of carrier vehicle.
Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Thus, the bi-functional molecules and their physiologically acceptable salts and solvate may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they maybe presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration the composition may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the bi-functional molecules for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane- e, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g. gelatin for use in an inhaler or
insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

[00146] The bi-functional fusion proteins of the invention may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatroy agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

[00147] The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

[00148] In addition to the formulations described previously, the bi-functional molecules may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

[00149] The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

[00150] Some fusion protein compositions of the current invention may be therapeutically useful in cancer treatment. Therefore they may be formulated in conjunction with conventional chemotherapeutic agents. Conventional chemotherapeutic agents include alkylating agents, antimetabolites, various natural products (e.g., vinca alkaloids, epipodophyllotoxins, antibiotics, and amino acid-depleting enzymes), hormones and hormone antagonists. Specific classes of agents include nitrogen mustards, alkyl sulfonates, nitrosoareas, triazenes, folic acid analogues, pyrimidine analogues, purine analogs, platinum complexes, adrenocortical suppressants, adrenocorticosteroids, progestins, estrogens, antiestrogens and androgens.
Some exemplary compounds include cyclophosphamide, chlorambucil, methotrexate, fluorouracil, cytarabine, thioguanine, vinblastine, vincristine, doxorubicin, daunorubicin, mitomycin, cisplatin, hydroxyurea, prednisone, hydroxyprogesterone caproate, medroxyprogesterone, megestrol acetate, diethyl stilbestrol, ethinyl estradiol, tamoxifen, testosterone propionate and fluoxymesterone. In treating breast cancer, for example, tamoxifen is preferred.

Treatment Methods.

[00151] The inventive therapeutic methods *according to* the invention generally utilize the bi-functional proteins identified above. The domains of the fusion proteins share the ability to specifically target a specific tissue and/or augment an immune response to targeted tissue. A typical method, accordingly, involves binding a receptor of a targeted cell to the receptor-antagonizing domain of the fusion protein and/or stimulating a T-cell dependent immune response.

[00152] Therapeutic methods involve administering to a subject in need of treatment a therapeutically effective amount of a fusion protein. "Therapeutically effective" is employed here to denote the amount of fusion proteins that are of sufficient quantity to inhibit or reverse a disease condition (e.g., reduce or inhibit cancer growth). Some methods contemplate combination therapy with known cancer medicaments or therapies, for example, chemotherapy (preferably using compounds of the sort listed above) or radiation. The patient may be a human or non-human animal. A patient typically will be in need of treatment when suffering from a cancer characterized by increased levels of receptors that promote cancer maintenance or proliferation.

[00153] Administration during *in vivo* treatment may be by any number of routes, including parenteral and oral, but preferably parenteral. Intracapsular, intravenous, intrathecal, and intraperitoneal routes of administration may be employed, generally intravenous is preferred. The skilled artisan will recognize that the route of administration will vary depending on the disorder to be treated.

[00154] Determining a therapeutically effective amount specifically will depend on such factors as toxicity and efficacy of the medicament. Toxicity may be determined using methods well known in the art and found in the foregoing references. Efficacy may be determined utilizing the same guidance in conjunction with the methods described below in the Examples. A pharmaceutically effective amount,
therefore, is an amount that is deemed by the clinician to be toxicologically tolerable, yet efficacious. Efficacy, for example, can be measured by the induction or substantial induction of T lymphocyte cytotoxicity at the targeted tissue or a decrease in mass of the targeted tissue. Suitable dosages can be from about 1 mg/kg to 10 mg/kg.

Screening Assays to Determine the Biological Activities of Fusion Proteins.

[00155] The present invention also provides cell-based assay systems that can be used to compare the biological activities of each of the polypeptide domains of a given fusion protein of the invention. To this end, a cell proliferation assay is used to ensure that the fused domains of the fusion protein each retain a biological function similar to the native protein when it is not fused (i.e. not part of a fusion protein).

[00156] In one embodiment, the biological activity of the fusion protein will be determined by introducing the protein to two separate types of cell lines *in vitro*: each cell line determining the activity of a specific domain. For example, a cell line that is a reliable indicator of the biological activities of a first polypeptide domain should be used to test the effects of that domain, while a cell line capable of indicating the biological effect of a second polypeptide domain should be used to monitor the activity of the other domain. This will also help determine synergistic effects and additive effects of the two functional fusion protein domains. The following examples are illustrative and should not be considered limiting. The AFP-fusion transgene construct may be carried within a circular plasmid, a cosmid vector, or other vector, such as a vector derived from a virus. The vector may contain additional sequences that facilitate its propagation in prokaryotic and eukaryotic cells, for example, drug-selectable markers (e.g., for ampicillin resistance in E. coli, or G-418 resistance in mammalian cells) and origins of replication (e.g., colE1 for replication in prokaryotic cells, and oriP for replication in mammalian cells).

Example 3

Purifying the Fusion Protein

[00157] To obtain an increased yield of fusion proteins, it is desired to first purify them, according to procedures that are well known in the art. These steps include: collecting the milk from a transgenic animal or removing the cells from culture via centrifugation, followed by precipitation, tangential flow filtration, and
chromatography methodologies, such as low pressure SEC and preparative RP-HPLC chromatography. These steps are followed by: buffer exchange, depyrogenation, and lyophilization.

[00158] The foregoing is not intended to have identified all of the aspects or embodiments of the invention nor in any way to limit the invention. The accompanying drawings, which are incorporated and constitute part of the specification, illustrate embodiments of the invention, and together with the description, serve to explain the principles of the invention.

[00159] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each independent publication or patent application is specifically indicated to be incorporated by reference.

[00160] While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure that come within known or customary practice within the art to which the invention pertains and may be applied to the essential features hereinbefore set forth.
Literature Cited and Incorporated by Reference:

24. Wright et al., High Level Expression of Active Human alpha-1-Antitrypsin in the Milk of Transgenic Sheep, (1991) BIO/TECHNOLOGY, 9 77-84.

Patents Cited and Incorporated by Reference:

4. Hurwitz et al., UNITED STATES PATENT: 5,648,243

5. Meade, et al., UNITED STATES PATENT: 5,827,690

6. DiTullio et al., UNITED STATES PATENT: 5,843,705

7. Clark et al., UNITED STATES PATENT: 5,322,775

8. Garner et al., UNITED STATES PATENT: 5,639,940

9. Deboer et al., UNITED STATES PATENT: 5,633,076

10. Drohan et al., UNITED STATES PATENT: 5,589,604
JUMBO APPLICATIONS / PATENTS

THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE THAN ONE VOLUME.

THIS IS VOLUME ___1___ OF ___2___

NOTE: For additional volumes please contact the Canadian Patent Office.
CLAIMS

What is claimed is:

1. A bifunctional fusion protein, encoded by a transgene DNA construct comprising a first polypeptide domain which has a desired bioactivity, and a second polypeptide domain which has a desired bioactivity, together comprising said fusion protein wherein each said first and said second polypeptide domains retain their desired bioactivity wherein the encoded polypeptide of said first polypeptide domain is human alpha-fetoprotein or a fragment thereof having the biological activity of human alpha-fetoprotein.

2. The fusion protein of claim 1, wherein said fusion protein is the product of a contiguous coding sequence of DNA.

3. The fusion protein of claim 1, wherein the encoded mammalian polypeptide of said second polypeptide domain is human IFN-β or a fragment thereof having the biological activity of IFN-β.

4. The fusion protein of claim 2, wherein said second polypeptide domain is selected from a group consisting of: antithrombin III, lactoferrin, ferritin, calcitonin, urokinase, Platelet Factor 4, alpha-fetoprotein, alpha-1-antitrypsin, C-1 esterase inhibitor, decorin, prolactin, tau interferon, alpha interferon, ferritin, prolactin, CFTR, Muellerian Inhibitory Substance, blood Factor X, blood Factor VIII, truncated ATIII, and erthyropoietin.

5. The fusion protein of claim 1 further comprising a glutathione S-transferase polypeptide sequence.

6. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 10.

7. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 11.
8. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 12.

9. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 13.

10. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 14.

11. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 15.

12. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 16.

13. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 17.

14. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 18.

15. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 19.

16. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 20.

17. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 21.

18. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 22.
19. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 23.

20. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 24.

21. An isolated polynucleotide encoding the amino acid sequence shown in SEQ. ID NO: 4 linked to SEQ. ID NO: 25.

22. A recombinant DNA vector comprising the nucleic acid sequence of the fusion protein of claim 1.

23. A host cell transformed with said recombinant DNA vector of claim 22.

24. A recombinant DNA vector comprising the nucleic acid sequence of the fusion protein of claim 1 wherein said vector is an expression vector comprising a promoter operably linked to a fusion protein of claim 1.

25. The method of claim 1 wherein said DNA construct encoding a desired fusion protein is actuated by at least one beta-casein promoter.

26. A fusion protein produced by a method comprising:
 (a) expressing the fusion protein of claim 1 by a cell; and
 (b) recovering the protein.

27. The fusion protein of claim 26, wherein said fusion protein further comprises an N-terminal methionine.

28. A method of treating a disease condition comprising the administering of an effective amount of a fusion protein, said fusion protein being encoded by a transgene DNA construct comprising a first polypeptide domain which has a desired bioactivity, and a second polypeptide domain which has a desired bioactivity, together comprising said fusion protein wherein each said first and said second polypeptide domains retain their desired bioactivity wherein the
encoded polypeptide of said first polypeptide domain is human alpha-fetoprotein or a fragment thereof having the biological activity of human alpha-fetoprotein

29. The method of claim 28 wherein said disease condition is a viral infection.

30. The method of claim 29 wherein said viral infection is caused by the Human Immunodeficiency Virus.

31. The method of claim 28 wherein the encoded polypeptide of said second polypeptide domain is human IFN-β or a fragment thereof having the biological activity of human IFN-β.

32. The method of claim 28 wherein said disease condition is Cancer.

33. The method of claim 28 wherein said disease condition is Rheumatoid Arthritis.

34. The method of claim 28 wherein said disease condition is Multiple Sclerosis.

35. The method of claim 28 wherein said disease condition is Osteoporosis.

36. The method of claim 28 wherein said disease condition is psoriasis.

37. The method of claim 28 wherein said disease condition is Myasthenia Gravis.

38. The method of claim 32 wherein said disease condition is Cancer and treatment of said disease condition further comprises treatment with an effective amount of a second composition said second composition being selected from the group consisting of: doxorubicin; methotrexate; tamoxifen; cisplatin; vinblastine; or vincristine

39. The fusion protein of claim 26, wherein said fusion protein is expressed by a prokaryotic cell.
40. The fusion protein of claim 26, wherein said fusion protein is expressed by a bacterium.

41. The fusion protein of claim 26, wherein said fusion protein is expressed by a eukaryotic cell.

42. The fusion protein of claim 26, wherein said fusion protein is expressed by an animal cell.

43. The fusion protein of claim 26, wherein said animal cell is a CHO cell.

44. The fusion protein of claim 26, wherein said animal cell is a COS cell.

45. The fusion protein of claim 26, wherein said fusion protein is expressed by a yeast.

46. The fusion protein of claim 26, wherein said yeast is Saccharomyces.

47. A fusion protein produced by a method comprising:
 (a) expressing the fusion protein of claim 1 by a transgenic animal; and
 (b) recovering the protein.

48. A method for the production of transgenic animals capable of producing a fusion protein of interest comprising:
 transfecting a non-human mammalian cell-line with a transgene DNA construct encoding a first protein polypeptide domain and a second protein polypeptide domain;
 selecting a cell line(s) in which said transgene DNA construct has been inserted into the genome of that cell or cell-line; and
 performing a first nuclear transfer procedure to generate a first transgenic animal heterzygous for the desired gene.

49. The method of claim 48 further comprising:
 characterizing the genetic composition of said first heterzygous transgenic animal;
selecting cells homozygous for said desired transgene DNA construct through
the use of a selective agent;
characterizing surviving cells using known molecular biology methods; and
picking surviving cells or cell colonies cells for use in a second round of nuclear
transfer or embryo transfer; and producing a second transgenic animal
homozygous for said desired transgene DNA construct.

50. The method of claim 49, wherein said surviving cell are characterized by one of
several known molecular biology methods including without limitation FISH,
Southern Blot, PCR.

51. The method of claim 48, wherein said non-human mammalian cell-line to be used
as a source of donor nuclei or donor cell nucleus is from an ungulate.

52. The method of either claims 48 or 51, wherein said non-human mammalian cell-
line to be used as a donor cell or donor cell nucleus is from an ungulate selected
from the group consisting of bovine, ovine, porcine, equine, caprine and
buffalo.

53. The method of claim 48, wherein said non-human mammalian cell-line to be used
as a source of donor nuclei or donor cell nucleus is a differentiated mammalian
cell from an adult non-human mammalian somatic cell.

54. The method of claim 48, wherein said first transgenic animal is a rodent.

55. The method of claim 48, wherein said first transgenic animal is an ungulate.

56. The method of claim 48, wherein said first transgenic animal is from an ungulate
selected from the group consisting of bovine, ovine, porcine, equine, caprine
and buffalo.

57. The resultant offspring of the methods of claim 48 or 49.
58. The method of claim 48, wherein cytocholasin-B is used in said nuclear transfer protocol.

59. The method of claim 48, wherein cytocholasin-B is not used in said nuclear transfer protocol.

60. The method of claims 48 or 48, wherein the techniques used generate a homozygous cell line.

61. The method of claims 48 or 49 wherein said first and second protein polypeptide domains nucleic acid sequences are linked and are translated as a single amino acid sequence.

62. The method of claim 48 wherein said transgene DNA construct is operatively linked to a mammary tissue-specific promoter which enables the bi-functional fusion protein product of said transgene DNA construct to be produced in the milk of a transgenic non-human placental mammal.

63. The method of claim 49 wherein said transgene DNA construct is operatively linked to a mammary tissue-specific promoter which enables the bi-functional fusion protein product of said transgene DNA construct to be produced in the milk of a transgenic non-human placental mammal.

64. The transgenic mammal of claims 62 or 63, wherein said promoter is the beta-lactoglobulin promoter.

65. The transgenic mammal of claims 62 or 63, wherein said promoter is the beta-casein promoter.

66. The method of claim 48 wherein said first protein polypeptide domain encodes human alpha-fetoprotein and wherein said second protein polypeptide domain encodes the desired gene codes for a biopharmaceutical protein product selected from the group consisting of: antithrombin III, lactoferrin, urokinase, Platelet Factor 4, alpha-fetoprotein, alpha-1-antitrypsin, C-1 esterase inhibitor, decorin,
beta interferon, alpha interferon, ferritin, prolactin, CFTR, Muellerian Inhibitory Substance, Prolactin, blood Factor X, blood Factor VIII, truncated ATIII, and erythropoietin.

67. The resultant milk derived from the offspring of the methods of claim 48 or 49.

68. A process for treating a human cancer or tumor cell with a composition of matter containing a fusion protein, said fusion protein being encoded by a transgene DNA construct comprising a first polypeptide domain which has a desired bioactivity, and a second polypeptide domain which has a desired bioactivity, together comprising said fusion protein wherein each said first and said second polypeptide domains retain their desired bioactivity and wherein said first polypeptide domain has the activity of human alpha-fetoprotein, an improvement comprising treating a patient with a substantially pharmaceutically pure composition of said fusion protein with an effective amount of 5-fluorouracil.

69. The fusion protein of claim 3 wherein said human alpha-fetoprotein or an human alpha-fetoprotein variant has a high plasma half-life

70. The fusion protein of claim 69, wherein said human alpha-fetoprotein variant has a mutation of one or more residues.

71. The fusion protein of claim 69, wherein said human alpha-fetoprotein variant has a deletion of one or more residues.

72. The fusion protein of claim 68, wherein said human alpha-fetoprotein variant has a mutation and deletion of one or more residues.

73. The fusion protein of claim 69, wherein said human alpha-fetoprotein variant has an addition of one or more residues.

74. The fusion protein of claim 69, wherein said fusion protein further comprises a peptide linker.
75. The fusion protein of claim 69, wherein said fusion protein comprises a secretion signal sequence.

76. The fusion protein of claim 69, wherein said human IFN-β is fused to the N-terminal end of said human alpha-fetoprotein or human alpha-fetoprotein variant.

77. The fusion protein of claim 69, wherein said human IFN-β is fused to the C-terminal end of said human alpha-fetoprotein or human alpha-fetoprotein variant.

78. An isolated nucleic acid sequence as shown in SEQ. ID NO: 1.

79. The isolated nucleic acid sequences as shown in claims 6-21 further comprising a amino acid linking sequence.

80. A method for treating a human cancer or tumor cell with a composition of matter containing a fusion protein, said fusion protein comprising a first protein polypeptide domain and a covalently linked second protein polypeptide domain, said first protein polypeptide domain encoding a human alpha-fetoprotein amino acid sequence and wherein said second protein polypeptide domain encodes a biopharmaceutical protein product that has the physiological activity of a desired protein selected from the group consisting of: antithrombin III, lactoferrin, urokinase, Platelet Factor 4, alpha-fetoprotein, alpha-1-antitrypsin, C-1 esterase inhibitor, decorin, beta interferon, alpha interferon, ferritin, prolactin, CFTR, Muellerian Inhibitory Substance, Prolactin, blood Factor X, blood Factor VIII, truncated ATIII, and erythropoietin and wherein said second protein polypeptide is more than 85% homologous to the native sequence of said desired protein.

81. A method for treating a human skin disease or injury with a composition of matter containing a fusion protein, said fusion protein comprising a first protein polypeptide domain and a covalently linked second protein polypeptide domain,
said first protein polypeptide domain encoding a human alpha-fetoprotein amino acid sequence and wherein said second protein polypeptide domain encodes a biopharmaceutical protein product that has the physiological activity of a desired protein selected from the group consisting of: antithrombin III, alpha-1-antitrypsin and decorin and wherein said second protein polypeptide is more than 85% homologous to the native sequence of said desired protein.

82. The method of claim 81 wherein said a human skin disease or injury is selected from the group consisting of: photoaging damage, rhinitis, sunburn, dermatitis and burns.

83. The method of claim 28 wherein said disease condition is muscular dystrophy.

84. The method of claim 28 wherein said disease condition is insulin-dependent diabetes mellitus.

85. The method of claim 28 wherein said disease condition is psoriasis.

86. The method of claim 28 wherein said disease condition is systemic lupus erythematosus.

87. The method of claim 28 wherein said disease condition is Hairy Cell leukemia.

88. The method of claim 28 wherein said disease condition is Chronic myelogenous leukemia.

89. The method of claim 28 wherein said disease condition is cutaneous T cell lymphoma carcinoid tumors.

90. The method of claim 28 wherein said disease condition is renal cell carcinoma.

91. The method of claim 28 wherein said disease condition is squamous epithelial tumors of the head and neck.
92. The method of claim 28 wherein said disease condition is multiple myeloma.

93. The method of claim 28 wherein said disease condition is malignant melanoma.

94. The method of claim 28 wherein said disease condition is Hepatitis B. or

95. The method of claim 28 wherein said disease condition is Hepatitis C.

96. The method of claim 28 wherein said disease condition is low grade non-Hodgkin lymphoma.
FLOWCHART OF AN EMBODIMENT OF THE CURRENT INVENTION

Initial transfection of mammalian cell line with transgene of interest for the bifunctional protein
↓
Selection of cell-lines
↓
Nuclear transfer/embryo transfer procedure
↓
Birth of heterozygote animal(s)
↓
Characterization of heterozygote transgenic animal(s)
↓
Biopsy of transgenic animal to generate cell population
↓
Expansion of biopsied heterozygote cell-line in culture
↓
Selection of homozygous cells with increased concentration of selective agents
↓
Pick surviving cell colonies
↓
Characterizing surviving cells (FISH, Southern blot)
↓
Using homozygous cell lines in NT/ET
↓
Production of a homozygous animal for desired transgene
↓
Accelerated production of herd homozygous for desired transgene(s)
↓
Production of desired biopharmaceutical/Production of genetically desirable livestock or non-human mammals

1/4
FIG. 2/4

IFN-1 Transgene

976 TGAGGTCAACAATGACCAACAGTTTGTTCCTAACAATTGCCTCCTGTGGCTCTCTTACAGCTTACATGCTGCGTTGATTTCTACA
1216 1 H T N K C L L Q I A L L L C F S T T A L S K S Y N L G F L Q
1240 AGAACAGCAGACTTTTCAAGTGAAGAAGCTCTTGAGCAATGGAGGAGCTTGAGAAGCTGCTAAGAGATGAACTTTGACATCCCTGGAGAATATA
1598 2 R S N P Q C Q K L L W Q L N G R L E Y C L K D R M N F D I P E E I K
Pell (1187)

1216 3 Q L Q O Q P Q R E D A A L T I Y S M L Q N I F A I F R Q D S S S T G W
1240 ATGAAGCTATTTGTAGAAGACCTCTGCTCTAGCTACTAGATACACATCTGGGAGAAAGAAAACCTGGAGAAAGATTCACGCGAGGA
1264 4 N B T I V E N L L A N V Y H Q I N H L K T V L E E K L E K R D F T R G
1288 AATCCATGACCATGCTGACACAAGAGAGGATATATATATAGAGAAGGATATATAGCTATAGATACTTGAATGCCCAAGGAGATGCACTGCTGACCATGCGAGGGA
1312 5 K L H S S L H L K R Y G R I L H Y L K A K T Y S H C A W T I V R V E
1240 6 AATCTTAAAGAACTTTTACTTACATTAGAAGCTTACAGATTTACCTGCAGAACTGAGATACCTGGCTCTCTGACC
1264 7 I L R N P Y F I N R L T G Y L R N .
FIG. 3/4

Human Beta Interferon

Amino Acid Sequence

ORIGIN

1 msynllgflq rsnfqcqkl lwqlngrley clkdrnmfdi peuikqlqsf qkedaaltiy
61 emlqniifaif rqdsstgwn etivenllan vyhqihlkt vleekleked ftrgklmssl
121 hlkryygril hylkakeysh cawtvrvrei lrfnyfimrl tgyln

Derived from:
FIG. 4/4

NCBI Reference No. # AAR65430
590 aa Homo Sapien
Recombinant human alpha-fetoprotein

ORIGIN
1 tlhrneygia sildsygcta eislalati ffqfvg eat ykevskmvkd altalekptg
61 deqssgolen qlpafleelc hekelleyg hasdcqsee grhncflahk kptaaaaiplf
121 qyvesptsc eayeedretfm nkfiyesiarr hpflyaptl isaagyekii pscckcaenav
181 ecfqtkaatv tkelressl ngacpqvkmn fgttfgait vtklsqkftk vnfteigklv
241 ldvahvhehc cradvldclq dgekimysic sqqtislki teccklttle rpqciihaen
301 dekpegsipn lnrfldgdrdf nqfasgeki flasfvheys rrhpqavsv ilrvakgyge
361 llekcfqnten plecgdkge elqykigses alakrscgf qklgeyylgn eflvaytkka
421 pqltsselma itrkmaataa tccqlsedkl lacgegsadi iighcicrcr mtpvmpgvgq
481 cctssyanrr pcfsslvved eypqafasdd klfifhdkdqc agqvalqrnrn qeflnlvcq
541 kpgiteeqle aliadfslll ekccqggqe evcfaeeggkl isktgaalgv...

joined to linker 1:

...aedgervlpqsg...

linked to
NCBI Reference No. # AAC41702
187 aa Homo Sapien
Recombinant human Beta-Interferon

ORIGIN
1 ...mtnkollgia lllcfssttal smasyllgflfqrssncqcqk llwqlngrlc yckdrrnf
61 ippeikqlqfq fkgedaavitf yemlgifal frqdsstsgw netivenlla nvyhhrnlk
121 tvleekleke dfftrgrkmss lhklkrygri lhylkakeds hcawtivuve ilrnfvyvinr
181 ltylryn