八氢-吡咯并[3,4-b]吡咯衍生物及其作为组胺-3受体配体的用途

本发明公开了八氢-吡咯并[3,4-b]吡咯衍生物或其药学上可接受的盐、酯、酰胺、前药或放射标记形式，其中R1是烷基、C1-C5烷烃基，或(C1-C3环烷基)甲基；R2a、R2b、R2c、R2d、R3a和R3b各自独立地是氢、甲基或氟甲基；R4a、R4b、R4c和R4d各自独立地是氢、烷基、氟烷基、氟烷氧基、烷氧基、硫代烷氧基，卤素或氮，条件是，当R2a、R2b、R2c和R3a中任何一个或多个是烷烃基时，那么R3a、R2b、R2c和R3a中的至少一个是氟烷基、氟烷氧基、烷氧基、硫代烷氧基，卤素或氮。R1是氢、氧、硫、羰基、亚烷基、烷烯基氨基，条件是，C1-C3环烷基或杂芳基，L1是键，氧、硫、羰基、烷基或烯基，Z是取代基R4或-L2-Cy3表示的基团；L2是键，氧、硫、羰基、亚烷基、烷烯基氨基，条件是，C1-C3环烷基或杂芳基，Z是取代基R4或-L2-Cy3表示的基团；L2是键，氧、硫、羰基、亚烷基、烷烯基氨基，条件是，C1-C3环烷基或杂芳基，Z是取代基R4或-L2-Cy3表示的基团；L2是键，氧、硫、羰基、亚烷基、烷烯基氨基，条件是，C1-C3环烷基或杂芳基，Z是取代基R4或-L2-Cy3表示的基团。
1. 下式的化合物：

或其药学可接受的盐、酯、酰胺、前体药物或放射性标记形式，其中：

- **R<sub>1</sub>** 是烷基，C<sub>3</sub>-C<sub>5</sub> 烷烃基，或(C<sub>3</sub>-C<sub>5</sub> 烷烃基)甲基；
- **R<sub>2a</sub>**、**R<sub>2b</sub>**、**R<sub>2c</sub>**、**R<sub>2d</sub>**、**R<sub>2e</sub>** 和 **R<sub>2f</sub>** 各自独立地是氢、甲基或氟甲基；
- **R<sub>3a</sub>**、**R<sub>3b</sub>**、**R<sub>3c</sub>** 和 **R<sub>3d</sub>** 各自独立地是氢、烷基、氟烷基、氟烷氧基、烷氧基、硫代烷氧基、卤素或烃；条件是，当 **R<sub>3a</sub>**、**R<sub>3b</sub>**、**R<sub>3c</sub>** 和 **R<sub>3d</sub>** 中一个或多个是烷基时，那么 **R<sub>3a</sub>**、**R<sub>3b</sub>**、**R<sub>3c</sub>** 和 **R<sub>3d</sub>** 中的至少一个是氟烷基、氟烷氧基、烷氧基、硫代烷氧基、卤素或烃；
- **L<sub>1</sub>** 是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、-C(=N-O烷基)-、NR<sub>4</sub>、-C(=O)NR<sub>4</sub> 或-NR<sub>4</sub>C(=O)；
- **L<sub>2</sub>** 是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、-C(=N-O烷基)-、NR<sub>5</sub>、-C(=O)NR<sub>5</sub> 或-NR<sub>5</sub>C(=O)；
- Cy 是芳基、环烷基、环烯基、杂芳基或环；
- Cy 是芳基、环烷基、环烯基、杂芳基或环；其中杂芳基或环部分具有 1、2 或 3 个选自氮、氧和硫的杂原子，条件是，至少一个杂原子是氮；和
- **R<sub>4</sub>** 和 **R<sub>5</sub>** 在每次出现时是氢或烷基；
- 条件是，Cy 不是
2. 权利要求1的化合物，其中L¹是键。
3. 权利要求1的化合物，其中L²是键。
4. 权利要求1的化合物，其中L¹和L²各自是键。
5. 权利要求1的化合物，其中R²a、R²b、R²c、R²d、R²e和R²f都是氢。
6. 权利要求1的化合物，其中R³a、R³b、R³c或R³d中的至少两个是非氢取代基。
7. 权利要求1的化合物，其中R³a、R³b、R³c和R³d都是氢。
8. 权利要求1的化合物，其中L¹是键；L²是键；R³a、R³b、R³c和R³d都是氢；Cy¹是苯基；Cy²是芳基、环烷基、环烯基、杂芳基或杂环，其中杂芳基或杂环部分具有1、2或3个选自氮、氧和硫的杂原子，条件是，至少一个杂原子是氮。
9. 权利要求8的化合物，其中Cy²是哒嗪酮。
10. 权利要求1的化合物，其中R¹是烷基；L¹是键；L²是键；R²a、R²b、R²c、R²d、R²e和R²f各自是氢；R³a、R³b、R³c和R³d都是氢；Cy¹是苯基，Cy²是哒嗪酮。
11. 权利要求10的化合物，其中R¹是甲基。
12. 权利要求1的化合物，其中L¹是键；L²是键；R³a、R³b、R³c和R³d都是氢；Cy¹是哌嗪；Cy²是芳基、环烷基、环烯基、杂芳基或杂环，其中杂芳基或杂环部分具有1、2或3个选自氮、氧和硫的杂原子，条件是，至少一个杂原子是氮。
13. 权利要求12的化合物，其中Cy²是任选被氰基取代的哒啶。
14. 权利要求1的化合物，选自：
   (3aR,6aR)-4′-(5-乙基-六氢-哒嗪并[3,4-b]哒嗪-1-基)-联苯-4-腈；
   4′-[(3aR,6aR)-5-异丙基六氢哒嗪并[3,4-b]哒嗪-1(2H)-基]-1,1′-联苯-4-腈；
   4′-[(3aR,6aR)-5-丙基六氢哒嗪并[3,4-b]哒嗪-1(2H)-基]-1,1′-联苯-4-
腈；
4'-(3aR,6aR)-5-丁基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-腈；
4'-(3aR,6aR)-5-异丁基-六氢-吡咯并[3,4-b]吡咯-1-基)-联苯-4-腈；
4'-(3aR,6aR)-5-(环丙基甲基)六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-腈；
4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-腈；
(3aR,6aR)-1-(4'-甲氧基-1,1'-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}乙腈；
1-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}乙酮；
3-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}喹啉；
(3aR,6aR)-1-[4-(6-甲氧基吡啶-3-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}甲醇；
5-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}吡啶-2-腈；
(3aR,6aR)-1-[4-(2,6-二甲基吡啶-3-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-(3'-氟-4'-甲氧基-1,1'-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
2-甲基-5-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}-1,3-苯并噻唑；
(3aR,6aR)-1-[4-(1H-咪唑-1-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-(4'-乙氧基-1,1'-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4'-(甲硫基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-(4-吡啶-4-基苯基)八氢吡咯并[3,4-b]吡咯；
4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-3-腈；
(3aR,6aR)-1-[4-(1,3-苯并二氧杂环戊烯-5-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-(4-吡啶-3-基苯基)八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-[4-(2,6-二氟吡啶-3-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
1-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-3-基}乙酮；
(3aR,6aR)-1-[4′-(乙硫基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4′-(三氟甲基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-(4′-乙基基-1,1'-联苯-4-基)八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-(4′-甲基-3′-硝基-1,1'-联苯-4-基)八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-[4-(2,4-二甲氧基噻啶-5-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-(4'-氟-1,1'-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4-(1-萘基)苯基]八氢吡咯并[3,4-b]吡咯；
{4′-[5-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-3-基}甲醇；
(3aR,6aR)-1-(4-二苯并[b,d]呋喃-4-基苯基)-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[3′-(三氟甲基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-(4'-氟-3'-甲基-1,1'-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4-(2-萘基)苯基]八氢吡咯并[3,4-b]吡咯；
(1E)-1-{4′-[5-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-
联苯-4-基乙酮肟；
1-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基}-1,1'-联苯-4-基}乙醇；
2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基}-1,1'-联苯-4-基}哒嗪-3(2H)-酮；
(3aR,6aR)-5-甲基-1-{4'-唑啶-5-基}-1,1'-联苯-4-基}八氢吡咯并[3,4-b]吡咯；
4"-{3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基}-1,1'4',1"-三联苯-3,4-睛；
(3aR,6aR)-1-{[4'-6-氯吡啶-3-基]-1,1'-联苯-4-基}-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-{[4'-6-氯吡啶-3-基]-1,1'-联苯-4-基}-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-{[4'-6-氯代吡啶-3-基]-1,1'-联苯-4-基}-5-甲基八氢吡咯并[3,4-b]吡咯；
4"-{3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基}-1,1'4',1"-三联苯-4-睛；
6-{4-4-{[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哌嗪-1-基}烟氯；
(3aR,6aR)-1-{4-4-{[(6-氯哌嗪-3-基)哌嗪-1-基]苯基}5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-4-{[(6-氯哌嗪-3-基)哌嗪-1-基]苯基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-4-{(4-氢吡啶-2-基哌嗪-1-基)苯基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-4-{(4-氢吡啶-2-基哌嗪-1-基)苯基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-4-{(4-氢吡啶-2-基哌嗪-1-基)苯基}八氢吡咯并[3,4-b]吡咯；
2-{4-4-{[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哌嗪-1-基}苄腈；
(3aR,6aR)-5-甲基-1-{4-4-{(4-氢吡啶-4-基哌嗪-1-基)苯基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-4-{(4-氢吡啶-4-基哌嗪-1-基)苯基}八氢吡咯并[3,4-b]吡咯；
咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4-(4-吡唑-2-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4-(4-喹啶-2-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
4'(4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哌
嗪-1-基)苄腈；
(3aR,6aR)-1-{4-[4-(5-乙基喹啶-2-基)哌嗪-1-基]苯基}-5-甲基八氢吡
咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4-(4-喹啶-5-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
(3aR,6aR)-2-{4-[4-(5-甲基-六氢-吡咯并[3,4-b]吡咯-1-基)-苯基]-哌嗪
-1-基}-烟氮；
(3aR,6aR)-1-{4-(4-苄基苯基)-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-(4-苯氧基苯基)八氢吡咯并[3,4-b]吡咯；
1-{4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}-2-苯
基乙酮；
(3aR,6aR)-1-{4-(4-溴苯基苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
4'-(4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯氧
基]-1,1'-联苯-4-腈；
{4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}-(苯基)
甲酮；
4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄腈；
1-{4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}甲胺；
3-{(4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄基}氨基)
苄腈；
5-乙基-N-{4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄
基)喹啶-2-胺；
2-(5-{4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}吡
啶-2-基)咔唑-3(2H)-酮；
2-{6-{4-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基}苯基}吡
啶-3-基)咔唑-3(2H)-酮；
【2-(5-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基苯基]-1,3-噻唑-2-基}哒嗪-3(2H)-酮；
5-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基苯基]哒嗪-1-基}吡啶-2-腈；
(3aR,6aR)-1-[4'-(2-甲氧基噻啶-5-基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯；
5-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2-腈；
6-甲基-2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮；
(3aR,6aR)-5-甲基-1-[4'-(1-甲基-1H-吡唑-4-基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-[4'-(3,5-二甲基-1H-吡唑-4-基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4'-(1-三苯甲基-1H-吡唑-4-基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4'-(1H-吡唑-4-基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
3-甲基-1-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2(1H)-酮；
5-甲基-1-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2(1H)-酮；
6-甲基-1-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2(1H)-酮；
2-{4'-[(3aR,6aR)-5-乙基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮；
2-{4'-[(3aR,6aR)-5-环丁基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮；
2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]联苯-4-基]-4,5-二氢哒嗪-3(2H)-酮
15. 药物组合物，其包含权利要求1的化合物和药学上可接受的载体。
16. 下式的化合物：】
或其药学可接受的盐、酯、酰胺、前体药物或放射性标记形式，其中：
R¹是烷基，C₃-C₅环烷基，或(C₃-C₅环烷基)甲基；
R²a、R²b、R²c、R²d、R²e和R²f各自独立地是氢、甲基或氟甲基；
R³a、R³b、R³c和R³d各自独立地是氢、烷基、氟烷基、氯烷氧基、
烷氧基、硫代烷氧基、卤素或硝，条件是，当R³a、R³b、R³c和R³d中一个或多个是烷基时，那么R³a、R³b、R³c和R³d中的至少一个是氯烷基，
氟烷氧基，烷氧基，硫代烷氧基，卤素或硝；
L¹是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、-C(=N-O
烷基)-、NR⁴、-C(=O)NR⁴-或-NR⁴C(=O)-；
R⁴是氢或烷基；
Cy¹是芳基、环烷基、环烯基、杂芳基或杂环；
Z是取代基R⁶或-L¹-Cy³代表的基团；
R⁶是氢、酰基、酰氧基、烯基、烷氧基、烷氧基烷氧基、烷氧基烷基、
烷氧羰基、烷氧亚胺基、烷氧磺酰基、烷基、烷基烷基、烷基磺酰基、炔基、酰胺基、羧基、氧基、环烷基、氟烷氧基、卤代烷氧基、
卤代烃基、卤素、羧基、羟烷基、烷基、硝基、烷硫基、氧基、NHR⁷、
NR⁷R⁸、-N(R⁷)C(=O)R⁹、-C(=O)NR⁷R⁸或N(R⁷)SO₂(R¹⁰)；
L³是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、-C(=N-O
烷基)-、NR¹¹、-C(=O)NR¹¹-或-NR¹¹C(=O)-；
Cy³是芳基、环烷基、环烯基、杂芳基或杂环；
R⁷、R⁸、R⁹、R¹⁰和R¹¹在每次出现时独立地是氢、C₁₄烷基、C₃-C₄
环烷基或(C₃-C₄环烷基)胺；
条件是，Cy³不是
17. 权利要求 16 的化合物，其中当 $L^1$ 是键、$Z$ 是 $L^3$-Cy$^3$ 且进一步条件是，当 $L^1$ 是键、Cy$^1$ 是苯基、$Z$ 是 $L^3$-Cy$^3$、$L^3$ 是键时，Cy$^3$ 不是

18. 治疗患有其中调节组胺-3 受体活性具有治疗益处的病症的哺乳动物的方法，所述方法包括给予具有所述病症或对所述病症敏感的患者治疗有效量的权利要求 16 的式（II）化合物。

19. 权利要求 18 的方法，其中 Cy$^2$ 是各自具有 1、2 或 3 个选自氮、氧和硫的杂原子的杂芳基或杂环；条件是，至少一个杂原子是氮；条件是，当 $L^1$ 是键、Z 是 $L^3$-Cy$^3$ 且进一步条件是，当 $L^1$ 是键、Cy$^1$ 是苯基、$Z$ 是 $L^3$-Cy$^3$ 和 $L^3$ 是键时，Cy$^3$ 不是

20. 权利要求 19 的方法，其中病症或疾病选自：急性阿尔茨海默氏病、哮喘、过敏性鼻炎、注意力不集中的过度反应症、双相性精神障碍、认知功能障碍、精神障碍中的认知缺陷、记忆缺陷、学习能力缺失、痴呆、皮肤癌、药物滥用、糖尿病、II 型糖尿病、抑郁症、癫痫、胃肠功能紊乱、炎症、胰岛素耐受性综合症、时差、甲状腺症样癌、黑素瘤、梅尼埃病、代谢性综合症、轻微的认知损伤、偏头痛、情绪和注意力改变、运动病、发作性睡眠、神经性炎症、肥胖症、强迫性神经失调、疼
21. 权利要求 19 的方法，其中病症或疾病是注意力不集中的过度反应症、阿尔茨海默氏疾病或痴呆。

22. 权利要求 18 的方法，其中病症或疾病是精神分裂症或精神分裂症的认知缺陷。

23. 权利要求 18 的方法，其中病症或疾病是发作性睡眠障碍、睡眠障碍、过敏性鼻炎、哮喘或肥胖症。

24. 制备式(IV)化合物的方法：

![IV](image)

其中 R¹ 是烷基，Cy¹A 是芳基或杂芳基，该方法包括用烷基化条件处理式(III)化合物、提供式(IV)化合物的步骤。

![III](image)
25. 权利要求24的方法，其中式(III)化合物

(III)，

其中Cy¹是芳基，利用包括下列步骤的方法提供：

a) 式(IIIa)的化合物

(IIIa)，

其中P是氮保护基；和式(IIIb)的化合物，

(IIIb)，

其中Cy¹是芳基，溶剂中与碳酸盐碱、钯源和Xantphos一起加热，提供式(IIIc)的化合物，
b) 在高沸点的极性溶剂中，将式(IIIC)的化合物与式(IIID)的化合物、
碳酸盐碱和铜源加热，提供式(IIIE)的化合物，

\[
\text{(IIID)}
\]

；和

\[
\text{(IIIE)}
\]

c) 除去氮保护基，提供式(III)的化合物。

26. 按照权利要求 24 的方法，其中
Cycl 是苯基，和
氮保护基是乙氧羰基。

27. 按照权利要求 24 的方法，其中在溶剂中用碳酸铯、钯源和
Xantphos 处理工或(IIIA)化合物和式(IIIB)化合物的混合物。

28. 按照权利要求 25 的方法，其中钯源是乙酸钯或氯化钯。

29. 按照权利要求 26 的方法，其中钯源是氯化钯。

30. 按照权利要求 25 的方法，其中溶剂是甲苯。

31. 按照权利要求 25 的方法，其中在高沸点的极性溶剂中，将式(IIIC)
化合物和式(IIID)化合物与碳酸钾、碘化亚铜(I)和 8-羟基喹啉一起加热。
32. 按照权利要求 25 的方法，其中在高沸点的极性溶剂中，将式(IIIc)化合物和式(IIId)化合物与碳酸钾和铜粉一起加热。

33. 按照权利要求 30 或 31 的方法，其中高沸点的极性溶剂选自 N,N-二甲基甲酰胺、二甲基乙酰胺、吡啶和 4-甲基吡啶。

34. 按照权利要求 31 的方法，其中高沸点的极性溶剂是 N,N-二甲基甲酰胺。

35. 按照权利要求 25 的方法，其中用在醋酸中的无水溴化氢或氯化氢处理式(IIIe)的化合物。

36. 按照权利要求 25 的方法，其中用碱处理式(IIIe)的化合物。

37. 按照权利要求 24 的方法，其中烷基化条件包括：用三乙酰基硼酸钠、氯化硼或硼氢化钠处理式(III)化合物和甲醛、乙醛或环烷基酮的混合物。

38. 按照权利要求 24 的方法，其中烷基化条件包括：用三乙酰基硼酸钠处理式(III)化合物和甲醛的混合物。

39. 式(III)的化合物：

![化合物III图](image)

(III)

其中 Cy₁ 是芳基，或其盐。

40. 一种化合物，其是 (3aR, 6aR)-六氢吡咯并[2,3-c]吡咯-5(1H)-羧酸乙酯二苯甲酰基-D-酒石酸盐。

41. 制备 (3aR, 6aR)-六氢吡咯并[2,3-c]吡咯-5(1H)-羧酸乙酯二苯甲酰基-D-酒石酸盐的方法，包括六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯与 D-二苯甲酰基酒石酸一水合物反应的步骤。

42. 制备式(IV)化合物的方法，
其中 R^1 是烷基，包括下列步骤：

a) 提供 (3aR,6aR)-六氢吡咯并 [2,3-c] 吡咯-5(1H)-羧酸乙酯二苯甲酰基-D-酒石酸盐；

b) 用碱处理 (3aR,6aR)-六氢吡咯并 [2,3-c] 吡咯-5(1H)-羧酸乙酯二苯甲酰基-D-酒石酸盐；

c) 在溶剂中，与碳酸盐碱、钯源和 Xantphos 一起加热式 (IIIa) 的化合物，其中 P 是氮保护基，和式 (IIIb) 的化合物，其中 Cy^1 是芳基，提供式 (IIIc) 的化合物，

\[ \text{(IIIc)} \]

\[ \text{(IIIb)} \]

d) 在高沸点的极性溶剂中，将式 (IIIc) 的化合物与式 (IIId) 的化合物、碳酸盐碱和钯源加热，提供式 (IIId) 的化合物，
e)除去氮保护基，提供式(III)的化合物，并进行烷基化，提供式(IV)的化合物。

43. 化合物，其是
2-{{4′-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1′-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A，
2-{{4′-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1′-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 B，
2-{{4′-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1′-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐半水合物，
无水 2-{{4′-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1′-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐，或
无水 2-{{4′-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1′-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐。

44. 结晶 2-{{4′-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1′-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A，其在粉末 X 射线衍射图中，在下列 2θ 值处表现出至少一个特征峰：3.90±0.2, 16.72±0.2, 16.99±0.2, 17.17±0.2, 18.12±0.2, 19.72±0.2, 19.98±0.2, 20.25±0.2, 23.96±0.2, 27.65±0.2 和 28.93±0.2。

45. 结晶 2-{{4′-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1′-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 B，其在粉末
X 射线衍射图中、在下列 2θ 值处表现出至少一个特征峰：4.39±0.2，10.45±0.2，11.92±0.2，12.52±0.2，13.45±0.2，16.71±0.2，16.92±0.2，17.62±0.2，17.90±0.2，19.10±0.2，20.46±0.2 和 20.63±0.2。

46. 结晶 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮盐酸盐三半水合物，其在粉末 X 射线衍射图中，在下列 2θ 值处表现出至少一个特征峰：4.03±0.2，13.92±0.2，15.55±0.2，15.61±0.2，15.93±0.2，16.15±0.2，24.37±0.2，24.66±0.2，25.12±0.2，25.68±0.2，27.90±0.2。

47. 结晶无水 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮 L-酒石酸盐，其在粉末 X 射线衍射图中，在下列 2θ 值处表现出至少一个特征峰：4.34±0.2，8.69±0.2，13.04±0.2，15.82±0.2，17.11±0.2，18.35±0.2，18.93±0.2，20.74±0.2，22.40±0.2，23.04±0.2 和 26.45±0.2。

48. 结晶无水 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮酸盐，其在粉末 X 射线衍射图中，在下列 2θ 值处表现出至少一个特征峰：6.27±0.2，12.59±0.2，15.15±0.2，16.71±0.2，18.49±0.2，18.95±0.2，20.31±0.2，20.97±0.2，22.44±0.2，23.82±0.2，24.03±0.2，24.67±0.2，31.90±0.2 和 32.75±0.2。

49. 基本上纯的结晶 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮 L-酒石酸盐一水合物晶形 A。

50. 基本上纯的结晶 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮 L-酒石酸盐一水合物晶形 B。

51. 基本上纯的结晶 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮酸盐盐三半水合物。

52. 基本上纯的结晶无水 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-L-酒石酸盐。

53. 基本上纯的结晶无水 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮酸盐。

54. 结晶 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}嘧啶-3(2H)-酮 L-酒石酸盐一水合物晶形 A，其具有下列晶胞参数，其中 a 是 7.6 Å，b 是 7.4 Å，c 是 22.7 Å，和 β 是 94.1°。

55. 结晶 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-
基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮 L-酒石酸盐—水合物晶形 B，其具有下列晶胞参数，其中 a 是 7.6 Å, b 是 8.7 Å, c 是 40.3 Å。

56. 结晶 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮盐酸盐三水合物，其具有下列晶胞参数，其中 a 是 7.3 Å, b 是 7.4 Å, c 是 22.2 Å, α、β 和 γ 各自分别是 86.3°、81.0°和 77.3°。

57. 制备 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮的方法，包括：将 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮 L-酒石酸盐在水和二甲基乙酰胺或乙醇中重结晶。
八氢-吡咯并[3,4-b]吡咯衍生物及其作为组胺-3受体配体的用途

发明背景

本申请要求 2006 年 2 月 24 日提交的美国临时专利申请 No. 60 / 776,509 的权益，本文引入其全部作为参考。

技术领域

本发明涉及八氢-吡咯并[3,4-b]吡咯化合物，包含这种化合物，特别是其盐和多晶型物的组合物、制备所述化合物、盐和多晶型物的方法，和使用这种化合物和组合物来治疗病症和疾病的方法。

相关技术的说明

组胺是众所周知的神经元活性的调节剂。文献中已经报道了至少四种类型的组胺受体，典型地称为组胺-1、组胺-2、组胺-3 和组胺-4。被称为组胺-3受体(有时也称为组胺 H₃ 受体或 H₃ 受体)的组胺受体类别，被认为在中枢神经系统中神经递质中起作用。


组胺 H₃ 受体的活性可以通过给予组胺 H₃ 受体配体来改变或调节。该配体可以显示拮抗剂，反相激动剂或部分激动剂活性。例如，组胺 H₃ 受体已经被与中枢神经系统相关的病症和疾病相关联，所述病症和疾病包括记忆、认知及其它神经学过程、肥胖症以及末梢和系统活动，如
涉及哮喘和过敏性鼻炎的那些活动。虽然存在显示调节 H3 受体活性的各种类固醇化合物，但提供其它的可以加入用于治疗方法的药物组合物中的对 H3 受体显示活性的化合物是有益的。

附图的简要说明

图 1 是 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并 [3,4-b] 吡咯-1(2H)-基] -1,1'-联苯-4-基} 哌嗪-3(2H)-酮的 L-酒石酸盐一水合物晶形 A 多晶型物的粉末 X 射线衍射图。

图 2 是 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并 [3,4-b] 吡咯-1(2H)-基]-1,1'-联苯-4-基} 哌嗪-3(2H)-酮的 L-酒石酸盐一水合物晶形 B 多晶型物的粉末 X 射线衍射图。

图 3 是 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并 [3,4-b] 吡咯-1(2H)-基]-1,1'-联苯-4-基} 哌嗪-3(2H)-酮的盐酸盐三半水合物 (trihemihydrate) 多晶型物的粉末 X 射线衍射图。

图 4 是 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并 [3,4-b] 吡咯-1(2H)-基]-1,1'-联苯-4-基} 哌嗪-3(2H)-酮的无水酒石酸盐多晶型物的粉末 X 射线衍射图。

图 5 是 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并 [3,4-b] 吡咯-1(2H)-基]-1,1'-联苯-4-基} 哌嗪-3(2H)-酮的无水盐酸盐多晶型物的粉末 X 射线衍射图。

发明概述

本发明涉及八氢-吡咯并 [3,4-b] 吡咯衍生物，更尤其是具有式 (I) 的八氢-吡咯并 [3,4-b] 吡咯衍生物：

![Chemical Structure](image)

(I)
或其药学可接受的盐、酯、酰胺、前体药物或放射性同位素形式，其中 R¹ 是烷基、C₃-C₅ 环烷基、或 (C₃-C₅ 环烷基) 甲基； R²a、R²b、R²c、R²d、R²e 和 R²f 各自独立地是氢、甲基或氟甲基； R³a、R³b、R³c 和 R³d 各自独立地是氢、烷基、氟烷基、氟烷氧基、烷氧基、硫代烷氧基，卤素或腈，条件是，当一个或多个 R³a、R³b、R³c 和 R³d 是烷基时，那么 R³a、R³b、R³c 和 R³d 中的至少一个是氟烷基、氟烷氧基、烷氧基、硫代烷氧基、卤素或腈； L¹ 是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、-C(=N-O 亚烷基)-、NR⁴、-C(=O)NR⁴ 或 -NR⁴C(=O)-； L² 是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、-C(=N-O 亚烷基)-、NR⁵、-C(=O)NR⁵ 或 -NR⁵C(=O)-； Cy¹ 是芳基、环烷基、环烯基、杂芳基或杂环； Cy² 是芳基、环烷基、环烯基、杂芳基或杂环； R⁴ 和 R⁵ 在每次出现时是氢或烷基；条件是，Cy² 不是

本发明的另一方面涉及包含本发明化合物的药物组合物。这种组合物可以按照本发明的方法来给予，典型地作为治疗或预防与 H₃ 受体活性相关的病症和疾病的治疗方案的一部分。

此外，本发明的化合物可以具有式 (II)，并且也显示了调节组胺 -3 受体活性的能力。具有下列结构的式 (II) 化合物：

![化合物结构图]
或其药学可接受的盐、酯、酰胺、前体药物或放射性标记形式，其中 \( R^1 \) 是烷基、C\(_3\)-C\(_5\)环烷基、(C\(_3\)-C\(_5\))烷烃基；R\(^2\)\(^a\), R\(^2\)\(^b\), R\(^2\)\(^c\), R\(^2\)\(^d\), R\(^2\)\(^e\) 和 R\(^2\)\(^f\) 各自独立地是氢、甲基或氟甲基；R\(^3\)\(^a\), R\(^3\)\(^b\), R\(^3\)\(^c\) 和 R\(^3\)\(^d\) 各自独立地是氢、烷基、氯烷基、氟烷基、烷基氧基、硫代烷基氧基、卤素或腈，条件是，当 R\(^3\)\(^a\), R\(^3\)\(^b\), R\(^3\)\(^c\) 和 R\(^3\)\(^d\) 中一个或多个是烷基时，那么 R\(^3\)\(^a\), R\(^3\)\(^b\), R\(^3\)\(^c\) 和 R\(^3\)\(^d\) 中的至少一个是氟烷基、氟烷氧基、烷氧基、硫代烷氧基、卤素或腈；L\(^1\) 是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氧基、-C(=N-O 具基)-、NR\(^4\)、-C(=O)NR\(^4\)\(^{-}\)或-VPN\(^4\)C(=O)；R\(^4\) 是氢或烷基；Cy\(^1\) 是芳基、环烷基、环烯基、杂芳基或杂环；Z 是取代基 R\(^6\) 或\(-L^3\)-Cy\(^3\) 表示的基团；R\(^6\) 是氢、酰基、酰氧基、烯基、烷氧基、烷氧基烷基氧基、烷氧基烷基氧基、烷氧基亚胺基、烷氧基磺酰基、烷基、烷基羰基、烷基磺酰基、炔基、酰胺基、羧基、氨基、环烷基、烷基氧基、卤代烷基氧基、卤代烷基、卤素、羟基、烷基、巯基、烷基、硝基、烷基硫基、氨基、NHR\(^7\)、NR\(^7\)\(^R^8\)、-N(R\(^7\))C(=O)R\(^9\)、-C(=O)NR\(^7\)\(^R^8\) 或 N(R\(^7\))SO\(_2\)(R\(^{10}\))；L\(^3\) 是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氧基、-C(=N-O 具基)-、NR\(^11\)、-C(=O)NR\(^11\)\(^{-}\)或-VPN\(^11\)C(=O)；Cy\(^3\) 是芳基、环烷基、环烯基、杂芳基或杂环；R\(^7\), R\(^8\), R\(^9\) 和 R\(^{10}\) 在每次出现时独立地是氢、C\(_1\)-C\(_4\)烷基、C\(_3\)-C\(_4\)环烷基或(C\(_3\)-C\(_4\))环烷基)胺；条件是，Cy\(^3\) 不是

本发明的又一个方面涉及选择性调节 H\(_3\) 受体活性的方法。该方法用于在哺乳动物中治疗或预防与 H\(_3\) 受体调节相关的病症和疾病。这种病症和疾病包括阿尔茨海默氏病、哮喘、过敏性鼻炎、注意力不集中的过度反应症、双相性精神障碍、认知功能障碍、精神障碍中的认知缺陷、记忆损失、学习能力缺失、痴呆、皮肤病、药物滥用、糖尿病、II型糖尿病、抑郁症、癫痫、胃肠功能紊乱（gastrointestinal disorder）、炎症、胰岛素耐受性综合症、时差（jet lag）、甲状腺髓样癌、黑素瘤、梅尼

22
埃病（Meniere’s disease）、代谢性综合症、轻微的认知损伤、偏头痛、情绪和注意力改变、运动病、发作性睡病、神经性炎症、肥胖症、强迫性神经失调、疼痛、帕金森氏症、多囊卵巢综合症、精神分裂症、精神分裂症的认知缺陷、癫痫发作、脓毒性休克、综合症 X、Tourette's 综合症、眩晕和睡眠障碍。更尤其是，该方法可用于治疗或预防中枢神经系统的病症和疾病，包括记忆、认知及其它神经学过程、肥胖症以及末梢和系统活动，如涉及哮喘、过敏性鼻炎和肥胖症的那些活动。相应地，本发明的化合物和组合物可用作治疗或预防 H3 受体调节的疾病的药物。

本发明的又一个方面涉及放射性标记的药物组合物。可以将式(I)化合物的放射性标记形式提供为本发明的组合物形式，并且按照本发明的方法来给予，典型地用于确定或诊断与 H3 受体活性相关的病症和疾病，例如用于医学显像。更尤其是，本发明化合物的发射正电子的同位素可以在 PET（正电子发射层析成像）中用于医学显像，其中可以确定组胺 H3 受体的位置和这些受体被配体占有的程度。在这种用途中，本发明化合物具有至少一个发射正电子的放射性同位素的原子，放射性同位素选自 ¹¹C、¹⁸F、¹⁵O 和 ¹³N。本发明的化合物也可以引入用于 sPECT 成像的同位素，例如 ¹²³I。本发明也涉及本发明某些化合物的共体盐和多晶型物，以及包含这些化合物、盐和多晶型物的组合物和制备其的方法。本发明也涉及作为制备本文所描述化合物、盐和多晶型物方法中的中间体的化合物。

本文进一步描述了化合物、包含该化合物的组合物、制备该化合物的方法、治疗或预防病症和疾病的方法，该治疗或预防方法是给予化合物、化合物的放射性同位素标记形式、某些化合物的共体盐尤其是某些化合物的多晶型物含有化合物的这种盐、多晶型物和放射性同位素标记形式。

本发明的详细说明
术语的定义
说明书中使用的某些术语指的是下列定义，如下面所详述。
本文使用的术语“酰基”是指本文定义的、通过本文定义的羰基与母体分子部分连接的烷基。酰基的代表性例子包括但不限于：乙酰基、
1-氧代丙基、2,2-二甲基-1-氧代丙基、1-氧代丁基和1-氧代戊基。

本文使用的术语“酰氧基”是指本文定义的、通过氧原子与母体分子部分连接的酰基。酰氧基的代表性例子包括但不限于：乙酰氧基，丙酰氧基和异丁酰氧基。

本文使用的术语“烯基”是指含有2至10个碳的直链或支链烃，并且优选2、3、4、5或6个碳，含有至少一个碳-碳双键。烯基的代表性例子包括但不限于：乙烯基，2-丙烯基，2-甲基-2-丙烯基，3-丁烯基，4-戊烯基，5-己烯基，2-庚烯基，2-甲基-1-庚烯基和3-癸烯基。

本文使用的术语“烷氧基”是指本文定义的、通过氧原子与母体分子部分连接的烷基。烷氧基的代表性例子包括但不限于：甲氧基，乙氧基，丙氧基，2-丙氧基，丁氧基，叔丁氧基，戊氧基和己氧基。

本文使用的术语“烷氧基烷氧基”是指本文定义的、通过本文定义的另一个烷氧基与母体分子部分连接的烷氧基。烷氧基烷氧基的代表性例子包括但不限于：叔丁氧基甲氧基，2-乙氧基乙氧基，2-甲氧基乙氧基和甲氧基甲氧基。

本文使用的术语“烷氧基烷基”是指本文定义的、通过本文定义的烷基与母体分子部分连接的烷氧基。烷氧基烷基的代表性例子包括但不限于：叔丁氧基甲基，2-乙氧基乙基，2-甲氧基乙基和甲氧基甲基。

本文使用的术语“烷氧基烷基”是指本文定义的、通过本文定义的烷基与母体分子部分连接的烷氧基。烷氧基烷基的代表性例子包括但不限于：叔丁氧基甲基，2-乙氧基乙基，2-甲氧基乙基和甲氧基甲基。

本文使用的术语“烷氧基烷基”是指本文定义的、通过本文定义的烷基与母体分子部分连接的烷氧基。烷氧基烷基的代表性例子包括但不限于：叔丁氧基甲基，2-乙氧基乙基，2-甲氧基乙基和甲氧基甲基。

本文使用的术语“烷基”是指含有1至10个碳原子的直链或支链烃，并且优选1、2、3、4、5或6个碳原子。烷基的代表性例子包括但不限于：甲基，乙基，正丙基，异丙基，正丁基，仲丁基，异丁基，叔丁基，正戊基，异戊基，新戊基，正己基，3-甲基己基，2,2-二甲基戊基，2,3-二甲基戊基，正庚基，正辛基，正壬基和正癸基。

术语“亚烷基”是指衍生自1至10个碳原子的直链或支链烃的二价基团。亚烷基的代表性例子包括但不限于：-CH₂-，-CH(CH₃)-，-C(CH₃)₂-，-CH₂CH₂-，-CH₂CH₂CH₂-，-CH₂CH₂CH₂CH₂-
和-CH₂CH(CH₃)CH₂-。

本文使用的术语“烷基氨基”是指本文定义的、通过NH基团与母体分子部分连接的烷基。烷基氨基的代表性的例子包括但不限于甲氨基，乙氨基，异丙氨基和丁氨基。

本文使用的术语“烷基羰基”是指本文定义的、通过本文定义的羰基与母体分子部分连接的烷基。烷基羰基的代表性的例子包括但不限于甲基羰基，乙基羰基，异丙基羰基，正丙基羰基，等等。

本文使用的术语“烷基磺酰基”是指本文定义的，通过本文定义的磺酰基与母体分子部分连接的烷基。烷基磺酰基的代表性的例子包括但不限于甲基磺酰基和乙基磺酰基。

本文使用的术语“烷硫基”是指本文定义的、通过硫原子与母体分子部分连接的烷基。烷硫基的代表性的例子包括但不限于甲硫基，乙硫基，叔丁硫基和己硫基。

本文使用的术语“炔基”是指含有至少一个碳-碳三键的含有2至10个碳原子的直链或支链烃，优选2,3,4或5个碳。炔基的代表性的例子包括但不限于乙炔基，1-丙炔基，2-丙炔基，3-丁炔基，2-戊炔基和1-丁炔基。

本文使用的术语“酰胺基”是指本文定义的、通过本文定义的羰基与母体分子部分连接的氨基。酰胺基的代表性的例子包括但不限于氨基羰基，甲基氨基羰基，二甲基氨基羰基和乙基甲基氨基羰基。

本文使用的术语“氨基”是指-NH₂基团。

本文使用的术语“芳基”是指苯基、双环芳基或三环芳基。双环芳基是苯基、与环烷基稠合的苯基或与环烯基稠合的苯基。本发明的双环芳基必须通过包含在苯基环之内的任何合适碳原子与母体分子部分相连接。双环芳基的代表性的例子包括但不限于二环茚基，茚基，萘基，二氢萘基和四氢萘基。三环芳基是蒽或菲，与环烷基稠合的双环芳基，与环烯基稠合的双环芳基，或与苯基稠合的双环芳基。三环芳基通过包含在苯基环之内的任何碳原子与母体分子部分相连接。三环芳基环的代表性的例子包括但不限于薁基，二氢薁基，苊基和四氢菲基。

本发明的芳基的碳原子被氢取代或任选被独立地选自下列的取代基取代：酰基、酰氧基、烯基、烷氧基、烷氧基烷氧基、烷氧基烷氧基、
烷氧碳基、烷氧亚胺基、烷氧磺酰基、烷基、烷基氨基、烷基磺酰基、
基、酰胺基、羧基、氨基、环系基、氟烷基、甲酰基、卤代烷氧基、
卤代烷基、卤素、羧基、烷基、疏基、硝基、烷硫基、

NR\textsuperscript{7}R\textsuperscript{8}, (NR\textsuperscript{7}R\textsuperscript{8})羰基、-SO\textsubscript{2}N(R\textsuperscript{9})(R\textsuperscript{10})和 N(R\textsuperscript{9})SO\textsubscript{2}(R\textsuperscript{10}), 其中 R\textsuperscript{7},
R\textsuperscript{8} 和 R\textsuperscript{9} 独立地选自基团氢、C\textsubscript{1-4}烷基、C\textsubscript{3-4}环烷基和芳基，R\textsuperscript{10} 选自基
团 C\textsubscript{1-4}烷基、C\textsubscript{3-4}环烷基和芳基。在芳基是苯基的情况下，取代基的
数且是 0, 1, 2, 3, 4 或 5。在芳基是双环芳基的情况下，取代基的数
目是 0, 1, 2, 3, 4, 5, 6, 7, 8 或 9。在芳基是三环的芳基的情况下，
取代基的数目是 0, 1, 2, 3, 4, 5, 6, 7, 8 或 9。

本文使用的术语“芳烷基”是指本文定义的、通过本文定义的烷基
与母体分子部分连接的芳基。芳烷基的代表性的例子包括但不限于苯
基，2-苯乙基和 3-苯丙基。

本文使用的术语“羧基”是指-C(=O)-基团。

本文使用的术语“羧基”是指-CO\textsubscript{2}H 基团。

本文使用的术语“氰基”是指通过碳与母体分子部分连接的-CN 基
团。

本文使用的术语“氰基苯基”是指通过苯基与母体分子部分连接的
-CN 基团，包括但不限于：4-氰基苯基、3-氰基苯基和 2-氰基苯基。

本文使用的术语“环烷基”是指包含 3 至 8 个碳的饱和环烃基团。环
烷基的例子包括环丙基，环丁基，环戊基，环己基，环庚基和环辛基。C\textsubscript{3-5}环烷基尤其是指包含 3 至 5 个碳的饱和环烃基团，例如环丙基、
环丁基和环戊基。

本文使用的术语“环烯基”是指包含 3 至 8 个碳、包含 1 或 2 个碳
-碳双键的环烃基团。环烯基的例子包括环丙烯基，环丁烯基，环戊烯基，
环己烯基，环庚烯基和环辛烯基。

本发明的环烷基或环烯基的每个碳原子被 0, 1 或 2 个选自下列的
取代基取代：酰基、酰氧基、烯基、烷氧基、烷氧基烷氧基、烷氧基烷
基、烷氧烷基、烷氧亚胺基、烷氧基磺酰基、烷烷基、烷基羰基、烷基磺
酰基、炔基、酰胺基、羧基、氨基、环烷基、氟烷氧基、甲酰基、卤代
烷氧基、卤代烷基、卤素、羟基、烷烷基、巯基、氧化、硝基、烷硫基、
NR\textsuperscript{7}R\textsuperscript{8}, (NR\textsuperscript{7}R\textsuperscript{8})羰基、-SO\textsubscript{2}N(R\textsuperscript{9})(R\textsuperscript{10})和 -N(R\textsuperscript{9})SO\textsubscript{2}(R\textsuperscript{10}), 其中，R\textsuperscript{7}, R\textsuperscript{8},
R\textsuperscript{9} 和 R\textsuperscript{10} 如本文所定义。
本文使用的术语“环烷基羰基”是指本文定义的、通过本文定义的羰基与母体分子部分连接的环烷基。环烷基羰基的代表性的例子包括但不限于环丙基羰基、环戊基羰基、环己基羰基和环庚基羰基。

本文使用的术语“环烷基烷基”是指本文定义的、通过本文定义的烷基与母体分子部分连接的环烷基。环烷基烷基的代表性的例子包括但不限于环丙基甲基、环戊基甲基、环己基甲基和环庚基甲基。\((C_3-C_5)\text{环烷基}\)烷基尤其是指包含3至5个碳、通过烷基与母体分子部分连接的饱和环烷基团，例如环丙基甲基、环丁基和环戊基。

本文使用的术语“二烷基氨基”是指本文定义的、通过氯原子与母体分子部分连接的两个独立的烷基。二烷基氨基的代表性的例子包括但不限于二甲基氨基、二乙基氨基、乙基甲基氨基和丁基甲基氨基。

本文使用的术语“氯”是指\(\text{F}\)。

本文使用的术语“氟烷基”是指通过本文定义的烷基与母体分子部分连接的至少一个氟基团。氟烷基的代表性的例子包括但不限于氟甲基、二氟甲基、三氟甲基、五氟乙基和2,2,2-三氟乙基。

本文使用的术语“氟烷氧基”是指通过本文定义的烷氧基与母体分子部分连接的至少一个氟基团。氟烷氧基的代表性的例子包括但不限于氟甲氧基、二氟甲氧基、三氟甲氧基、五氟乙氧基和2,2,2-三氟乙氧基。

本文使用的术语“甲酰基”是指-C(O)H基团。

本文使用的术语“卤素”或“卤代”是指\(\text{Cl}\)、\(\text{Br}\)、\(\text{I}\)或\(\text{F}\)。

本文使用的术语“卤代烷氧基”是指本文定义的、通过本文定义的烷氧基与母体分子部分连接的至少一个卤素。卤代烷氧基的代表性的例子包括但不限于2-氟乙氧基，三氟甲氧基和五氟乙氧基。

本文使用的术语“卤代烷基”是指本文定义的、通过本文定义的烷基与母体分子部分连接的至少一个卤素。卤代烷基的代表性的例子包括但不限于氟甲基、2-氟乙基、三氟甲基、五氟乙基和2-氟-3-氟戊基。

本文使用的术语“杂环”是指包含至少一个杂原子的非芳香环状基团。非芳香杂环是包含至少一个杂原子的非芳香环状基团；非芳香杂环基团或非芳香杂环的例子将在下面进一步定义。杂环通过碳原子与母体分子部分连接，或者，就包含具有自由连接位点的二价氮原子的杂环来说，杂环可以通过氮原子与母体分子部分连接。另外，杂环可以以五变
异构体存在。

本文使用的术语“杂芳基”是指包含一个或多个杂原子的芳香环，杂原子独立地选自氮、氧和硫。这种环可以是单环或双环，如本文进一步所描述。杂芳基环通过碳或氮原子与母体分子部分连接，或与 L\textsuperscript{1} 或 L\textsuperscript{2} 连接，其中 L\textsuperscript{1} 和 L\textsuperscript{2} 和 L\textsuperscript{3} 在式(I)或(II)中定义。

本文使用的术语“单环杂芳基”或“5-或 6-元杂芳基环”是指含有至少一个杂原子的 5-或 6-元芳香环，杂原子独立地选自氮、氧和硫。5-元环含有两个双键；这种环可以含有一个、两个、三个或四个氮原子，或可以含有一或两个氮原子和一个氧原子，或可以含有一或两个氮原子和一个硫原子，或可以含有一或两个氧原子，或可以含有一或一个硫原子。当环被氧化取代时，在环之内，6-元环含有三个双键，或者，6-元环可以含有 2 个双键。此外，6-元环可以含有一个、两个、三个或四个氮原子，或可以含有一或两个氮原子和一个氧原子，或可以含有一或两个氮原子和一个硫原子，或可以含有一或两个氧原子和一个氧原子，或可以含有一或两个氮原子和/或一个氧原子。5-或 6-元杂芳基通过包含在单环杂芳基环之内的任何碳原子或任何氮原子与母体分子部分连接。代表性 5-至 6-元杂芳基环的例子包括，但不限于，呋喃基，咪唑基，异喹啉基，异喹啉基，嘌呤基，吡啶基，嘧啶基，吲哚基，四唑基，噻二唑基，噻二唑基（thiadiazolonyl），噻二唑酮基（thiadiazinonyl），噻二唑基，噻二唑酮基，噻二唑酮基，嘧啶基，噻啶基，三唑基，三唑基，三唑基，噻啶基，唑基和嘧啶基。

本文使用的术语“双环杂芳基”或“8-或 12-元双环杂芳基环”是指 8-、9-、10-、11-或 12-元双环芳香环，其中环的一个或多个原子被至少一个选自硫、氧和氮的杂原子取代。本发明的双环杂芳基可以通过包含在杂芳基环之内的任何碳原子或氮原子与母体分子部分连接。双环杂芳基环的代表性的例子包括吲哚基，苯并噻唑基，苯并呋喃基，吲哚基，苯并咪唑基，苯并噻唑基，苯并噻唑基，苯并异喹啉基，异喹啉基，苯并噻唑基，噻唑基，喹唑啉基，酰胺基，蝶啶基（pteridinyl），嘌呤基，二苯并[2,3-d]嘧啶基，1,5-二氮并[b][1,4]二氮杂䓬-2-酮-基和吡咯并嘧啶基。

本发明的杂芳基，无论是单环或双环，被氢取代，或任选被独立地选自下列的取代基取代：酰基、酰氧基、烯基、烷氧基、烷氧基烷氧基、
烷氧基烷基、烷氧烷基、烷氧亚胺基、烷氧基烃基、烷基、烷基酰基、烷基磺酰基、烷硫基、炔基、酰胺基、羰基、环烷基、氟烷氧基、甲酰基、卤代烷氧基、卤代烷基、卤素、羟基、硝烷基、硫基、硝基、氧代、NR²R⁸、(NR²R⁸)羧基、-SO₂N(R⁹)(R¹⁰)和-N(R⁹)SO₂(R¹⁰)。单环杂芳基或 5-或 6-元杂芳基环可以被 0、1、2、3、4 或 5 个取代基取代。双环杂芳基或 8-或 12-元双环杂芳基环可以被 0、1、2、3、4、5、6、7、8 或 9 个取代基取代。本发明的杂芳基可以互变互体或互体存在。

本文使用的术语“杂环（heterocycle）”或“杂环（heterocyclic）”是指单环杂环或双环杂环。单环杂环是包含至少一个独立地选自 O、N 和 S 的杂原子的 3、4、5、6 或 7 元环。3-或 4-元环包含 1 个选自 O、N 和 S 的杂原子。5-元环包含零或一个双键和一个、两个或三个选自 O、N 和 S 的杂原子。6-或 7-元环可以包含零、一个或两个双键，条件是，当与取代基一起结合时，环不与取代基互变形成芳香环。单环杂环通过包含在单环杂环之内的任何碳原子或任何氮原子与母体分子部分连接。单环杂环的代表性的例子包括但不限于氮杂环戊烷基，氮杂环戊烷基，氮丙啶基，二氯杂氮基，1,3-二噻烷基，1,3-二氮戊环基，1,3-二硫戊环基，1,3-二硫杂环己烷基，咪唑啉基，咪唑烷基，异噻唑啉基，异噻唑烷基，异噻唑基，异噻唑基，吗啉基，吲哚基，嗯二唑啉基，嗯二唑烷基，嗯唑核基，嗯唑烷基，哌嗪基，哌啶基，吡喃基，吡唑啉基，噻唑基，噻唑烷基，噻唑基，硫吗啉基基，1,1-二氧杂硫吗啉基(硫吗啉烷基)，硫吗啉基和三噻烷基。双环杂环是与苯基稠合的单环杂环，与环烷基稠合的单环杂环、与环烯基稠合的单环杂环，或与单环杂环稠合的单环杂环。双环杂环通过包含在单环杂环之内的任何碳原子或任何氮原子与母体分子部分连接。双环杂环代表性的例子包括，但不限于，1,3-苯并二氧杂环戊烯基，1,3-苯并二硫杂环戊烯基，2,3-二氧-1,4-苯并二氧化环庚烯基(2,3-dihydro-1,4-benzodioxinyl)，2,3-二氧-1-苯并呋喃基，2,3-二氧-1-苯并噻吩基，2,3-二氧-1H-吲哚基，和 1,2,3,4-四氯喹啉基。

本发明的非芳香杂环可以被氢取代或任选被 0、1、2、3、4、5、6、7、8 或 9 个独立选自下列的取代基取代：酰基、酰氧基、烯基、烷氧基、烷氧基烷氧基、烷氧基烷基、烷氧基烷基、烷氧基羰基、烷氧亚胺基、烷氧基磺酰基、
烷基、烷基碳基、烷基磺酰基、炔基、酰胺基、羧基、氢基、环烷基、
氮烷氧基、甲酰基、卤代烷氧基、卤代烷基、卤素、羟基、羧烷基、硫
基、硝基、烷基硫基、NR\textsuperscript{7}R\textsuperscript{8}、(NR\textsuperscript{7}R\textsuperscript{8})羰基、-SO\textsubscript{2}N(R\textsuperscript{9})(R\textsuperscript{10})和-N(R\textsuperscript{9})SO\textsubscript{2}(R\textsuperscript{10})。

杂环的其它例子包括但不限于：异二氢吲哚-1,3-二酮，(Z)-1H-苯
并[e][1,4]二氮杂革-5(4H)-酮，嗯唑-2,4(1H,3H)-二酮，苯并[d][噻唑-2(3H)-
酮，吡啶-4(1H)-酮，咪唑烷-2-酮，1H-咪唑-2(3H)-酮，唑唑-3(2H)-酮，
四氢噻唑-2(1H)-酮，和 1H-苯并[d]咪唑-2(3H)-酮。

本文使用的术语“羟基”是指-OH 基团。

本文使用的术语“羧烷基”是指本文定义的、通过本文定义的烷基
与母体分子部分连接的至少一个羟基。羧烷基的代表性的例子包括但不限于：甲基基，2-羟乙基，2-甲基-2-羟乙基，3-羟基丙基，2,3-二羟基
戊基和 2-乙基-4-羟基庚基。

术语“羧基-保护基”是指在合成过程期间、保护羟基不发生不合乎
需要的反应的取代基。羧基-保护基的例子包括但不限于：氧基甲基，
苄氧基甲基，2-甲氧基乙氧基甲基，2-(三甲基硅烷基)乙氧基甲基，苄
基，三苯甲基，2,2,2-三氯乙基，叔丁基，三甲基硅烷基，叔丁基二甲
基硅烷基，叔丁基三苯基硅烷基，亚甲基缩醛，丙酮化合物亚苄基
缩醛，环状原酸酯，甲氧基亚甲基，环状碳酸酯和环状统酯。通过包
含羧基的化合物与碱例如三乙胺和选自下列的试剂反应，羧基-保护基连
接到羟基上：烷基卤化物、烷基三氟甲磺酸酯、烷基甲硅烷基卤化物、
三烷基甲硅烷基三氟甲磺酸酯、芳基烷基甲硅烷基三氟甲磺酸酯、或
氯甲酸烷基酯、CH\textsubscript{2}I\textsubscript{2}、或卤代酰酸酯。例如与硫甲烷、苄基碘、三乙
基甲硅烷基三氟甲磺酸酯、乙酰氯、苄基氯或碳酰二甲酯反应。通过包
含羧基的化合物与酸和烷基缩醛的反应，保护基也可以连接到羧基上。

本文定义的术语“亚氨基”是指-C(=NH)-基团。

本文使用的术语“硫基”是指-SH 基团。

本文使用的术语“(NR\textsuperscript{7}R\textsuperscript{8})”是指本文定义的、通过氨原子与母体
分子部分连接的 R\textsuperscript{7} 和 R\textsuperscript{8} 基团。R\textsuperscript{7} 和 R\textsuperscript{8} 各自独立地选自氢、C\textsubscript{1-4}烷基、
C\textsubscript{3}-C\textsubscript{4} 环烷基和芳基。

本文使用的术语“(NR\textsuperscript{7}R\textsuperscript{8})烷基”是指本文定义的、通过本文定义的烷基与母体分子部分连接的-NR\textsuperscript{7}R\textsuperscript{8} 基团。(NR\textsuperscript{7}R\textsuperscript{8})烷基的代表性的例
子包括但不限于 2-(甲基氨基)乙基，2-(二甲基氨基)乙基，2-(氨基)乙
基，2-(乙基甲基氨基)乙基，等等。

本文使用的术语“(NR$_7^R$R$_8^R$)羰基”是指本文定义的、通过本文定义的羰基与母体分子部分连接的-NR$_7^R$R$_8^R$基团。(NR$_7^R$R$_8^R$)羰基的代表性的例子包括但不局限于氨基羰基，(甲基氨基)羰基，(二甲基氨基)羰基，(乙基甲基氨基)羰基，等等。

本文使用的术语“(NR$_7^R$R$_8^R$)磺酰基”是指本文定义的、通过本文定义的磺酰基与母体分子部分连接的-NR$_7^R$R$_8^R$基团。(NR$_7^R$R$_8^R$)磺酰基的代表性的例子包括但不局限于氨基磺酰基，(甲基氨基)磺酰基，(二甲基氨基)磺酰基和(乙基甲基氨基)磺酰基。

本文使用的术语“-N(R$_9^R$SO$_2$(R$_{10}^R$)”是指与母体部分连接的氨基，其进一步与本文定义的 R$_9^R$基团和 SO$_2$基团连接，且 SO$_2$基团与本文定义的(R$_{10}^R$)基团连接。R$_9^R$选自氢、C$_1$-C$_4$烷基、C$_3$-C$_4$环烷基和芳基，R$_{10}^R$选自C$_1$-C$_4$烷基、C$_3$-C$_4$环烷基和芳基。-N(R$_9^R$SO$_2$(R$_{10}^R$))的代表性的例子包括但不限于N-甲基磺酰胺。

本文使用的术语“-SO$_2$N(R$_9^R$)(R$_{10}^R$)”是指与 SO$_2$基团连接、通过磺酰基与母体部分连接的 N(R$_9^R$)(R$_{10}^R$)基团。-SO$_2$N(R$_9^R$)(R$_{10}^R$)的代表性例子包括但不限于(二甲基氨基)磺酰基和 N-环己基-N-甲基磺酰基。

本文使用的术语“硝基”是指-NO$_2$基团。

本文使用的术语“氮保护基”是指在合成过程期间，保护氮原子不发生不合乎需要的反应的那些基团。氮保护基包括氨基甲酸酯，酰胺，N-烷基衍生物和亚胺衍生物。优选的氮保护基是乙酰基，苯甲酰基，苄基，苄氧羰基(Cbz)，甲酰基，苯磺酰基，新戊酰基，叔丁氧羰基(Boc)，叔丁基乙酰基，三氟乙酰基和三苯甲基(三苯甲基)。通过包含氨基的化合物与硅例如三乙胺和选自下列的试剂反应，氮-保护基连接到伯或仲氨基上：烷基卤化物、烷基三氟甲磺酸酯、二烷基酸酐（例如烷基酸酐(烷基-OC = O)$_2$O 所代表的）、二芳基酸酐（例如(芳基-OC = O)$_2$O 所代表的）、酰基卤化物、氯甲酸烷基酯、或烷基磺酰基卤化物、芳基磺酰基卤化物、或卤代-CON(烷基)$_2$，例如乙酰氯、苯甲酰氯、苄基溴、苄基羰基羰基氯、甲酰氯、苯磺酰氯、新戊酰氯、(叔丁基-O-C= O)$_2$O、三氟乙酸酐和三苯甲基甲基氯。

本文使用的术语“氧代”是指(-O)。

本文使用的术语“磺酰基”是指-S(O)$_2$-基团。
本文使用的术语“拮抗剂”包括并描述了通过H₃受体激动剂例如组胺来防止受体活化的化合物，以及包括被称为“反向激动剂”的化合物。反向激动剂是不但可通过H₃受体激动剂例如组胺来防止受体活化，而且能够抑制固有H₃受体活性的化合物。

本文使用的术语“放射性标记”是指其中至少一个原子是放射性原子或放射性同位素的本发明的化合物，其中放射性原子或同位素自然地发射γ射线或高能粒子，例如α-粒子或β粒子或正电子。这种放射性原子的例子包括但不限于限于³H(氚)、¹⁴C、¹¹C、¹⁵O、¹⁸F、³⁵S、¹²³I和¹²⁵I。

本发明的化合物
本发明的化合物可以具有如本发明记载中所述的式(I)。此外，本发明的某些实施例进一步描述了式(I)的化合物。

在式(I)的化合物中，L¹是键或亚烷基。优选L¹是键。L²是键或亚烷基。优选L²是键。

L¹和L²两个都独立地是键或亚烷基。优选L¹和L²是键。

此外，公开了式(I)的化合物，其中R²a、R²b、R²c、R²d、R²e和R²f都是氢。

在另一个实施方案中，公开了式(I)的化合物，其中R³a、R³b、R³c或R³d中的至少两个是非氢取代基。或者，还公开了本发明的化合物，其中R³a、R³b、R³c和R³d各自是氢。

还公开了式(I)的化合物，其中L¹是键；L²是键；R³a、R³b、R³c和R³d各自是氢；Cy¹是苯基，Cy²是芳基、环烷基、环烯基、杂芳基或杂环，其中杂芳基或杂环部分具有1、2或3个选自氮、氧和硫的杂原子，条件是，至少一个杂原子是氮。在更优选实施方案中，Cy²是咔唑酮。优选，其中R¹是烷基的式(I)的化合物；L¹是键；L²是键；R²a、R²b、R²c、R²d、R²e和R²f各自是氢；R³a、R³b、R³c和R³d都是氢；Cy¹是苯基，Cy²是咔唑酮。更具体地说，R¹更优选甲基。

也存在描述式(I)化合物的实施方案，其中L¹是键；L²是键；R³a、R³b、R³c和R³d都是氢；Cy¹是咔唑，Cy²是芳基、环烷基、环烯基、杂芳基或杂环，其中杂芳基或杂环部分具有1、2或3个选自氮、氧和硫的杂原子，条件是，至少一个杂原子是氮。在更优选实施方案中，Cy²是任选被氟基取代的咔唑。
也存在药物组合物，其包含式(1)的化合物和药学可接受的载体。作为本发明的一部分所涵盖的具体实施方案也包括，但不限于：
(3aR,6aR)-4’-(5-乙基-六氢-吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-腈；
4’-[(3aR,6aR)-5-异丙基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-腈；
4’-[(3aR,6aR)-5-丙基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-腈；
4’-[(3aR,6aR)-5-丁基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-腈；
4’-[(3aR,6aR)-5-乙基-六氢-吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-腈；
4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-腈；
(3aR,6aR)-1-(4’-甲氧基-1,1’-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}乙腈；
1-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}乙酮；
3-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}喹啉；
(3aR,6aR)-1-[4-(6-甲氧基吡啶-3-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}甲醇；
5-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}吡啶-2-腈；
(3aR,6aR)-1-[4-(2,6-二甲基吡啶-3-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-(3’氟-4’-甲氧基-1,1’-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
2-甲基-5-{(4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基)-1,3-苯并噻唑；
(3aR,6aR)-1-[4-(1H-咪唑-1-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-{4'-乙氧基-1,1'-联苯-4-基}-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4'-(三甲基)-1,1'-联苯-4-基}八氢吡咯并[3,4-b]吡咯；
4''-{(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-3-腈；
(3aR,6aR)-1-{4-(1,3-苯并二氧杂环戊烯-5-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-吡啶-3-基苯基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-[4-(2,6-二氧杂环戊烯-3-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
1-{4''-[4,4'-(-二氧杂环戊烯-5-基)苯并二氧杂环戊烯-5-基]乙酮；
(3aR,6aR)-1-[4'-(乙硫基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4'-(三氟甲基)-1,1'-联苯-4-基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4'-乙烯基-1,1'-联苯-4-基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4'-甲基-3'-硝基-1,1'-联苯-4-基}八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-[4-(2,4-二甲氧基嘧啶-5-基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-(4'-氟-1,1'-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-(1-萘基)苯基}八氢吡咯并[3,4-b]吡咯；
{4''-{(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-3-基}}甲醇；
(3aR,6aR)-1-{4-二苯并[b,d]呋喃-4-基苯基]-5-甲基八氢吡咯并[3,4-b]
吡咯；
(3aR,6aR)-5-甲基-1-[3’-(三氟甲基)-1,1’-联苯-4-基]八氢吡咯并[3,4-b]
吡咯；
(3aR,6aR)-1-(4’-氯-3’-甲基-1,1’-联苯-4-基)-5-甲基八氢吡咯并[3,4-b]
吡咯；
(3aR,6aR)-5-甲基-1-[4’-(2-萘基)苯基]八氢吡咯并[3,4-b]吡咯；
(1E)-1-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-
4-基}乙酰肟；
1-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-
4-基}乙醇；
2-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-
4-基}哒嗪-3(2H)-酮，或
(3aR,6aR)-2-[4’-(5-甲基六氢吡咯并[3,4-b]吡咯-1-基)-联苯-4-
基]-2H-哒嗪-3-酮；
(3aR,6aR)-5-甲基-1-{4’-嘧啶-5-基-1,1’-联苯-4-基}八氢吡咯并[3,4-b]
吡咯；
4’”-[3aR,6aR]-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’:4’,1”-三联苯-
3-腈；
(3aR,6aR)-1-[4’-(6-氯吡啶-3-基)-1,1’-联苯-4-基]-5-甲基八氢吡咯并
[3,4-b]吡咯；
(3aR,6aR)-1-[4’-(2,6-二甲基吡啶-3-基)-1,1’-联苯-4-基]-5-甲基八氢吡
咯并[3,4-b]吡咯；
(3aR,6aR)-1-[4’-(6-氯代吡啶-3-基)-1,1’-联苯-4-基]-5-甲基八氢吡咯并
[3,4-b]吡咯；
4’”-[3aR,6aR]-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’:4’,1”-三联苯-
4-腈；
6-(4’-{4-[3aR,6aR]-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哒
嗪-1-基)烟酰；
(3aR,6aR)-1-{4-[4-(6-氯哒嗪-3-基)哒嗪-1-基]苯基}-5-甲基八氢吡咯并
[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-{4-[4-(1,3-噻唑-2-基)哒嗪-1-基]苯基}八氢吡咯并
[3,4-b]吡咯；
(3AR,6AR)-5-甲基-1-[4-(4-吡啶-2-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
(3AR,6AR)-5-甲基-1-{4-[4-(4-硝基苯基)哌嗪-1-基]苯基}八氢吡咯并
[3,4-b]吡咯；
2-(4-{4-[(3AR,6AR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哌
嗪-1-基)苄腈；
(3AR,6AR)-5-甲基-1-[4-(4-吡啶-4-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
(3AR,6AR)-5-甲基-1-{4-[4-(6-甲基哌嗪-3-基)哌嗪-1-基]苯基}八氢吡
咯并[3,4-b]吡咯；
(3AR,6AR)-5-甲基-1-[4-(4-哌啶-2-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
(3AR,6AR)-5-甲基-1-[4-(4-嘧啶-2-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
4-(4-{4-[(3AR,6AR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哌
嗪-1-基)苄腈；
(3AR,6AR)-1-{4-[4-(5-乙基嘧啶-2-基)哌嗪-1-基]苯基}]-5-甲基八氢吡
咯并[3,4-b]吡咯；
(3AR,6AR)-5-甲基-1-[4-(4-嘧啶-5-基哌嗪-1-基)苯基]八氢吡咯并
[3,4-b]吡咯；
(3AR,6AR)-2-{4-[4-(5-甲基-六氢-吡咯并[3,4-b]吡咯-1-基)-苯基]-哌嗪-
1-基}-烟氧；
(3AR,6AR)-1-(4-苄基苯基)-5-甲基八氢吡咯并[3,4-b]吡咯；
(3AR,6AR)-5-甲基-1-(4-苯氧基苯基)八氢吡咯并[3,4-b]吡咯；
1-{4-[(3AR,6AR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}]-2-苯
乙酮；
(3AR,6AR)-1-[4-(4-溴苯氧基)苯基]-5-甲基八氢吡咯并[3,4-b]吡咯；
4'-{4-[(3AR,6AR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯氧
基}-1,1'-联苯-4-腈；
{4-[(3AR,6AR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}(苯基)
甲酮；
4-[(3AR,6AR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄腈；
1-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}甲胺；
2-4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}胺
3-({4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄基}氨基)苄腈；
4-乙基-N-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄基}嘧啶-2-胺；
2-(5-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}吡啶-2-基)嘧啶-3(2H)-酮；
2-(6-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}吡啶-3-基)嘧啶-3(2H)-酮；
2-(5-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}-1,3-噻唑-2-基)嘧啶-3(2H)-酮；
5-(4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}嘧啶-1-基)吡啶-2-腈；
(3aR,6aR)-1-[4-(2-甲氧基嘧啶-5-基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯；
5-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2-腈；
6-甲基-2-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}嘧啶-3(2H)-酮；
(3aR,6aR)-5-甲基-1-[4-(1-甲基-1H-吡唑-4-基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-1-[4-[(3,5-二甲基-1H-吡唑-4-基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4-(1-三苯甲基-1H-吡唑-4-基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
(3aR,6aR)-5-甲基-1-[4-(1H-吡唑-4-基)-1,1'-联苯-4-基]八氢吡咯并[3,4-b]吡咯；
3-甲基-1-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2(1H)-酮；
5-甲基-1-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2(1H)-酮；
6-甲基-1-4'-(3aR,6aR)-5-甲基六氢呫咯并[3,4-b]呫咯-1(2H)-基]-1,1'-联苯-4-基)呫唑-2(1H)-酮；
2-4'-(3aR,6aR)-5-乙基六氢呫咯并[3,4-b]呫咯-1(2H)-基]-1,1'-联苯-4-基)呫唑-3(2H)-酮；
2-4'-(3aR,6aR)-5-环丁基六氢呫咯并[3,4-b]呫咯-1(2H)-基]-1,1'-联苯-4-基)呫唑-3(2H)-酮；
和
2-4'-(3aR,6aR)-5-甲基六氢呫咯并[3,4-b]呫咯-1(2H)-基]-联苯-4-基)4,5-二噁唑-3(2H)-酮。
此外，公开了式(II)的化合物，其中当L¹是键时，Z是-L³-Cy³。此外，描述了式(II)的化合物，其中当L¹是键、Cy¹是苯基、Z是-L³-Cy³、L³是键时，Cy³不是下式的环胺:

```
R2d
R2c
N
R2e
```

本发明的化合物是用ACD/ChemSketch 5.01版本(由Advanced Chemistry Development, Inc., Toronto, ON, Canada开发)命名的，或按照ACD命名法进行命名。用结构来命名化合物和用所给予的化学名称来赋予化学结构的实践，对于本领域普通技术人员来说是已知的。


38

本发明的化合物可以存在顺式或反式异构体，其中环上的取代基可以用下列这种方式连接：它们相互之间在环的同一侧面(顺式)，或相互之间在环的对面(反式)。例如，环丁烷和环己烷可以存在顺式或反式构型，并且可以存在单一异构体或顺反异构体的混合物形式。本发明化合物的单一顺式或反式异构体可以使用选择性的有机化学、通过商业购买的起始原料来合成制备，或通过顺反异构体混合物的纯化来制备单一异构形式。这种方法对于本领域普通技术人员是熟知的，并且可以包括通过重结晶或色谱来分离异构体。

应该理解，本发明的化合物可以具有互变异构形式以及几何异构体，并且这些也构成本发明的一个方面。也应该理解，本发明的化合物可以存在同位素形式，其中原子可以具有不同的重量；例如氢、氘和氚，或\(^{12}\)C、\(^{11}\)C和\(^{13}\)C，或\(^{19}\)F和\(^{18}\)F。

本发明的方法

本发明的化合物和组合物可以用于调节组胺-3的效果，尤其是通过组胺-3拮抗作用、激动作用或反向激动作用。具体而言，可以使用本发明的化合物和组合物来治疗和预防由组胺-3调节的疾病。典型地，这种疾病可以通过调节哺乳动物中的组胺-3受体来改善，优选通过给予本发明的化合物或组合物，或单独给予，或与其它活性剂组合给予，例如作为治疗方案的一部分。

某些取代的八氢-吡咯并[3,4-b]吡咯衍生物，包括但不限于所列举的那些本发明化合物，显示了影响组胺-3活性的能力，尤其用于组胺-3拮抗作用。这些化合物可以有效用于治疗和预防许多组胺-3介导的疾病或病症。所包括的、显示这种活性的取代的八氢-吡咯并[3,4-b]吡咯化合物具有下式：
其中 $R^1, R^{2a}, R^{2b}, R^{2c}, R^{2d}, R^{2e}, R^{2f}, R^{3a}, R^{3b}, R^{3c}, R^{3d}, L^1, L^2, Cy^1$ 和 $Cy^2$ 如本文先前所描述。

还公开了治疗患有病症的哺乳动物的方法，在这种病症中，调节组胺-3 受体活性具有治疗益处，所述方法包括给予具有所述疾病或对所述疾病敏感的患者治疗有效量的式(II)的化合物，

或其药学可接受的盐、酯、酰胺或前体药物，其中 $R^1$ 是烷基、$C_3-C_5$ 环烷基或 $(C_3-C_5$ 环烷基)甲基；$R^{2a}, R^{2b}, R^{2c}, R^{2d}, R^{2e}$ 和 $R^{2f}$ 各自独立地是氢、甲基或氟甲基；$R^{3a}, R^{3b}, R^{3c}$ 和 $R^{3d}$ 各自独立地是氢、烷基、氟烷基、氟烷氧基、烷氧基、硫代烷氧基、卤素或腈，条件是，当 $R^{3a}, R^{3b}, R^{3c}$ 和 $R^{3d}$ 中一个或多个是烷基时，那么 $R^{3a}, R^{3b}, R^{3c}$ 和 $R^{3d}$ 中的至少一个是氟烷基、氟烷基氧基、烷氧基、硫代烷氧基、卤素或腈；$L^1$ 是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、-C(=N-O 烷基)-、$NR^4, -C(=O)NR^4, -N=O^4$ 或 $NR^4=C(=O)$；$R^4$ 是氢或烷基；$Cy^1$ 是芳基、环烷基、环烯基、杂芳基或杂环；$Z$ 是取代基 $R^6$ 或 $-L^3-Cy^3$ 代表的基团；$R^6$ 是氢、酰基、酰氧基、烯基、烷氧基、烷氧基烷氧基、烷氧基烷氧基、烷
氧羧基、烷氧亚胺基、烷氧基磺酰基、烷基、烷基羰基、烷基磺酰基、烷基、酰胺基、羧基、氨基、环烷基、氯烷基、卤烷氧基、卤代烷氧基、卤代烷基、卤素、羟基、羟烷基、硫基、硝基、烷硫基、氨基、NHR^7、NR^7R^8、\(-\text{N}(R^7)C(=O)R^9\)、\(-\text{C}(=O)NR^7R^8\)或\(N(R^7)SO_2(R^{10})\)；L^3是键、氧、硫、羰基、亚烷基、烷基羰基、烷基氨基、\(-\text{C}(=\text{N}-\text{O} \text{ 烷基})\)、NR^{11}、\(-\text{C}(=\text{O})\text{NR}^{11}\)或\(-\text{NR}^{11}\text{C}(=\text{O})\)；Cy^3是芳基、环烷基、环烯基、杂芳基或杂环；R^7、R^8、R^9、R^{10}和R^{11}在每次出现时独立地是氢、C_{1-4}烷基、C_{3-4}环烷基或(C_{3-4}环烷基)胺；条件是，Cy^3不是

还公开了治疗患有其中调节组胺-3 受体活性具有治疗益处病症的哺乳动物的方法，所述方法包括给予患有所述疾病或对所述疾病敏感的患者治疗有效量的式(II)的化合物，其中Cy^2是芳基、环烷基、环烯基、杂芳基或杂环，各自具有1、2或3个选自氮、氧和硫的杂原子，条件是，至少一个杂原子是氮；条件是，当L^1是键时，Z是\(-\text{L}^3\)-Cy^3，进一步的条件是，当L^1是键、Cy^1是苯基、Z是\(-\text{L}^3\)-Cy^3、L^3是键时，Cy^3不是下式的环胺：

治疗患有病症的哺乳动物的方法，其中通过给予式(II)的化合物来调节组胺-3 受体活性对于这种病症具有治疗学益处，其中病症或疾病选自阿尔茨海默氏病、哮喘、注意力不集中的过度反应症、双相性精神障碍、认知功能障碍、精神障碍中的认知缺陷、记忆缺失、学习能力缺失、痴呆、皮肤癌、药物滥用、糖尿病、II型糖尿病、抑郁症、癫痫、胃肠功能紊乱（gastrointestinal disorder）、炎症、胰岛素耐受性综合症、时差
（jet lag）、甲状腺腺样癌、黑素瘤、梅尼埃病（Meniere’s disease）、代谢性综合症、轻度的认知损伤、偏头痛、情绪和注意力改变、运动病、发作性睡眠病、神经性炎症、肥胖症、强迫性精神失调、疼痛、帕金森氏症、多囊卵巢综合症、精神分裂症、精神分裂症的认知缺陷、癫痫发作、脓毒性休克、综合症 X、Tourette's 综合症、眩晕和睡眠障碍。

尤其是，治疗患有注意力不集中的过度反应症、阿尔茨海默氏疾病或痴呆的哺乳动物的方法，其中通过给予式(II)的化合物来调节组胺-3 受体活性对这些疾病具有治疗益处。

尤其是，治疗患有精神分裂症或精神分裂症的认知缺陷的哺乳动物的方法，其中通过给予式(II)的化合物来调节组胺-3 受体活性对这些疾病具有治疗益处。

尤其是，治疗患有发作性睡眠病、睡眠障碍、哮喘或肥胖症的哺乳动物的方法，其中通过给予式(II)的化合物来调节组胺-3 受体活性对这些疾病具有治疗益处。

作为本发明化合物在细胞中调节组胺-3 受体效果的重要结果，本发明方法所描述的化合物可以影响人和动物的生理学过程。用这种方式，通式(I)或(II)的化合物和组合物可有效用于治疗和预防通过组胺-3 受体调节的疾病和病症。典型地，这些疾病和病症的治疗或预防，可以通过选择性调节哺乳动物中的组胺-3 受体来进行，即通过给予本发明的化合物或组合物，或单独给予，或作为治疗方案的一部分与其它活性剂组合给予。

特别优选的是如上面详细说明中所述的式(I)或(II)化合物。更优选的是式(I)的化合物。

式(I)或(II)的化合物可以以治疗有效量给予患有这种疾病或对这种疾病敏感的患者。该化合物特别可用于治疗患有其中调节组胺-3 受体活性具有治疗益处的病症的哺乳动物的方法，其中该方法是通过给予患有这种疾病或对这种疾病敏感的患者治疗有效量的式(I)或(II)化合物实现的。

可用于本发明方法的化合物包括但不限于氯西泮的实施例中列举的、和对于组胺-3 受体具有亲合性的那些化合物。这些化合物因此可用于治疗和预防与组胺-3 调节相关的疾病或病症。这种疾病或病症的例子是例如注意力不集中的过度反应症(ADHD)，注意力缺陷，痴呆和记忆、学习欠
缺的疾病，精神分裂症、精神分裂症的认知缺陷，精神障碍中的认知缺陷和功能紊乱，阿尔茨海默氏病，轻微的认知损伤，癫痫，癫痫发作，过敏性鼻炎和哮喘，运动病，眩晕，梅尼埃病，前庭障碍，眩晕，肥胖症，糖尿病，II 型糖尿病，综合症 X，胰岛素耐受性综合症，代谢性综合症，疼痛包括神经性疼痛，神经病，睡眠障碍，发作性睡病，病态嗜睡（pathological sleepiness），时差，药物滥用，情绪改变，双相性精神障碍，抑郁性，强迫性神经失调，Tourette's 综合症，帕金森氏症和甲状腺髓样癌，黑素瘤和多囊卵巢综合症。因而，组胺-3 受体调节剂和本发明化合物预防或治疗这种疾病的能力，可以通过在下面参考文献中得到的例子来说明。

new treatments." Annual Reports in Medicinal Chemistry (2002), 37 11-20; Schweitzer, J. B., and Holcomb, H. H. "Drugs under investigation for attention-deficit hyperactivity disorder" Current Opinion in Investigative Drugs (2002), 3, 第 1207 页。


cognition in rats without inducing locomotor sensitization."
Komater, V. A.等人，Psychopharmacology(Berlin, Germany)(2003), 167(4), 363-372;
AA Rodrigues, FP Jansen, R Leurs, H Timmerman and GD Prell
"Interaction of clozapine with the histamine H3 receptor in rat brain" British
Journal of Pharmacology(1995), 114(8), 第1523-1524页；Passani等人，
"Central histaminergic system and cognition" Neuroscience and Biobehavioral Reviews(2000)24，第107-113页；Morriset, S.等人，
"Atypical Neuroleptics Enhance Histamine Turnover in Brain Via
5-Hydroxytryptamine2A Receptor Blockade" Journal of Pharmacology and
Experimental Therapeutics(1999)288，第590-596页。

本发明化合物（包括但不限于实施例中列举的那些）治疗精神障碍
中的功能紊乱、阿尔茨海默氏病和轻度认知损伤的能力，可以通过下列
说明：Meguro等人，Pharmacology, Biochemistry and
Behavior(1995)50(3), 321-325; Esbenshade, T.等人，"Pharmacological
and behavioral properties of A-349821, a selective and potent human
histamine H3 receptor antagonist" Biochemical Pharmacology
68(2004)933-945；Huang, Y.-W.等人，"Effect of the histamine
H3-antagonist clobenpropit on spatial memory deficits induced by MK-801
as evaluated by radial maze in Sprague-Dawley rats" Behavioural Brain
第41-44页；De Almeida和Izquierdo, Arch. Int. Pharmacodyn.(1986),
页; Schwartz等人，Psychopharmacology, The Fourth Generation of
Wada等人，Trends in Neurosci.(1991)14，第415页。

本发明化合物（包括但不限于实施例中列举的那些）治疗癫痫和癫
痫发作的能力，可以通过下列来说明：Harada, C.等人，"Inhibitory effect
of iodophenpropit, a selective histamine H3 antagonist, on amygdaloid

Science(1994), 87, 第151-163页。


Symposium, Sendai, Japan, #P39(November, 2000); Sakata T; 等人，
"Hypothalamic neuronal histamine modulates ad libitum feeding by rats."
Brain research (1990 Dec 24), 537(1-2), 303-6。 

本发明化合物（包括但不限于实施例中列举的那些）治疗疼痛（包括神经性疼痛和神经病）的能力，可以通过下列来说明：
Malmberg-Aiello, Petra; Lamberti, Claudia; Ghelardini, Carla; Giotti,
Alberto; Bartolini, Alessandro. British Journal of Pharmacology (1994),
111(4), 1269-1279; Hriscu, Anisoara; Gherase, Florenta; Pavelescu, M.;
Hriscu, E. "Experimental evaluation of the analgesic efficacy of some
antihistamines as proof of the histaminergic receptor involvement in pain."
Farmacia,(2001), 49(2), 23-30, 76。

本发明化合物（包括但不限于实施例中列举的那些）治疗睡眠障碍
（包括发作性睡眠病和病态嗜睡和时差）的能力，可以通过下列来说明：
Barbier, A. J.等人， "Acute wake-promoting actions of JNJ-5207852, a
Monti 等人， Neuropsychopharmacology(1996)15, 31-35; Lin 等人， Brain
Sakai 等人， Life Sci.(1991)48, 第 2397-2404 页；
"4-Phenoxypiparidines: Potent, Conformationally Restricted, Non-Imidazole
Histamine H3 Antagonists" Journal of Medicinal Chemistry(2005)48, 2229-2238。

本发明化合物（包括但不限于实施例中列举的那些）治疗药物滥用
的能力。苯丙胺是人类滥用的兴奋剂。它和类似的滥用药物可以在动物
中刺激运动行为，并且已经发现，H3 拮抗剂 thioperamide 可以抑制由苯
丙胺引起的运动刺激；因此 H₃ 拮抗剂可以有效用于治疗药物滥用，可以通过下列说明： Clapham J.; Kilpatrick G. J. "Thioperamide, the selective histamine H₃ receptor antagonist, attenuates stimulant-induced locomotor activity in the mouse", European journal of pharmacology(1994), 259(2), 107-14。


本发明的化合物尤其可用于治疗和预防倾向于注意力-欠缺性机能亢进、阿尔海默氏疾病或痴呆的病症或疾病。本发明的化合物尤其可用
于治疗和预防影响精神分裂症或精神分裂症的认知缺陷的病症或疾病。本发明的化合物尤其可用于治疗和预防影响发作性睡病、睡眠障碍、过敏性鼻炎、哮喘或肥胖症的病症或疾病。

在本发明的药物组合中，活性组分的实际剂量水平对于具体患者、组合物和给予方式可以变化，以便获得可有效达到所需要治疗响应的活性化合物的量。所选择的剂量水平将取决于具体化合物的活性、给药途径、所治疗病症的严重程度和所治疗患者的病症和先前病史。然而，在本领域技术范围内，化合物的起始剂量水平应该比所要求达到目标治疗效果的剂量水平低，逐渐提高剂量，直到达到预期效果为止。

当使用上述或其它治疗法时，可以使用纯式的治疗有效量的一个本发明化合物，或在多种情况下，使用药学可接受的盐、酯、酰胺或前体药物形式。或者，可以给予药物组合物形式的化合物，药物组合物包含感兴趣的化合物与一或多种药学可接受的载体。短语本发明化合物的“治疗有效量”是指以适用于任何医疗的合理益处/危险的比例来治疗疾病的化合物的足够数量。然而应该理解，在可靠的医学判断范围内，本发明化合物和组合物的总日用量取决于主治医师。对于任何具体患者，具体治疗有效剂量水平取决于各种因素，包括所治疗的疾病和疾病的严重程度；所使用具体化合物的活性；所使用的具体组合物；患者的年龄、体重、常规健康、性别和饮食；所使用具体化合物的给予时间、给药途径和排泄速度；治疗持续时间；与所使用具体化合物组合或同时使用的药物；和医学领域众所周知的类似的因素。例如，在本领域技术范围内，化合物的起始剂量水平应该比所要求达到目标治疗效果的剂量水平低，逐渐提高剂量，直到达到预期效果为止。

对于治疗或预防疾病，给予人或低等动物的本发明化合物的总的日剂量，可以在大约0.0003至大约30毫克/千克体重的范围。对口服来说，更优选剂量可以在大约0.001至大约0.1毫克/千克体重范围之内。如果需要的话，可以将有效的日剂量分成多剂量，用于给药目的；因而，单剂量组合物可以包含这种数量或其约数，以构成日剂量。

制备本发明化合物的方法

与下列合成方案和举例说明制备化合物手段的方法相结合，可以更好地理解本发明的化合物。
在下述方案和实施例的说明中使用的缩写是：Xantphos: 4,5-二(二苯基膦基)-9,9-二甲基氧杂蒽[161265-03-8]; BINAP: 2,2’-二(二苯基膦基)-1,1’-联萘; Boc: 丁氧羰基; EtOAc: 乙酸乙酯; HPLC: 高压液相色谱; IPA: 异丙醇; Me: 甲基; MeOH: 甲醇; Ms: 甲磺酰基; Pd: 钯; tBu: 仲丁基; TEA: 三乙胺; TFA: 三氟乙酸; THF: 四氢呋喃; Ts: 对甲苯磺酰; dba: 二苯基亚甲基丙酮; rt: “室温”或环境温度，合适范围是 17-30℃。碘化亚铜是 Cul; 乙酸钯是 Pd(OAc)₂。Emrys™处理管瓶是微波处理管瓶(10 毫升或 30 毫升小玻璃管，带有密封帽)。所有的微波照射实验是使用 Emrys Synthesizer（源于 personalchemistry AB(Uppsala)）进行的。所有的实验是在密封的微波处理管瓶中进行的，使用标准吸光水平(300 W 最高功率)。如果未另外规定，微波条件下的反应时间反映从最初照射开始统计的总照射时间。对于在文献说明书中报道的化合物或可商业提供的化合物的鉴定，可以使用 CAS 号; CAS 号是由美国化学学会化学文摘社分配给化合物的鉴别号码，且为本领域普通技术人员所熟知。

本发明的化合物可以由各种合成方法制备。代表性的方法示于但不局限于方案 1-17。

方案 1

式 3 代表的化合物，其代表本发明的化合物，可以如方案 1 所描述的方法获得。式 1 的化合物，其中 R¹ 是如式(I)所定义的烷基、烷基或烷基烷基，且 R²a、R²b、R²c、R²d 和 R²e 如式(I)所定义，当用式 2 的化合物处理时，其中 R³a、R³b、R³c、和 R³d 如在式(I)中所定义，X¹ 是溴、碘、氯或 F₃CCO₂⁻，且其中 X² 是 L⁻¹-Cy¹-L²-Cy²、L⁻²-Cy³ 或 R⁶，以及用钯催化剂例如但不限于乙酸钯(Pd(OAc)₂)或三(二亚芐基丙酮)
二钯(Pd$_2$dba$_3$)、配体添加剂例如外消旋-2,2'-二(二苯基膦基)-1,1'-联萘(BINAP)和酸例如叔丁醇钠、在溶剂例如但不局限于甲苯中处理，且反应是在大约50°C至大约110°C之间的加热条件下进行的，进行大约12至大约20小时，将提供代表本发明化合物的式3的化合物。


在方案1中所描述的三式1的二胺化合物可通过在文献中所描述的一般途径和方法提供。作为具体实例，Schenke等人(美国专利US5,071,999)描述了5,6-二甲基八氢吡咯并[3,4-b]吡咯，其中描述了R$^1$和R$^{2f}$是甲基，且R$^{2a}$、R$^{2b}$、R$^{2c}$、R$^{2d}$和R$^{2e}$是氢。Schenke等人(美国专利US5,071,999)还描述了3-氟-5-甲基八氢吡咯并[3,4-b]吡咯，其中R$^1$=甲基，R$^{2b}$=氟，且R$^{2a}$、R$^{2c}$、R$^{2d}$、R$^{2e}$和R$^{2f}$是氢。在相同的参考文献(Schenke等人，美国专利US5,071,999)中描述了3-甲基六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯，该化合物可以用氯化铝锂在THF中处理，将氨基甲酸乙酯还原为甲基，产生3,5-二甲基八氢吡咯并[3,4-b]吡咯，其中R$^1$和R$^{2c}$是甲基，且R$^{2a}$、R$^{2b}$、R$^{2d}$、R$^{2e}$和R$^{2f}$是氢。在相同的参考文献(Schenke等人，美国专利US5,071,999)中描述了3-甲基-2,7-二苯硫杂双环[3.3.0]辛烷-7-羧酸乙酯，该化合物可以用氯化铝锂在THF中处理，将氨基甲酸乙酯基团还原为甲基，产生2,5-二甲基八氢吡咯并[3,4-b]吡咯，其中R$^1$和R$^{2d}$是甲基，且R$^{2a}$、R$^{2b}$、R$^{2c}$、R$^{2e}$和R$^{2f}$是氢。在Basha等人(美国专利公开出版物 2005/0101602A1)中描述了6a-甲基-六氢-吡咯并
[3,4-b]吡咯-1-羧酸氨基酯，在用碘甲烷处理后，随后用 HBr 在醋酸中
处理以除去氨基酯，将提供 5,6a-二甲基八氢吡咯并[3,4-b]吡咯，其中
R^1 和 R^{2e} 是甲基，和 R^{2a}, R^{2b}, R^{2c}, R^{2d} 和 R^{2f} 是氢。在其中式(I)化合物是
以消旋混合物存在，和要求分离出对映体纯的产品的情况下，可以使用
在手性柱上进行消旋混合物的柱色谱来分离一种对映体或两种对映体。

方案 2

或者，化合物式 4 的氮可以使用 N-(苄氧基羰基氨基)琥珀酰亚胺或
苄氧羰基氯和硅例如二异丙基乙胺，在溶剂例如二氯甲烷中，用苄氧羰
基保护基来保护，提供式 5 的化合物。在溶剂例如二氯甲烷中，当用酸
例如三氟乙酸处理时，式 5 的化合物可以进行酸催化除去丁氧羰基，提
供式 6 的化合物。按照方案 1 列出的条件，当用式 7 的化合物处理式 6
的化合物时，提供式 8 的化合物。使用加热的三氟乙酸或其它酸例如
HBr/醋酸或使用氢气进行氢解，并用本领域技术人员熟知的钯催化剂处
理过程，可以除去苄氧羰基保护基，提供式 9 的化合物。当在溶剂例如
但不局限于 THF 中用碱例如氢化钠随后加入烷基卤化物处理时，提供式
10 的化合物，其代表本发明的化合物。进行式 9 化合物的直接烷基化的
其它方法可通过在-78 至 150℃的温度下，任选在碱例如碳酸钠、碳酸氢
钠、碳酸铯或三乙胺的存在下，通过在溶剂例如但不局限于二氯甲烷、


方案 3

在溶剂例如 THF 中，还可以用碱例如氢化钠或碳酸钠直接处理式 4 的化合物，随后用烷基卤化物处理，提供式 11 的化合物。或者，当用
低聚甲醛、碳基或碳基酯处理，随后用氯化氢化钠处理式 4 的化合物时，提供式 11 的化合物。当用三氯乙酸和三氯甲烷的混合物处理式 11 的化合物时，提供式 12 的化合物。按照方案 1 列出的条件，当用式 2 的化合物处理式 12 的化合物时，提供式 13 的化合物，其代表本发明的化合物。或者，在溶剂例如但不限于二氯甲烷、甲苯、乙酸乙酯中，任选在碱例如碳酸钠、碳酸氢钠、碳酸铯或三乙胺的存在下，通过用式 4 化合物处理烷基卤化物或三氟甲磺酸酯而将式 4 的化合物直接烷基化，产生式 11 的化合物。

方案 4

式 14 的化合物，其可以按照方案 1 列出的方法制备，其中 X^2 是 R^6，R^6 是溴化物，可以按照本领域技术人员已知的方法处理，提供式 16 的化合物，其代表本发明的化合物。在乙酸钯、2-(二环己基膦基)联苯和磷酸钾的存在下，在溶剂例如但不限于甲苯、异丙醇和水的混合物中，在大约 60°C 至大约 75°C 的加热条件下，当用式 15 的化合物处理式 14 的化合物时（其中 Cy^2 是式(I)范围内所定义的芳基或杂芳基），提供式 16 的化合物。


式15的硼酸酯包括其中 R'是 H 的硼酸,其中 R'是烷基例如甲基或异丙基的硼酸酯,以及包括其中两个 R'O 基团与硼原子一起形成 4,4,5,5-四甲基-[1,3,2]二氧杂硼杂环戊烷基部分的频哪醇硼烷酯。有许多可商购得到的芳基、杂芳基和杂环硼酸和硼酸酯,或可以如合成有机化学的科学文献所述进行制备。硼酸和硼酸酯试剂的实例示于下列表中。
<table>
<thead>
<tr>
<th>硼酸和硼酸酯</th>
<th>商购来源/化学文摘编号(CAS #)或参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-嘧啶酮-5-硼酸</td>
<td>CAS #373384-19-1</td>
</tr>
<tr>
<td>2-甲氧基嘧啶-5-硼酸</td>
<td>Frontier Scientific, Inc., Logan, UT, USA</td>
</tr>
</tbody>
</table>
| 1H-嘧啶-2,4-二酮-5-硼酸 | Specs, Fleminglaan, the Netherlands  
CAS #70523-22-7; Schinazi, Raymond F.; Prusoff, William H., Synthesis of  
5-(dihydroxy boryl)-2'-deoxyuridine and related boron-containing pyrimidines,  
<p>| 吡啶-3-硼酸          | CAS #1692-25-7, Frontier Scientific, Inc., Logan, UT, USA                                              |
| 2,4-二甲氧基嘧啶-5-硼酸 | CAS #89641-18-9, Frontier Scientific, Inc., Logan, UT, USA                                              |</p>
<table>
<thead>
<tr>
<th>化合物名称</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-甲基吡啶-5-硼酸水合物</td>
<td>SYNCHEN OHG Heinrich-Plett-Strassse 40; Kassel, D-34132; Germany; CAS #659742-21-9</td>
</tr>
<tr>
<td>2H- 吡喃，3,6-二氢-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)</td>
<td>CAS # 287944-16-5; Murata, Miki; Oyama, Takashi; Watanabe, Shinji; Masuda, Yuzuru, Synthesis of alkenylboronates via palladium-catalyzed borylation of alkenyl triflates(or iodides) with pinacolborane. Synthesis(2000),(6), 778-780.</td>
</tr>
<tr>
<td>(5-氨基-3-吡啶基)-硼酸</td>
<td>CAS # 497147-93-0; Chemstep Institut du PIN-University Bordeaux 1 351 cours de la liberation Talence Cedex, 33450 France</td>
</tr>
<tr>
<td>噻唑-1-硼酸</td>
<td>Aldrich Chemical Company, Inc.</td>
</tr>
<tr>
<td>苯并噻唑-5-硼酸</td>
<td>Cat # 110831, Asymchem Laboratories, Inc.</td>
</tr>
<tr>
<td>苯并噻唑-5-硼酸</td>
<td>Cat # 1464, Digital Specialty Chemicals, Inc.</td>
</tr>
<tr>
<td>4-甲基-7-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)-3,4-二氢-2H-1,4-苯并噻唑</td>
<td>Cat # CC13539CB, Acros Organics USA</td>
</tr>
</tbody>
</table>

方案 5

类似地，在 Suzuki 反应中，在双乙酸钯、2-(二环己基膦基)联苯和磷酸钾(K₃PO₄)或碳酸钠的存在下，在溶剂例如但不限于限于甲苯、异丙醇和水的混合物中，在大约30°C至大约150°C的加热条件下，可以用式 17 的苯基硼酸处理式 14 的化合物，提供式 18 的化合物。

方案 6

或者，还可以使用式 14 的化合物，产生式 20 的化合物，其代表式 (I) 的化合物。在铜粉和碳酸钾的存在下，在喹啉中，在大约120°C至大约150°C之间的加热条件下，当用式 19 的化合物处理式 14 的化合物时，其中 L¹ 是杂原子例如氧、硫或氮，提供式 20 的化合物，其代表本发明的化合物。描述卤氧化物例如式 14 化合物与式 19 化合物 (其中 L¹ 是氮，


方案 7

还可以使用式 14 的化合物，产生式 22 的化合物，其代表式(I)的化合物，其中 L 是键，Cy 是含氟杂环。在铜粉和碳酸钾的存在下，在喹啉中，在大约 120°C 至大约 150°C 之间的加热条件下，当用式 21 的化合物（其中 Y 是键或选自 CH 和 N）处理式 14 的化合物时，提供式 22 的化合物，其代表本发明的化合物。

方案 8

类似地，在三 ( 二亚苄基丙酮 ) 二钯、(R)-(+)-2,2'-二 ( 二苯基膦基 )-1,1'-
联醛和叔丁醇钠的存在下，在甲苯中，在微波加热条件下，当用式 23 的化合物 1-乙酰基哌嗪处理式 14 的化合物时，提供式 24 的化合物。当按照已知从氮原子上除去乙酰基的条件（例如但不局限于在 2N HCl 和甲醇的混合物中加热化合物）处理式 24 的化合物时，提供式 25 的化合物。适合于将式 25 化合物转变为式 27 化合物的条件可以根据式 26 化合物的反应性来变化。用式 26(R^7-X^3)化合物处理式 25 化合物，其中 R^7 是芳基、环烷基、环烯基、杂芳基或杂环，X^3 是卤素或本领域技术人员已知的其它合适的亲电试剂，提供式 27 的化合物，这可以根据试剂 R^7-X^3 而在不同的条件下进行。 当 R^7 是环烷基、环烯基、杂环或某些杂芳基环且 X^3 是卤素或三氟甲磺酸盐(F_3CSO_2O)时，可以在溶剂例如乙腈中、在碱例如但不局限于三乙胺的存在下加热来进行这种转化。当 R^7 是芳基或杂芳基时，那么可以在三(二亚苄基丙酮)二钯、外消旋-2,2'-二(二苯基膦基)-1,1'-联萘和叔丁醇钠的存在下、在溶剂例如甲苯中、在 30-150 ℃加热混合物来进行这种转化。

方案 9

此外，可以如下获得式 29 的化合物：使用方案 1 列出的条件，用式 28 的化合物处理式 1 的化合物，其中 X^1 是卤素(Cl, Br, I)或三氟甲磺酸盐(CF_3SO_2O)。式 28 的化合物可以从商业渠道获得，或按照科学文献中描述的方法容易地得到，或在其中 X^1 是三氟甲磺酸盐的情况下，可以在碱的存在下，通过用三氟甲磺酸酯处理而由酚来制备。容易得到的适宜的式 28 化合物的实例包括但不限于 1,4-二溴-2,5-二氟代苯，2,5-二溴(三氟甲氧基)苯，4-溴-2-氟苯酚和 5-溴-2-磺苄酚。

此外，包含 X^4 基团（即溴）的式 29 化合物，可以给予方案 4、5、6、7 或 8 列出的方法进一步处理，分别产生式 16、18、20、22 或 27 的
化合物，其代表本发明的化合物。

方案 10

多种式 17 的化合物可得自于商品供应商。此外，式 17 的化合物还可通过科学文献所描述的方法合成得到，或可以通过方案 10 所描述的方法，由式 30 的化合物制备。式 17 的化合物包括其中 R' 是 H 的硼酸、其中 R' 是烷基例如甲基或异丙基的硼酸酯，以及包括其中两个 R'O 基团与硼原子一起形成 4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷基部分的频那醇硼烷酯。

方案 11

式 18 的化合物，其中 R' 是卤素，可以按照方案 4 列出的方法，用苯基硼酸或芳基硼酸酯处理，提供式 31 的化合物，其中 Cy 是芳基环。或者，式 18 的化合物，其中 R' 是卤素，还可以按照方案 4 列出的方法，用杂芳基硼酸或杂芳基硼酸酯处理，提供式 31 的化合物，其中 Cy 是杂芳基。

式 31 的化合物，其中 Cy 是通过包含在环内的氮原子与母体分子部分连接的杂环或杂芳基环，可以通过用式 18 的化合物（其中 R' 是卤素

方案 12

![Scheme 12](image)

类似地，由叔丁氧羰基保护基(Boc)保护的式 32 的化合物，当如方案 1 所述在甲苯中用 1,4-二溴苯以及三(二亚苄基丙酮)二钯(Pd₂(dba)₃)、
外消旋-2,2'-二(二苯基膦基)-1,1'-联苯(BINAP) 和叔丁醇钠处理时，可以提供式 34 的化合物。使用 TFA/二氯甲烷除去 Boc 保护基，随后使用甲醛和氰基硼氢化钠进行还原胺化，可以提供式 35 的化合物。在二噁烷中用 4,4',4',5,5,5'-八甲基-2,2'-二(1,3,2-二氧杂硼杂环戊烷)、Pd(dppf)Cl₂ 和乙酸钾处理式 35 的化合物，可以提供式 36 的化合物。

方案 13

\[
\begin{align*}
\text{38} & \quad \text{39} \quad \text{40} \quad \text{41} \\
& \quad \text{Cu/K₂CO₃} \quad \text{(吡啶)}
\end{align*}
\]

在 Cy¹ 位置包含芳基环例如但不限于吡啶基环的本发明化合物，可以按照方案 13 列出的方法、随后按照方案 13 或方案 14 任何一个列出的方法来制备。在铜和碳酸钾的存在下，在吡啶中，在加热条件下，当用式 39 的化合物处理式 38 的化合物时，可以提供式 40 化合物和式 41 化合物两者的混合物。使用本领域技术人员已知的色谱方法，可以分离化合物的混合物。

方案 14

\[
\begin{align*}
\text{40} & \quad \text{38} \quad \text{43} \\
& \quad \text{Pd(PPh₃)₂Cl₂}
\end{align*}
\]

式 40 化合物和式 36 化合物，在二氯二(三苯基膦基)钯、2-(二环己基膦基)联苯和 Na₂CO₃ 的存在下，在溶剂例如乙醇和二噁烷的混合物中，当用微波加热时，可以提供式 43 的化合物。
方案 15

类似地，式 41 的化合物和式 36 的化合物，当按照方案 14 列出的方法处理时，可以提供式 44 的化合物。

方案 16

可以相应地制备式(I)化合物的 Cy\(^1\)位置上的其它杂芳基环的实例。例如，式 38 的化合物，当按照方案 13 列出的方法用式 45 的化合物处理时，可以提供式 46 的化合物。式 46 的化合物，当按照方案 14 列出的方法用式 36 的化合物处理时，可以提供式 47 的化合物。
方案 17

类似地，在乙酸钯、Xantphos 和碳酸铯的存在下，式 48 的化合物，其中 R^{1x} 是烷基，当与式 49 的化合物（其中 Cy^{1} 是芳基，优选苯基）一起加热时，可以提供式 50 的化合物。或者，其他碳酸盐碱也是适合的，例如碳酸钾。典型的条件包括但不限于：在甲苯中，在大约 80℃至大约 110℃的温度下，优选大约 95℃，将 2 摩尔当量的式 49 化合物与 1 摩尔当量的式 50 化合物以及 2 摩尔当量的碳酸铯和催化数量的乙酸钯和 Xantphos 的混合物加热。式 50 的化合物，在式 38 化合物的存在下，与碘化亚铜或铜粉与碱在极性高沸点溶剂例如 DMF、DMA、吡啶或 4-甲基吡啶中加热。优选的条件是在式 38 化合物以及 8-羟基喹啉、碘化亚铜和碳酸钾的存在下，在溶剂例如 DMF 中加热，提供式 51 的化合物。式 51 的化合物，其中 R^{1x} 是烷基例如甲基或乙基，优选乙基，当用 33% HBr/醋酸处理、同时加热到大约 65 至大约 75℃时，可以提供式 52 的化合物，以盐的形式分离。或者，可以在乙二醇中用碱处理式 51 的化合物，提供式 52 的化合物。相应地，可以使用式 52 的化合物，提供式 53 的化合物，其代表本发明的化合物。因此，包括在本发明范围内的是制备式(III)化合物的方法，
其中 \( C_{\text{y}} \) 是芳基，优选苯基，其可用于制备一些式(I)的化合物。此外，该方法也公开了用烷基化条件处理式(III)的化合物，提供式(IV)的化合物

其中 \( R^1 \) 是烷基。烷基化条件包括：用还原剂例如三乙酰氧基硼氢化钠、氯基硼氢化钠或硼氢化钠处理式(III)化合物和甲醛、乙醛或环烷基苯酮的混合物。在优选实施方案中，烷基化条件包括：用三乙酰氧基硼氢化钠处理式(III)化合物和甲醛的混合物。

用本领域技术人员已知的烷基化条件处理式 52 的化合物，将提供式 53 的化合物。例如，在溶剂例如 THF 或二噁烷中，在大约-78℃至大约 0℃之间的温度下，用碱例如二异丙基肼化锂或二(三甲基甲硅烷基)酰胺锂处理式 52 的化合物，随后用式 \( R^1-X \) 的化合物处理，其中 \( R^1 \) 如式(I)所定义，\( X \) 是氟、溴、碘、甲磺酰基或三氟甲磺酸盐，可以提供式 53 的化合物。碱介导的烷基化的其它条件包括：在 DMF 中，在大约-10℃至大约 0℃，用氢化钠处理式 52 的化合物，而后用 \( R^1-X \) 处理，可以
提供式 53 的化合物。此外，在包含本领域技术人员已知的相转移催化剂的水和合适有机溶剂的混合物中，用氢氧化钠处理式 52 化合物和 R¹-X 的混合物，将提供式 53 的化合物。或者，用本领域技术人员已知的还原胺化条件来处理式 52 的化合物，将提供式 53 的化合物。相应地，在还原剂例如但不限于三乙酰氧基硼氢化钠、氰基硼氢化钠或硼氢化钠的存在下，用醛例如但不限于甲酸、乙醛或环烷基酮处理式 52 的化合物，可以提供式 53 的化合物。

制备式(III)化合物的方法涉及：在溶剂中，将式(IIIa)化合物（其中 P 是氮保护基，例如但不限于烷氧羰基化合物）与式(IIIb)化合物（其中 Cy¹ 是芳基）和碳酸盐碱和钯源和 Xantphos 的混合物加热。适宜的碳酸盐碱是例如碳酸钾或碳酸铯。适宜的钯源可以是例如乙酸钯或氟化钯。优选，反应如下进行：用碳酸铯、乙酸钯和 Xantphos，在甲苯中，优选加热到大约 80℃和大约 110℃之间的温度，以完成反应，提供式(IIIc)的化合物。可以将得到的混合物冷却至大约 15℃和大约 40℃之间，用卤代烃稀释，而后过滤混合物，而后浓缩混合物，提供分离的通式(IIIc)的化合物。(IIIa)、(IIIb)和(IIIc)的化合物具有下列结构：

![化合物结构](image)

其中 Cy¹ 是芳基，优选苯基，P 是氮保护基。在高沸点的极性溶剂中，将式(IIIc)的化合物与式(IIId)的化合物、碳酸盐碱和钯源加热，产生式(IIId)的化合物。优选，碳酸盐碱是碳酸钾。钯源可以是铜粉或碘化亚铜(I)。优选反应如下进行：在 N,N-二甲基甲酰胺中，在惰性气氛中，将式(IIIc)的化合物和式(IIId)的化合物与碘化亚铜(I)、8-羟基喹啉和碳酸钾加热至大约 120℃至大约 150℃。通过将混合物冷却至大约 15℃和大约 40℃之间，可以分离化合物，在有机溶剂和氯化钠水溶液之间分配混合物，而后浓缩有机溶液，提供式(IIId)的化合物，如下所示

本发明也提供了药物组合物, 其包含治疗有效量的式(I)或(II)的化合物, 或其适宜的盐和多晶型物与药学可接受载体的结合。组合物包括与一种或多种无毒的药学可接受的载体一起配制的本发明化合物。可以将药物组合物配制为用于口服给药的固体或液态形式, 配制为用于肠胃外注射或用于直肠给药。

本文使用的术语 “药学可接受的载体” 是指无毒的惰性固体、半固体或液体填充剂、稀释剂、包封物质或任何类型的制剂助剂。可以充当药学可接受载体的物质的一些实例是糖, 例如乳糖、葡萄糖和蔗糖; 淀粉, 例如玉米淀粉和马铃薯淀粉; 纤维素和它的衍生物, 例如羧甲基纤维素钠、乙基纤维素和醋酸纤维素; 粉末黄芪胶; 麦芽; 明胶; 滑石粉; 可可脂和栓剂石蜡; 油类, 例如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油; 二醇, 例如丙二醇; 酯, 例如油酸乙酯和月桂酸乙酯; 琼脂; 缓冲剂, 例如氢氧化镁和氢氧化铝; 海藻酸; 无热原的水; 等渗盐水; 林格溶液; 乙醇和磷酸盐缓冲液, 以及其它无毒的兼容性润滑剂, 例如十二烷基硫酸钠和硬脂酸镁, 以及着色剂; 释放剂 (releasing agent); 包衣剂; 甜味剂; 调味料和香料, 按照制剂领域技术人员的判断, 防腐剂和抗氧化剂还可以存在于组合物中。

本发明的药物组合物可以用下列方式给予人类及其它哺乳动物: 口
服，直肠，肠胃外，脑池内，阴道内，腹膜内，局部(以粉末或膏剂或滴剂形式)，经频或口服或鼻喷雾。本文使用的术语“肠胃外”是指给药方式，其包括静脉内、肌肉内、腹腔内、胸骨内、皮下、关节内注射和输注。

用于肠胃外注射的药物组合物包括药学可接受的无菌含水或非水溶液、分散体、悬浮液或乳剂和无菌可注射溶液或分散体的无菌粉末。适宜的含水和非水载体、稀释剂、溶剂或载体的实例包括水、乙醇、多元醇(丙二醇，聚乙二醇，丙三醇等等)，和其适宜的混合物)、植物油(例如橄榄油)和可注射的有机酯例如油酸乙酯或其适宜的混合物。可以保持组合物的合适流动性，例如，通过利用包衣例如卵磷脂，在分散体的情况下，保持所需粒径，和通过利用表面活性剂。

这些组合物也可以包含助剂，例如防腐剂、润湿剂、乳化剂和分散剂。利用各种抗菌和抗真菌剂，例如对羟基苯甲酸酯、三氯叔丁醇、苯酚、山梨酸等等，可以保证防止微生物的作用。包含等渗试剂例如糖、氯化钠等等，也是合乎需要的。通过利用延迟吸收试剂，例如单硬脂酸铝和明胶，可以引起可注射的药学形式的延迟吸收。

在某些情况下，为了延长药物的效果，减缓药物从皮下或肌肉内注射的吸收常常是合乎需要的。这种可以通过利用具有差的水溶解度的晶体或非晶形物质的液体悬浮液来实现。然后，药物的吸收速率取决于它的溶解速度，溶解速度又取决于晶体大小和结晶形态。或者，肠胃外给予药物形式的延迟吸收是通过将药物溶解或悬浮在油基载体中实现的。

除了活性化合物之外，悬浮液可以包含悬浮剂例如乙基化亚十八醇、聚氧乙烯山梨糖醇和脱水山梨醇酯，微晶纤维素，偏氢氧化铝，膨润土，琼脂，黄芪胶和其混合物。

如果需要的话，为了更有效调配，可以将本发明的化合物结合进缓释或靶向递送系统中，例如聚合物母体、脂质体和微球体。可以将它们消毒，例如，通过保留细菌的滤过器进行过滤，或引入无菌固体组合物的杀菌剂，其可以溶于无菌水或其它的无菌可注射介质中，而后立即使用。

可注射的长效形式是通过在可生物降解的聚合物例如聚交酯-聚乙交酯中形成药物的微囊密封基质来制备的。根据药物与聚合物的比例和所使用具体聚合物的性质，可以控制药物的释放速度。其它可生物降解的聚合物的实例包括聚(原酸酯)和聚(酸酐)。长效可注射的制剂也可以通
过将药物收集在适合身体组的脂质体或微乳状液中来制备。

可以将可注射的制剂消毒，例如，通过保留细茵的滤过器进行过滤，
或引入无菌固体组合物形式的杀菌剂，其可以溶解或分散在无菌水或其
它无菌可注射介质中，而后再即使用。

可注射制剂，例如无菌可注射的含水或含油悬浮液，可以按照已知
的技术、使用合适的分散或湿润剂和悬浮剂来配制。无菌可注射制剂也
可以是在非毒性的、肠胃外可接受的稀释剂或溶剂中的无菌可注射溶
液、悬浮液或乳剂，例如在 1,3-丁二醇中的溶液。在可接受的载体和溶
剂之中，可以使用的是水、林格溶液、U.S.P. 二等渗氯化钠溶液。此外，
传统上使用无菌的不挥发油作为溶剂或悬浮介质。为了这种目的，可以
使用任何柔和的不挥发油，包括合成的单或二甘油酯。此外，可以在可
注射的制剂中使用脂肪酸例如油酸。

口服固体剂型包括胶囊、片剂、丸剂、粉末和颗粒剂。在这种固体
剂型中，一或多种本发明化合物与至少一种惰性药学可接受的载体例如
柠檬酸钠或磷酸二钙和/或下列混合： a) 填充剂或填充剂，例如淀粉、
乳糖、淀粉、葡萄糖、甘露醇和水杨酸； b) 结合剂，例如羧甲纤维素
海藻酸盐、明胶、聚乙烯吡咯烷酮、蔗糖和阿拉伯胶； c) 湿润剂，例如
丙三醇； d) 崩解剂，例如琼脂、碳酸钙、马铃薯或木薯淀粉、海藻酸
某些硅酸盐和碳酸钠； e) 溶液阻滞剂，例如烷属烃 (paraffin)； f) 吸
收促进剂，例如季铵化合物； g) 润湿剂，例如鲸蜡醇和单硬脂酸甘油酯；
h) 吸附剂，例如高岭土和膨润土；和 i) 润滑剂，例如滑石粉、硬脂酸钙、
硬脂酸镁、固体聚乙二醇、十二烷基硫酸钠和其混合物。在胶囊、片剂
和丸剂的情况下，剂型也可以包含缓冲剂。

在使用乳糖或奶糖以及高分子量聚乙二醇的软和硬填充的明胶胶
囊中，也可以使用类似类型的固体组合物作为填充剂。

可以用包衣和壳体例如肠溶衣及药学配制领域熟知的其它包衣来
制备片剂、糖衣丸 (dragee)、胶囊、丸剂和颗粒剂的固体剂型。它们
可以任选包含遮光剂，并且还可以是仅仅或优选在肠道的某一部分以延
迟方式释放活性组分的组合物。可有效用于延迟释放活性剂的物质的实
例可以包括聚合物和石蜡。

对于直肠或阴道给药的组合物，优选栓剂，其可以如下制备：将本
发明的化合物与合适的无刺激性的载体例如可可脂、聚乙二醇或栓剂石
蜡混合，所述载体在环境温度下是固体，但在体温下是液体，并因此在
直肠或阴道腔中融化，释放活性化合物。

口服液体剂型包括药学可接受的乳剂、乳状液、溶液、悬浮液、
糖浆剂和酏剂。除了活性化合物之外，液体剂型可以包含本领域通常使
用的惰性稀释剂，例如水或其它溶剂，增溶剂和乳化剂例如乙醇，异
丙醇，碳酸乙酯，乙酸乙酯，苯甲醇，苯甲酸苄酯，丙二醇，1,3-丁二
醇，二甲基甲酰胺，油类(尤其是棉籽、落花生、玉米、胚芽、橄榄、蓖
麻和芝麻油类)，丙三醇，四氢糠醇，聚乙二醇和脱水山梨醇的脂肪酸酯
和其混合物。

除惰性稀释剂之外，口服组合物还可以包含助剂，例如润湿剂，乳
化和悬浮剂，甜味剂，调味料和香料。

对于局部或透皮给予本发明化合物的剂型，包括膏剂（ointment）、
糊剂、霜剂（cream）、洗剂、凝胶剂、粉末、溶液、喷雾剂、吸入剂
或贴片。在无菌条件下，将所需要的本发明化合物与药学可接受的载体
和任何需要的防腐剂或可能需要的缓冲液混合。眼用的制剂、滴眼剂、
眼膏、粉末和溶液也包括在本发明范围之内。

除了本发明的活性化合物之外，膏剂、糊剂、霜剂和凝胶剂可以包
含动物和植物脂肪、油类、蜡、烷属烃、淀粉、黄芪胶、纤维素衍生物、
聚乙二醇、硅氧烷、膨润土、硅酸、滑石粉和氧化锌或其混合物。

除了本发明的化合物之外，粉末和喷雾剂可以包含乳糖、滑石粉、
硅酸、氢氧化铝、硅酸钙和聚酰胺粉末或这些物质的混合物。喷雾剂可
以另外包含通常的推进剂，例如氯氟代烃。

本发明的化合物也可以以脂质体形式给予。正如本领域所已知的，
脂质体通常衍生自磷脂或其它脂质物质。脂质体由分散在水介质中的单
或多层水合物液晶形成。可以使用能够形成脂质体的任何无毒的、生理
学可接受的和可代谢的脂质。除了本发明的化合物之外，在脂质体形式
中存在的组合物可以包含稳定剂、防腐剂等等。优选的脂质是天然和合
成磷脂和磷脂酰胆碱(卵磷脂)，可以单独或一起使用。

形成脂质体的方法在本领域是已知的。参见，例如，Prescott, Ed.,
Y.,(1976), p 33 et seq.

局部给予本发明化合物的剂型包括粉末、喷雾剂、膏剂和吸入剂。
在无菌条件下，将活性化合物与药学可接受的载体和任何需要的防腐剂、可能需要的缓冲液或推进剂混合。眼用的制剂、眼膏、粉末和溶液包括在本发明范围之内。也包括包含本发明化合物的含水液体组合物。

可以使用衍生自无机或有机酸的药学可接受盐、酯或酰胺形式的本发明化合物。本文使用的术语“药学可接受的盐、酯和酰胺”是指式(I)化合物的羧酸盐、氨基酸酸加成盐、两性离子、酯和酰胺，其在可靠的医学判断范围内，适合与人和低等动物的组织接触，没有必要毒性、刺激、变态反应等等，与合理的益处/危险比相称，并且对于其预定用途是有效的。

术语“药学可接受的盐”是指在可靠的医学判断范围内、适合与人和低等动物的组织接触而没有毒性、刺激、变态反应等并且与合理的益处/危险比例相称的那些盐。药学可接受的盐在本领域是众所周知的。盐可以在最终分离和纯化本发明化合物期间进行原位制备，或单独通过游离碱官能团与合适有机酸或无机酸的反应来制备。

代表性的酸加成盐包括但不限于抗坏血酸、(D)-酒石酸、(L)-酒石酸、磷酸、水杨酸、硫酸、三氟乙酸和盐酸的酸。

同样，可以用例如下列试剂将含有碱性氮的基团季铵化：低级卤化烃试剂例如甲基、乙基、丙基和丁基氯化物、溴化物和碘化物；二烷基硫酸盐例如二甲基、二乙基、二丁基和二戊基硫酸盐；长链卤化物，例如癸基、月桂基、十四烷基和硬酯酰氯化物、溴化物和碘化物；芳烷基卤化物，例如苯基和苯乙基溴化物等等。由此获得水或油溶的或可分散的产物。

碱加成盐可以在最终分离和纯化本发明化合物期间原位制备，通过含有羧酸部分与药学可接受的金属阳离子的合适碱例如氢氧化物、碳酸盐或碳酸氢盐反应，或与氨或有机伯、仲或叔胺反应。药学可接受的盐包括但不限于：基于碱金属或碱土金属的阳离子，例如锂、钠、钾、钙、镁和铝盐等等，和非毒性的季铵和胍阳离子，包括铵、四甲铵、四乙铵、甲胺、二甲胺、三甲胺、三乙胺、二乙胺、乙胺等等。可用于形成碱加成盐的其它代表性的有机胺包括乙二胺、乙醇胺、二乙醇胺、哌啶和哌嗪。

本文使用的术语“药学可接受的酯”是指体内可水解的本发明化合物的酯，并且包括容易在人体内分解释放母体化合物或其盐的那些酯。
本发明的药学可接受的无毒酯的实例包括C₁-至-C₆烷基酯和C₅-至-C₇环烷基酯。优选C₁-至-C₄烷基酯。可以按照常规方法制备式(I)化合物的酯。例如，通过含羟基的化合物与酸和烷基羧酸例如醋酸或与酸和芳基羧酸例如苯甲酸进行反应，这种酯可以连接到羟基上。在含有羧基的化合物的情况下，药学可接受的酯是通过化合物与碱例如三乙胺和烷基卤化物、烷基三氟甲磺酸盐例如与碘甲烷、苄基碘、环戊基碘化物反应、由含有羧基的化合物制备的。它们也可以通过化合物与酸例如盐酸和烷基羧酸例如醋酸、或与酸和芳基羧酸例如苯甲酸反应来制备。

本文使用的术语“药学可接受的酰胺”是指衍生自氮、伯C₁-至-C₆烷基胺和仲C₁-至-C₆二烷基胺的本发明的无毒酰胺。在仲胺的情况下，胺也是含有一个氮原子的5-或6-元杂环的形式。衍生自氮、C₁-至-C₃烷基伯酰胺和C₁-至-C₂二烷基伯酰胺的酰胺是优选的。可以按照常规方法制备式(I)化合物的酰胺。药学可接受的酰胺是通过含有氨基的化合物与烷基羧酸、芳基羧酸、酰基卤或芳基卤反应，由含有伯或仲胺基团的化合物制备的。在含有羧基的化合物的情况下，药学可接受的酯是由含有羧基的化合物，通过化合物与碱例如三乙胺、脱水剂例如二环己基碳二亚胺或羧基二咪唑和烷基胺、二烷基胺例如与甲胺、二乙胺、哌啶反应制备的。它们也可以在例如加入分子筛的脱水条件下，通过化合物与酸例如硫酸和烷基羧酸例如醋酸，或与酸和芳基羧酸例如苯甲酸反应来制备。组合物可以含有药学可接受的前体药物形式的本发明化合物。


本发明包括药学活性化合物，其可以化学上合成，或通过体内生物转化为式(I)或式(II)化合物而形成。
盐和多晶型物

本文鉴别并描述了本发明化合物的具体盐和多晶型物。更尤其是，本发明涉及 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物。该盐显示出至少两种多晶型物，命名为 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A 和 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 B。

2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A(本文也指的是“晶形 A”)的结晶固体形态存在，其以示于图 1 的粉末 X 射线衍射图典型征。已经将 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A 的结晶晶胞参数确定为：a 是 7.6 Å, b 是 7.4 Å, c 是 22.7 Å, 或更确切地说，其中 a 是 7.588(3)Å, b 是 7.428(3)Å, c 是 22.700(7)Å, 提供晶胞体积 1276 Å³, 或更确切地说，1276.3(7)Å³, 其中 a、b 和 c 各自是晶格的代表性长度，晶胞角度 β 是 94.1°, 或更精确而言，94.093(5)°。盐以单斜晶 P2_1 空间群结晶。

可以通过粉末 X 射线衍射图的特征峰来鉴别 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A 结晶固体。利用粉末 X 射线衍射图中的一个特征峰，分析化学领域技术人员可以容易地鉴别 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A 固体。在 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}吲哚-3(2H)-酮 L-酒石酸盐一水合物晶形 A 的粉末 X 射线衍射图中，特征峰的 2θ 角度位置是 3.90±0.2, 16.72±0.2, 16.99±0.2, 17.17±0.2, 18.12±0.2, 19.72±0.2, 19.98±0.2, 20.25±0.2, 23.96±0.2, 27.65±0.2 和 28.93±0.2。

2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-
-4-基)哒嗪-3(2H)-酮 L-酒石酸盐一水合物晶形 B(本文也指的是“晶形 B”)，以结晶固体形态存在，其以示于图 2 的粉末 X 射线衍射图为特征。已经将 2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮 L-酒石酸盐一水合物晶形 B 的结晶晶胞参数确定为： a 是 7.6 Å, b 是 8.7 Å, c 是 0.3 Å, 或更精确而言，其中 a 是
7.551(5)Å, b 是 8.660(6)Å, c 是 40.26(3)Å, 提供晶胞体积 2633(3)Å³，其中 a, b 和 c 各自是晶格的代表性长度。盐以正交晶 P2₁2₁2₁ 空间群结晶。

可以通过粉末 X 射线衍射图的特征峰来鉴别 2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮 L-酒石酸盐一水合物晶形 B 结晶固体，利用粉末 X 射线衍射图中的一个特征峰，分析化学领域技术人员可以容易地鉴别 2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮 L-酒石酸盐一水合物晶形 B 固体。在 2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮 L-酒石酸盐一水合物晶形 B 的粉末 X 射线衍射图中，特征峰的 2θ 角度位置是 4.39±0.2, 10.45±0.2, 11.92±0.2, 12.52±0.2, 13.45±0.2, 16.71±0.2, 16.92±0.2, 17.62±0.2, 17.90±0.2, 19.10±0.2, 20.46±0.2 和 20.63±0.2。

本发明也涉及结晶 2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮盐酸盐 1.5 水合物。
2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮盐酸盐三半水合物，其以结晶固体形态存在，其以示于图 3 的粉末 X 射线衍射图表征。已经将 2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮盐酸盐三半水合物的结晶晶胞参数确定为： a 是 7.3 Å, b 是 7.4 Å, c 是 22.2 Å, 或更精确而言，其中 a 是 7.287(2)Å, b 是 7.405(2)Å, c 是 22.234(5)Å, 提供晶胞体积 1155 Å³，或更精确而言，1155.4(4)Å³，其中 a, b 和 c 各自是晶格的代表性长度，晶胞角度 α、β 和 γ 各自分别是 86.3°、81.0°和 77.3°，或更精确而言，86.258(4)°、80.957(4)°和 77.330(4)°。盐在三斜 P1 空间群结晶。

可以通过粉末 X 射线衍射图的特征峰来鉴别 2-4'-(3aR,6aR)-5-甲基六氢哒咯并[3,4-b]哒咯-1(2H)-基]-1,1'-联苯-4-基)哒嗪-3(2H)-酮盐酸盐三半水合物结晶固体。利用粉末 X 射线衍射图中少至一个特征峰，分析
化学领域技术人员可以容易地鉴别 2-{4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮盐酸盐三半水合物固体。在 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮盐酸盐三半水合物的粉末 X 射线衍射图中，特征峰的 2θ 角度位置是 4.03±0.2, 13.92±0.2, 15.55±0.2, 15.61±0.2, 15.93±0.2, 16.15±0.2, 24.37±0.2, 24.66±0.2, 25.12±0.2, 25.68±0.2 和 27.90±0.2。

本发明也涉及结晶无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮 L-酒石酸盐。无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮 L-酒石酸盐以结晶固体形态存在，其以示于图 4 的粉末 X 射线衍射图表征。可以通过粉末 X 射线衍射图的特征峰来鉴别无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮酒石酸盐结晶固体。利用粉末 X 射线衍射图中少至一个的一个特征峰，分析化学领域技术人员可以容易地鉴别 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮酒石酸盐无水固体。在无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮酒石酸盐的粉末 X 射线衍射图中，特征峰的 2θ 角度位置是 4.34±0.2, 8.69±0.2, 13.04±0.2, 15.82±0.2, 17.11±0.2, 18.35±0.2, 18.93±0.2, 20.74±0.2, 22.40±0.2, 23.04±0.2 和 26.45±0.2。

本发明也涉及结晶无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮盐酸盐。无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮盐酸盐以结晶固体形态存在，其以示于图 5 的粉末 X 射线衍射图表征。可以通过粉末 X 射线衍射图的特征峰来鉴别无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮盐酸盐结晶固体。利用粉末 X 射线衍射图中少至一个的特征峰，分析化学领域技术人员可以容易地鉴别 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮盐酸盐无水固体。在无水 2-{4'-(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮酒石酸盐的粉末 X 射线衍射图中，特征峰的 2θ 角度位置是 6.27±0.2, 12.59±0.2, 15.15±0.2, 16.71±0.2, 18.49±0.2,
18.95±0.2, 20.31±0.2, 20.97±0.2, 22.44±0.2, 23.82±0.2, 24.03±0.2, 24.67±0.2, 31.90±0.2 和 32.75±0.2。

L-酒石酸盐-一水合物晶型 A 盐和 L-酒石酸盐-一水合物晶型 B 盐通常表现出比 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮化合物相对更好的氧化稳定性。相应地，L-酒石酸盐-一水合物晶型 A 或 L-酒石酸盐-一水合物晶型 B 盐对于制剂可以是优选的，且对于给药是更合适的。

本文使用的术语“基本上纯的”，当用于 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮时，是指大于大约 90%纯度的盐。2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮的结晶形态不含有大约 10%以上的任何其它化合物，尤其是，不能含有大约 10%以上的任何其它形式的 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮，例如无定形、溶剂化物形式、非溶剂化物形式、去溶剂化物形式和对映体。

更优选，“基本上纯的”盐是指大于大约 95%纯度的盐，其中 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮的结晶形态不含有大约 5%以上的任何其它化合物，尤其是，不能含有大约 5%以上的任何其它形式的 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮，例如无定形、溶剂化物形式、非溶剂化物形式、去溶剂化物形式和对映体。

更优选，“基本上纯的”盐是指大于大约 97%纯度的盐，其中 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮的结晶形态不含有大约 3%以上的任何其它化合物，尤其是，不能含有大约 3%以上的任何其它形式的 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮，例如无定形、溶剂化物形式、非溶剂化物形式、去溶剂化物形式和对映体。

也包括包含 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮盐和多晶型物的组合物。合适的药物组合物包含基本上纯的 2-{4"-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'联苯-4-基}噻嗪-3(2H)-酮盐或多晶型物，其与一或多种无毒的药学可接受的载体（例如先前组合物中所描述的）一起配制。可以
给予包含 2-{4,[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]哒嗪-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮和多晶型物的这种组合物，并且可以在先前未发明化合物所描述的本发明方法中使用，只是用所需要的盐或多晶型物代替化合物，这对于本领域技术人员是容易理解的。

用下面方式进行样品的粉末 X 射线衍射 (PXRD) 分析。通过将样品在持样器上涂成薄层，并平缓地将样品用裁片压平，制备用于 X 射线衍射分析的样品。例如，可以用研钵和研棒将样品研磨成细粉末，或用玻璃裁片来限制样品数量。在三个结构中之一中操作样品：环形物料架，石英零背景板或热平台固定件 (类似地固定到零背景板上)。

使用配备有入射线检测单一的 Inel G3000 衍射仪来收集衍射图，提供 Cu-Kα1 辐射线。在 40kV 的电压和 30 mA 的电流条件下操作 X 射线发生器。Inel G3000 安装有位置灵敏探测器，其可同时检测所有的衍射数据。以 1 度间隔、跨越 90 度的 2θ 范围收集减弱的直射光束，收集 7 秒钟，以此来校正检测器。针对硅线位置参考标准 (NIST 640c) 来核对该校正。样品位于铝持样器上，并与玻璃片保持水平。

或者，可以使用 Rigaku Miniflex 衍射仪 (30 kV 和 15 mA; X 射线源：Cu; 范围：2.00-40.00° 2θ; 扫描速率：1-5 度/分钟) 或 Scintag X1 或 X2 衍射仪 (2 kW 正聚焦 X 射线管，带有液氮或 Peltier 冷却的锗固态检测器; 45 kV 和 40 mA; X 射线源：Cu; 范围：2.00-40.00° 2θ; 扫描速率：1-5 度/分钟) 进行 X 射线粉末衍射。

用允许 ±0.2° 变化的角坐标 (2θ) 报道粉末 X 射线衍射图的特征峰值位置。当比较 2 个粉末 X 射线衍射图时，使用 ±0.1° 的变化。实际上，如果将得自于一个图的衍射图峰指定角坐标 (2θ) 范围 (其是在峰位置 ±0.2° 测定的)、且将得自于另一个图的衍射图峰指定角坐标 (2θ) 范围 (其是在峰位置 ±0.2° 测定的) 和如果峰位置的那些范围重叠，那么认为两个峰具有相同角坐标 (2θ)。例如，如果测定一个图的衍射图峰具有 5.20° 的峰位置，为了对比目的，允许的变化使得峰被指定在 5.00° -5.40° 范围内的位置。如果测定其它衍射图的对比峰具有 5.35° 的峰位置，并且允许的变化使得峰被指定在 5.15° -5.55° 范围内的位置，那么认为相比较的两个峰具有相同角坐标 (2θ)，这是因为在两个峰位置的范围之间有重叠。

用下面方式进行样品的单晶 X 射线衍射分析。通过将选择的单晶体
固定到带有环氧粘合剂的玻璃插脚中来制备 X 射线衍射分析样品。使用带有 APEX 面积检测器(50 kV 和 40 mA；X 射线源：Mo)的 Bruker SMART 系统收集 X 射线衍射数据。在-90°C 收集数据。

放射性标记的化合物的用途

本发明的化合物和组合物也用作诊断工具。人们广泛地认识到，通过内原性配体(例如针对组胺 H3 受体的组胺)或药物(例如，影响脑组胺水平的临床使用的药物)PET(正电子发射层析成像)sPECT 在人和动物中具有探测受体占有程度的能力。这构成了 PET 作为生物标志物的用途，用来确定用药物进行药理学干预的效果。为了这些目的，通常评述正电子-发射配体的主题和用途，例如在下列中进行了评述："PET ligands for assessing receptor occupancy in vivo" Burns 等人，Annual Reports in Medicinal Chemistry (2001)，36，267-276；"Ligand-receptor interactions as studied by PET: implications for drug development" by Jarmo Hietala, Annals of Medicine(Helsinki)(1999)，31(6)，438-443；"Positron emission tomography neuroreceptor imaging as a tool in drug discovery, research and development" Burns 等人，Current Opinion in Chemical Biology (1999)，3(4)，388-394。用 ¹¹C、¹⁸F 或其它正电子-发射同位素合成的本发明化合物是 PET 的合适配体工具; 已经合成了许多正电子-发射试剂，其是可得到的，并且本领域技术人员是已知的。为了这种用途，特别合适的本发明化合物是通过与 ¹¹CCH₃I 反应而可以结合进 ¹¹CCH₃ 基团的那些化合物。同样，该用途的特别合适的化合物是通过与 ¹⁸F-氟阴离子反应而可以结合进 ¹⁸F 基团的那些化合物。可以按照本领域技术人员已知的方法进行 ¹¹CCH₃I 的引入。按照一个方法，式(1)的化合物，其中 R¹ 是氢，可以用碱和 ¹¹CCH₃I 处理，以制备用于 PET 研究的配体。为了将 ¹⁸F 引入到本发明的化合物或组合物中，式(1)的化合物，其中 R¹ 是 1-羟乙基，可以在惰性溶剂例如二氯甲烷中用甲磺酸酐或三氟甲磺酸酐和碱处理，并且可以按照合成有机化学或药物化学领域技术人员熟知的方法，用 ¹⁸F-氟化物处理得到的化合物(甲磺酸盐或三氟甲磺酸盐)。

参考实施例

下列参考实施例描述了用于制备如实施例所述的化合物的合成，该。这种方法仅仅意在提供如何可以获得这种化合物的实施例，而不是
如何提供所需要化合物的完整明细。

参考实施例 A
(3aR,6aR)-六氢吡咯并[2,3-c]吡咯-5(1H)-羧酸乙酯二苯甲酰基-D-酒石酸盐

实施例 A1
((R)-1-苯基-乙胺基)-醋酸甲酯
将反应器中装入 10 克 R-甲基苄基胺、100 毫升 EtOAc 和 9.19 克 Et₃N。加入溴乙酸甲酯(15.15 克)，并将混合物加热至 50-60℃，保持 10 小时，同时搅拌。然后将混合物冷却至环境温度，然后用 50 毫升水、而后再 50 毫升 15% NaCl 溶液洗涤，提供 100 克乙酸乙酯溶液，其含有15克(1-苯基-乙胺基)-醋酸甲酯(96%产率)。

实施例 A2
(1-(R)-苯基-乙胺基)-醋酸
将(1-(R)-苯基-乙胺基)-醋酸甲酯溶液(21.7 克的 EtOAc 溶液)浓缩，并将残留物接纳在 24 毫升水中，回流加热 13 小时。当结束时，将混合物减压浓缩，加入 30 毫升异丙醇。将得到的沉淀过滤，用 10 毫升异丙醇冲洗，然后减压干燥，提供 2.4 克标题化合物。

实施例 A3
1-((R)-1-苯乙基)六氢吡咯并[2,3-c]吡咯-5(1H)-羧酸乙基酯
将(1-(R)-苯基-乙胺基)-醋酸(25.6 克)的 384 毫升甲苯溶液加热至 90 ℃，用 20 分钟向其中加入 170 克(1.1 当量)15.84 wt.%烯丙基-(2-氯代-乙基)-氨基甲酸乙酯(U.S.专利 No. 5,071,999)的甲苯溶液，在 90℃搅拌混合物 14 小时，然后在 95℃搅拌 12 小时。冷却后，将产物用 2 x 115 克 20%柠檬酸液提取，将柠檬酸液用 205 毫升乙酸异丙酯稀释，用 51.2 克 K₂CO₃ 的 120 克水溶液中和混合物，充分地摇动。分离各层，用 102 毫升乙酸异丙酯再次提取水层，将有机提取物合并，减压蒸馏，提供油，然后将油用 125 毫升甲醇稀释，提供 140 克(100%产率)标题化合物的 30%重量甲醇溶液形式。
实施例 A4

六氨吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯

将 5%氢氧化钯/活性炭(13.9 克, 50% w / w, 在水中)加入到压力反应器中。加入实施例 A3 的产物(506.8 克, 25.9wt% 1-((R)-1-苯乙基)六氨吡咯并[2,3-c]吡咯-5(1H)-羧酸乙酯(131.3 克)的 MeOH 溶液)，而后用甲醇冲洗(37 克)。将混合物在氢气氛围(40 psi)下加热至 50℃, 保持 4 小时。将混合物通过 Hyflo®助滤剂过滤，用 200 毫升 MeOH 冲洗，提供含有 78.9 克标题化合物的溶液。

实施例 A5

(3aR,6aR)-六氨吡咯并[2,3-c]吡咯-5(1H)-羧酸乙酯二苯甲酰基-D-酒石酸盐

将 150 克六氨吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯溶液(～11.2 %wt,在 MeOH 中)加热至 60℃。向其中加入溶于 MeOH(591 毫升+95 毫升洗液)中的 D-二苯甲酰基酒石酸一水合物(231.5 克)，在 60 ± 5℃搅拌混合物 2 小时，在此期间，出现结晶。用 6 小时将浆液冷却至 18℃，过滤收集产物，用 MeOH(2 x 330 毫升)冲洗。在 40-45℃干燥产物，提供 198 克标题化合物。手性 HPLC 分析产物的 Cbz-衍生物，表明获得的产物具有 99% ee。

实施例

参考下列实施例，可以更透彻地理解本发明的化合物和方法，这些实施例只作为举例说明用，不是限制本发明的范围。

除非另外描述，反应是在环境条件(17-27℃范围)下、在氮气氛围中进行的。除非另外描述，柱色谱是指使用硅胶进行的快速色谱，这对于有机合成领域普通技术人员是熟知的技术。

实施例 1

(3aR,6aR)-4′-(5-乙基-六氨-吡咯并[3,4-b]吡咯-1-基)-联苯-4-腈

实施例 1A

(3aR,6aR)-六氨-吡咯并[3,4-b]吡咯-1,5-二羧酸 5-苄基酯 1-叔丁基酯
将(3aR,6aR)-六氢-吡咯并[3,4-b]吡咯-1-羧酸叔丁基酯(3.0 克，12.5 毫摩尔)和 N-(苄氧基羰基氧基)-琥珀酰亚胺(3.42 克，13.7 毫摩尔)在 15 毫升二氯甲烷中混合。在室温下搅拌混合物过夜，而后真空浓缩，提供粗品。通过快速色谱纯化残余物(20%乙酸乙酯/己烷)，提供标题化合物。\(^1H\) NMR(CDCl\(_3\))  δ ppm 7.29-7.43(m, 5 H)5.13(s, 2 H)4.15-4.33(m, 1 H)3.39-3.74(m, 5 H)3.20-3.37(m, 1 H)2.84-2.96(m, 1 H)1.92-2.03(m, 1 H)1.66-1.82(m, 1 H)1.46(s, 9 H). MS:(M+H)\(^+\) = 347.

起始原料(3aR,6aR)-六氢-吡咯并[3,4-b]吡咯-1-羧酸叔丁基酯(CAS# 370880-09-4)可以如文献所述制备，例如按照 Schenke 等人，“Preparation of 2,7-Diazabicyclo[3.3.0]octanes” 美国专利 5,071,999(1991)中的方法，其提供了消旋体，可以利用手性柱色谱或非对映体盐的分级结晶来拆分消旋体，或按照 Basha 等人 “Substituted diazabicycloalkane derivatives” US 2005101602(2005)所述的方法。

实施例 1B
(3aR,6aR)-六氢-吡咯并[3,4-b]吡咯-5-羧酸苄基酯
将实施例 1A 的产物((3aR,6aR)-六氢-吡咯并[3,4-b]吡咯-1,5-二羧酸 5-苄基酯 1-叔丁基酯)(4.5 克，12.5 毫摩尔)与二氯甲烷和三氯乙酸的混合物(15 毫升/ 15 毫升)一起搅拌 2 小时。减压除去溶剂，用饱和碳酸氢钠碱化残余物，然后用二氯甲烷提取(3x)。用盐水洗涤合并的有机层，用硫酸钠干燥，过滤，减压浓缩。用柱色谱纯化残余物(0.6%氨水和 6% 甲醇/二氯甲烷)，提供标题化合物。\(^1H\) NMR(CDCl\(_3\))  δ ppm 7.28-7.40(m, 5 H)5.12(s, 2 H)3.74-3.87(m, 1 H)3.53-3.71(m, 2 H)3.36-3.48(m, 1 H)3.18-3.32(m, 1 H)3.01-3.13(m, 1 H)2.88-3.01(m, 1 H)2.70-2.83(m, 1 H)1.87-2.03(m, 1 H)1.58-1.76(m, 1 H). MS:(M+H)\(^+\) = 247.

实施例 1C
三氟-甲磺酸 4'-氨基-联苯-4-基酯
将商业购买的 4'-氨基-4'-羟基联苯溶于二氯甲烷中。加入三乙胺(2.5 当量)，并在室温下搅拌混合物。慢慢地加入三氟甲磺酸酐(1.3 当量)，并将得到的溶液搅拌 2 小时。用饱和碳酸氢钠水溶液稀释混合物，用二氯甲烷提取。用盐水洗涤有机层，用硫酸钠干燥，过滤，减压浓缩。用
柱色谱纯化残余物，提供标题化合物。$^1$H NMR (CDCl$_3$)  δ ppm 7.76(d, J=8.82 Hz, 2 H)7.66(d, J=8.82 Hz, 4 H)7.40(d, J=8.82 Hz, 2 H). MS:(M+H)$^+$= 328.

实施例 1D
(3aR,6aR)-1-(4'-氟基-联苯-4-基)-六氢-吡咯并[3,4-b]吡咯-5-羧酸苄基酯
将实施例 1B 的产物(三氟-甲磺酸 4'-氟基-联苯-4-基酯)(135 毫克, 0.55 毫摩尔)、实施例 1C 的产物(198 毫克, 0.61 毫摩尔)、乙酸钯(2.7 毫克, 0.012 毫摩尔)、外消旋-2,2'-二(二苯基膦基)-1,1'-联萘(BINAP, 20 毫克, 0.033 毫摩尔)和叔丁醇钠(80 毫克, 0.83 毫摩尔)在 1.5 毫升甲苯中混合，并在 80℃、在 N$_2$ 氛围中加热 16 小时。将混合物冷却至室温，用水稀释，用二氯甲烷提取(3x)。用硫酸钠干燥合并的有机物，浓缩，提供粗品，将粗品色谱纯化(5%甲醇/二氯甲烷)，提供标题化合物。MS:(M+H)$^+$= 424.

实施例 1E
(3aR,6aR)-4'-(六氢-吡咯并[3,4-b]吡咯-1-基)-联苯-4-腈
将实施例 1D 的产物((3aR,6aR)-1-(4'-氟基-联苯-4-基)-六氢-吡咯并[3,4-b]吡咯-5-羧酸苄基酯)(750 毫克, 1.77 毫摩尔)在 10 毫升三氟乙酸中回流 2.5 小时。浓缩溶液，用二氯甲烷研磨。将残余物再溶解在二氯甲烷中，并与碳酸氢钠粉末一起搅拌。将溶液装填在硅胶柱上，色谱纯化(二氯甲烷中的 0.6%氨水和 6%甲醇)，提供标题化合物(330 毫克, 64%)。$^1$H NMR (CDCl$_3$)  δ ppm 7.64(d, J=2.71 Hz, 4 H)7.51(d, J=8.81 Hz, 2 H)6.66(d, J=8.82 Hz, 2 H)4.07-4.17(m, 1 H)3.50-3.65(m, 1 H)3.24-3.36(m, 1 H)2.86-3.10(m, 5 H)2.15-2.29(m, 1 H)1.74-1.93(m, 1 H)。 MS:(M+H)$^+$= 290.

实施例 1F
(3aR,6aR)-4'-(5-乙基-六氢-吡咯并[3,4-b]吡咯-1-基)-联苯-4-腈
在氮气氛围中，将实施例 1E 的产物(22 毫克, 0.076 毫摩尔)溶于 2.5 毫升无水 THF 中。加入氢化钠(95%, 4 毫克, 0.167 毫摩尔)，并在室温
下搅拌混合物 1 小时。加入磷乙烷 (18 μl, 0.225 毫摩尔), 并在室温下搅拌混合物。将混合物用水稀释，用二氯甲烷提取 (3x)。用盐水洗涤合并的有机层，用硫酸钠干燥，过滤，减压浓缩。将得到的残余物用柱色谱纯化 (用 0.2%氯水和 2%甲醇在二氯甲烷中的混合物洗脱)，提供标题化合物 (11 毫克，46%)。^1H NMR (CDCl₃) δ ppm 7.64 (d, J=1.36 Hz, 4 H)7.50 (d, J=8.82 Hz, 2 H)6.65 (d, J=8.82 Hz, 2 H)4.14-4.23 (m, 1 H)3.47-3.60 (m, 1 H)3.27-3.39 (m, 1 H)2.92-3.04 (m, 1 H)2.70-2.81 (m, 1 H)2.38-2.67 (m, 5 H)2.11-2.25 (m, 1 H)1.89-2.03 (m, 1 H)1.08 (t, J=7.12 Hz, 3 H); MS (M+H)^+= 318.

实施例 2

4'-[(3aR,6aR)-5-异丙基六氢吡咯并[3,4-b]吡喃-1(2H)-基]-1,1'-联苯-4-腈

向实施例 1E 的产物 (26 毫克，0.09 毫摩尔) 的甲醇溶液 (2 毫升) 中加入丙酮 (132 μl, 1.8 毫摩尔), 并在室温下搅拌混合物 1.5 小时。加入氢氧化钠溶液 (28 毫克，0.44 毫摩尔)，并搅拌混合物过夜。将混合物用 2 毫升 1N NaOH 稀释，用二氯甲烷 (含有 5%甲醇) 提取 (3x)。用盐水洗涤合并的有机层，用硫酸钠干燥，过滤，减压浓缩。用柱色谱纯化残余物 (用 0.35%氯水和 3.5%甲醇在二氯甲烷中的混合物洗脱)，提供标题化合物。^1H NMR (CDCl₃) δ ppm 7.63 (d, J=3.74 Hz, 4 H)7.50 (d, J=9.05 Hz, 2 H)6.64 (d, J=8.73 Hz, 2 H)4.16-4.22 (m, 1 H)3.48-3.55 (m, 1 H)3.31-3.38 (m, 1 H)2.90-3.01 (m, 2 H)2.74 (t, J=7.96 Hz, 1 H)2.46-2.52 (m, 2 H)2.31-2.39 (m, 1 H)2.10-2.20 (m, 1 H)1.90-1.99 (m, 1 H)1.06 (dd, J=6.24, 1.87 Hz, 6 H); MS (M+H)^+= 332.

按照如上所述的方法制备下列化合物和实施例，只是替换不同的试剂，获得标题化合物。
<table>
<thead>
<tr>
<th>实施例</th>
<th>起始原料</th>
<th>反应方法</th>
<th>得到的化合物</th>
<th>NMR 和 MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 3</td>
<td>实施例 1E 的产物和碘代-丙烷</td>
<td>实施例 1F</td>
<td>4'-[(3aR,6a R)-5-丙基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1''-联苯-4-腈</td>
<td>$^1\text{H NMR(CDC}_3\text{)}$ δ ppm 7.64(d, J=1.70 Hz, 4 H), 7.50(d, J=8.82 Hz, 2 H), 6.64(d, J=8.82 Hz, 2 H), 4.12-4.22(m, 1 H), 3.46-3.57(m, 1 H), 3.27-3.39(m, 1 H), 2.88-3.02(m, 1 H), 2.61-2.74(m, 2 H), 2.49-2.58(m, 2 H), 2.26-2.42(m, 2 H), 2.10-2.23(m, 1 H), 1.86-2.04(m, 1 H), 1.40-1.54(m, 2 H), 0.89(t, J=7.29 Hz, 3 H); MS(M+H)$^+$=332.</td>
</tr>
<tr>
<td>实施例 4</td>
<td>实施例 1E 的产物和正丁基醚</td>
<td>实施例 2</td>
<td>4'-[(3aR,6a R)-5-丁基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1''-联苯-4-腈</td>
<td>$^1\text{H NMR(CDC}_3\text{)}$ δ ppm 7.64(d, J=2.03 Hz, 4 H), 7.50(d, J=8.81 Hz, 2 H), 6.64(d, J=8.82 Hz, 2 H), 4.13-4.25(m, 1 H), 3.46-3.59(m, 1 H), 3.27-3.40(m, 1 H), 2.87-3.04(m, 1 H), 2.49-2.77(m, 4 H), 2.29-2.46(m, 2 H), 2.12-2.24(m, 1 H), 1.86-2.03(m, 1 H), 1.23-1.49(m, J=44.07 Hz, 4 H), 0.89(t, J=7.12 Hz, 3 H); MS(M+H)$^+$=346.</td>
</tr>
<tr>
<td>实施例 5</td>
<td>实施例 1E 的产物和异丁基醚</td>
<td>实施例 2</td>
<td>4'-((3aR,6a R)-5-异丁基六氢-吡咯并[3,4-b]吡咯-1(2H)-基)-联苯-4-腈</td>
<td>$^1\text{H NMR(CDC}_3\text{)}$ δ ppm 7.64(d, J=1.36 Hz, 4 H), 7.50(d, J=8.82 Hz, 2 H), 6.64(d, J=8.82 Hz, 2 H), 4.13-4.25(m, 1 H), 3.44-3.54(m, 1 H), 3.29-3.41(m, 1 H), 2.86-2.99(m, 1 H), 2.44-2.70(m, 4 H), 2.06-2.19(m, 2 H), 1.86-2.02(m, 2 H), 1.61-1.77(m, 1 H), 0.82-0.98(m, 6 H); MS(M+H)$^+$=346.</td>
</tr>
</tbody>
</table>
实施例6

4'-[(3aR,6aR)-5-(环丙基甲基)六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-腈

<table>
<thead>
<tr>
<th>实施例2</th>
<th>实施例1E的产物和环丙基甲酸（cyclo-propionanobalcohol）</th>
<th>4'-[(3aR,6aR)-5-(环丙基甲基)六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-腈</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1H NMR(DCl₃) δ ppm: 7.64(d, J=2.76 Hz, 4H), 7.50(d, J=8.90 Hz, 2H), 6.65(d, J=8.59 Hz, 2H), 4.18-4.26(m, 1H), 3.51-3.59(m, 1H), 3.31-3.41(m, 1H), 2.87-3.09(m, 2H), 2.73-2.83(m, 1H), 2.56-2.70(m, 2H), 2.25-2.43(m, 2H), 2.12-2.23(m, 1H), 1.93-2.05(m, 1H), 0.85-0.96(m, 1H), 0.12(d, J=4.30 Hz, 2H), 0.50(d, J=7.98 Hz, 2H); MS(M+H)+ = 344.</td>
</tr>
</tbody>
</table>

实施例7

4'-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-腈

实施例7A

(3aR,6aR)-5-甲基-六氢-吲哚并[3,4-b]吲哚-1-羧酸叔丁酯

向(3aR,6aR)-六氢-吲哚并[3,4-b]吲哚-1-羧酸叔丁酯(18.31克，0.86摩尔)的甲醇溶液(450毫升)中加入多聚甲醛(52克，1.72摩尔)并在室温下搅拌混合物1小时。然后加入氯化钾，在室温下搅拌混合物10小时，用1N NaOH(450毫升)稀释，用二氯甲烷(5 x 200毫升)提取。干燥(Na₂SO₄)合的有机层，过滤，浓缩，提供目标化合物。1H NMR(300 MHz, DMSO-d₆) δ ppm: 4.18(m, 1H)3.47-3.59(m, 1H)3.34-3.46(m, 2H)2.75-2.90(m, 1H)2.71(m, 1H)2.44-2.60(m, 2H)2.29(s, 3H)1.89-2.06(m, 1H)1.65-1.81(m, 1H)1.42-1.49(m, 9H). MS:(M+H)+ = 226.

实施例 7B
(3aR,6aR)-5-甲基-六氢-吡咯并[3,4-b]吡咯
向实施例 7A 的产物(20.8 克，0.86 摩尔)的甲醇溶液 (450 毫升) 中加入 3N HCl 水溶液 (300 毫升)。在室温下搅拌混合物过夜，然后在 30°C 真空浓缩干。用 1N NaOH 水溶液处理残余物，获得 9-10 的 pH 值。将混合物浓缩至干。用色谱纯化粗品(用 10%甲醇和 1%氨水在二氯甲烷中的混合物洗脱)，提供标题化合物。\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) ppm 4.12-4.17 (m, 1 H) 3.31-3.43 (m, 1 H) 3.19-3.30 (m, 1 H) 3.12 (d, J=11.53 Hz, 1 H) 2.88-3.01 (m, 1 H) 2.69 (dd, J=9.49, 2.37 Hz, 1 H) 2.40-2.52 (m, 2 H) 2.33 (s, 3 H) 2.12-2.28 (m, 1 H) 1.82-1.95 (m, 1 H)。 MS: (M+H)^+ = 127.

实施例 7C
(3aR,6aR)-1-(4-溴-苯基)-5-甲基-六氢-吡咯并[3,4-b]吡咯
将实施例 7B 的产物(2.30 克，18.2 毫摩尔)，1,4-二溴苯(5.16 克，20.9 毫摩尔)，三(二亚苄基丙酮)异二酰(340 毫克，0.36 毫摩尔)，外消旋-2,2'-二(二苯基磷基)-1,1'-联苯(460 毫克，0.73 毫摩尔)和叔丁醇钾(2.63 克，27.3 毫摩尔)溶于 20 毫升甲苯中，并在 N\(_2\) 氛围中加热到 70°C，保持 16 小时。将混合物冷却至室温，用水稀释，用氯甲烷提取(5x)。用硫酸钠干燥合并的有机物，过滤，浓缩，色谱纯化(用 5%甲醇/二氯甲烷的混合物洗脱)，提供标题化合物。\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) ppm 7.25-7.30 (m, 2 H) 6.41-6.46 (m, 2 H) 4.07 (m, 1 H) 3.47 (dd, J=9.1, 7.7, 5.9 Hz, 1 H) 3.19 (dt, J=8.9, 7.3 Hz, 1 H) 2.95 (m, 1 H) 2.68 (dd, J=9.0, 3.0 Hz, 1 H) 2.55-2.60 (m, 3 H) 2.32 (s, 3 H) 2.13-2.22 (m, 1 H) 1.88 -1.98 (m, 1 H)。 MS: (M+H)^+ = 281/283.

实施例 7D
(3aR,6aR)-4'-(5-甲基-六氢-吡咯并[3,4-b]吡咯-1-基)联苯-4-腈
将实施例 7C 的产物(30.0 毫克，0.11 毫摩尔)，4-氯基苯基硼酸(18.8 毫克，0.13 毫摩尔)，乙酸钯(II)(1.2 毫克，0.005 毫摩尔)，2-(二环己基磷基)联苯(3.8 毫克，0.01 毫摩尔)和磷酸钾(K\(_3\)PO\(_4\))(75 毫克，0.35 毫摩尔)溶于 1 毫升甲苯、0.5 毫升异丙醇和 0.5 毫升水中。将混合物在 60°C、在 N\(_2\) 氛围中搅拌 5 小时。将混合物冷却至室温，用水稀释，用氯甲
烷提取(5x)。用硫酸钠干燥合并的有机物，过滤，浓缩，色谱纯化(用5%甲醇/二氯甲烷的混合物洗脱)，提供标题化合物(23.1毫克，71.3%)。

1H NMR(300 MHz, CDCl₃) δ ppm 7.60-7.68(m, 4 H)7.47-7.53(m, 2 H)6.61-6.68(m, 2 H)4.14-4.22(m, 1 H)3.51-3.60(m, 1 H)3.28-3.35(m, 1 H)2.93-3.01(m, 1 H)2.71-2.75(m, 1 H)2.48-2.61(m, 3 H)2.32(s, 3 H)2.14-2.25(m, 1 H)1.96(d, J=7.12 Hz, 1 H)

MS: (M+H)^+ = 281/283

按照实施例7C列出的方法制备下列化合物和实施例，只是替换不同的试剂，获得标题化合物。

### 表2：实施例8-38

<table>
<thead>
<tr>
<th>实施例</th>
<th>起始原料</th>
<th>得到的化合物</th>
<th>NMR 和 MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例8</td>
<td>实施例7C的产物和4-甲氨基苯基-硼酸</td>
<td>(3aR,6aR)-1-(4'-甲氨基-1,1'-联苯-4基)-5-甲基八氢吡咯并[3,4-b]呫咯</td>
<td>^1H NMR(CDCl₃) δ ppm 7.47(d, J=9.15 Hz, 2 H), 7.42(d, J=9.15 Hz, 2 H), 6.94(d, J=8.81 Hz, 2 H), 6.63(d, J=8.81 Hz, 2 H), 4.11-4.19(m, 1 H), 3.83(s, 3 H), 3.50-3.60(m, 1 H), 3.22-3.33(m, 1 H), 2.91-3.03(m, 1 H), 2.69-2.77(m, 1 H), 2.52-2.62(m, 3 H), 2.34(s, 3 H), 2.11-2.26(m, 1 H), 1.89-2.01(m, 1 H); MS(M+H)^+ = 309.</td>
</tr>
<tr>
<td>实施例9</td>
<td>实施例7C的产物和4-(氨基-甲基-苯基)硼酸</td>
<td>(4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]呫咯-1(2H)-基]-1,1'-联苯-4基)乙腈</td>
<td>^1H NMR(CDCl₃) δ ppm 7.55(d, J=8.48 Hz, 2 H), 7.47(d, J=8.81 Hz, 2 H), 7.34(d, J=8.48 Hz, 2 H), 6.64(d, J=8.82 Hz, 2 H), 4.12-4.23(m, 1 H), 3.76(s, 2 H), 3.49-3.63(m, 1 H), 3.24-3.36(m, 1 H), 2.90-3.08(m, 1 H), 2.70-2.80(m, 1 H), 2.51-2.64(m, 3 H), 2.35(s, 3 H), 2.10-2.25(m, 1 H), 1.89-2.02(m, 1 H); MS(M+H)^+ = 318.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7B 的产物和 4-(氯苯基)苯酮</td>
<td>1-{4'-(3aR,6aR)-5-甲基六氢呫喃并[3,4-b]呫喃-1(2H)-基}-1,1'-联苯-4-基</td>
<td>H NMR(300 MHz, CDCl₃) δ ppm 7.96-8.00(m, 2H), 7.46-7.57(m, 4 H), 6.65(m, 2 H), 4.11-4.22(m, 1H), 3.49-3.62(m, 1 H), 3.26-3.39(m, 1 H), 2.97(m, 1 H), 2.69-2.75(m, 1 H), 2.61(s, 3 H), 2.50-2.62(m, 3 H), 2.32(s, 3 H), 2.13-2.23(m, 1 H), 1.91-2.01(m, 1 H); MS(M+H)^+ = 321.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和 3-(4,4,5,5-四甲基-[1,3,2]二氧杂硼杂环戊烷-2-基)-噻唑</td>
<td>3-{4'-(3aR,6aR)-5-甲基六氢呫喃并[3,4-b]呫喃-1(2H)-基]苯并]噻唑</td>
<td>H NMR(CDCl₃) δ ppm 9.17(d, J=2.37 Hz, 1H), 8.21(d, J=2.37 Hz, 1 H), 8.10(d, J=7.80 Hz, 1H), 7.84(dd, J=8.14, 1.36 Hz, 1 H), 7.48-7.71(m, 4 H), 6.71(d, J=8.81 Hz, 2 H), 4.17-4.28(m, 1 H), 3.55-3.65(m, 1 H), 3.30-3.40(m, 1 H), 2.94-3.09(m, 1 H), 2.72-2.82(m, 1 H), 2.53-2.70(m, 3 H), 2.36(s, 3 H), 2.15-2.29(m, 1 H), 1.92-2.06(m, 1 H); MS(M+H)^+ = 330.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和 2-甲氧基-5-吡啶硼酸</td>
<td>(3aR,6aR)-1-{4-(6-甲氧基-3H-吡啶-3-基)苯并]噻唑}</td>
<td>H NMR(300 MHz, CDCl₃) δ ppm 8.33(d, J=2.03 Hz, 1 H), 7.74(dd, J=8.65, 2.54 Hz, 1 H), 7.35-7.44(m, 2 H), 6.77(d, J=9.49 Hz, 1 H), 6.61-6.68(m, 2 H), 4.10-4.21(m, 1 H), 3.96(s, 3 H), 3.50-3.58(m, 1 H), 3.23-3.31(m, 1 H), 2.90-3.03(m, 1 H), 2.55-2.77(m, 4 H), 2.33(s, 3 H), 2.12-2.25(m, 1 H), 1.88-2.03(m, 1 H); MS(M+H)^+ = 310.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和 4-(羟基甲基苯基)硼酸</td>
<td>4'-{(3aR,6aR)-5-甲基六氢呫喃并[3,4-b]呫喃-1(2H)-基]-1,1'-联苯-4-基</td>
<td>H NMR(CDCl₃) δ ppm 7.55(d, J=8.14 Hz, 2 H), 7.48(d, J=8.82 Hz, 2 H), 7.39(d, J=8.14 Hz, 2 H), 6.64(d, J=8.82 Hz, 2 H), 4.71(s, 2 H), 4.13-4.23(m, 1 H), 3.52-3.61(m, 2 H), 3.24-3.36(m, 1 H), 2.92-3.06(m, 1 H), 2.70-2.77(m, 1 H), 2.49-2.66(m, 3 H), 2.35(s, 3 H), 2.11-2.26(m, 1 H), 1.88-2.03(m, 1 H); MS(M+H)^+ = 309.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和 2- 氧基吡啶-5- 烷基-4-[3aR, 6aR]-5- 甲基六氢吡啶并 [3,4-b] 吡啶-1(2H)-苯基-1,3-苯并塞唑</td>
<td>1H NMR(300 MHz, CDCl₃)  δ ppm 8.76(d, J=2.37 Hz, 1 H), 8.19(d, J=8.14 Hz, 1 H), 7.92-8.01(m, 1 H), 7.48-7.56(m, 2 H), 6.62-6.71(m, 2 H), 4.15-4.26(m, 1 H), 3.54-3.63(m, 1 H), 3.34(m, 1 H), 2.92-3.08(m, 1 H), 2.51-2.79(m, 4 H), 2.35(s, 3 H), 2.15-2.26(m, 1 H), 1.93-2.08(m, 1 H); MS(M+H)+ = 305</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>实施例 15</td>
<td>实施例 7C 的产物和 2,6-二甲基-3-(4,4,5,5-四甲基-[1,3,2]二氧杂硼烷-2-基)-吡啶</td>
<td>1H NMR(CDCl₃)  δ ppm 7.40(d, J=7.80 Hz, 1 H), 7.17(d, J=8.81 Hz, 2 H), 7.00(d, J=7.80 Hz, 1 H), 6.62(d, J=8.81 Hz, 2 H), 4.09-4.20(m, 1 H), 3.50-3.60(m, 1 H), 3.23-3.34(m, 1 H), 2.90-3.02(m, 1 H), 2.70-2.78(m, 1 H), 2.56-2.64(m, 2 H), 2.55(s, 3 H), 2.51(s, 3 H), 2.44-2.49(m, 1 H), 2.32(s, 3 H), 2.12-2.24(m, 1 H), 1.88-2.01(m, 1 H); MS(M+H)+ = 308</td>
<td></td>
</tr>
<tr>
<td>实施例 16</td>
<td>实施例 7C 的产物和 3- 氟-4- 甲氧基苯基硼酸</td>
<td>1H NMR(CDCl₃)  δ ppm 7.42(d, J=8.82 Hz, 2 H), 7.20-7.32(m, 2 H), 6.98-7.04(m, 1 H), 6.60(d, J=8.82 Hz, 2 H), 4.26-4.38(m, 1 H), 3.91(s, 3 H), 3.78-3.90(m, 1 H), 3.35-3.36(m, 1 H), 2.32-3.45(m, 1 H), 3.07-3.24(m, 1 H), 2.68-3.03(m, 3 H), 2.56(s, 3 H), 2.13-2.30(m, 1 H), 1.91-2.10(m, 1 H); MS(M+H)+ = 327</td>
<td></td>
</tr>
<tr>
<td>实施例 17</td>
<td>实施例 7C 的产物和 2- 甲基-5-(4-[3aR, 6aR]-5- 甲基六氢吡啶并 [3,4-b] 吡啶-1(2H)-苯并塞唑</td>
<td>1H NMR(CDCl₃)  δ ppm 8.11(d, J=1.70 Hz, 1 H), 7.81(d, J=8.14 Hz, 1 H), 7.51-7.60(m, 3 H), 6.68(d, J=8.81 Hz, 2 H), 4.12-4.22(m, 1 H), 3.50-3.63(m, 1 H), 3.24-3.37(m, 1 H), 2.91-3.06(m, 1 H), 2.85(s, 3 H), 2.69-2.79(m, 1 H), 2.47-2.66(m, 3 H), 2.33(s, 3 H), 2.10-2.25(m, 1 H), 1.87-2.03(m, 1 H); MS(M+H)+ = 350</td>
<td></td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7B 产物和</td>
<td>(3aR,6aR)-1-[4-(1H-咪唑-1基)苯基]-5-甲基 八氢吡咯并[3,4-b]吡咯</td>
<td>H NMR (CDCl₃) δ ppm 7.72(s, 1 H), 7.21(d, J=9.15 Hz, 2 H), 7.15-7.18(m, 2 H), (d, J=8.81 Hz, 2 H), 4.09-4.17(m, 1 H), 3.48-3.59(m, 1 H), 3.21-3.32(m, 1 H), 2.92-3.03(m, 1 H), 2.69-2.75(m, 1 H), 2.46-2.62(m, 3 H), 2.32(s, 3 H), 2.13-2.26(m, 1 H), 1.90-2.02(m, 1 H); MS(M+H)^+ = 269.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 产物和</td>
<td>(3aR,6aR)-1-[4'-乙氧基-1',1'-联苯-4-基]-5-甲基 八氢吡咯并[3,4-b]吡咯</td>
<td>H NMR (CDCl₃) δ ppm 7.44(dd, J=8.82, 5.43 Hz, 4 H), 6.93(d, J=8.82 Hz, 2 H), 6.62(d, J=8.82 Hz, 2 H), 4.20-4.33(m, 1 H), 4.06(q, J=7.12 Hz, 2 H), 3.51-3.64(m, 1 H), 3.27-3.40(m, 1 H), 3.02-3.15(m, 1 H), 2.57-2.93(m, 4 H), 2.47(s, 3 H), 2.12-2.26(m, 1 H), 1.91-2.04(m, 1 H), 1.43(t, J=6.95 Hz, 3 H); MS(M+H)^+ = 323.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 产物和</td>
<td>(3aR,6aR)-5 -甲基-1-[4'-(甲硫基)-1',1'-联苯-4-基] 八氢吡咯并[3,4-b]吡咯</td>
<td>H NMR (CDCl₃) δ ppm 7.48(d, J=3.39 Hz, 2 H), 7.45(d, J=3.39 Hz, 2 H), 7.27-7.34(m, 2 H), 6.62(d, J=8.81 Hz, 2 H), 4.19-4.32(m, 1 H), 3.52-3.66(m, 1 H), 3.28-3.41(m, 1 H), 3.02-3.17(m, 1 H), 2.73-2.85(m, 1 H), 2.59-2.71(m, 1 H), 2.51(s, 3 H), 2.41-2.50(m, 2 H), 2.14-2.28(m, 1 H), 1.90-2.06(m, 1 H), 1.68(s, 3 H); MS(M+H)^+ = 325.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 产物和</td>
<td>(3aR,6aR)-5-甲基-1-[4-(4-吡啶-4-基苯基)-5-甲基 八氢吡咯并[3,4-b]吡咯</td>
<td>H NMR (300 MHz, CDCl₃) δ ppm 7.54-7.59(m, 2 H), 7.18-7.25(m, 4 H), 6.54-6.60(m, 2 H), 4.11-4.25(m, 1 H), 3.47-3.59(m, 1 H), 3.16-3.36(m, 1 H), 2.91-3.04(m, 1 H), 2.64(m, 4 H), 2.35(s, 3 H), 2.08-2.26(m, 1 H), 1.89-2.08(m, 1 H); MS(M+H)^+ = 280.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 产物和</td>
<td>4'-[3aR,6aR]-5-甲基六氢吡咯并[3,4-b] 吡咯-1(2H)-基]-1',1'-联苯-3-基</td>
<td>H NMR (300 MHz, CDCl₃) δ ppm 7.73-7.84(m, 2 H), 7.39-7.54(m, 4 H), 6.62-6.69(m, 2 H), 4.13-4.23(m, 1 H), 3.48-3.64(m, 1 H), 3.25-3.41(m, 1 H), 2.91-3.04(m, 1 H), 2.69-2.76(m, 1 H), 2.50-2.68(m, 3 H), 2.33(s, 3 H), 2.11-2.25(m, 1 H), 1.91-2.02(m, 1 H); MS(M+H)^+ = 304.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例7C的产物和酰胺</td>
<td>(3aR,6aR)-1-[4-(1,3-苯并二氧杂环戊烯-5-基)苯基]-5-甲基八氢吲哚并[3,4-b]吲哚</td>
<td>$^1$H NMR(CDC$_3$) δ ppm 7.39(d, J=9.15 Hz, 2H), 7.00(dd, J=10.34, 2.20 Hz, 2H), 6.84(d, J=8.48 Hz, 1H), 6.61(d, J=8.81 Hz, 2H), 5.97(s, 2H), 4.12-4.25(m, 1H), 3.50-3.62(m, 1H), 3.23-3.36(m, 1H), 2.92-3.09(m, 1H), 2.52-2.82(m, 4H), 2.38(s, 3H), 2.10-2.26(m, 1H), 1.88-2.03(m, 1H); MS(M+H)$^+$=323.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例7C的产物和吡啶-3-硼酸</td>
<td>(3aR,6aR)-5-甲基-1-[4-(\text{吡啶-3-基})苯基]-5-甲基八氢吲哚并[3,4-b]吲哚</td>
<td>1H NMR(300 MHz, CDCl$_3$) δ ppm 7.43-7.50(m, 1H), 7.17-7.25(m, 2H), 6.61-6.74(m, 2H), 6.52-6.62(m, 2H), 4.05-4.15(m, 1H), 3.45-3.56(m, 1H), 3.15-3.28(m, 1H), 2.87-3.02(m, 1H), 2.47-2.70(m, 4H), 2.30-2.34(s, 3H), 2.09-2.20(m, 1H), 1.88-1.98(m, 1H); MS(M+H)$^+$=280.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例7C的产物和2,5-二氧吡啶-3-硼酸</td>
<td>(3aR,6aR)-1-[4-(2,6-二氧吡啶-3-基)苯基]-5-甲基八氢吲哚并[3,4-b]吲哚</td>
<td>$^1$H NMR(CDC$_3$) δ ppm 7.91(dd, J=17.63, 7.80 Hz, 1H), 7.40(dd, J=8.98, 1.86 Hz, 2H), 6.86(dd, J=7.80, 3.39 Hz, 1H), 6.64(d, J=8.82 Hz, 2H), 4.12-4.20(m, 1H), 3.50-3.60(m, 1H), 3.25-3.35(m, 1H), 2.91-3.03(m, 1H), 2.69-2.76(m, 1H), 2.47-2.64(m, 3H), 2.32(s, 3H), 2.12-2.24(m, 1H), 1.89-2.01(m, 1H); MS(M+H)$^+$=316.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例7C的产物和乙酰苯硼酸</td>
<td>1-[4'-((3aR,6aR))-5-甲基六氢吲哚并[3,4-b]吲哚 -1(2H)-基]-1,1'-联苯-3-基}乙酮</td>
<td>$^1$H NMR(CDC$_3$) δ ppm 8.13(t, J=1.86 Hz, 1H), 7.84(d, J=7.46 Hz, 1H), 7.74(d, J=8.14 Hz, 1H), 7.51(t, J=8.14 Hz, 2H), 6.64(d, J=8.48 Hz, 2H), 4.28-4.42(m, 1H), 3.55-3.67(m, 1H), 3.34-3.49(m, 1H), 3.12-3.27(m, 1H), 2.69-2.98(m, 4H), 2.65(s, 3H), 2.57(s, 3H), 2.15-2.30(m, 1H), 1.94-2.11(m, 1H); MS(M+H)$^+$=321.</td>
</tr>
<tr>
<td>实施例 27</td>
<td>(3aR,6aR)-1-4'-(乙硫基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯</td>
<td>$^1$H NMR(CDCl$_3$) δ ppm 7.47(d, J=8.14 Hz, 4 H), 7.36(d, J=8.81 Hz, 2 H), 6.62(d, J=8.81 Hz, 2 H), 4.18-4.32(m, 1 H), 3.51-3.65(m, 1 H), 3.28-3.41(m, 1 H), 3.03-3.16(m, 1 H), 2.96(q, J=7.46 Hz, 2 H), 2.57-2.88(m, J=38.31 Hz, 4 H), 2.45(s, 3 H), 2.13-2.26(m, 1 H), 1.91-2.08(m, 1 H), 1.33(t, J=7.29 Hz, 3 H); MS(M+H)$^+$=339.</td>
<td></td>
</tr>
<tr>
<td>实施例 28</td>
<td>(3aR,6aR)-5-甲基-1-4'-(三氯甲基)-联苯-4-基]-1,1'-联苯-4-基]-八氢吡咯并[3,4-b]吡咯</td>
<td>$^1$H NMR(CDCl$_3$) δ ppm 7.63(s, 4 H), 7.50(d, J=8.82 Hz, 2 H), 6.65(d, J=8.82 Hz, 2 H), 4.19-4.32(m, 1 H), 3.51-3.65(m, 1 H), 3.29-3.42(m, 1 H), 3.00-3.17(m, 1 H), 2.58-2.92(m, 4 H), 2.43(s, 3 H), 2.12-2.29(m, 1 H), 1.92-2.07(m, 1 H); MS(M+H)$^+$=347.</td>
<td></td>
</tr>
<tr>
<td>实施例 29</td>
<td>(3aR,6aR)-5-甲基-1-(4'-乙烯基)-联苯-4-基]-八氢吡咯并[3,4-b]吡咯</td>
<td>$^1$H NMR(CDCl$_3$) δ ppm 7.47-7.55(m, 4 H), 7.45(d, J=8.82 Hz, 2 H), 6.74(dd, J=17.63, 10.85 Hz, 1 H), 6.63(d, J=8.82 Hz, 2 H), 5.75(d, J=17.63 Hz, 1 H), 5.22(d, J=10.85 Hz, 1 H), 4.21-4.32(m, 1 H), 3.52-3.64(m, 1 H), 3.29-3.42(m, 1 H), 3.02-3.15(m, 1 H), 2.61-2.88(m, 4 H), 2.46(s, 3 H), 2.12-2.27(m, 1 H), 1.92-2.04(m, 1 H); MS(M+H)$^+$=305.</td>
<td></td>
</tr>
<tr>
<td>实施例 30</td>
<td>(3aR,6aR)-5-甲基-1-(4'-甲基-3-硝基-苯基)-1,1'-联苯-4-基]-八氢吡咯并[3,4-b]吡咯</td>
<td>$^1$H NMR(CDCl$_3$) δ ppm 8.14(d, J=2.03 Hz, 1 H), 7.67(dd, J=7.80, 2.03 Hz, 1 H), 7.49(d, J=8.82 Hz, 2 H), 7.34(d, J=7.80 Hz, 1 H), 6.64(d, J=8.82 Hz, 2 H), 4.21-4.32(m, 1 H), 3.52-3.65(m, 1 H), 3.30-3.43(m, 1 H), 3.00-3.16(m, 1 H), 2.68-2.94(m, 4 H), 2.60(s, 3 H), 2.44(s, 3 H), 2.15-2.28(m, 1 H), 1.93-2.05(m, 1 H); MS(M+H)$^+$=338.</td>
<td></td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和</td>
<td>(3aR,6aR)-1-</td>
<td>1H NMR(CDCl₃)  δ ppm 8.22(s, 1 H), 7.37(d, J=8.82 Hz, 2 H), 6.62(d, J=8.82 Hz, 2 H), 4.11-4.24(m, 1 H), 4.02(s, 3 H), 4.01(s, 3 H), 3.50-3.61(m, 1 H), 3.24-3.35(m, 1 H), 2.93-3.05(m, 1 H), 2.69-2.79(m, 2 H), 2.53-2.64(m, 2 H), 2.35(s, 3 H), 2.11-2.25(m, 1 H), 1.90-2.03(m, 1 H); MS(M+H)^+ = 341</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和</td>
<td>(3aR,6aR)-1-</td>
<td>1H NMR(300 MHz, CDCl₃)  δ ppm 7.40-7.50(m, 4 H), 7.02-7.11(m, 2 H), 6.58-6.67(m, 2 H), 4.13-4.26(m, 1 H), 3.50-3.63(m, 1 H), 3.24-3.37(m, 1 H), 3.01(m, 1 H), 2.56-2.79(m, 4 H), 2.38(s, 3 H), 2.11-2.25(m, 1 H), 1.91-2.01(m, 1 H); MS(M+H)^+ = 297.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和</td>
<td>(3aR,6aR)-5-</td>
<td>1H NMR(CDCl₃)  δ ppm 8.01(d, J=8.48 Hz, 1 H), 7.88(d, J=9.16 Hz, 1 H), 7.80(d, J=8.14 Hz, 1 H), 7.40-7.53(m, 4 H), 7.38(d, J=8.82 Hz, 2 H), 6.69(d, J=8.48 Hz, 2 H), 4.21-4.30(m, 1 H), 3.55-3.66(m, 1 H), 3.32-3.42(m, 1 H), 2.99-3.10(m, 1 H), 2.57-2.93(m, 4 H), 2.41(s, 3 H), 2.14-2.27(m, 1 H), 1.97-2.06(m, 1 H); MS(M+H)^+ = 329</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和</td>
<td>{4'-[(3aR,6aR)</td>
<td>1H NMR(CDCl₃)  δ ppm 7.55(s, 1 H), 7.46-7.52(m, 4 H), 7.39(t, J=7.63 Hz, 1 H), 6.64(d, J=8.82 Hz, 2 H), 4.74(d, J=5.76 Hz, 2 H), 4.13-4.24(m, 1 H), 3.50-3.62(m, 1 H), 3.23-3.39(m, 1 H), 2.92-3.08(m, 1 H), 2.69-2.80(m, 2 H), 2.52-2.66(m, 2 H), 2.37(s, 3 H), 2.12-2.27(m, 1 H), 1.89-2.06(m, 1 H); MS(M+H)^+ = 309</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和二苯并呋喃-2-硼酸</td>
<td>(3aR,6aR)-1-(4-二苯并[b,d]呋喃-4-基苯基)-5-甲基八氢吡咯并[3,4-b]吡咯</td>
<td>(^1)H NMR(CDC(_3)) (\delta) ppm 7.98(d, J=6.78 Hz, 1 H), 7.80-7.90(m, 2 H), 7.52-7.65(m, 2 H), 7.31-7.50(m, 4 H), 6.69-6.78(m, 2 H), 4.21-4.34(m, 1 H), 3.55-3.67(m, 1 H), 3.33-3.47(m, 1 H), 2.97-3.13(m, 1 H), 2.75-2.90(m, 2 H), 2.54-2.70(m, 2 H), 2.41(d, J=1.36 Hz, 3 H), 2.14-2.29(m, 1 H), 1.93-2.05(m, 1 H); MS(M+H)^+ = 369</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和 3-(三氯甲基)苯基硼酸</td>
<td>(3aR,6aR)-5-甲基-1-(3′-三氯甲基-联苯-4-基)-八氢-吡咯并 [3,4-b] 吡咯</td>
<td>(^1)H NMR(CDC(_3)) (\delta) ppm 7.77(s, 1 H), 7.71(d, J=1.36 Hz, 1 H), 7.50(d, J=2.03 Hz, 2 H), 7.47(d, J=1.36 Hz, 2 H), 6.65(d, J=8.82 Hz, 2 H), 4.18-4.28(m, 1 H), 3.52-3.63(m, 1 H), 3.29-3.40(m, 1 H), 2.97-3.10(m, 1 H), 2.71-2.82(m, 2 H), 2.56-2.69(m, 2 H), 2.39(s, 3 H), 2.12-2.28(m, 1 H), 1.91-2.05(m, 1 H); MS(M+H)^+ = 347</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和 4-氯-3-甲基-苯基硼酸</td>
<td>(3aR,6aR)-1-(4′-氯-3′-甲基-1′,1′-联苯-4-基)-5-甲基 八氢吡咯并 [3,4-b] 吡咯</td>
<td>(^1)H NMR(CDC(_3)) (\delta) ppm 7.45(d, J=8.14 Hz, 2 H), 7.29-7.36(m, 2 H), 6.99-7.08(m, 1 H), 6.59(d, J=8.82 Hz, 2 H), 4.52-4.61(m, 1 H), 4.21-4.36(m, 1 H), 3.87-4.02(m, 2 H), 3.55-3.64(m, 2 H), 3.00-3.51(m, 1 H), 2.83(s, 3 H), 2.61-2.78(m, 1 H), 2.33(s, 3 H), 2.18-2.29(m, 1 H), 1.91-2.02(m, 1 H); MS(M+H)^+ = 311</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例 7C 的产物和 2-萘硼酸</td>
<td>(3aR,6aR)-5-甲基-1-[4-(2-萘基)苯基] 八氢吡咯并 [3,4-b] 吡咯</td>
<td>(^1)H NMR(CDC(_3)) (\delta) ppm 7.97(d, J=1.70 Hz, 1 H), 7.80-7.89(m, 3 H), 7.72(dd, J=8.48, 1.70 Hz, 1 H), 7.63(d, J=8.82 Hz, 2 H), 7.39-7.51(m, 2 H), 6.68(d, J=8.48 Hz, 2 H), 4.24-4.34(m, 1 H), 3.55-3.67(m, 1 H), 3.32-3.43(m, 1 H), 3.04-3.17(m, 1 H), 2.62-2.87(m, 4 H), 2.48(s, 3 H), 2.14-2.30(m, 1 H), 1.93-2.07(m, 1 H); MS(M+H)^+ = 329</td>
</tr>
</tbody>
</table>
实施例 39

(1E)-1-\{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-
联苯-4-基\}乙酮肟

向实施例 10 的产物化合物 (20.0 毫克，0.062 毫摩尔) 的 1 毫升乙醇
和吡啶溶液 (50 微升，0.62 毫摩尔) 中加入盐酸羟胺 (6.5 毫克，0.094 毫摩尔).
将混合物在 80°C、在 N2 气氛中搅拌 6 小时，减压除去溶剂。用色
谱纯化残余物 (用 0.25% 氨水和 2.5% 甲醇在二氯甲烷中的混合物洗脱)，
提供标题化合物。\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) ppm 7.44-7.67 (m, 6
H) 6.64 (d, J=8.82 Hz, 2 H) 4.14-4.26 (m, 1 H) 3.01-3.60 (m, 1 H) 2.89-3.04 (m, 2 H)
2.67-2.83 (m, 2 H) 2.55-2.61 (m, 2 H) 2.35 (s, 3 H) 2.30 (s, 3 H) 2.16-2.25 (m, 1 H)
1.89-2.05 (m, 1 H); MS (M+H)+ = 336.

实施例 40

1-\{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-
联苯
-4-基\}乙酮

向实施例 10 (35.0 毫克，0.11 毫摩尔) 的 2 毫升甲醇溶液中加入硼氢
化钠 (16.8 毫克，0.44 毫摩尔)。将混合物在室温下搅拌 24 小时，用水稀释，
用二氯甲烷提取 (5x)。用硫酸钠干燥合并的有机物，过滤，减压浓
缩，色谱纯化 (用 0.25% 氨水和 2.5% 甲醇在二氯甲烷中的混合物洗脱)，
提供标题化合物。\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) ppm 7.36-7.63 (m, 6
H) 6.63 (d, J=7.46 Hz, 2 H) 4.93 (q, J=6.44 Hz, 1 H) 4.14-4.27 (m, 1 H)
3.49-3.67 (m, 1 H) 3.25-3.37 (m, 1 H) 2.93-3.10 (m, 1 H) 2.54-2.81 (m,
J=41.03 Hz, 4 H) 2.39 (s, 3 H) 2.12-2.24 (m, 1 H) 1.97 (dd, J=12.38, 6.27 Hz, 1
H) 1.53 (d, J=6.44 Hz, 3 H); MS (M+H)+ = 323.

实施例 41

2-\{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-
联苯
-4-基\}哒嗪-3(2H)-酮

实施例 41A

(3aR,6aR)-1-(4'-溴-联苯-4-基)-5-甲基-八氢-吡咯并[3,4-b]吡咯
按照实施例 7C 描述的方法制备标题化合物，用 1,4-二溴苯替换 4,4'-
二溴联苯。\(^1\)H NMR(300 MHz, CDCl\(_3\)) ppm 7.39-7.53(m, 6 H) 6.60-6.66(m, 2 H) 4.17-4.23(m, 1 H) 3.52-3.61(m, 1 H) 3.26-3.35(m, 1 H) 2.98-3.05(m, 1 H) 2.70-2.80(m, 2 H) 2.58-2.64(m, 2 H) 2.38(s, 3 H) 2.15-2.26(m, 1 H) 1.97(m, 1 H). MS:(M+H)^+ = 357/359.

实施例 41B
2-{4'-(3a'R,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮

将实施例 41A 的产物(4.54 克, 12.6 毫摩尔), 3(2H)-哒嗪酮(2.41 克, 25.2 毫摩尔), 甲醇(25.2 毫摩尔)和碳酸钾(5.21 克, 37.7 毫摩尔)溶于 63 毫升噻唑中, 并在 150°C 下在 N\(_2\) 芳香中加热 48 小时。将混合物冷却至室温, 用乙醚(15 毫升)稀释, 过滤 CELITE® 过滤。减压浓缩滤液, 色谱纯化残余物(首先用乙醚洗脱, 后用氯甲烷, 然后用 5%甲醇/二氯甲烷的混合物洗脱), 提供标题化合物。\(^1\)H NMR(300 MHz, CDCl\(_3\)) δ ppm 7.91(dd, J=3.73, 1.70 Hz, 1 H) 7.61-7.65(m, 4 H) 7.51(d, J=8.48 Hz, 2 H) 7.25(dd, dd, J=9.40, 4.07 Hz, 1 H) 7.07(dd, J=9.49, 1.70 Hz, 1 H) 6.94(d, J=8.81 Hz, 2 H) 4.19-4.27(m, 1 H) 3.54-3.64(m, 1 H) 3.28-3.38(m, 1 H) 3.00-3.11(m, 1 H) 2.56-2.85(m, 4 H) 2.40(s, 3 H) 2.10-2.29(m, 1 H) 1.89-2.05(m, J=6.78 Hz, 1 H); MS(M+H)^+ = 373.

获得的固体(3aR,6aR)-2-{4'-(5-甲基-六氢-吲哚并[3,4-b]吲哚-1-基]-联苯-4-基}-2H-哒嗪-3-酮显示了 204-207°C(dec)的熔化范围。向(3aR,6aR)-2-{4'-(5-甲基-六氢-吲哚并[3,4-b]吲哚-1-基]-联苯-4-基}-2H-哒嗪-3-酮的甲醇溶液中加入 D(-)-酒石酸; 过滤收集形成的固体, 干燥, 得到 m.p. 218-221°C的固体。同样地, 用 L(+)-酒石酸处理(3aR,6aR)-2-{4'-(5-甲基-六氢-吲哚并[3,4-b]吲哚-1-基]-联苯-4-基}-2H-哒嗪-3-的甲醇溶液, 后浓缩溶液, 加入乙醚, 得到 m.p. 206-209°C的固体。将(3aR,6aR)-2-{4'-(5-甲基-六氢-吲哚并[3,4-b]吲哚-1-基]-联苯-4-基}-2H-哒嗪-3-的甲醇溶液用磷酸处理后浓缩溶液, 得到 m.p. 224-229°C的固体。用水杨酸处理(3aR,6aR)-2-{4'-(5-甲基-六氢-吲哚并[3,4-b]吲哚-1-基]-联苯-4-基}-2H-哒嗪-3-的甲醇溶液, 后浓缩溶液, 加入乙醚和己烷, 得到 m.p. 115-118°C的固体。用抗坏血酸处理(3aR,6aR)-2-{4'-(5-甲基-六氢-吲哚并[3,4-b]吲哚-1-基]-联苯-4-基}-2H-哒嗪-3-的甲醇溶液, 后浓缩溶液, 加入乙醚和己烷, 得到 m.p. 163-167
℃的固体。用硫酸处理(3aR,6aR)-2-[4\'-(5-甲基-六氢-吡咯并[3,4-b]吡咯-1-基)-联苯-4-基]-2H-啶嗪-3-的甲醇溶液，而后浓缩溶液，加入乙醚，得到m.p. 232-235℃的固体。

或者，可以按照下列制备(3aR,6aR)-2-[4\'-(5-甲基-六氢-吡咯并[3,4-b]吡咯-1-基)-联苯-4-基]-2H-啶嗪-3-酮，实施例 41B 的产物：

实施例 41C

(3aR,6aR)-六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯

将实施例 A5 的产物(205 克)和 CH₂Cl₂(1 升)合并，并冷却至 0℃。将 1.54 升 20% KOH 溶液冷却至 0℃，然后慢慢地加入到盐浆状物中，在 0℃大力搅拌二相反应混合物。2.75 小时之后，分离各层，用 CH₂Cl₂(1 升)提取水层。合并有机层，减压浓缩，然后用甲苯(1.6 升)追踪( chased)，提供 386 克 19 wt%产物溶液(100%)。

实施例 41D

(3aR,6aR)-1-(4'-溴-1,1'-联苯-4-基)六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯

向含有 4,4'-二溴联苯(12.48 克，2.0 当量)和碳酸铯(13.04 克，2.0 eq)的容器中加入实施例 41C 的产物(17.9 wt%，20.6 克，1.0 eq)，而后将容器排气并吹扫。通过在独立的容器中将 Xantphos(0.77 克，0.067 eq)和乙酸钯(II)(0.22 克，0.049 eq)混合来制备催化剂溶液，脱气，而后加入 17.3 克甲苯，同时搅拌。

将催化剂溶液加入到含有 4,4'-二溴联苯、碳酸铯和实施例 41C 的产物的容器中，将混合物加热至 98℃，保持 12 小时。将混合物冷却至 20℃，加入 80 克二氯甲烷。搅拌得到的混合物，而后过滤除去催化剂。减压浓缩得到的溶液，用柱色谱纯化残余物，获得 5.65 克标题化合物。

实施例 41E

(3aR,6aR)-1-[4\'-(6-氮代啶嗪-1(6H)-基)-1,1'-联苯-4-基]六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯

在环境温度下，将 1.98 克碘化亚铜(I)(10.4 毫摩尔，0.10 eq)、1.66 克 8-羟基喹啉(11.44 毫摩尔，0.11 eq)、4.0 克碳酸钾(28.94 毫摩尔，0.29
eq)的混合物在 18.8 克二甲基甲酰胺(DMF)中混合。将混合物加入到含有 41.6 克实施例 41D 的产物(100.16 毫摩尔, 1.00 eq)、23.6 克碳酸钾(170.75 毫摩尔, 1.70 eq)和 14.4 克唑噻酮(149.86 毫摩尔, 1.50 eq)的另一个烧瓶中。将额外的 DMF(226 克)用于转移催化剂浆。将得到的混合物去氧，然后加热到 140℃，保持大约 18 小时。冷却至环境温度后，将混合物用 567 克 THF 和 384 克 10% 氯化钠溶液稀释。过滤混合物，除去过量盐，分离水相，用额外的 177 克 THF 进行反萃取。然后用 10% 氯化钠溶液(3x384 克)洗涤合并的有机相。减压浓缩有机相，加入甲醇(253 克)，减压浓缩内含物。加入额外的甲醇(158 克)之后，将内含物冷却至 0℃，过滤，用冷甲醇洗涤。将得到的固体转入真空烘箱中，获得 35.31 克(81.9% 产率)。质谱: 431.5(m.w. 430.5)。1H NMR(400 MHz, DMSO-d6)δ ppm 1.15(s, 3 H), 1.78-1.88(m, 1 H), 2.10(ddd, J=12.49, 6.17, 6.04 Hz, 1 H), 3.03(s, 1 H), 3.24-3.35(m, 5 H), 3.53(ddd, J=9.23, 6.86, 6.69 Hz, 2 H), 3.67(s, 1 H), 4.00(s, 2 H), 4.22(s, 1 H), 6.63(d, J=8.51 Hz, 2 H), 7.07(dd, J=9.47, 1.51 Hz, 1 H), 7.48(dd, J=9.47, 3.84 Hz, 1 H), 7.53-7.60(m, 4 H), 7.68(d, J=8.64 Hz, 2 H), 8.06(dd, J=3.84, 1.51 Hz, 1 H)。13C NMR(100 MHz, DMSO-d6)δ ppm 14.79(CH3), 28.89(CH2), 47.71(CH2), 60.24(CH2), 112.34(CH), 124.87(CH), 125.27(CH), 126.02(C), 126.89(CH), 130.05(CH), 131.69(CH), 136.87(CH), 138.78(C), 139.31(C), 145.61(C), 153.53(C), 158.64(C)。

实施例 41F

2-4'-(3aR,6aR)-六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基 哚嗪-3(2H)-酮

将实施例 41E 产物(7.50 克, 17.42 毫摩尔)的 33% HBr/醋酸(37 毫升, 205.57 毫摩尔, 11.8 当量)的混合物加热至 65-70℃，保持至少 6 小时，同时通过 HPLC 分析检测完成状况。当反应完成时，将混合物冷却至不超过 45℃，用甲醇(111 毫升)稀释。将混合物冷却至 20-25℃，过滤收集产物，用新的甲醇(50 毫升)洗涤。将湿滤饼在不超过 55℃的真空烘箱中干燥，提供标题化合物(7.25 克, 94.8%)。

实施例 41G
2-[4′-(3aR,6aR)-(5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基)-1,1′-联苯-4-基]噻嗪-3(2H)-酮

向实施例 41F 产物(13.80 克, 31.41 毫摩尔)的二甲基乙酰胺(500 毫升)搅拌溶液中加入 37%甲醛水溶液(7.2 毫升, 94.23 毫摩尔, 3.0 当量)，而后再加入三乙酰氧化硫氢化钠(20.0 克, 94.23 毫摩尔, 3.0 当量)。在 25+/−5℃搅拌混合物 30 分钟，在此期间，起始原料耗尽，得到澄清溶液。将混合物用 1N HCl(94 毫升, 94 毫摩尔, 3 当量)稀释，并搅拌一小时。用 1N NaOH(335 毫升)将混合物调节至 pH 值 9.0+/−0.5。搅拌混合物 1 小时，然后过滤。用水洗涤湿滤饼，在真空烘箱中、在大约 50℃干燥，提供标题化合物(10.40 克, 88.9%)。实施例 41H

2-[4′-(3aR,6aR)-(5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基)-1,1′-联苯-4-基]噻嗪-3(2H)-酮 L-酒石酸盐

将 3.45 克 L-酒石酸(1.07 eq)的 56 克水溶液加入到含有 8.00 克实施例 41G 产物的无水乙醇(44 克)溶液的烧瓶中。回流加热混合物，30 分钟之后，大部分固体溶解。将混合物以每小时 5℃的速度冷却至 60℃，而后冷却至环境温度过夜。将混合物冷却至-15℃后，过滤产物浆液，在 45-50℃干燥过夜，提供标题化合物(10.64 克, 94.8%)。

实施例 42

(3aR,6aR)-5-甲基-1-(4′-嘧啶-5-基-1,1′-联苯-4-基)八氢吡咯并[3,4-b]吡咯

按照实施例 7D 描述的方法制备标题化合物，用实施例 41A 的产物替换实施例 7C 的产物，用嘧啶-5-硼酸替换 4-氟苯甲酰酸。\(^1\)\(^\text{H}\) NMR(300 MHz, CDCl\(_3\)) ppm 9.19(s, 1 H)8.99(s, 2 H)7.62-7.74(m, 4 H)7.52-7.58(m, 2 H)6.63-6.70(m, 2 H)4.20-4.31(m, 1 H)3.55-3.67(m, 1 H)3.30-3.42(m, 1 H)2.99-3.14(m, 1 H)2.60-2.84(m, 4 H)2.42(s, 3 H)2.16-2.26(m, 1 H)1.95-2.05(m, 1 H); MS(M+H\(^+\)) = 357.

按照实施例 42 列出的方法制备下列化合物和实施例，只是替换不同的试剂，获得标题化合物。
表3：实施例43-47

<table>
<thead>
<tr>
<th>实施例</th>
<th>起始原料</th>
<th>得到的化合物</th>
<th>NMR 和 MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例43</td>
<td>实施例41A的产物和3-氯基苯基硼酸</td>
<td>4&quot;-[(3aR,6aR)-5-甲基六氢吲哚并[3,4-b]吲哚-1(2H)-基]-1,1'-4',1&quot;-三联苯-3-腈</td>
<td></td>
</tr>
<tr>
<td>实施例44</td>
<td>实施例41A的产物和2-氯吲哚-5-硼酸</td>
<td>(3aR,6aR)-1-[4&quot;-(6-氯吲哚-3-基)-1,1'-联苯-4-基]-5-甲基八氢吲哚并[3,4-b]吲哚</td>
<td></td>
</tr>
<tr>
<td>实施例45</td>
<td>实施例41A的产物和2,6-二甲基吲哚-5-硼酸酰胺</td>
<td>(3aR,6aR)-1-[4&quot;-(2,6-二甲基吲哚-3-基)-1,1'-联苯-4-基]-5-甲基八氢吲哚并[3,4-b]吲哚</td>
<td></td>
</tr>
<tr>
<td>实施例46</td>
<td>实施例41A的产物和2-氯吲哚-5-硼酸</td>
<td>(3aR,6aR)-1-[4&quot;-(6-氯代吲哚-3-基)-1,1'-联苯-4-基]-5-甲基八氢吲哚并[3,4-b]吲哚</td>
<td></td>
</tr>
</tbody>
</table>

\[ ^1H \text{NMR (300 MHz, } CDCl_3) \delta \text{ ppm} \]

- 实施例43: 7.82-7.91 (m, 2 H), 7.47-7.68 (m, 8 H), 6.61-6.70 (m, 2 H), 4.20-4.33 (m, 1 H), 3.53-3.66 (m, 1 H), 3.28-3.43 (m, 1 H), 3.00-3.19 (m, 1 H), 2.61-2.91 (m, 4 H), 2.44 (s, 3 H), 2.15-2.28 (m, 1 H), 2.03 (d, 1 H); MS(M+H)^+ = 380.

- 实施例44: 8.43 (dd, J=18.14, 2.54 Hz, 1 H), 7.92-8.04 (m, 1 H), 7.33-7.71 (m, 6 H), 6.97-7.09 (m, 1 H), 6.62-6.86 (m, 2 H), 4.18-4.31 (m, 1 H), 3.54-3.67 (m, 1 H), 3.26-3.41 (m, 1 H), 2.96-3.16 (m, 1 H), 2.56-2.89 (m, 4 H), 2.43 (s, 3 H), 2.12-2.27 (m, 1 H), 1.95-2.07 (m, 1 H); MS(M+H)^+ = 374.

- 实施例45: 7.28-7.85 (m, 7 H), 7.02-7.07 (m, 1 H), 6.59-6.68 (m, 2 H), 4.15-4.28 (m, 1 H), 3.54-3.65 (m, 1 H), 3.30-3.36 (m, 1 H), 2.95-3.09 (m, 1 H), 2.51-2.59 (4, 3 H), 2.57 (6, 3 H), 2.48 (s, 3 H), 2.13-2.23 (m, 1 H), 1.94-2.08 (m, 1 H); MS(M+H)^+ = 384.

- 实施例46: 8.68 (s, 1 H), 8.52 (d, J=4.75 Hz, 1 H), 7.33-7.72 (m, 6 H), 6.61-6.69 (m, 3 H), 4.17-4.34 (m, 1 H), 3.54-3.68 (m, 1 H), 3.28-3.41 (m, 1 H), 2.95-3.17 (m, 1 H), 2.54-2.82 (m, 4 H), 2.41 (s, 3 H), 2.16-2.27 (m, 1 H), 1.90-2.05 (m, 1 H); MS(M+H)^+ = 390.
<table>
<thead>
<tr>
<th>实施例 47</th>
<th>实施例 47A 产物和 4-氯基苯基硼酸</th>
<th>4&quot;-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1',1'-4&quot;,1&quot;-三联苯-4-腈</th>
<th>H NMR (300 MHz, CDCl₃) δ ppm 7.72 (s, 4 H), 7.59-7.69 (m, 4 H), 7.54 (d, J=8.81 Hz, 2 H), 6.66 (d, J=8.81 Hz, 2 H), 4.20-4.30 (m, 1 H), 3.52-3.66 (m, 1 H), 3.29-3.43 (m, 1 H), 2.97-3.14 (m, 1 H), 2.59-2.84 (m, 4 H), 2.42 (s, 3 H), 2.12-2.27 (m, 1 H), 1.93-2.06 (m, 1 H); MS(M+H)+ = 380.</th>
</tr>
</thead>
</table>

实施例 48

6-(4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哌嗪-1-基)烟氮

实施例 48A

6-哌嗪-1-基-烟氮

将 6-氯烟氮(500 毫克, 3.61 毫摩尔)和哌嗪(930 毫克, 10.8 毫摩尔)溶于 20 毫升乙腈中,并在 60℃、在 N₂ 氛围中加热 5 小时。将混合物冷却至室温,用水稀释, 用二氯甲烷提取(5x)。用硫酸钠干燥合并的有机物, 过滤, 浓缩, 提供标题化合物。H NMR (300 MHz, CDCl₃) δ 8.40 (d, J=1.70 Hz, 1 H)7.60 (dd, J=8.81, 2.37 Hz, 1 H)6.59 (d, J=8.48 Hz, 1 H)3.57-3.75 (m, 4 H)2.91-3.05 (m, 4 H); MS(M+H)+ = 189.

实施例 48B

(3aR,6aR)-6-[(4-(5-甲基-六氢-吡咯并[3,4-b]吡咯-1-基)-苯基]哌嗪-1-基}-烟氮

将实施例 7C 的产物(281.2 毫克, 1.0 毫摩尔)、实施例 48A 的产物(226 毫克, 1.2 毫摩尔)、三(二亚苄基丙酮)二钯(18.3 毫克, 0.02 毫摩尔)、外消旋-2',2'-二(二苯基膦基)-1',1'-联苯(25.0 毫克, 0.04 毫摩尔)和叔丁醇钠(145 毫克, 1.5 毫摩尔)溶于 5 毫升甲苯中,并在 70℃、在 N₂ 氛围中加热 24 小时。将混合物冷却至室温,用水稀释, 用二氯甲烷提取(5x)。用硫酸钠干燥合并的有机物, 过滤, 减压浓缩, 色谱纯化(用 5%甲醇/二氯甲烷的混合物洗脱), 提供标题化合物。H NMR (300 MHz, CDCl₃) δ ppm 8.43 (d, J=1.70 Hz, 1 H)7.62 (dd, J=8.98, 2.20 Hz, 1 H)6.92 (d, J=8.81 Hz, 1 H)6.43 (d, J=8.48 Hz, 1 H)5.80 (s, 1 H)4.96-5.07 (m, 1 H)4.07-4.16 (m, 2 H)3.96-4.07 (m, 2 H); MS(M+H)+ = 219.
实施例 49

(3aR,6aR)-1-{4-[4-(6-氯哌嗪-3-基)哌嗪-1-基]苯基}-5-甲基八氢吡咯并[3,4-b]吡咯

实施例 49A

(3aR,6aR)-1-{4-[4-(5-甲基-六氢-吡咯并[3,4-b]吡咯-1-基)-苯基]-哌嗪-1-基}-乙酮

将实施例 7C 的产物(500 毫克，1.78 毫摩尔)、1-乙酰基哌嗪(274 毫克，2.13 毫摩尔)、三(二亚苄基丙酮)二钯(32.6 毫克，0.036 毫摩尔)、(r)-(+)-2,2'-双(二苯基膦基)-1,1'-联苯(44.3 毫克，0.071 毫摩尔)、叔丁醇钠(256 毫克，2.67 毫摩尔)和 5 毫升甲苯在 N₂ 氛围中、在 Emrys 处理管瓶中混合。密封管瓶，然后在微波中，在 150℃加热 20 分钟，使用 Emrys Creator 微波反应器。将混合物用水稀释，用二氯甲烷提取(4x)。用盐水洗涤合并的有机层，用硫酸钠干燥，过滤，减压浓缩，用柱色谱纯化(用 10%甲醇和 1%氨水在二氯甲烷中的混合物洗脱)，提供标题化合物。\(^1\)H NMR(300 MHz, CDCl₃) δ ppm 6.87-6.91(m, 2 H)6.53-6.60(m, 2 H)4.05-4.07(m, 1 H)3.73-3.79(m, 2 H)3.57-3.63(m, 2 H)3.46-3.54(m, 1 H)3.12-3.20(m, 1 H)2.96-3.03(m, 4 H)2.56-2.71(m, 5 H)2.34(s, 3 H)2.14-2.18(m, 1 H)2.13(s, 3 H)1.87-1.97(m, 1 H)。 MS(M+H)^{+} = 329.

实施例 49B

(3aR,6aR)-5-甲基-1-{4-哌噁嗪-1-基-苯基}-八氢-吡咯并[3,4-b]吡咯

将实施例 49A 的产物(300 毫克，0.91 毫摩尔)溶于 6 毫升 2N 盐酸和 3 毫升甲醇中，在 60℃搅拌 3 小时。将混合物减压浓缩至干，用水稀释，用二氯甲烷提取(4x)。用硫酸钠干燥合并的有机层，过滤，减压浓缩，用柱色谱纯化(用 10%甲醇和 1%氨水在二氯甲烷中的混合物洗脱)，提供标题化合物。\(^1\)H NMR(300 MHz, CDCl₃) δ ppm 6.84-6.94(m, 2
实施例 49C
(3aR,6aR)-1-{4-[4-(4-氯-哒嗪-3-基)-哒嗪-1-基]-苯基}-5-甲基-八氢-吡咯并[3,4-b]吡咯

将实施例 49B 的产物(30 毫克，0.105 摩尔)、3.6-二氯哒嗪(18.8 毫克，0.126 毫摩尔)和三乙胺(45 毫升，0.036 摩尔)溶于 1 毫升乙腈中，并在 60℃、在 N₂ 氛围中加热 24 小时。将混合物冷却至室温，用水淬灭，用二氯甲烷提取(5x)。用硫酸钠干燥合并的有机物，过滤，减压浓缩，色谱纯化(用 0.5%氨水和 5%甲醇在二氯甲烷中的混合物洗脱)，提供标题化合物。¹H NMR(300 MHz, CDCl₃) δ ppm 7.24(s, 1 H)7.21(s, 1 H)6.91-6.96(m, 2 H)6.53-6.58(m, 2 H)4.13-4.21(m, 1 H)3.72-3.83(m, 4 H)3.50-3.61(m, 1 H)3.36-3.45(m, 1 H)3.11-3.19(m, 4 H)2.99-3.08(m, 1 H)2.60-2.80(m, 4 H)2.46(s, 3 H)2.13-2.23(m, 1 H)1.89-2.04(m, 1 H); MS:(M+H)⁺=287.

实施例 50
(3aR,6aR)-5-甲基-1-{4-[4-(1,3-噻唑-2-基)哒嗪-1-基]苯基}八氢吡咯并[3,4-b]吡咯

将实施例 49B 的产物(50 毫克，0.175 摩尔)，2-溴哒嗪(35 毫克，0.21 毫摩尔)和三(2-亚苄基丙酮)二钯(3.2 毫克，0.0035 摩尔)、外消旋-2,2'-双(二苯基膦基)-1,1'-联萘(4.4 毫克，0.007 摩尔)和叔丁醇钠(25.2 毫克，1.5 毫摩尔)溶于 1 毫升甲苯中，并在 80℃、在 N₂ 氛围中加热 24 小时。将混合物冷却至室温，用水稀释，用二氯甲烷提取(5x)。用硫酸钠干燥合并的有机物，过滤，减压浓缩，色谱纯化(用 5%甲醇/二氯甲烷的混合物洗脱)，提供标题化合物。¹H NMR(300 MHz, CDCl₃) δ ppm 7.22(d, J=3.73 Hz, 1 H)6.88-6.96(m, 2 H)6.59(d, J=3.73 Hz, 1 H)6.50-6.58(m, 2 H)4.06-4.22(m, 1 H)3.60-3.69(m, 4 H)3.48-3.58(m, 1 H)3.17-3.27(m, 1 H)3.11-3.17(m, 4 H)2.95-3.07(m, 1 H)2.61-2.71(m, 4
H) 2.41(s, 3 H) 2.10-2.22(m, 1 H) 1.93-1.97(m, 1 H); MS(M+H)^+ = 370.

按照上面列出的方法制备下列化合物和实施例，只是替换不同的试剂，获得标题化合物。

表 4：实施例 51-66

<table>
<thead>
<tr>
<th>实施例</th>
<th>起始原料</th>
<th>反应方法</th>
<th>得到的化合物</th>
<th>NMR 和 MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 51</td>
<td>实施例 7C 的产物和 1(2-吡啶基) 喹啉</td>
<td>实施例 48B</td>
<td>(3aR,6aR)-5-甲基-1-[4-(4-吡啶-2-基)喹啉-1-基]苯基</td>
<td>^1H NMR(300 MHz, CDCl₃) δ ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.17-8.25(m, 1 H), 7.44-7.54(m, 1 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.87-7.01(m, 2 H), 6.60-6.73(m, 2 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.49-6.60(m, 2 H), 3.98-4.10(m, 1 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.64-3.76(m, 4 H), 3.44-3.56(m, 1 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.18-3.25(m, 1 H), 3.10-3.19(m, 4 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.97-3.04(m, 1 H), 2.50-2.70(m, 4 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.32(s, 3 H), 2.09-2.20(m, 1 H) 1.84-1.96(m, 1 H); MS(M+H)^+ = 364.</td>
</tr>
<tr>
<td>实施例 52</td>
<td>实施例 7C 的产物和 1(4-硝基苯基)喹啉</td>
<td>实施例 48B</td>
<td>(3aR,6aR)-5-甲基-1-[4-(4-硝基苯基)喹啉-1-基]苯基</td>
<td>^1H NMR(300 MHz, CDCl₃) δ ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.15(d, J=9.49 Hz, 2 H), 7.19-7.24(m, 2 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.88(d, J=9.49 Hz, 2 H), 6.56(d, J=8.48 Hz, 2 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.12-4.31(m, 1 H), 3.53-3.62(m, 4 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.46-3.54(m, 1 H), 3.24-3.38(m, 1 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.14-3.22(m, 4 H), 2.96-3.09(m, 1 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.58-2.80(m, 4 H), 2.49(s, 3 H),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.11-2.22(m, 1 H), 1.93-2.06(m, 1 H); MS(M+H)^+ = 407.</td>
</tr>
</tbody>
</table>
实施例 53
实施例 7C 的产物和 1(2-氯基苯基)哌嗪
实施例 48B

<table>
<thead>
<tr>
<th>化合物</th>
<th>光谱数据</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-(4-({4-[3aR,6aR]-5-甲基六氢呫喃并[3,4-b]呫喃])基)苯基)</td>
<td>H NMR(300 MHz, CDCl3) δ ppm 7.46-7.61 (m, 1 H), 7.16-7.25 (m, 2 H), 6.99-7.08 (m, 1 H), 6.91-6.97 (m, 1 H), 6.69 (t, J=7.29 Hz, 1 H), 6.58 (d, J=7.46 Hz, 2 H), 4.08-4.14 (m, 1 H), 3.47-3.54 (m, 1 H), 3.34-3.42 (m, 4 H), 3.22-3.28 (m, 4 H), 3.13-3.21 (m, 1 H), 2.87-2.96 (m, 1 H), 2.64-2.73 (m, 1 H), 2.47-2.61 (m, 3 H), 2.29-2.33 (m, 3 H), 2.09-2.21 (m, 1 H), 1.86-1.98 (m, 1 H); MS(M+H)^+ = 388.</td>
</tr>
</tbody>
</table>

实施例 54
实施例 49B 的产物和 4-氯吡啶盐酸盐
实施例 49C

<table>
<thead>
<tr>
<th>化合物</th>
<th>光谱数据</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3aR,6aR)-5-甲基-1-[4-(4-氯基哌嗪-4-基)苯基] 吡啶并[3,4-b]吡咯</td>
<td>H NMR(300 MHz, CDCl3) δ ppm 8.28 (d, J=6.44 Hz, 2 H), 6.89-6.96 (m, 2 H), 6.73 (d, J=6.44 Hz, 2 H), 6.57 (d, J=8.82 Hz, 2 H), 4.03-4.19 (m, 1 H), 3.60-3.69 (m, 1 H), 3.47-3.56 (m, 4 H), 3.36-3.45 (m, 1 H), 3.11-3.21 (m, 4 H), 3.01-3.10 (m, 1 H), 2.56-2.77 (m, 4 H), 2.39 (s, 3 H), 2.12-2.19 (m, 1 H), 1.86-2.00 (m, 1 H); MS(M+H)^+ = 364.</td>
</tr>
</tbody>
</table>

实施例 55
实施例 49B 的产物和 3-氯-6-甲基吡嗪
实施例 49C

<table>
<thead>
<tr>
<th>化合物</th>
<th>光谱数据</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3aR,6aR)-5-甲基-1-[4-(6-甲基吡嗪-3-基)]苯基</td>
<td>H NMR(300 MHz, CDCl3) δ ppm 7.10 (d, J=9.16 Hz, 1 H), 6.94 (d, J=8.82 Hz, 2 H), 6.90 (d, J=9.49 Hz, 1 H), 6.57 (d, J=9.16 Hz, 2 H), 3.99-4.10 (m, 1 H), 3.72-3.80 (m, 4 H), 3.44-3.56 (m, 1 H), 3.11-3.22 (m, 4 H), 3.01-3.09 (m, 1 H), 2.85-2.97 (m, 1 H), 2.65-2.74 (m, 1 H), 2.56 (s, 3 H), 2.51-2.62 (m, 3 H), 2.33 (s, 3 H), 2.07-2.22 (m, 1 H), 1.82-2.00 (m, 1 H); MS(M+H)^+ = 379.</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>59</td>
<td>49B 的产物和 2-氯-5-乙基噻啶</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>60</td>
<td>49B 的产物和 5-溴噻啶</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>61</td>
<td>49B 的产物和 2-氯烟腈</td>
</tr>
<tr>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>62</td>
<td>7B</td>
</tr>
<tr>
<td>63</td>
<td>7B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>7B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>49B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
实施例 67

{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}(苯基)甲酮

将实施例 7B 的产物(35 毫克, 0.28 毫摩尔)、4-氟二苯酮(110 毫克, 0.55 毫摩尔)和三乙胺(200 毫升, 1.43 毫摩尔)溶于 1 毫升乙腈中，并在 80°C、在 N2 氛围中加热 3 天。将混合物冷却至室温，用水稀释，用二氯甲烷提取(5x)。用硫酸钠干燥合并的有机物，过滤，减压浓缩，色谱纯化(用 5% 甲醇和 0.5% 氯水在二氯甲烷中的混合物洗脱)，提供标题化合物。^1H NMR(CDCl₃)  δ ppm 7.93(d, J=8.82 Hz, 2 H)7.20-7.34(m, 5 H)6.50(d, J=9.16 Hz, 2 H)4.31-4.47(m, 1 H)4.19(s, 2 H)3.55-3.67(m, 1 H)3.39-3.52(m, 1 H)3.09-3.28(m, 1 H)2.44-2.89(m, 4 H)2.15-2.27(m, 1 H)2.09(s, 3 H)1.94-2.06(m, 1 H); MS(M+H)^+ = 307.

实施例 68

4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄腈

按照实施例 7C 描述的方法制备标题化合物，用 4-溴代苄腈替换 1,4-二溴苯。^1H NMR(CDCl₃)  δ ppm 7.45(d, J=8.81 Hz, 2 H)6.51(d, J=8.81 Hz, 2 H)4.16-4.28(m, 1 H)3.47-3.62(m, 1 H)3.31-3.44(m, 1 H)2.95-3.13(m, 1 H)2.68-2.81(m, 2 H)2.55-2.67(m, 2 H)2.36(s, 3 H)2.12-2.27(m, 1 H)1.93-2.09(m, 1 H); MS(M+H)^+ = 228.

实施例 69
1-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}甲胺
在68克兰尼镍的存在下，在氢气氛中，在60psi，在室温下，
将实施例68的产物(676毫克，3.0毫摩尔)在50毫升20%氨/甲醇中搅拌
4小时。通过CELITE®过滤除去催化剂，减压浓缩滤液。用快速色谱法
纯化得到的油(用5%碱性甲醇/二氯甲烷的混合物洗脱)，提供标题化合物。
$^1$H NMR(CDC$_3$) δ ppm 7.17(d, J=8.82 Hz, 2 H)6.55(d, J=8.48 Hz, 2 H)4.07-4.16(m, 1 H)3.77(s, 2 H)3.45-3.59(m, 1 H)3.16-3.28(m, 1 H)2.88-3.04(m, 1 H)2.63-2.74(m, 2 H)2.53-2.63(m, 2 H)2.34(s, 3 H)2.08-2.23(m, 1 H)1.86-2.05(m, 1 H); MS(M+H)$^+$= 232.

实施例70
3-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苄基}苄腈

将实施例69的产物(40毫克，0.173毫摩尔)、3-溴苄腈(47毫克，
0.258毫摩尔)、3-溴苄基丙酮(16毫克，0.017毫摩尔)、外消旋
-2,2'-双(二苯基膦基)-1,1'-联萘(21毫克，0.034毫摩尔)和碳酸铯(85毫克，
0.26毫摩尔)溶于1毫升甲苯中，并在100℃、在N$_2$氛围中加热48小时。
将混合物冷却至室温，用水稀释，用二氯甲烷提取(3x)。用硫酸钠干燥
合并的有机物，过滤，减压浓缩，色谱纯化(用2%碱性甲醇/二氯甲烷的
混合物洗脱)，提供标题化合物。
$^1$H NMR(CDC$_3$) δ ppm 9.73(s, 1 H)7.72(d, J=8.82 Hz, 2 H)7.30-7.54(m, 2 H)7.14-7.22(m, 1 H)6.77-6.88(m, 1 H)6.56(t, J=8.65 Hz, 2 H)4.22-4.33(m, 1 H)4.19(s, 2 H)3.36-3.64(m, 2 H)2.90-3.08(m, 1 H)2.66-2.79(m, 2 H)2.52-2.63(m, 2 H)2.32(s, 3 H)2.09-2.26(m, 1 H)1.87-2.04(m, 1 H); MS(M+H)$^+$= 333.

按照上面列出的方法制备下列化合物和实施例，只是替换不同的试剂，
获得标题化合物。
### 表 5：实施例 71

<table>
<thead>
<tr>
<th>实施例 71</th>
<th>起始原料</th>
<th>反应方法</th>
<th>得到的化合物</th>
<th>NMR 和 MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 71</td>
<td>68B 的产物和 2-氯-5-乙基噻唑</td>
<td>实施例 68C</td>
<td>5-乙基-N-{4-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}噻唑-2-胺</td>
<td><strong>H NMR(CDCl₃)</strong> δ ppm 8.15(s, 2 H), 7.21(d, J=8.48 Hz, 2 H), 6.54(d, J=8.82 Hz, 2 H), 4.49(d, J=5.76 Hz, 2 H), 4.05-4.15(m, 1 H), 3.67-3.85(m, 1 H), 3.41-3.65(m, 2 H), 3.13-3.29(m, 1 H), 2.87-3.02(m, 1 H), 2.61-2.73(m, 1 H), 2.38-2.59(m, 3 H), 2.32(s, 3 H), 2.09-2.25(m, 1 H), 1.86-2.03(m, 1 H), 1.19(t, J=7.46 Hz, 3 H), MS(M+H)+ = 338.</td>
</tr>
</tbody>
</table>

### 实施例 72

2-(5-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基)呫嗪-3(2H)-酮

### 实施例 72A

(3aR,6aR)-1-(4-溴苯基)六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸叔丁酯

将(3aR,6aR)-六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸叔丁酯(1, 1.5 克, 7.0 毫摩尔)、1,4-二溴代苯(2.8 克, 20.4 毫摩尔)、Pd₂(db₃)₃(275 毫克, 0.3 毫摩尔)、BINAP(375 毫克, 0.6 毫摩尔)和叔丁醇钠(1.93 克, 20.0 毫摩尔)放在玻璃微波管中，然后用 N₂ 吹扫三次，而后加入甲苯(45 毫升)。将混合物在微波反应器中加热至 140℃，保持 15 分钟。然后将混合物冷却至室温，过滤，色谱纯化粗品混合物(SiO₂, 0-25%乙酸乙酯：己烷)，提供标题化合物。**H NMR(300 MHz, CDCl₃):** δ = 7.30 ppm(m, 2 H), 7.39(m, 2 H), 4.11(m, 1 H), 3.57(m, 3 H), 3.31(m, 3 H), 2.99(m, 1 H), 2.15(m, 1 H), 1.92(m, 1 H), 1.43(s, 9 H). MS(ESI, M+1): 310.9.

### 实施例 72B

(3aR,6aR)-1-(4-溴苯基)-5-甲基八氢吡咯并[3,4-b]吡咯
在 23℃，向(3aR, 6aR)-叔丁基 1-(4-溴苯基)六氢吡咯并[3,4-b]吡咯 -5(1H)-羧酸酯(1.86 克, 5.1 毫摩尔)的 CH₂Cl₂(50 毫升)溶液中加入 TFA(8 毫升)，并搅拌混合物 2 小时。真空除去溶剂，将残余物接在 MeOH(50 毫升)中，而后加入甲醛(37%, 3 毫升，40 毫摩尔)和 NaBH₃CN(950 毫克，15.1 毫摩尔)。在 23℃搅拌混合物 10 小时，减压浓缩，并将残余物溶于 CH₂Cl₂(100 毫升)中，顺序地用水(2 X 50 毫升)、盐水(1 X 30 毫升)洗涤，用 Na₂SO₄ 干燥，过滤并减压浓缩。色谱纯化粗品混合物(SiO₂, 0-10% MeOH/CH₂Cl₂)，提供标题化合物。¹H NMR(300 MHz, CDCl₃):

δ = 7.28 ppm(m, 2H), 6.44(m, 2H), 4.05(m, 1H), 3.45(m, 1H), 3.19(m, 1H), 2.94(m, 1H), 2.67(m, 1H), 2.52(m, 3H), 2.30(s, 3H), 2.16(m, 1H), 1.95(m, 1H). MS(ESI, M +1): 280.8.

实施例 72C

(3aR, 6aR)-5-甲基-1-(4,4,4,5,5-四甲基-1,3-二氧杂硼杂环戊烷-2-基)苯基)八氢吡咯并[3,4-b]吡咯

将(3aR, 6aR)-1-(4-溴苯基)-5-甲基八氢吡咯并[3,4-b]吡咯(1.0 克，3.6 毫摩尔)、二(戊酰)二硼(4,4,4',5,5,5'-六甲基二氧杂硼环戊烷(1.0 克，3.9 毫摩尔)、Pd(dppf)Cl₂·CH₂Cl₂(100 毫克，0.12 毫摩尔)和 KOAc(1150 毫克，11.7 毫摩尔)放置在密封的微波反应管中，并用 N₂ 气吹扫三次。加入二噁烷(20 毫升)，在 150℃加热混合物 15 分钟。冷却至 23℃后，过滤混合物，减压除去溶剂。然后色谱纯化混合物(SiO₂, 10-60% 乙酸乙酯/乙烷)，提供标题化合物。¹H NMR(300 MHz, CDCl₃):

δ = 7.67 ppm(m, 2H), 6.54(m, 2H), 4.21(m, 1H), 3.52(m, 1H), 3.33(m, 1H), 2.97(m, 1H), 2.67(m, 2H), 2.57(m, 2H), 2.34(br, 3H), 2.15(m, 1H), 1.95(m, 1H), 1.32(s, 12H). MS(ESI, M +1): 329.1.

实施例 72D

2-(5-溴代吡啶-2-基)哒嗪-3(2H)-酮和 2-(6-溴代吡啶-3-基)哒嗪-3(2H)-酮

将 3-哒嗪酮(300 毫克，3.1 毫摩尔)、2,5-二溴代吡啶(1.0 克，4.2 毫摩尔)、钢粉(200 毫克，3.1 毫摩尔)和 K₂CO₃(1.29 克，9.3 毫摩尔)放置在密封的微波管中，用 N₂ 吹扫三次，而后加入吡啶(15 毫升)。将混合物
在微波反应器中加热至 120℃，保持 40 分钟。减压浓缩混合物，而后将残余物接纳在 CH₂Cl₂/MeOH 中，过滤并减压浓缩。通过色谱纯化粗品混合物 (SiO₂, 10-80%乙酸乙酯/己烷) 提供标题化合物。

2-(5-溴代吡啶-2-基)哒嗪-3(2H)-酮。¹H NMR(300 Mhz, CDCl₃): 8.72 ppm(s(br), 1H), 7.99(m, 2H), 7.68(d(br), J = 8.4 Hz, 1H), 7.29(dd(br), J = 8.4, 3.7 Hz, 1H), 7.07(dd, J = 9.5, 1.7 Hz, 1H). MS(ESI, M +1): 253.8.

2-(6-溴代吡啶-3-基)哒嗪-3(2H)-酮。¹H NMR(300 MHz, CDCl₃): 8.76 ppm(d, J = 3.4 Hz, 1H), 7.98(dd, J = 8.5, 2.7 Hz, 1H), 7.94(dd, J = 2.7, 1.7 Hz, 1H), 7.59(d, J = 8.4 Hz, 1H), 7.29(dd, J = 8.4, 3.4 Hz, 1H), 7.06(dd, J = 8.5, 1.7 Hz, 1H). MS(ESI, M +1): 253.8.

实施例 72E

2-(5-(4-((3aR,6aS)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基)(苯基)吡啶-2-基)哒嗪-3(2H)-酮

将(3aR,6aR)-5-甲基-1-(4-(4,4,5,5-四甲基-1,3-二氧杂硼杂环戊烷-2-基)苯基)六氢吡咯并[3,4-b]吡咯(50 毫克, 0.15 毫摩尔). 2-(5-溴代吡啶-2-基)哒嗪-3(2H)-酮(42 毫克, 0.17 毫摩尔), Pd(PPh₃)₂Cl₂(11 毫克, 0.01 毫摩尔), 2-(二环己基膦基)联苯(5.6 毫克, 0.016 毫摩尔)和 Na₂CO₃(1M, 225 毫升)放置在微波管中，用 N₂吹扫，并加入溶剂的混合物(EtOH: 二嗯烷= 1:1, 1 毫升)。将混合物在微波反应器中加热至 140℃，保持 15 分钟，冷却至环境温度，过滤，减压浓缩。通过色谱纯化残余物(SiO₂, 0-10% MeOH/CH₂Cl₂) 提供标题化合物。¹H NMR(300 MHz, CDCl₃):

δ  = 8.82 ppm(d, J = 2.8 Hz, 1H), 7.98(m, 2H), 7.73(d, J = 8.2 Hz, 1H), 7.52(m, 2H), 7.28(dd, J = 10.1, 3.7 Hz, 1H), 7.09(dd, J = 10.1, 1.7 Hz, 1H), 6.67(m, 2H), 4.39(m, 1H), 3.66(m, 1H), 3.30(m, 3H), 2.87(m, 2H), 2.59(s(br), 3H), 2.23(m, 2H), 2.05(m, 1H). MS(ESI, M +1): 374.2.

实施例 73

2-(6-{4-((3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基)吡啶-3-基)哒嗪-3(2H)-酮

按照实施例 72E 描述的方法制备标题化合物，用 2-(6-溴代吡啶-3-基)哒嗪-3(2H)-酮替换 2-(5-溴代吡啶-2-基)哒嗪-3(2H)-酮。¹H NMR(300
MHz, CDCl$_3$: $\delta = 8.91$ ppm (d, $J = 2.8$ Hz, 1H), 8.02 (dd, $J = 8.8$, 2.7 Hz, 1H), 7.94 (m, 3H), 7.73 (d, $J = 8.8$ Hz, 1H), 7.27 (dd, $J = 9.5$, 3.7 Hz, 1H), 7.08 (dd, $J = 9.5$, 1.7 Hz, 1H), 6.65 (m, 2H), 4.33 (m, 1H), 3.62 (m, 1H), 3.43 (m, 1H), 3.15 (m, 1H), 2.83 (m, 2H), 2.70 (m, 2H), 2.47 (s(br), 3H), 2.22 (m, 1H), 2.03 (m, 1H). MS(ESI, M +1): 374.1.

实施例74
2-(5-{4-[(3aR,6aR)-5-甲基-六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}-1,3-噻唑-2-基)哒嗪-3(2H)-酮

实施例74A
2-(5-溴-噻唑-2-基)哒嗪-3(2H)-酮

按照实施例72D描述的方法制备标题化合物，用2,5-二溴噻唑替换2,5-二溴吡啶。$^1$H NMR(300 MHz, CDCl$_3$): $\delta = 8.20$ ppm (s, 1H), 7.98 (dd, $J = 3.7$, 1.7 Hz, 1H), 7.30 (dd, $J = 9.5$, 3.7 Hz, 1H), 7.13 (dd, $J = 9.5$, 1.7 Hz, 1H). MS(ESI, M +1): 259.8.

实施例74B
2-(5-{4-[(3aR,6aR)-5-甲基-六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}-噻唑-2-基)哒嗪-3(2H)-酮

按照实施例72E描述的方法制备标题化合物，用2-(5-溴噻唑-2-基)哒嗪-3(2H)-酮替换2-(5-溴代吡啶-2-基)哒嗪-3(2H)-酮。$^1$H NMR(300 MHz, CDCl$_3$): $\delta = 8.43$ ppm (s, 1H), 7.95 (dd, $J = 4.0$, 1.7 Hz, 1H), 7.84 (m, 2H), 7.25 (dd, $J = 9.5$, 4.0 Hz, 1H), 7.10 (dd, $J = 9.5$, 1.7 Hz, 1H), 6.59 (m, 2H), 4.26 (m, 1H), 3.58 (m, 1H), 3.40 (m, 1H), 3.05 (m, 1H), 2.77 (m, 2H), 2.65 (m, 2H), 2.39 (s(br), 3H), 2.19 (m, 1H), 2.00 (m, 1H). MS(ESI, M +1): 380.1.

实施例75
5-(4-{4-[(3aR,6aR)-5-甲基-六氢吡咯并[3,4-b]吡咯-1(2H)-基]苯基}哒嗪-1-基)吡啶-2-腈
实施例75A

(3aR,6aR)-5-甲基-1-(4-哌嗪-1-基-苯基)-八氢-吡咯并[3,4-b]吡咯

在 N₂ 氛围中，在 Emrys 处理管瓶中，将实施例 72B 的产物 (200 毫克，0.71 毫摩尔)、哌嗪 (200 毫克，2.33 毫摩尔)、三 (2-二亚苄基丙酮) 二钯 (20 毫克，0.022 毫摩尔)、 (R)- (+)-2,2'-双 (二苯基膦基)-1,1'-联苯 (28 毫克，0.045 毫摩尔)、叔丁醇钠 (140 毫克，1.46 毫摩尔) 和 7 毫升甲苯混合。密封管瓶，在 140°C、在微波中加热 15 分钟，使用 Emrys Creator 将混合物用水稀释，用二氯甲烷提取 (4x)。用盐水洗涤合并的有机层，用硫酸钠干燥，过滤，减压浓缩，得到粗品，将其用柱色谱纯化 (10% 甲醇和 1% 水在二氯甲烷中)，提供标题化合物。¹H NMR (300 MHz, CDCl₃)
δ ppm 6.84-6.94 (m, 2 H) 6.53-6.60 (m, 2 H) 4.00-4.07 (m, 1 H) 3.44-3.51 (m, 1 H) 3.11-3.20 (m, 1 H) 2.99-3.09 (m, 9 H) 2.88-2.96 (m, 1 H) 2.68 (dd, J=9.66, 2.54 Hz, 1 H) 2.48-2.59 (m, 2 H) 2.31 (s, 3 H) 2.09-2.19 (m, 1 H) 1.89 (m, 1 H). MS: (M+H)²= 287.

实施例75B

5-(4-(4-((3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基)苯基)哌嗪-1-基)甲基吡啶腈

在 N₂ 氛围中，在 Emrys 处理管瓶中，将实施例 75A 的产物 (78.0 毫克，0.27 毫摩尔)、5-溴-2-氟基吡啶 (74.8 毫克，0.41 毫摩尔)、乙酸钯 (2.5 毫克，0.011 毫摩尔)、4,5-双 (二苯基膦基)-9,9-二甲基 1,1'-联苯 (19.0 毫克，0.037 毫摩尔)、碳酸铯 (142.1 毫克，0.44 毫摩尔) 和 3 毫升四氢呋喃混合。密封管瓶，在 120°C、在微波中加热 2 小时，使用 Emrys Creator 将混合物用水稀释，用二氯甲烷提取 (4x)。用盐水洗涤合并的有机层，用硫酸钠干燥，过滤，减压浓缩，得到粗品，将其用柱色谱纯化 (10% 甲醇和 1% 水在二氯甲烷中)，提供标题化合物。¹H NMR (300 MHz, CDCl₃)
δ ppm 8.36 (d, J=2.71 Hz, 1 H) 7.53 (d, J=8.82 Hz, 1 H) 7.13 (dd, J=8.82, 3.05 Hz, 1 H) 6.86-6.98 (m, 2 H) 6.50-6.65 (m, 2 H) 4.06 (t, J=8.65 Hz, 1 H) 3.44-3.59 (m, 5 H) 3.11-3.24 (m, 5 H) 2.88-3.02 (m, 1 H) 2.56 - 2.72 (m, 4 H) 2.33 (s, 3 H) 2.06-2.24 (m, 1 H) 1.83-2.01 (m, 1 H). MS: (M+H)²= 389.

实施例76
(3aR,6aR)-1-[4'-[(2-甲氧基嘧啶-5-基)-1,1'-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯

按照实施例 7D 描述的方法制备标题化合物，用实施例 41A 的产物替换实施例 7C 的产物，用 2-甲氧基-嘧啶-5-硼酸替换 4-氨基苯硼酸。\(^1\)H NMR(500 MHz, CDCl\(_3\)) \(\delta\) ppm 8.76(s, 2 H), 7.66(d, J=8.54 Hz, 2 H), 7.53(dd, J=11.75, 8.70 Hz, 4 H), 6.67(d, J=8.85 Hz, 2 H), 4.13-4.22(m, 1 H), 4.07(s, 3 H), 3.53-3.61(m, 1 H), 3.26-3.35(m, 1 H), 2.91-3.03(m, 1 H), 2.71-2.77(m, 1 H), 2.48-2.67(m, 3 H), 2.33(s, 3 H), 2.13-2.25(m, 1 H), 1.90-2.01(m, 1 H). MS:(M+H)^+= 387.

实施例 77

5-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2-腈

按照实施例 7D 描述的方法制备标题化合物，用实施例 41A 的产物替换实施例 7C 的产物，用 5-(4,4,5,5-四甲基-1,3,2-二氧杂烷环戊烷-2-基)氨基吡啶环替换 4-氨基苯硼酸。\(^1\)H NMR(500 MHz, CDCl\(_3\)) \(\delta\) ppm 8.99(d, J=2.14 Hz, 1 H), 8.03(dd, J=8.09, 2.29 Hz, 1 H), 7.76(d, J=7.93 Hz, 1 H), 7.68-7.73(m, 2 H), 7.59-7.67(m, 2 H), 7.52-7.58(m, 2 H), 6.67(d, J=8.85 Hz, 2 H), 4.12-4.23(m, 3.05 Hz, 1 H), 3.53-3.62(m, 1 H), 3.26-3.35(m, 1 H), 2.92-3.03(m, 1 H), 2.69-2.78(m, 1 H), 2.48-2.67(m, 3 H), 2.33(s, 3 H), 2.13-2.25(m, 1 H), 1.91-2.03(m, 1 H).

实施例 78

6-甲基-2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮

按照实施例 41B 描述的方法制备标题化合物，用 6-甲基-3(2H)-哒嗪酮替换 3(2H)-哒嗪酮。\(^1\)H NMR(400 MHz, CDCl\(_3\)) \(\delta\) ppm 7.61(d, J=1.53 Hz, 4 H), 7.49(d, J=8.59 Hz, 2 H), 7.14(d, J=9.51 Hz, 1 H), 6.99(d, J=9.51 Hz, 1 H), 6.65(d, J=8.90 Hz, 2 H), 4.13-4.21(m, 1 H), 3.50-3.61(m, 1 H), 3.25-3.35(m, 1 H), 2.89-3.01(m, 1 H), 2.69-2.77(m, 1 H), 2.50-2.68(m, 3 H), 2.40(s, 3 H), 2.32(s, 3 H), 2.11-2.26(m, 1 H), 1.89-2.01(m, 1 H). MS:(M+H)^+= 387.
实施例 79

(3aR,6aR)-5-甲基-1-[4’-(1-甲基-1H-吡唑-4-基)-1,1’-联苯-4-基]八氢吡咯并[3,4-b]吡咯

按照实施例 7D 描述的方法制备目标化合物，用实施例 41A 的产物替换实施例 7C 的产物，用 1-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)-1H-吡唑替换 4-氨基苯基硼酸。\(^1\)H NMR (300 MHz, CDCl\(_3\))

δ ppm 7.78(s, 1 H)7.62(s, 1 H)7.45-7.60(m, 6 H)6.65(d, J=8.82 Hz, 2 H)4.11-4.21(m, 1 H)3.95(s, 3 H)3.50-3.61(m, 1 H)3.23-3.35(m, 1 H)2.90-3.05(m, 1 H)2.69-2.77(m, 1 H)2.50-2.69(m, 3 H)2.33(s, 3 H)2.11-2.26(m, 1 H)1.88-2.02(m, 1 H). MS: (M+H)^+ = 359.

实施例 80

(3aR,6aR)-1-[4’-(3,5-二甲基-1H-吡唑-4-基)-1,1’-联苯-4-基]-5-甲基八氢吡咯并[3,4-b]吡咯

按照实施例 7D 描述的方法制备目标化合物，用实施例 41A 的产物替换实施例 7C 的产物，用 3,5-二甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)-1H-吡唑替换 4-氨基苯基硼酸。\(^1\)H NMR (300 MHz, CDCl\(_3\))

δ ppm 7.59(d, J=8.14 Hz, 2 H)7.52(d, J=8.82 Hz, 2 H)7.30(d, J=8.14 Hz, 2 H)6.66(d, J=8.82 Hz, 2 H)4.11-4.23(m, 1 H)3.51-3.62(m, 1 H)3.24-3.36(m, 1 H)2.88-3.04(m, 1 H)2.70-2.79(m, 1 H)2.49-2.66(m, 3 H)2.33(s, 9 H)2.10-2.25(m, 1 H)1.90-2.03(m, 1 H). MS: (M+H)^+ = 373.

实施例 81

(3aR,6aR)-1-(4’-(1H-吡唑-4-基)联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯

实施例 81A

(3aR,6aR)-5-甲基-1-(4’-(1-三苯甲基-1H-吡唑-4-基)联苯-4-基)八氢吡咯并[3,4-b]吡咯

按照实施例 7D 描述的方法制备目标化合物，用实施例 41A 的产物替换实施例 7C 的产物，用 4-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2基)-1-三苯甲基-1H-吡唑替换 4-氨基苯基硼酸。\(^1\)H NMR (300 MHz,
实施例 81B

(3aR,6aR)-1-(4′-(1H-吡唑-4-基)联苯-4-基)-5-甲基八氢吡咯并[3,4-b]吡咯

将实施例 81A 的产物(44 毫克，0.075 毫摩尔)与 3 毫升甲酸一起搅拌 4 小时。将混合物浓缩至干，并将残余物溶于 10%甲醇/二氯甲烷中，与饱和碳酸氢钠一起搅拌。将两个层分离，用二氯甲烷提取水层(2X)。用硫酸钠干燥合并的有机层，过滤，减压浓缩。用柱色谱纯化残余物，提供标题化合物。\(^1\)H NMR(300 MHz, CDCl\(_3\)) \(\delta\) ppm 7.88(s, 2 H)7.47-7.64(m, 6 H)6.65(d, J=8.81 Hz, 2 H)4.11-4.25(m, 1 H)3.50-3.66(m, 1 H)3.25-3.37(m, 1 H)2.92-3.07(m, 1 H)2.71-2.82(m, 1 H)2.51-2.69(m, 3 H)2.34(s, 3 H)2.13-2.25(m, 1 H)1.90-2.05(m, 1 H). MS:(M+H\(^+\)) = 345.

实施例 82

3-甲基-1-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}吡啶-2(1H)-酮

按照实施例 41B 描述的方法制备标题化合物，用 3-甲基吡啶-2(1H)-酮替换 3(2H)-哒嗪酮。\(^1\)H NMR(500 MHz, CDCl\(_3\)) \(\delta\) ppm 7.62(d, J=8.54 Hz, 2 H)7.49(d, J=8.85 Hz, 2 H)7.39(d, J=8.54 Hz, 2 H)7.26-7.29(m, 2 H)6.65(d, J=8.85 Hz, 2 H)6.14-6.20(m, 1 H)4.13-4.20(m, 1 H)3.53-3.60(m, 1 H)3.26-3.34(m, 1 H)2.90-3.03(m, 1 H)2.70-2.76(m, 1 H)2.50-2.66(m, 3 H)2.33(s, 3 H)2.20(s, 3 H)2.14-2.20(m, 1 H)1.91-2.01(m, 1 H). MS:(M+H\(^+\)) = 386.

实施例 83

5-甲基-1-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}吡啶-2(1H)-酮

按照实施例 41B 描述的方法制备标题化合物，用 5-甲基吡啶-2(1H)-
酮替换 3(2H)-咔唑酮。$^1$H NMR (500 MHz, CDCl$_3$) δ ppm 7.62 (d, J=8.59 Hz, 2 H) 7.48 (d, J=8.59 Hz, 2 H) 7.38 (d, J=8.29 Hz, 2 H) 7.31 (dd, J=9.21, 2.45 Hz, 2 H) 7.15 (s, 1 H) 6.65 (d, J=8.90 Hz, 2 H) 4.14-4.21 (m, 1 H) 3.51-3.60 (m, 1 H) 3.26-3.36 (m, 1 H) 2.92-3.03 (m, 1 H) 2.70-2.77 (m, 1 H) 2.51-2.69 (m, 3 H) 2.33 (s, 3 H) 2.15-2.26 (m, 1 H) 2.11 (s, 3 H) 1.90-2.01 (m, 1 H), MS: (M+H)$^+$ = 386.

实施例 84

6-甲基-1-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}吡啶-2(1H)-酮

按照实施例 41B 描述的方法制备标题化合物，用 6-甲基吡啶-2(1H)-酮替换 3(2H)-咔唑酮。$^1$H NMR (400 MHz, CDCl$_3$) δ ppm 7.67 (d, J=2.76 Hz, 2 H) 7.45-7.57 (m, 4 H) 7.25-7.34 (m, 2 H) 7.20 (d, J=8.29 Hz, 1 H) 6.63-6.69 (m, 2 H) 4.13-4.22 (m, 1 H) 3.50-3.62 (m, 1 H) 3.26-3.36 (m, 1 H) 2.90-3.03 (m, 1 H) 2.70-2.78 (m, 1 H) 2.48-2.66 (m, 3 H) 2.32 (s, 3 H) 2.12-2.25 (m, 1 H) 2.04 (s, 3 H) 1.89-2.00 (m, 1 H), MS: (M+H)$^+$ = 386.

实施例 85

2-{4'-[(3aR,6aR)-5-乙基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}咔唑-3(2H)-酮

实施例 85A

(3aR,6aR)-乙基 1-{4'-[(6-氧代咔唑-1(6H)-基)联苯-4-基]六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸酯

将 2-{4'-溴联苯-4-基}咔唑-3(2H)-酮 (1.92 克，5.86 毫摩尔)、乙酸钯 (II) (0.158 克，0.234 毫摩尔)、9,9-二甲基-4,5-双(二苯基膦基)二氮 (0.407 克，0.703 毫摩尔) 和碳酸钠 (3.06 克，9.38 毫摩尔) 悬浮在 25 毫升 THF 中。加入 (3aR,6aR)-六氢吡咯并[3,4-b]吡咯-5(1H)-羧酸乙酯的 10 毫升 THF 溶液，在 70 ℃ 和在 N$_2$ 氛围中加热混合物 20 小时。将混合物冷却至环境温度，用 70 毫升 EtOAc 稀释，通过 $1/4”$ Celite®垫过滤。用额外的 70 毫升 EtOAc 洗涤 Celite®垫，并将滤液吸在硅胶上，色谱分离(用 0-40% EtOAc/DCM 洗脱)，提供标题化合物。$^1$H NMR (300 MHz, CDCl$_3$) δ ppm
7.91 (dd, J=3.7, 1.7 Hz, 1 H), 7.64 (s, 4 H), 7.53 (d, J=8.8 Hz, 2 H), 7.25 (dd, J=9.8, 3.4 Hz, 1 H), 7.07 (dd, J=9.5, 1.7 Hz, 1 H), 6.64 (d, J=8.5 Hz, 2 H), 4.20-4.32 (m, 1 H), 4.12 (q, J=7.5 Hz, 2 H), 3.70-3.81 (m, 1 H), 3.59-3.69 (m, 2 H), 3.48-3.58 (m, 1 H), 3.36-3.48 (m, 2 H), 2.99-3.10 (m, 1 H), 2.20 (dd, J=13.0, 7.3 Hz, 1 H), 1.95 (ddd, J=12.9, 6.4 Hz, 1 H), 1.24 (t, J=7.1 Hz, 3 H). MS(ESI+) m/z 431 (M+H)^+.

实施例 85B

2-(4’-((3aR, 6aR)-六氢吡咯并[3,4-b]吡咯-1(2H)-基)联苯-4-基)吲哚-3(2H)-酮

将实施例 85A 的产物 (0.110 克，0.256 毫摩尔) 溶于 3 毫升 HOAc 和 12 M HCl 水溶液的 1:1 混合物中，在密封容器中，在 100℃加热 16 小时。将混合物冷却至 0℃，用 15 毫升水稀释，通过逐滴加入 20% (w/v) KOH 水溶液，将 pH 值调节至 ～10。用 25 毫升 5% 正丙醇/CHCl_3 提取混合物三次，并将合并的提取物用 Na_2SO_4 干燥，过滤，并吸收到硅胶上。将粗品进行色谱分离，用 0-5% NH_4OH 水溶液-MeCN/MeOH(9:1) 洗脱，提供标题化合物。^1^H NMR(300 MHz, CDCl_3) δ ppm 7.91 (dd, J=3.7, 1.7 Hz, 1 H), 7.64 (s, 4 H), 7.52 (d, J=8.8 Hz, 2 H), 7.21-7.27 (m, 1 H), 7.07 (dd, J=9.5, 1.7 Hz, 1 H), 6.65 (d, J=8.8 Hz, 2 H), 4.10-4.19 (m, 1 H), 3.56-3.67 (m, 1 H), 3.23-3.35 (m, 1 H), 2.91-3.22 (m, 5 H), 2.15-2.32 (m, 1 H), 2.12 (br s, 1 H), 1.87 (ddd, J=12.9, 7.5 Hz, 1 H). MS(ESI+) m/z 359 (M+H)^+.

实施例 85C

2-(4’-((3aR, 6aR)-5-乙基六氢吡咯并[3,4-b]吡咯-1(2H)-基)联苯-4-基)吲哚-3(2H)-酮

将实施例 85B 的产物 (0.050 克，0.140 毫摩尔) 和乙醛 (10.0 毫升，0.140 毫摩尔) 在含有 3 滴 HOAc 的 5 毫升二氯乙烷中混合，并在环境温度搅拌 10 分钟。加入三乙酰氧基磷酸氢钠 (0.039 克，0.182 毫摩尔)，并搅拌混合物 3 小时。用 20 毫升 NaHCO_3 水溶液稀释混合物，用 25 毫升 5% 正丙醇/CHCl_3 提取三次，将合并的提取物用 Na_2SO_4 干燥，过滤，并吸收到硅胶上。将粗品进行色谱分离，用 1% NH_4OH 水溶液-EtOAc/MeOH(9:1) 洗脱，提供标题化合物。^1^H NMR(300 MHz, CDCl_3) δ
ppm 7.91(d, J=2.0 Hz, 1 H), 7.63(s, 4 H), 7.50(d, J=8.5 Hz, 2 H), 7.23(d, J=3.7 Hz, 1 H), 7.07(d, J=9.2 Hz, 1 H), 6.65(d, J=8.8 Hz, 2 H), 4.11-4.25(m, 1 H), 3.47-3.60(m, 1 H), 3.24-3.39(m, 1 H), 2.88-3.05(m, 1 H), 2.78(dd, J=9.5, 6.4 Hz, 1 H), 2.56-2.70(m, 2 H), 2.35-2.56(m, 3 H), 2.10-2.25(m, 1 H), 1.85-2.02(m, 1 H), 1.26(s, 1 H), 1.09(t, J=7.1 Hz, 2 H). MS(ESI+)m/z 387(M+H)^+.

实施例 86
2-{4'-(3aR,6aR)-5-环丁基六氢吡咯并[3,4-b]吡咯-1(2H)-基}-1',1'-联苯-4-基}哒嗪-3(2H)-酮

将实施例 85B 的产物(0.033 克，0.092 毫摩尔)、环丁酮(8.00 微升，0.101 毫摩尔)和三乙酰氧基硼氢化钠(0.025 克，0.0.120 毫摩尔)如实施例 85C 所述进行处理，提供目标化合物。\(^1\)H NMR (300 MHz, CDCl\(_3\) )

δ ppm 7.91(d, J=1.7 Hz, 1 H), 7.63(s, 4 H), 7.50(d, J=8.5 Hz, 2 H), 7.23(d, J=3.7 Hz, 1 H), 7.07(d, J=8.8 Hz, 1 H), 6.65(d, J=8.5 Hz, 2 H), 4.13-4.24(m, 1 H), 3.52(q, 1 H), 3.32(q, J=7.3 Hz, 1 H), 2.74-3.04(m, 3 H), 2.63(t, 1 H), 2.46(dd, J=9.3, 2.2 Hz, 1 H), 2.35(dd, J=8.8, 4.4 Hz, 1 H), 2.06-2.23(m, 1 H), 1.82-2.05(m, 4 H), 1.60-1.80(m, 3 H). MS(ESI+)m/z 413(M+H)^+.

实施例 87
2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]联苯-4-基} -4,5-二氢哒嗪-3(2H)-酮

将 7.38 克 2-(4'-溴联苯-4-基)哒嗪-3(2H)-酮的样品进行快速色谱纯化 (硅胶，梯度从 1 至 3%甲醇/二氯甲烷)，得到 100 毫克 2-(4'-溴联苯-4-基)-4,5-二氢哒嗪-3(2H)-酮。

将配备有磁性搅拌棒的小压力管中装入 100 毫克 2-(4'-溴联苯-4-基)-4,5-二氢哒嗪-3(2H)-酮、58 毫克(3aR,6aR)-5-甲基六氢吡咯并[3,4-b] 吡咯二盐酸盐、350 毫克碳酸铯、15 毫克三氟甲磺酸银、4.2 毫克三(二亚苄基丙酮)二钯和 7.2 毫克 2-二环已基膦基-2'(N,N-二甲基氨基)联苯和 2 毫升甲苯。密封并用氮气吹扫之后，将管在 100°C 加热 20 小时。通过快速色谱纯化粗品(硅胶，梯度 2 至 10%甲醇/二氯甲烷)，得到 17 毫克目标化合物合物暗黄色油。质谱(M+H)^+ m/z 375.2，与指定结构一致。

124
生物活性的测定


按照先前描述的方法，将大鼠 H₃ 受体进行克隆并在细胞中表达，进行竞争性结合试验 (参见 Esbenshade 等人, Journal of Pharmacology and Experimental Therapeutics, vol. 313:165-175, 2005; Esbenshade 等人, Biochemical Pharmacology 68(2004)933-945; Krueger 等人, Journal of Pharmacology and Experimental Therapeutics, vol. 314:271-281, 2005。通过在冰上，在 TE 缓冲液 (50 mM Tris-HCl 缓冲液, pH 值 7.4, 含有 5 mM EDTA), 1 mM 苯甲胺, 2 μg/ml 抑肽酶, 1 μg/ml 亮肽素和 1 μg/ml 抑胃肽中均化, 用表达大鼠组胺 H₃ 受体的 C6 或 HEK293 细胞制备膜。将组织均浆在 40,000g 下, 在 4 °C 离心 20 分钟。重复该步骤, 并将得到的颗粒再悬浮在 TE 缓冲液中。将等分样品在 -70 °C 冷冻, 直到需要为止。试验当天, 将膜解冻, 并用 TE 缓冲液稀释。

在存在或不存在提高 H₃ 受体竞争结合的配体浓度的条件下, 用 [³H]-N-α-甲基组胺 (0.5-1.0 nM) 培养膜制品。在 0.5 毫升最终体积的 TE 缓冲液中, 在 25 °C 进行结合培养, 并在 30 分钟之后终止。使用 Thioperamide (30 μM) 来限定非特异性的结合。通过真空过滤到聚乙烯亚胺 (0.3%) 预浸渍的 Unifilters (Perkin Elmer Life Sciences) 上或 Whatman GF/B 滤过器上, 而后用 2 毫升冰冷的 TE 缓冲液短暂洗涤三次来终止所有的结合反应。通过液体闪烁计数来测定结合的放射性同位素。对于所有放射性配体竞争结合试验，通过数据的 Hill 转化来测定 IC₅₀ 值和 Hill 斜率，通过 Cheng-Prusoff 方程式测定 pKi 值。

通常, 在上述试验中, 可以表明本发明的代表性化合物的结合亲合性是大约 0.5 nM 至大约 500 nM。与组胺-3 受体结合的本发明的优选化合物具有大约 0.5 nM 至大约 100 nM 的结合亲合性。与组胺-3 受体结合的本发明的更优选化合物具有大约 0.5 nM 至大约 20 nM 的结合亲合性。除了应用表征化合物的 H₃ 结合亲合性的体外方法之外, 可以应用
人类疾病动物模型表明，应用本发明的化合物可以治疗人类疾病。


本发明的化合物是组胺-3 受体配体，其通过改变受体的活性来调节组胺-3 受体的功能。这些化合物可以是抑制受体基本活性的反向激动剂，或它们可以是阻滞受体活化激动剂作用的拮抗剂。

盐和多晶型物的制备

实施例 A

2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基} 吡啶-3(2H)-酮 HCl 盐水合物：

将 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基} 吡啶-3(2H)-酮（745 毫克）悬浮在二氯甲烷（2.4 毫升）中。将悬浮液加热至大约 35℃。通过将 2.2 毫升 1 M HCl（在 MeOH 中）与 0.6 毫升水混合，制备 HCl 的甲醇/水溶液。将 HCl 溶液逐滴加入到二氯甲烷的悬
浮液中。整个过程中，使用磁力搅拌器搅拌悬浮液。当加入大约一半 HCl 溶液时，固体完全溶解，得到澄清溶液。将溶液自然冷却至环境温度。在冷却期间，观察结晶。在环境温度下将得到的悬浮液搅拌过夜，而后采集晶体。

实施例 B

无水 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮 HCl

将 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮(226 毫克)悬浮在甲醇(4.0 毫升)中。将 1 M HCl 的甲醇(0.66 毫升)溶液逐滴加入到悬浮液中。整个过程中，使用磁力搅拌器搅拌悬浮液。大部分固体溶解，剩下略微悬浮液。当超声处理时，观察结晶。在环境温度下将得到的悬浮液搅拌过夜，而后采集晶体。

实施例 C

无水 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮 HCl

将 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮(372 毫克)悬浮在二氯甲烷(1.5 毫升)中。将悬浮液加热至大约 50℃。将 1 M HCl(1.1 毫升)溶液逐滴加入到二氯甲烷中的悬浮液中。整个过程中，使用磁力搅拌器搅拌悬浮液，并且保持温度在大约 50℃。当加入大约三分之一 HCl 溶液时，大部分固体溶解，剩下略微悬浮液。当进一步加入 HCl 溶液时，观察结晶。在环境温度下将得到的悬浮液搅拌过夜，而后采集晶体。

实施例 D

单晶 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮 L-酒石酸盐一水合物(晶形 A):

将 2-{4'-(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮酒石酸盐(晶形 A)悬浮在 1 毫升溶液混合物中，溶液混合物是通过将 3.0 毫升二氯甲烷与 1.5 毫升 20%水(在甲醇中)混合来制备的。在摇动的水浴中将悬浮液旋转并加热至大约 40℃，保持 1.5 小
实施例 E

单晶 2-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}哒嗪-3(2H)-酮 L-酒石酸盐一水合物(晶形 B)：

将 2-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}哒嗪-3(2H)-酮酒石酸盐(晶形 A)悬浮在 1 毫升溶液混合物中，溶液混合物是通过将 5.0 毫升二氯甲烷与 5.0 毫升 20%水(在甲醇中)混合来制备的。将悬浮液旋转并加热到大约 48℃，得到澄清溶液。然后过滤溶液，将上清液自然冷却至环境温度过夜。第二天，通过将悬浮液加热至大约 90℃，将整夜沉淀的固体再次溶解。通过逐渐地降低水浴温度，将溶液慢慢地冷却至环境温度。出现单晶。

实施例 F

2-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}哒嗪-3(2H)-酮的 L-酒石酸盐的晶形 B 的结晶

在配备有塔顶搅拌马达的 50 毫升夹套反应器中，通过加热至 75℃，将 2-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}哒嗪-3(2H)-酮(游离碱，1.74 克)溶于 25 毫升二甲基乙酰胺中。通过在 25+/−5℃下进行混合，将 850 毫克 L-酒石酸溶解在 15 毫升去离子水中，制备 L-酒石酸的水溶液。将 L-酒石酸溶液慢慢地加入到热游离碱溶液中，同时保持游离碱溶液的温度在 75℃。一旦加入所有的 L-酒石酸溶液，将反应器以 12℃/小时的速度冷却至 20℃。一旦反应器达到 20℃，从反应器中收集样品，用于 PXRD。另外搅拌反应器 72 小时。将浆液排放到中号玻璃烧结的玻璃过滤漏斗上。用 20 毫升去离子水冲洗反应器，洗液用于洗涤滤饼。将固体在滤器上空气干燥 3 小时。在 20℃，收集固体，在 72 小时前后保持，对其进行 PXRD 分析，表明该固体是 2-{4’-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1’-联苯-4-基}哒嗪-3(2H)-酮的 L-酒石酸盐的晶形 B 晶体。

实施例 G
2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮的 L-酒石酸盐的晶形 B 结晶

将 2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮(游离碱，3.12 克)、1.5 克 L-酒石酸和各自 15 毫升的绝对乙醇和水加入到 50 毫升夹套反应器中，加热至 76℃，同时以 250 rpm 搅拌，产生澄清溶液。一旦所有的固体溶解，将反应器以 5℃/小时的速度冷却至 60℃，然后在 60℃保持 3 小时。保持 3 小时之后，将反应器以 10℃/小时的速度冷却至 20℃。在 20℃连续搅拌反应器 24 小时。将浆液排放到中号玻璃烧结的玻璃过滤漏斗上。用 15 毫升去离子水洗涤固体，然后空气干燥 30 分钟。固体的 PXRD 分析表明，该固体是 2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮的 L-酒石酸盐的晶形 B 晶体。

实施例 H

2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮的 L-酒石酸盐的晶形 A 结晶

在配备有塔顶搅拌马达的 50 毫升夹套反应器中，通过加热至 75℃，将 2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮(游离碱，1.74 克)溶于 25 毫升二甲基乙酰胺中。通过在 25+/-5℃下进行混合，将 549 毫克 L-酒石酸溶解在 15 毫升去离子水中，制备 L-酒石酸的水溶液。将 L-酒石酸溶液慢慢地加入到热游离碱溶液中，同时保持游离碱溶液的温度在 75℃。将溶液的温度在 75℃保持 20 分钟。将反应器冷却至 47℃。将反应器在 47℃保持 30 分钟，然后继续冷却至 20℃。一旦反应器达到 20℃，从反应器中收集样品，用于 PXRD。另外搅拌反应器 24 小时。将浆液排放到中号玻璃烧结的玻璃过滤漏斗上。用 18 毫升去离子水和甲醇的 50/50 v/v 混合物洗涤滤饼。将固体在滤过器上空气干燥 3 小时。在 20℃，收集固体，再 72 小时前后保持，对其进行 PXRD 分析，表明该固体是 2-{4'-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1'-联苯-4-基}哒嗪-3(2H)-酮的 L-酒石酸盐的晶形 A 晶体。

实施例 I
无水 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}哌嗪-3(2H)-酮 L-酒石酸盐

在 4 毫升管瓶中，通过在 25℃用磁珠搅拌，将 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}哌嗪-3(2H)-酮 (游离碱，37.4 毫克) 溶于 300 微升二氯甲烷中。通过在 25+/−5℃下进行混合，将 18.2 毫克 L-酒石酸溶解在 200 微升甲醇中，制备 L-酒石酸的甲醇溶液。将 L-酒石酸溶液慢慢地加入到热游离碱溶液中，同时搅拌。搅拌反应器 3 小时。将浆液排放到中号玻璃烧结的玻璃过滤漏斗上。将固体在滤过器上空气干燥 30 分钟。固体的 PXRD 分析表明，该固体是 2-{4′-[(3aR,6aR)-5-甲基六氢吡咯并[3,4-b]吡咯-1(2H)-基]-1,1′-联苯-4-基}哌嗪-3(2H)-酮的 L-酒石酸盐的结晶无水形式。

应理解，上文的详细说明和附有的实施例仅仅是说明性的，不能将其视为对本发明范围的限制，本发明的范围仅仅用附加的权利要求和它们的同等物来加以限定。对所公开实施方案的各种改变和改进，对于本领域技术人员来说是显而易见的。这种改变和改进，包括但不限于与本发明用途的化学结构、取代基、衍生物、中间体、合成法、制剂或方法或这种改变和改进的任何组合有关的那些，可以在不背离本发明精神和范围的条件下进行。
图 1
图 2
图 3
图 5