

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 007 167 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
02.06.2004 Bulletin 2004/23

(21) Application number: **98946646.1**

(22) Date of filing: **03.09.1998**

(51) Int Cl.⁷: **A63C 5/03, B63B 35/79,
B63B 35/81**

(86) International application number:
PCT/IB1998/001633

(87) International publication number:
WO 1999/012616 (18.03.1999 Gazette 1999/11)

(54) ERGONOMIC SPORTSBOARD

ERGONOMISCHES SPORTBRETT
PLANCHE DE SPORT ERGONOMIQUE

(84) Designated Contracting States:
**AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE**

(30) Priority: **05.09.1997 US 57637 P
20.03.1998 US 44880**

(43) Date of publication of application:
14.06.2000 Bulletin 2000/24

(73) Proprietor: **Fournier, Louis
Chicoutimi, Québec G7J 3K7 (CA)**

(72) Inventor: **Fournier, Louis
Chicoutimi, Québec G7J 3K7 (CA)**

(74) Representative: **Walker, Neville Daniel Alan
QED I.P. Services Limited
Dawley Road
Hayes, Middlesex UB3 1HH (GB)**

(56) References cited:

WO-A-83/00311	DE-A- 3 607 808
FR-A- 2 612 792	US-A- 3 628 804
US-A- 3 689 092	US-A- 4 305 603
US-A- 4 568 296	US-A- 5 766 051

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**BACKGROUND OF THE INVENTION****1. Field of the Invention**

[0001] The present invention relates to a sportsboard used in an upright standing or kneeling position which has an ergonomic upper surface that reduces strain and wear on human joints.

2. Background of Related Art

[0002] Various types of sports requiring a sportsboard have become popular. These sports are performed by riding different types of sportsboards on various types of ridden medium, e.g., water, pavement or snow. Known types are disclosed, for example, in US 4,568,296, US 3,628,804, US 4,305,603, US 3,689,092, WO 83/00311, DE 3607808 and FR 2 612 792. For instance, surfboards and wakeboards have become popular sports boards for use on water. Surfboards are ridden on water by planting a rider's bare feet at two points on the upper surface of the surfboard, with the feet typically placed non-parallel to the length of the surfboard. Wakeboards are towed behind a boat, with a rider kneeling or standing on an upper surface of the wakeboard. Skateboards have become popular sportsboards for use on pavement. Skateboards are ridden by planting a rider's feet (typically wearing sneakers or other street footwear) at two points on the upper surface of the skateboard, the feet being typically placed non-parallel to the length of the skateboard. Moreover, on snow, snowboards have become particularly popular, by some estimates soon to be more popular than skis. Snowboarding is performed on snow covered slopes which were typically originally designed to accommodate skiers. As is well known, each foot of a skier is mounted with a binding to a respective ski, the feet being mounted parallel to the length of the skis.

[0003] Although both skiing and snowboarding are performed on snow, snowboarding differs significantly from skiing in that rather than having separate sportsboards (i.e., skis) for each foot, only a single sportsboard is used. In a typical snowboard mounting configuration, both feet of the snowboarder are fixedly mounted with a binding to the single sportsboard, one in front of the other, and transversely or at an angle to the length of the snowboard. Also, unlike skiing, no poles are used in snowboarding.

[0004] There are two prevalent types of snowboard mounting techniques in use today: strap bindings and step-in bindings. Strap bindings allow a user of the snowboard to wear relatively soft boots, which are mounted at a non-parallel angle to the length of the snowboard. The tops of the soft boots and often the upper portions are strapped or clamped onto the snowboard. Step-in bindings are attached to the snowboard

at or near the soles of a stiffer boot. Step-in bindings provide added convenience to the user over strap bindings, but come at the cost of less comfortable boots and differing contact pressures between the snowboard and the user's feet.

[0005] Use of safety release bindings is usually unnecessary with snowboards, unlike with skis. When a skier falls, each foot has a separate elongated lever attached to it (i.e., a ski) which is capable of applying tremendous torsional force to the skier's ankles or knees. Thus, safety release bindings are a requirement for skis to protect against serious injury to the skier's ankles and knees. On the other hand, since a snowboarder has both feet attached to a single lever or sportsboard (i.e., a snowboard), the twisting force resulting from a fall is exerted on the torso, not necessarily the ankles or knees. The torso of the human body is much more capable of withstanding the forces resulting from a fall without serious injury.

[0006] Fig. 20 shows a conventional upright standing position of a user on a sportsboard, e.g., a snowboard.

[0007] In particular, in Fig. 20, the left foot **1102** and right foot **1104** of a user are mounted transversely or otherwise at a non-parallel angle to the length of the sportsboard **1100**. The user may typically place or mount their left and right feet **1102, 1104** at any position along the upper surface **1110** of the sportsboard. However, if the left and right feet **1102, 1104** are rested or mounted directly below the hips **1112, 1114**, poor control of the sportsboard **1100** would result. Conversely, if the left and right feet **1102, 1104** are rested or mounted at too wide a distance apart on the upper surface of the sportsboard **1100**, although greater control of the sportsboard **1100** may result, a greater amount of strain may be placed on the human body. For instance, the ankles and knees may be over-strained in maintaining an upright position of the human body, and too large a torque may be required to turn the larger radius formed by the wide distance between the left and right feet **1102, 1104**. Thus, a balance is usually made for lateral stability between the amount of control provided by separated placement of the left and right feet **1102, 1104** on the sportsboard, and the strain on the human body, particularly the ankles, knees and torso, based on the feel of the particular rider. Accordingly, a snowboarder is typically forced to assume a wider stance, creating a severe shear effect in the ankle joints of the rider, a loss of aligned momentum to the bindings, asymmetric muscle stress, and generally excessive wear on the joints of the extremity.

[0008] Human feet do not generally have strong muscle structure to provide a large amount of lateral strength. To compensate for this, most riders over-use or over-stress the side of the leg muscles, e.g., the tibialis anterior, extensor digitorum longus, peroneus longus, and/or the peroneus brevis. For instance, in the now well known talus fracture particularly frequent among snowboarders, some of these muscles as well

as the attached ligaments are often damaged.

[0009] Although snowboards were largely inspired by water surfboards, the riding characteristics differ greatly, mostly because snowboarders must wear boots while water surfboarders often go barefoot. Thus, the rider of a surfboard has unlimited ankle movement to maintain his or her balance on the surfboard while riding waves, while the ankles of the rider of a snowboard are restricted somewhat by the boots which must be worn, and thus movements of the sportsboard are performed by movement of other elements of the human body. Furthermore, the acceleration and deceleration forces encountered by a snowboarder are typically greater than those encountered by a water surfboarder. Nevertheless, the present invention provides improvements to any type of sportsboard ridden in an upright position, including snowboards and surfboards.

[0010] While the popularity of snowboarding and other upright sportsboard type sports has increased sharply over the last few years, various so-called wear-type of injuries have developed. Indeed, the type of stance used by upright users such as snowboarders combined with the types of forces that are exerted during practice of the relevant sport tend to cause accelerated wear on joints such as the hip joints, the knee joints and the ankles of the snowboarder.

[0011] As shown in Fig. 20, conventional sportsboard construction includes a relatively flat upper surface 1110 on which the feet 1102, 1104 of the user are rested or mounted during a normal riding stance. It has been discovered by the present inventor that this relatively flat riding surface proves to be a disadvantage in conventional sportsboards.

[0012] For instance, when in an upright position on a sportsboard, ground reaction forces are directed upwards against the planter aspect of both feet and maintain the plane equilibrium and stability of the lower extremities and pelvis. With a single sportsboard, equal ground reaction forces are exerted on the lateral and medial planter surfaces of both feet. However, when the trunk is rotated relative to the feet (as is often the case in snowboarding), the reactional forces and the equilibrium are both modified.

[0013] For instance, when the trunk is rotated to the right, the right foot supinates and the left foot pronates. The right forefoot inverts from the ground and vertical ground reaction forces are greater against the lateral side of the forefoot and less against the medial side of the forefoot. The left forefoot remains flat on the ground and vertical ground reaction forces are distributed evenly against the forefoot. Conversely, when the trunk is rotated to the left, ground reaction exerts unusual forces against the left forefoot and even forces against the right forefoot.

[0014] These type of normal ergonomic reactions of the human body are satisfactory for situations wherein a given individual rests on a static structure. However, when a given individual is subjected to acceleration and

deceleration forces, it is recognized by the present inventor that the combination of the reaction forces can lead to accelerated wear on various joints of the human body by using a sportsboard with a relatively flat upper surface. Furthermore, not only is excess wear placed on various joints of the human body, but the control forces generated by the various body parts of the rider to control the sportsboard may not be optimized for the type of movements required, e.g., during riding of a snowboard.

[0015] Attempts have been made in the past in the design of, e.g., snowboards, to reduce the wear on various body parts. For example, U.S. Patent 5,172,924 issued to Robert S. Barci on December 22, 1992 (hereinafter "the '924 patent") discloses a snowboard binding system using wedge-shaped base members inserted between the upper surface of the snowboard and the lower surface of the rider's boots. The upper surface of each wedge-shaped base member supports the sole of a boot.

[0016] Although the wedge-shaped base member provides a more ergonomic connection between the rider's feet and the sportsboard, the binding system disclosed in the '924 patent has several disadvantages. For example, the wedge-shaped base members separates the rider's feet from the upper surface of the sportsboard and thus adds increased height to the center of gravity of the intended user. The separation of the feet from the upper surface of the sportsboard and the increased center of gravity both degrade control of the sportsboard. Moreover, the physical separation between the soles of the boots and the upper surface of the sportsboard reduces the transmission of some sensorial information from the sportsboard to the feet of the rider when riding on a medium such as snow or water. Furthermore, the wedge-shaped base member creates concentrated areas of stress on the sportsboard that may eventually lead to damage and/or breakage of the sportsboard at or near the point of contact between the wedge-shaped base members and the upper surface of the sportsboard.

[0017] Accordingly, there exists a need for an improved sportsboard which reduces wear on a rider, provides accurate control between the rider and the upper surface of the sportsboard, and which provides the necessary sensorial information from the sportsboard to the rider.

SUMMARY OF THE INVENTION

[0018] In accordance with the principles of the present invention, there is provided a sportsboard as specified in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Features and advantages of the present invention will become apparent to those skilled in the art from

the following description with reference to the drawings, in which:

Fig. 1 is a schematic elevation view of a snowboard in accordance with the first embodiment of the present invention, the snowboard being shown with a rider mounted thereon.

Fig. 2 is an elevation view illustrating an insert component part of the snowboard shown in Fig. 1.

Fig. 3 shows the positioning of an upwardly angled extremity contacting section with respect to an x-y-z plane.

Fig. 4 is a perspective view illustrating a section of the snowboard illustrated in Fig. 1, taken along section III-III of Fig. 1.

Fig. 5 is an elevation view with sections taken out, illustrating a section of a conventional sportsboard, as it is subjected to a bending stress.

Fig. 6 is a schematic view illustrating a curve representing the internal stress generated inside the sportsboard illustrated in Fig. 5.

Fig. 7 is an elevation view with sections taken out, illustrating a snowboard in accordance with an embodiment of the present invention, as it is subjected to a bending stress.

Fig. 8 is a schematic view illustrating a curve corresponding to the internal stress generated inside the board illustrated in Fig. 7.

Fig. 9 is a schematic elevation view illustrating a snowboard in accordance with a second embodiment of the present invention.

Fig. 10 is an elevation view illustrating an insert component part of the snowboard illustrated in Fig. 9.

Fig. 11 is a perspective view with sections taken out, illustrating a section of the snowboard illustrated in Fig. 9, taken along section X-X of Fig. 9.

Fig. 12 shows a wakeboard in accordance with the principles of the present invention.

Figs. 13A to 13C show three embodiments of added flexibility in the upper surface of a sportsboard in accordance with an aspect of the present invention.

Figs. 14A and 14B show the compression of the upper surface of a sportsboard having added flexibility in accordance with an aspect of the present invention.

Figs. 15A to 15C show three views of a snowboard having an ergonomic upper surface in accordance with the principles of the present invention.

Fig. 16 depicts the posture of a human body in a typical position when riding a sportsboard having an ergonomic upper surface in accordance with the principles of the present invention.

Fig. 17 shows one end of another embodiment of a snowboard having an ergonomic extremity contacting portion in accordance with the principles of the present invention.

Fig. 18 shows one end of yet another embodiment

of a snowboard having an ergonomic extremity contacting portion in accordance with the principles of the present invention.

Fig. 19 shows another embodiment of a snowboard having an ergonomic upper surface in accordance with the principles of the present invention.

Fig. 20 is a schematic view of an upright standing rider mounted to a conventional sportsboard having a relatively flat upper surface.

10

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0020] A sportsboard in accordance with the present invention has an ergonomic upper surface (e.g., INTRACANT™) which provides several advantages over conventional sportsboards having a relatively flat riding surface.

[0021] For instance, an ergonomic upper surface for positioning a rider's feet relative to the sportsboard in a way which reduces the potential for stress or other types of injury to the rider. Moreover, the ergonomic upper surface and positioning of the feet thereon further improves the efficiency of movements by the various body parts of the rider as control forces exerted through the rider's feet to the upper surface of the sportsboard. Furthermore, a sportsboard having an ergonomic upper surface constructed in accordance with the present invention provides increased structural strength and resistance to damage in areas of a sportsboard conventionally subjected to high stress, e.g., directly below the rider's feet. Moreover, the ergonomic upper surface in accordance with the principles of the present invention allows a rider to maintain an improved center of balance with respect to the sportsboard.

[0022] Fig. 1 shows a sportsboard **10** having an ergonomic upper surface **18** in accordance with a first embodiment of the present invention.

[0023] In Fig. 1, a sportsboard **10** has a generally elongated configuration. The sportsboard **10** may be a snowboard, a wakeboard, a surfboard, a sailboard, a skateboard, etc. The present invention provides significant advantages for all types of sportsboards, particularly for snowboards and for sailboards wherein a significant amount of downward pressure is placed on the contacting extremities, e.g., the feet, even in excess of the weight of the rider.

[0024] The sportsboard **10** has a first end section **12** and a longitudinally opposed second end section **14**. An under or lower surface **16** of the sportsboard **10** defines a medium contacting surface which is generally in contact with a medium **S** (e.g., snow or water) when the sportsboard **10** is ridden, and the ergonomic upper surface **18** forms an efficient interface between the rider's feet and the sportsboard **10**.

[0025] Importantly, the present invention provides a curved, ergonomic upper surface **18** in a portion of the sportsboard **10** wherein the rider's feet are rested or

mounted. A pair of longitudinally spaced apart extremity contacting sections **20** and **22** are configured, positioned and sized so as to respectively receive a first extremity (e.g., foot) **24**, and a second extremity (e.g., foot) **26** of a rider **28**. The extremity contacting sections **20** and **22** are angled upwardly with respect to a center of the sportsboard **10** such that the extremities (e.g., feet) **24** and **26** pivot inwardly toward the center of the sportsboard **10**, as indicated by arrows **B** in Fig. 1.

[0026] It should be understood that although the extremity contacting sections **20** and **22** illustrated in Fig. 1 are angled substantially symmetrical relative to one another, only one extremity contacting section need be angled. Alternatively, the extremity contacting sections **20** and **22** may be angled unsymmetrical relative to one another without departing from the scope of the present invention.

[0027] Furthermore, the spacing between the extremity contacting sections **20** and **22** may be any suitable distance. For instance, the extremity contacting sections **20** and **22** may be two ends of a single continuous extremity receiving section, and thus the spacing would be zero. Alternatively, the spacing may be large with respect to a typical stance by the rider, e.g., larger than that relatively shown in Fig. 1, without departing from the scope of the present invention. Similarly, the distance between the first end section **14** and the first extremity contacting section **22**, and the distance between the second end section **12** and the second extremity contacting section **20**, may be any suitable distance other than that relatively shown in Fig. 1, without departing from the scope of the present invention.

[0028] The upper surface of the upwardly angled extremity contacting sections **20** and **22** can be relatively flat or upwardly arcuate. An angle **C** is formed between the upwardly angled extremity contacting sections **20** and/or **22** at a contact point with the extremity, and a theoretical horizontal plane **A** including the contact points at each extremity contacting section **20** and/or **22**. The theoretical horizontal plane **A** is referred to herein as a 'major horizontal plane'. A relatively flat upwardly angled extremity contacting section **20**, **22** will have a relatively constant angle **C** throughout its area, whereas an upwardly arcuate contacting section **20**, **22** will have a range in the value of the angle **C** depending upon the point of contact between the extremity and the extremity contacting section **20**, **22**.

[0029] The preformed, unflexed angle **C** is preferably in a range between 1° and 20° with respect to the point of contact of the extremity and the theoretical horizontal plane **A**, more preferably in a range between 4° and 14° , and most preferably in a range between 5° and 12° .

[0030] For flexible sportsboards such as snowboards, the angle **C** should also take into account an amount of flex in the sportsboard **10**. For instance, snowboards are determined to normally flex or deform about 5° to 7° with respect to the point of contact of the extremities. Thus, the angle **C** for such a sportsboard is preferably in a

range between 4° and 7° , which, together with the added angle due to the flex when the sportsboard is ridden, will provide a total angle of between 9° and 14° .

[0031] For sportsboards which do not deform significantly when ridden, e.g., surfboards, wakeboards and sailboards, the preformed, unflexed angle **C** is preferably at least 4° , more preferably at least 5° , and most preferably at least 6° .

[0032] In addition, the upwardly angled extremity contacting sections **20** and/or **22** may be additionally laterally rotated an angle **R** about the center of the sportsboard **10**, i.e., about the y-axis as shown in Fig. 3, to optimize the ergonomic benefits to contact with an extremity at an angle other than perpendicular to the lengthwise axis of the sportsboard **10**. The angle **R** may be any appropriate value from 0° to 180° with respect to the lengthwise x-axis of the sportsboard **10** as shown in Fig. 3.

[0033] Furthermore, the upwardly angled extremity contacting sections **20**, **22** may be tilted an angle **T** about the lengthwise x-axis as shown in Fig. 3, to accommodate a more comfortable position of the sportsboard **10** with respect to the extremities of the rider. It is preferred that the tilt angle **T** be within about $+/- 5^\circ$ with respect to the x-z plane as shown in Fig. 3.

[0034] Moreover, as shown in Fig. 1, at the upper ends of the extremity contacting sections **20** and **22**, the sportsboard **10** has a thickest cross-sectional width **W** between the lower surface **16** and the upper surface **18** of the sportsboard **10**.

[0035] A first radius of curvature **D₁** may be defined between an intermediate or center section **30** of the ergonomic upper surface **18** of the sportsboard **10** and the upper end of the first extremity contacting section **22**, and a second radius of curvature **D₂** may be defined between the center section **30** of the ergonomic upper surface **18** of the sportsboard **10** and the upper end of the second extremity contacting section **20**. The first radius of curvature **D₁** is defined by a lateral movement of the first leg **32** of the rider **28** about its corresponding hip **34**. Similarly, the second radius of curvature **D₂** is defined by a lateral movement of the second leg **33** of the rider **28** about the other hip **35**. So long as both legs **33**, **34** of the rider **28** are the same length, the first and second radius' of curvature **D₁** and **D₂** will be substantially equal, and collectively referred to herein as "the radius of curvature **D**". The larger the radius of curvature **D**, the generally wider apart will be the range of the extremity contacting sections **20** and **22**.

[0036] The radius of curvature **D** can be customized for specific hip configurations. For instance, the ergonomic upper surface **18** may have a relatively small radius of curvature **D** for shorter riders, while the ergonomic upper surface **18** may have a relatively large radius of curvature **D** for taller riders. Thus, e.g., an entire line of snowboards may be manufactured each having a particular radius of curvature corresponding to a typical stance of a person of a particular height. Similarly, a line

of sportsboards such as snowboards can be focused on the typical height of women, and a separate line of similar sportsboards can be focused on the typical height of men.

[0037] In the embodiment illustrated in Figs. 1-3, the body of the sportsboard **10** is provided with a singular core **36** illustrated more specifically in Fig. 2. The core **36** typically extends integrally from the first end section **14** to the second end section **12**. Fig. 4 shows the increased width **W** of the core **36** of the sportsboard **10**, particularly at the outer portions of the extremity contacting sections **20, 22**.

[0038] As discussed, some prior art devices position a separate wedge-shaped block between the rider's extremity and a localized area of the upper surface of a relatively flat conventional sportsboard. However, wedge-shaped blocks can cause localized stress in the sportsboard, particularly at a point of contact between the wedge-shaped block and the upper surface of the sportsboard.

[0039] The sportsboard **10** in accordance with the principles of the present invention includes structure to angle the extremity contacting sections **20, 22** (i.e., core **36**). The structure either includes the ergonomic upper surface **18**, and/or is positioned between the ergonomic upper surface **18** and the medium-contacting lower surface **16**. Thus, as compared with conventional ergonomic solutions to the upper surface of a sportsboard, the core **36** of a sportsboard **10** in accordance with the present invention is in more direct contact with the rider's feet, via the upper surface **18**, than with prior art sportsboards.

[0040] Figs. 5 to 8 illustrate more clearly the advantages of the angled extremity contacting sections **20, 22** of the ergonomic upper surface **18** of a sportsboard in accordance with the present invention. Figs. 5 and 6 show the conventional sportsboard **1100** shown in Fig. 20, but further including a wedge-shaped block **40** mounted on a relatively flat extremity contacting section, and while subjected to a bending stress. Figs. 7 and 8 show a sportsboard **10** having angled extremity contacting sections in accordance with the principles of the present invention, while subjected to a similar bending stress.

[0041] In particular, Fig. 5 shows a conventional sportsboard **1100** with a conventional wedge-shaped or angled block **40** mounted on an extremity contacting section of a relatively flat upper surface **1110** thereof. Although the extremity (in this case a foot of the rider) is shown barefoot, it is to be understood that the invention is equally applicable to a sportsboard accepting a boot or other apparatus worn on the foot or other extremity of the rider. The foot is shown barefoot merely for clarity of explanation.

[0042] Fig. 6 illustrates a strain curve **44** corresponding to the bending stress **42** (Fig. 5) applied to one end of the sportsboard **1100**. The relative strain caused in the length of the conventional sportsboard **1100** is

shown, in pounds per square inch (PSI). A local peak or significantly excessive amount of strain **46** is caused in the conventional sportsboard **1100** at a portion corresponding to an extremity contacting section having a wedge-shaped block **40** in contact therewith.

[0043] The significantly excessive amount of stress, particularly at the local peak **46**, causes decreased control of the sportsboard **1100**, decreased response of the sportsboard, and increased possibility of the structure of the sportsboard **1100** failing in the area corresponding to the peak stress **46**, i.e., below the wedge-shaped block **40**.

[0044] Conversely, Figs. 7 and 8 illustrate a bending stress indicated by the arrow **42** similar to that shown with respect to the conventional sportsboard **1100** shown in Figs. 5 and 6, but as applied to a sportsboard **10** having angled extremity contacting sections and ergonomic upper surface **18** in accordance with the principles of the present invention.

[0045] In particular, Fig. 7 shows a sportsboard **10** including a core **36** defining at least one angled extremity contacting section at the point of contact of the rider's foot on the ergonomic upper surface **18** of the sportsboard **10**.

[0046] Fig. 8 shows a strain curve **44'** corresponding to the bending stress applied along the length of the sportsboard **10** during application of the same bending stress **42** shown in Fig. 7. The strain curve **44'** defines a relatively smooth distribution of the stress along the length of the sportsboard **10**. Note that the present invention reduces or eliminates the peak or significantly excessive stress in the extremity contacting portion of the sportsboard **10**.

[0047] The conventional wedge-shaped blocks **40** are not embedded within the body of the sportsboard **10**, e.g., under the upper surface **18**, and thus control forces are not transmitted directly from the rider, via the wedge-shaped block **40**, to the sportsboard **10**. Hence, reaction time of the sportsboard **10** after control forces are initiated by the rider, and the predictability of the sportsboard **10**, suffers. In accordance with the principles of the present invention, the geometry of the internal and/or upper structure of the sportsboard **10**, particularly in the region(s) corresponding to the extremity contacting section(s), is determined by a structural component positioned within the board, as opposed to a structure mounted on top of a relatively flat upper surface as in conventional sportsboards. The resulting smooth distribution of the bending stress provides a sportsboard **10** with better control, better response, and better reliability as compared with conventional sportsboards, e.g., having a wedge-shaped block **40**.

[0048] Moreover, wedge-shaped blocks **40** increase the distance between the sole of the extremity, e.g., foot, and the upper surface of the sportsboard, thus raising the center of gravity of the rider with respect to the sportsboard. Most riders find this disadvantageous because it reduces response of the sportsboard and the

level of control which the rider has over the sportsboard. In accordance with the principles of the present invention, the angling of the core **36** and/or upper surface **18** of the sportsboard **10** allows for more direct contact between the rider's extremities (e.g., feet) and the core **36** of the sportsboard **10**. Thus, the center of gravity of the rider is generally lowered, allowing better control and response of the sportsboard **10**.

[0049] The extremity contacting sections **20** and **22** may be angled above the main level of the upper surface **18**, or they may be countersunk with respect to the other portions of the upper surface **18** of the sportsboard **10**. Countersunk extremity contacting sections **20** and **22** can lower the center of gravity of the rider with respect to the sportsboard **10**.

[0050] Figs. 9 to 11 illustrate another embodiment of a sportsboard in accordance with the principles of the present invention.

[0051] The sportsboard **10'** shown in Figs. 9 to 11 is substantially the same as the sportsboard **10** illustrated in Figs. 1-3, with the exception of the core. In Figs. 1 to 3, the core **36** was of a generally singular construction. However, the core **36'** of the sportsboard **10'** shown in Figs. 9 to 11 is a laminate composite.

[0052] The laminate composite core **36'** includes a conventional core component **38** extending substantially from the first end section **14** to the second end section **12**, and an insert core component **40** extending substantially between both extremity contacting sections **20** and **22**. Of course, more than two core layers may be implemented to form a core structure forming at least one upwardly angled extremity contacting section, in accordance with the principles of the present invention.

[0053] Fig. 12 shows a wakeboard **10w** ridden on a medium **W** such as water, in accordance with the principles of the present invention.

[0054] In particular, the wakeboard **10w** includes two extremity contacting sections **20, 22** in an upper surface **18** thereof. The positioning of the upwardly angling extremity contacting sections **20, 22** are as described with respect to the embodiment shown in Figs. 1 to 4, including the angles **C, R** and **T**.

[0055] Note that the wakeboard **10w** typically has one or more fins **1217** and an upwardly curving lower surface **16** from the perspective of the rider. Nevertheless, the angling of the extremity contacting sections **20, 22**, particularly the upward angle **C**, is unaffected by the curvature of the lower surface **16**.

[0056] Since the extremity contacting portions **20, 22** of the sportsboard **10** present a greater thickness as they angle upwardly, the extremity contacting portions **20, 22** increase the torsional rigidity of the sportsboard **10** at respective locations where torsional rigidity is most suitable. However, if increased torsional rigidity is not desired, flexibility can be added to the sportsboard **10**, particularly but not exclusively in the extremity contacting portions **20, 22**.

[0057] For instance, Figs. 13A to 13C show three em-

bodiments of a sportsboard **10** having added flexibility in accordance with an aspect of the present invention.

[0058] In particular, Fig. 13A shows a plurality of angled grooves **990** cut in linear paths widthwise across the upper surface **18** of a sportsboard **10**. The angled grooves **990** result in a serrated portion of the upper surface. Fig. 13B shows the formation of grooves normal or orthogonal to the lower surface **16** of the sportsboard **10** in a widthwise direction across the upper surface **18** of the sportsboard **10**. Fig. 13C shows the formation of U-shaped grooves **994** in the upper surface **18** of the sportsboard **10**. In all cases, the grooves **990-994** increase the flexibility of the sportsboard **10** by decreasing the amount of compression forces necessary to bend or deflect the sportsboard **10**.

[0059] While the grooves **990-994** shown in Figs. 13A to 13C are shown normal to the lower surface **16** of the sportsboard **10**, it will be understood by those of ordinary skill in the art that the grooves **990-994** may alternatively be formed or cut at any appropriate angle, e.g., normal to the upper surface **18** and/or normal to the lower surface **16**, in accordance with the principles of the present invention.

[0060] In the case of a snowboard, because of the compression of the upper surface **18**, the boot bindings should be mounted so as to allow sufficient lateral movement of the upper surface **18** of the sportsboard **10** in a widthwise direction to allow the maximum desired amount of compression of the upper surface **18** of the sportsboard **10**. Alternatively, the flexibility can be added in portions of the sportsboard **10** other than directly under the location of contact with the extremity. For instance, the grooves **990-994** may be cut after appropriate bindings or other apparatus is mounted to the upper surface **18** of the sportsboard. In this way, the grooves **990-994** may be placed on either side of the binding and not under the binding.

[0061] The grooves **990-984**, while being shown in Figs. 13A in a portion of the extremity contacting portion, may be located at any point along the length of the sportsboard **10** to provide added flexibility thereto.

[0062] Fig. 14A depicts an ergonomic sportsboard having angled grooves **990** formed in an upper surface **18** thereof before flexion, and Fig. 14B shows the compression of the upper surface **18** of the ergonomic sportsboard shown in Fig. 14A when flexed.

[0063] The core components **36** (Figs. 1 to 3) or **36'** (Figs. 9 to 11) may be inserted within the body of the sportsboard **10** by any one or more of a plurality of manufacturing processes. For example, the cores **36** or **36'** may be formed integrally within the sportsboard **10** during an injection process. Alternatively, the cores **36** or **36'** may be inserted between the upper surface **16** and the lower surface **18** during a pressure mold manufacturing process. Other suitable manufacturing processes include plastic injection molding, foam molding, and/or a formed wood core.

[0064] Although the embodiments shown in Figs. 1 to

3 and 9 to 11 include first and second end sections **12** and **14** that curve upwardly, it should be understood that the rider's feet are not generally rested or mounted on the upwardly curving first and second end sections **12** and **14** during riding, i.e., the first and second end sections **12** and **14** are not general riding surfaces. The present invention may be implemented in a sportsboard with or without upwardly curving first and second end sections **12** and **14** without departing from the scope of the invention.

[0065] Figs. 15A to 17 show various embodiments of a snowboard having an ergonomic upper surface, e.g., an INTRACANT™ upper surface, in accordance with the principles of the present invention.

[0066] In particular, Figs. 15A to 15C show three views of a snowboard **1200** having an ergonomic upper surface in accordance with the principles of the present invention. Fig. 16 depicts the posture of a human body in a typical position when riding the snowboard **1200** shown in Figs. 15A to 15C.

[0067] Fig. 17 shows one end of another embodiment of a snowboard **1300** having an ergonomic extremity contacting portion **1302** in accordance with the principles of the present invention. Note that the extremity contacting portion **1302** is arcuate with respect to the upper surface of the snowboard **1300**, to provide similar ergonomic benefits through a range of non-parallel angles of the extremity, e.g., a foot, with respect to the snowboard **1300**.

[0068] Fig. 18 shows one end of yet another embodiment of a snowboard **1400** having an ergonomic extremity contacting portion **1402** in accordance with the principles of the present invention. The extremity contacting portion **1402** in this embodiment is pointed in the region **1404**, recognizing that the extremity on a snowboard is not mounted parallel to the length of the snowboard **1400**.

[0069] Fig. 19 shows another embodiment of a snowboard **1500** having integral ergonomic pads **1502**, **1504** on the upper surface of the snowboard **1500**, in accordance with the principles of the present invention.

[0070] The present invention provides a rider of a sportsboard with a healthier and more controlled stance without requiring added components between, e.g., a snowboard binding and the snowboard, thus saving weight and structural integrity of the overall sportsboard. The INTRACANT™ ergonomic upper surface in accordance with the principles of the present invention provides a rider increased comfort, endurance, stability, momentum at the contacting extremity, and more power. The INTRACANT™ ergonomic upper surface in accordance with the principles of the present invention reduces torsional stress, and provides a more rapid impulse transmission from 'brain to sportsboard'.

[0071] Moreover, the sportsboard, being slightly thicker around the point of contact with the rider's extremities, is stronger with respect to downward impact, distributes forces more evenly along the edge of the sportsboard,

and significantly reduces asymmetric forces. This increases the reliability of, e.g., the lamination and shear strength of snowboard edges, which commonly delaminate and/or shear in thinner snowboards.

5 **[0072]** The unibody type construction of the upper surface and the ergonomic shape of the upper surface do not add significant weight to the sportsboard. Moreover, particularly in the case of snowboards or other sportsboards requiring a mounted binding, the thicker **10** extremity contacting sections allow for higher inserts having more threads inserted into the sportsboard, increasing the strength of the bond between the bindings and sportsboard significantly.

[0073] The present invention is equally applicable to **15** upper surface platforms which may be attached to substantially the entire upper surface of a sportsboard. For instance, a platform forming the upper surface **18** may be mated with a relatively flat upper surface of a conventional sportsboard to form a new upper surface **18** **20** including the extremity contacting sections **20**, **22**. With a snowboard, an ergonomic upper surface **18** may be formed in a unibody-type construction and adhered to a conventional snowboard with, e.g., highly resistant two-sided foam urethane or neoprene tape. This semi-dense **25** two-sided tape is known, and is typically about 1/64" thick. The platform would be further adhered to the conventional upper surface of the snowboard with the mounting screws which pass through the platform and mount into the core of the conventional snowboard.

[0074] While the present invention has been shown **30** with respect to, and has particular application to, snowboarding, it is equally applicable to any sportsboard ridden in an upright standing position (e.g., surfboards, mono water skis, etc.) or upright kneeling position (e.g., a wakeboard, etc.).

[0075] While the invention has been described with **35** reference to exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention **40** without departing from the scope of the invention, as claimed.

Claims

- 45** 1. A sportsboard (10) comprising an upper surface (18) adapted to contact at least one boot of a rider in use, a lower surface (16) adapted for contacting snow, and a core (36), the core having an increasing thickness at a boot contacting section (20, 22), and the core further having a decreasing thickness outwardly beyond said boot contacting section.
- 50** 2. A sportsboard as claimed in claim 1 in which the increasing thickness makes an angle of between 1 and 20 degrees at a point of contact of a boot in use along the length-wise axis of the sportsboard.

3. A sportsboard as claimed in claim 2 in which the angle is between 5 and 12 degrees.
4. A sports board as claimed in claim 2 in which the angle is at least 6 degrees.
5. A sportsboard as claimed in any preceding claim in which said upper surface is provided with at least one width-wise groove (990) to increase the flexibility of the sportsboard.
6. A sportsboard (10) as claimed in claim 5 having a plurality of widthwise grooves (990).
7. A sportsboard as claimed in claim 5 or 6 in which said width-wise groove or grooves is formed in an area of the sportsboard having an increasing thickness.

Patentansprüche

1. Sportbrett (10) umfassend eine an das Aufsetzen wenigstens eines Stiefels eines Fahrers im Gebrauch angepasste obere Fläche (18), eine untere, zur Kontaktaufnahme mit Schnee vorgesehene Fläche (16), und einen Kern (36), welcher in einem Stiefelaufsetzabschnitt (20, 22) eine ansteigende Dicke aufweist, und wobei der Kern ferner nach außen, jenseits des Stiefelaufsetzabschnitts, eine sich verringernde Dicke aufweist.
2. Sportbrett nach Anspruch 1, bei dem die ansteigende Dicke einen Winkel zwischen 1 und 20 Grad an einem Kontaktspunkt eines Stiefels im Gebrauch entlang der Längsachse des Sportbrettes bildet.
3. Sportbrett nach Anspruch 2, bei dem der Winkel zwischen 5 und 12 Grad beträgt.
4. Sportbrett nach Anspruch 2, bei dem der Winkel wenigstens 6 Grad beträgt.
5. Sportbrett nach einem der vorhergehenden Ansprüche, bei dem die obere Fläche zur Steigerung der Flexibilität des Sportbretts mit wenigstens einer der Breite nach ausgerichteten Rille (990) versehen ist.
6. Sportbrett (10) nach Anspruch 5, umfassend eine Vielzahl der Breite nach ausgerichteter Rillen (990).
7. Sportbrett nach Anspruch 5 oder 6, bei dem die der Breite nach ausgerichtete Rille oder Rillen in einem eine ansteigende Dicke aufweisenden Bereich des Sportbretts ausgebildet ist bzw. sind.

Revendications

1. Planche de sport (10) comprenant une surface supérieure (18) adaptée pour entrer en contact, en utilisation, avec au moins une chaussure de snowboarder, une surface inférieure (16) adaptée pour entrer en contact avec la neige, et un noyau (36), le noyau ayant une épaisseur croissante à une partie de contact avec la chaussure (20, 22), et le noyau ayant en outre une épaisseur décroissante vers l'extérieur au-delà de ladite partie de contact avec la chaussure.
2. Planche de sport selon la revendication 1, dans laquelle l'épaisseur croissante forme un angle d'environ 1 et 20 degrés au niveau d'un point de contact d'une chaussure en utilisation le long de l'axe longitudinal de la planche de sport.
3. Planche de sport selon la revendication 2, dans laquelle l'angle mesure entre 5 et 12 degrés.
4. Planche de sport selon la revendication 2, dans laquelle l'angle mesure au moins 6 degrés.
5. Planche de sport selon l'une quelconque des revendications précédentes, dans laquelle ladite surface supérieure est munie au moins d'une rainure dans le sens de la largeur (990) afin d'augmenter la flexibilité de la planche de sport.
6. Planche de sport (10) selon la revendication 5, ayant une pluralité de rainures (990) dans le sens de la largeur.
7. Planche de sport selon l'une des revendications 5 ou 6, dans laquelle ladite rainure ou lesdites rainures dans le sens de la largeur est/sont formée(s) dans une zone de la planche de sport ayant une épaisseur croissante.

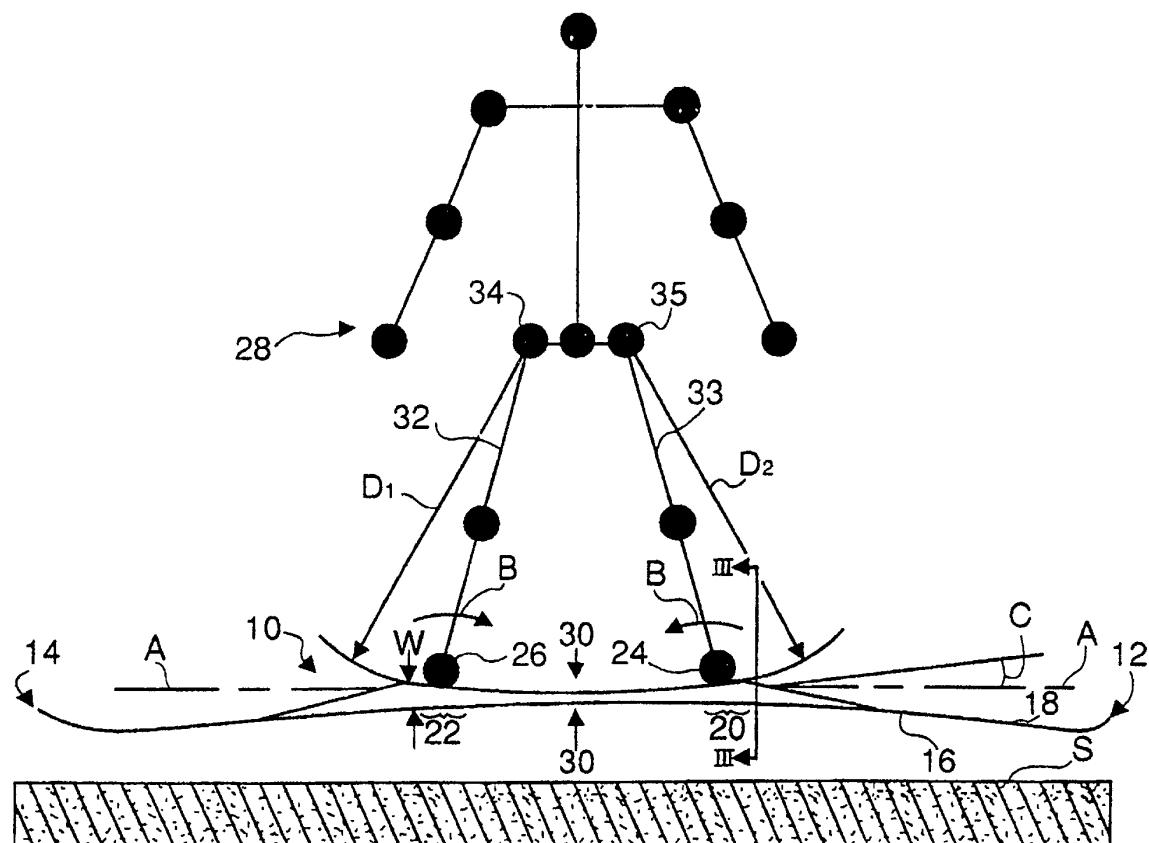


FIG.1

FIG.2

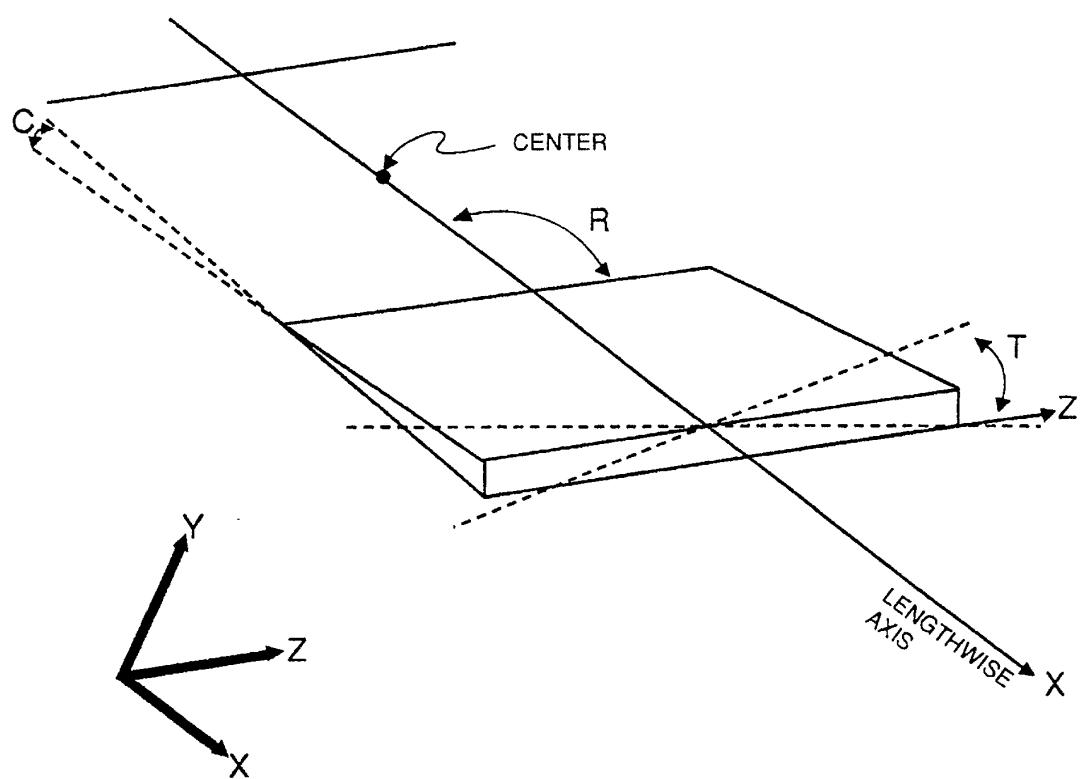


FIG. 3

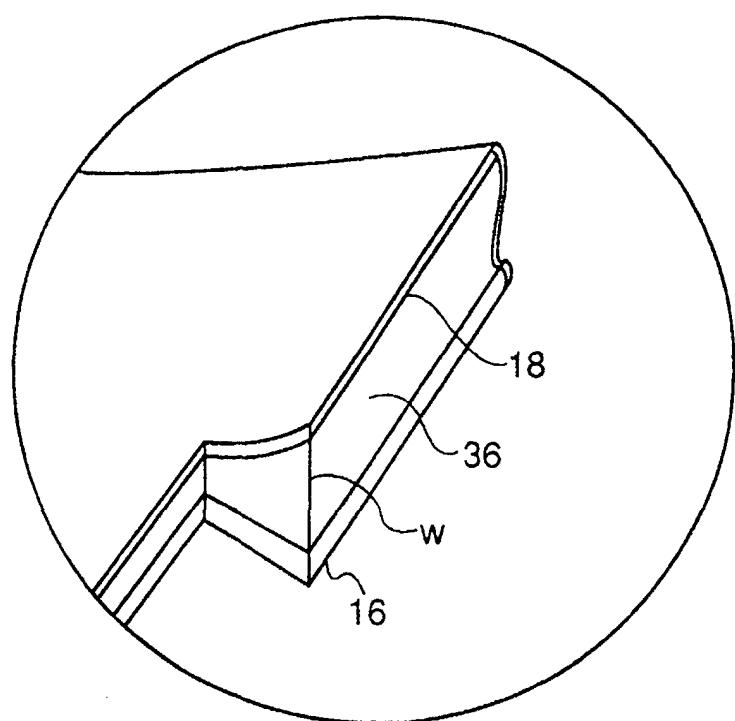


FIG. 4

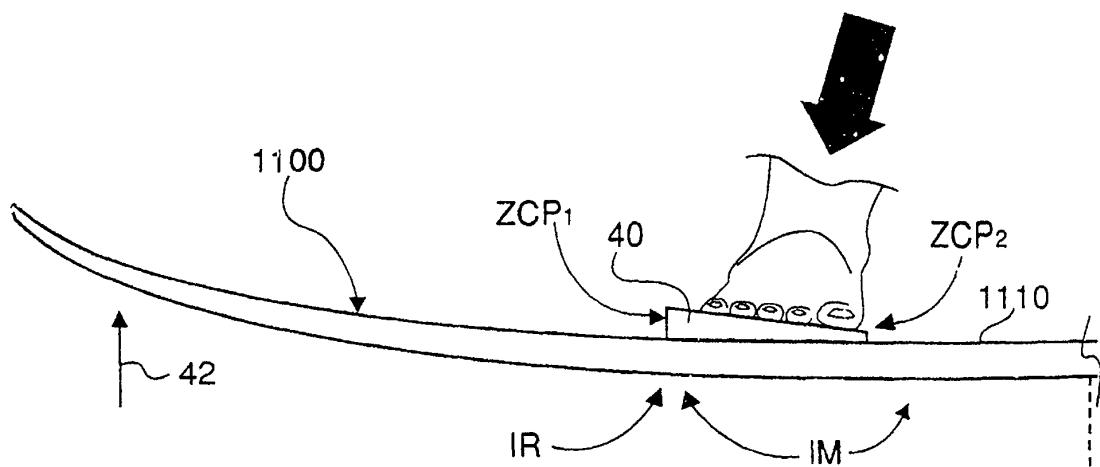


FIG. 5 (PRIOR ART)

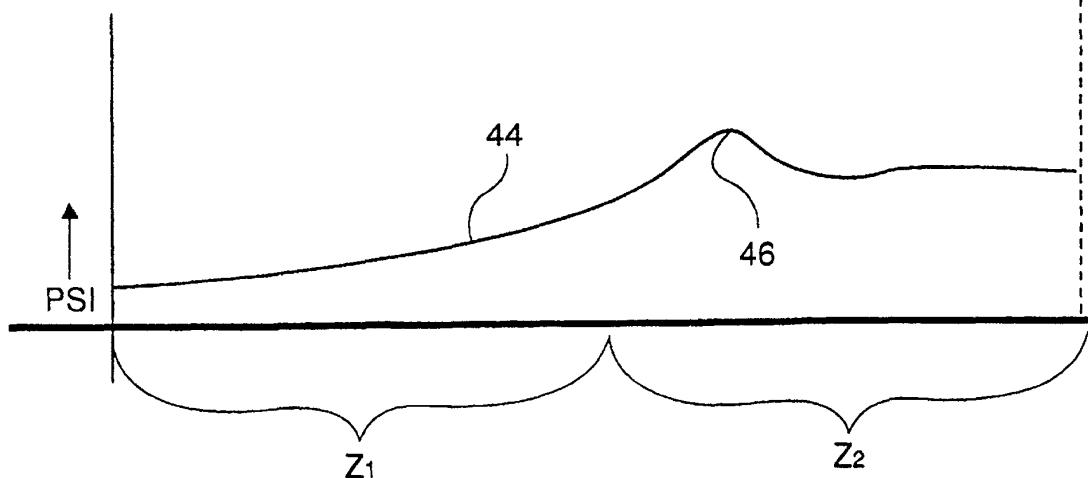
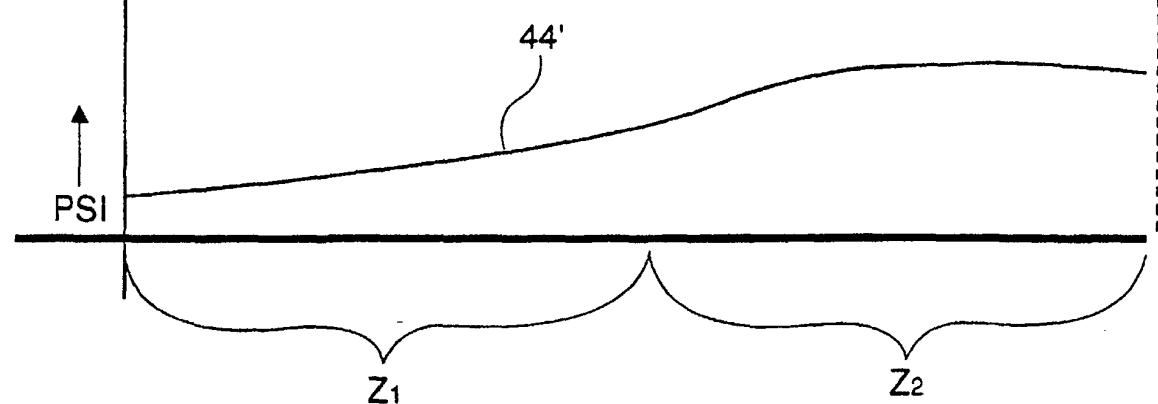
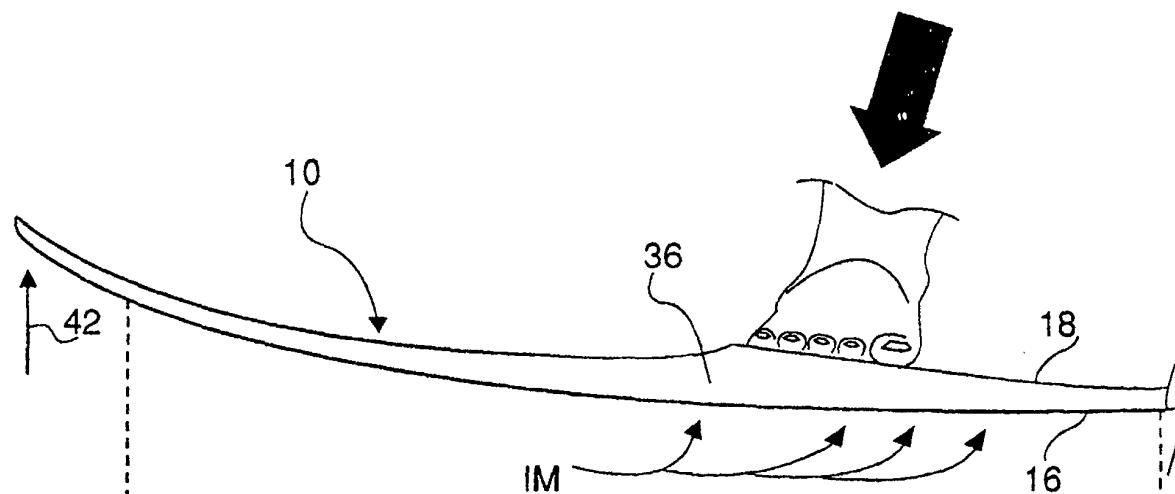
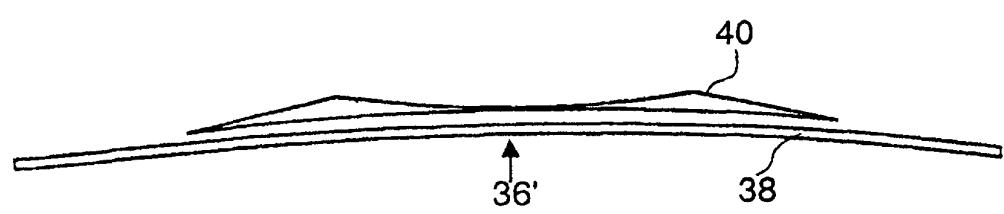
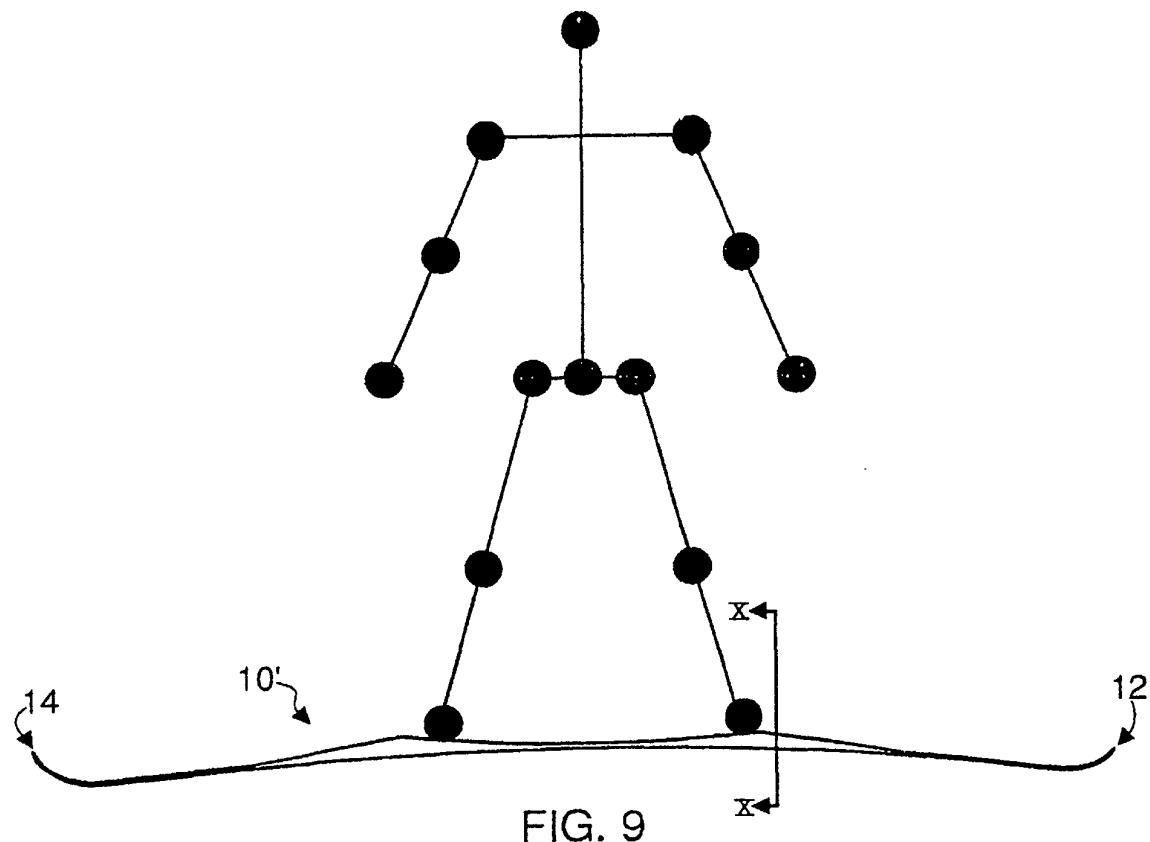






FIG. 6 (PRIOR ART)

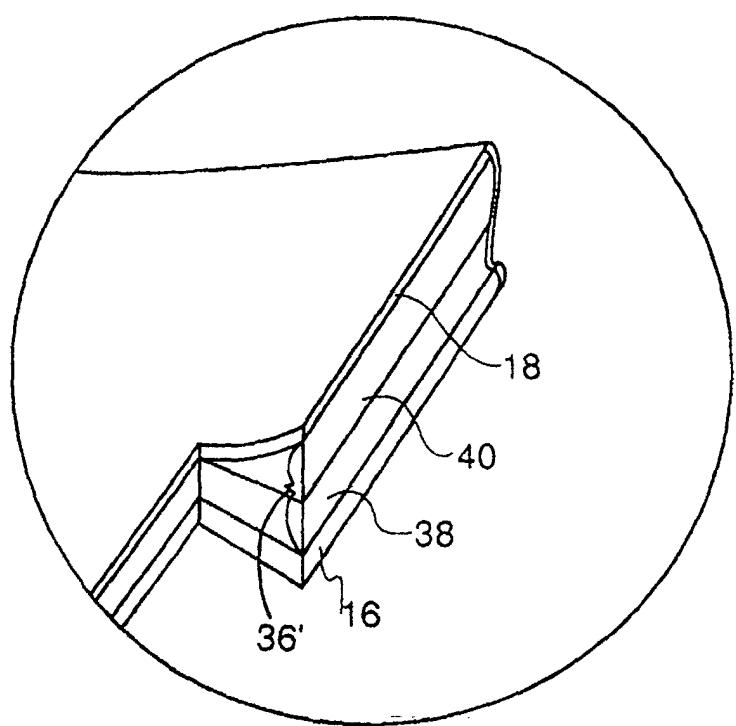


FIG. 11

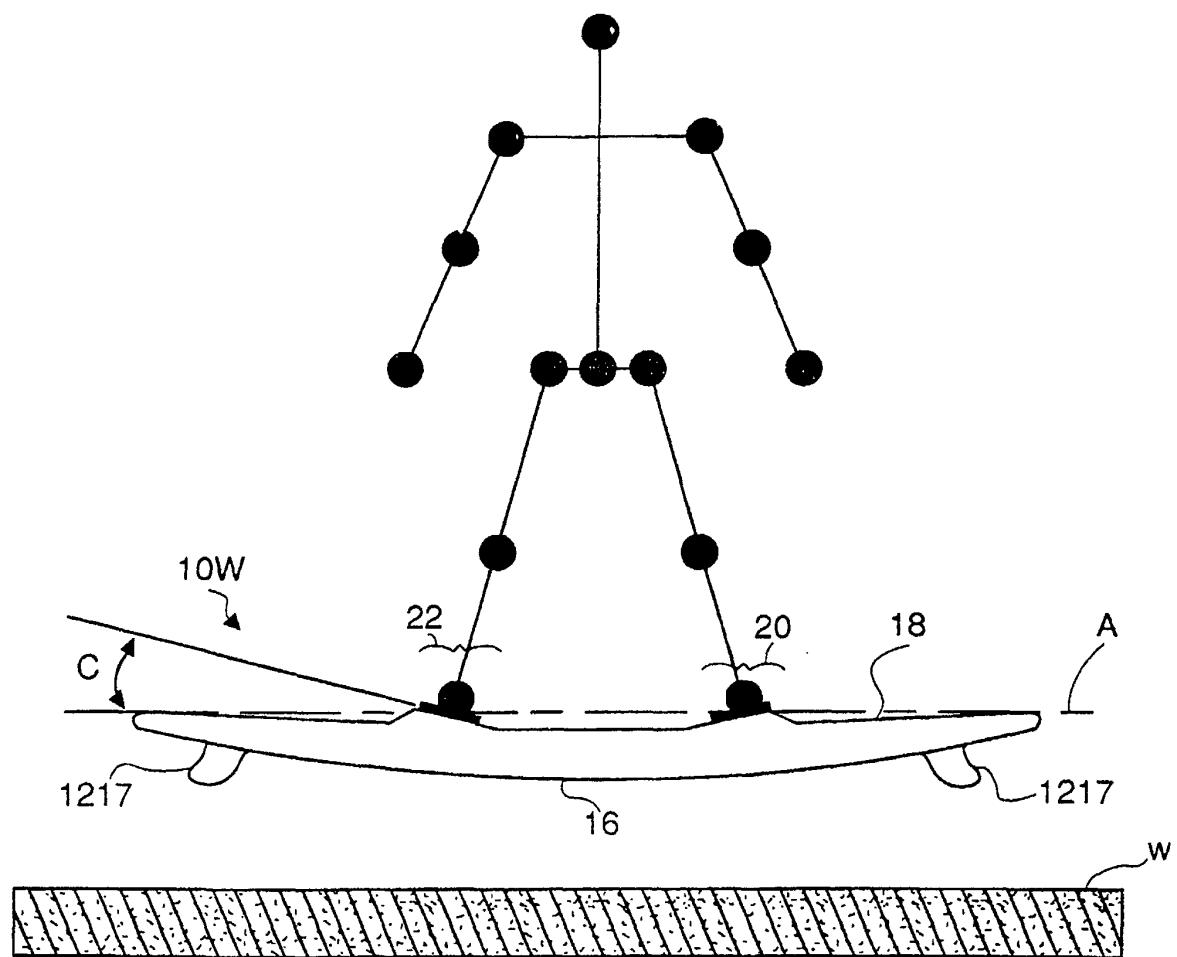
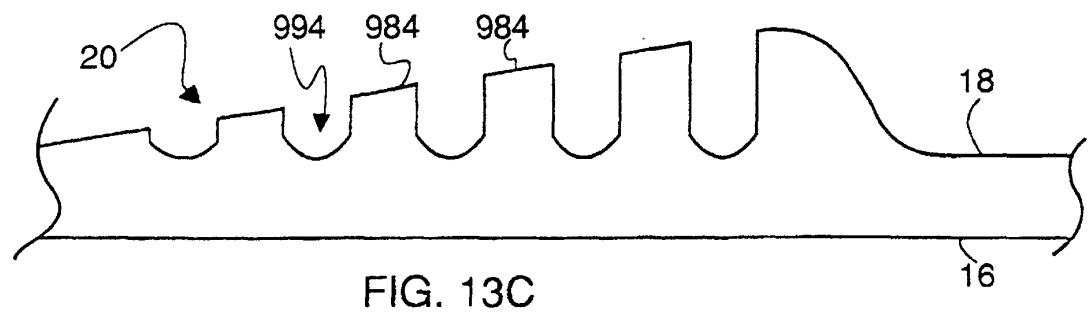
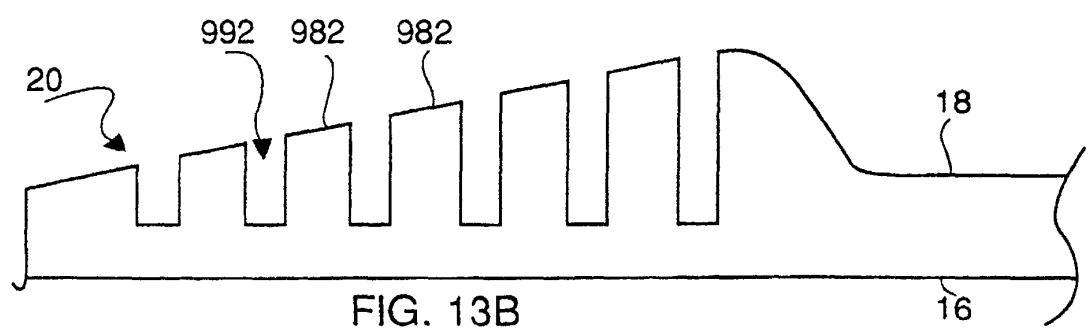
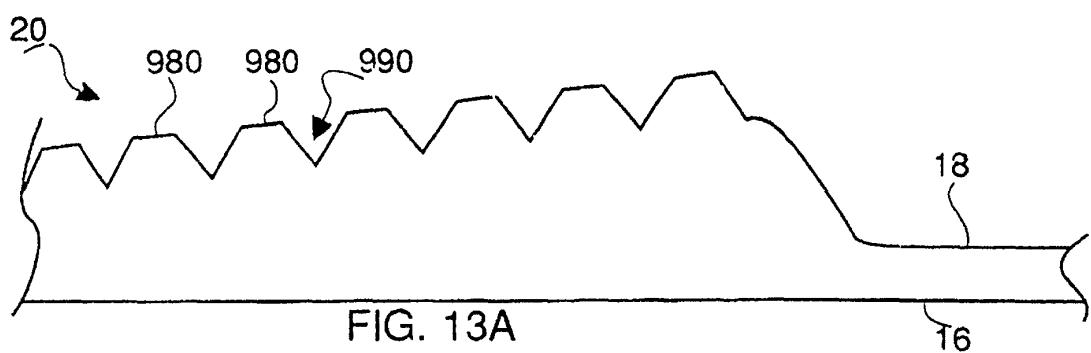





FIG.12

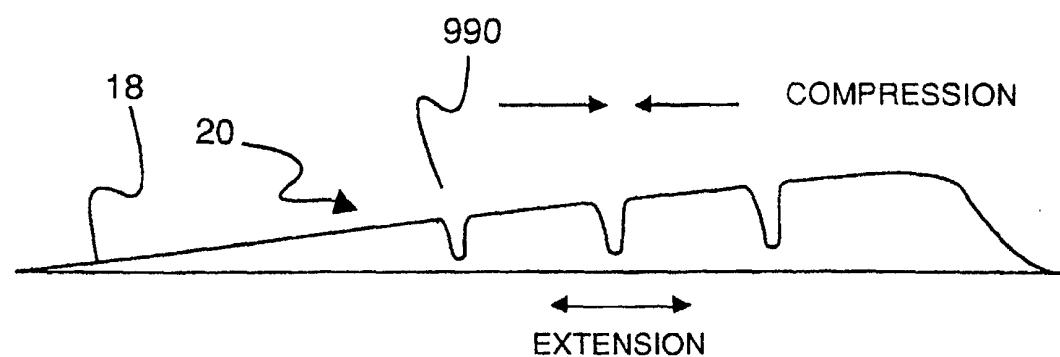


FIG. 14A

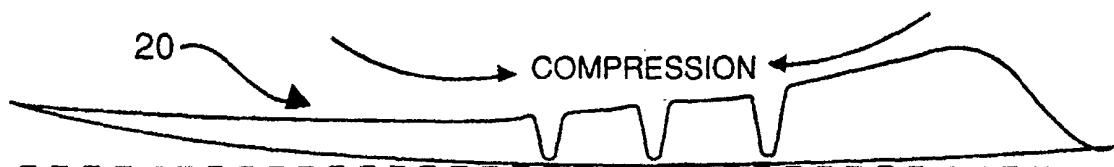


FIG. 14B

FIG.15A

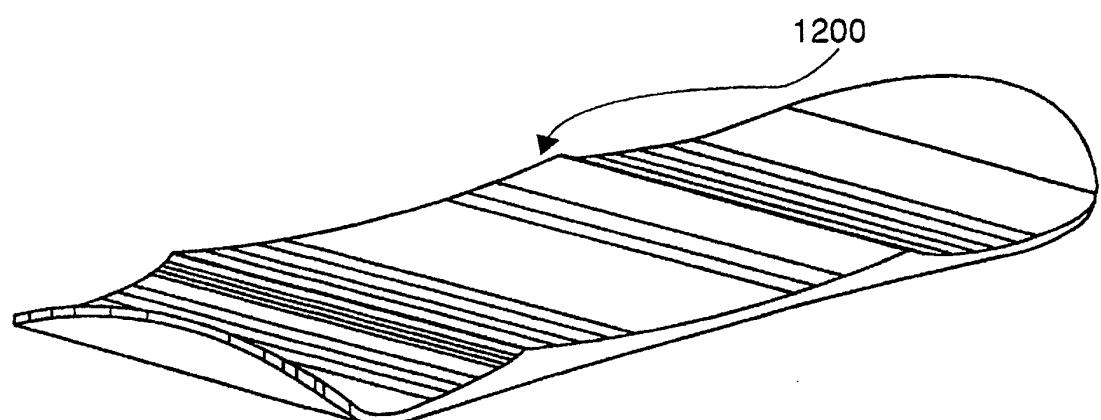


FIG.15B

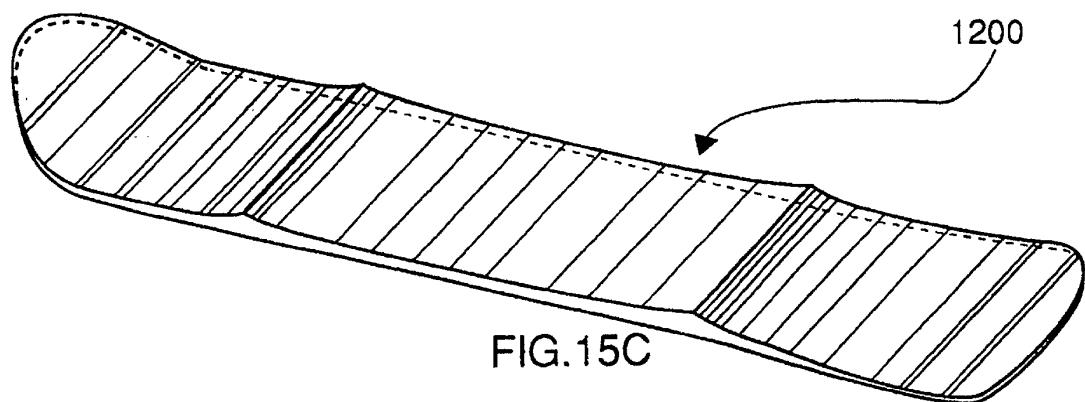


FIG.15C

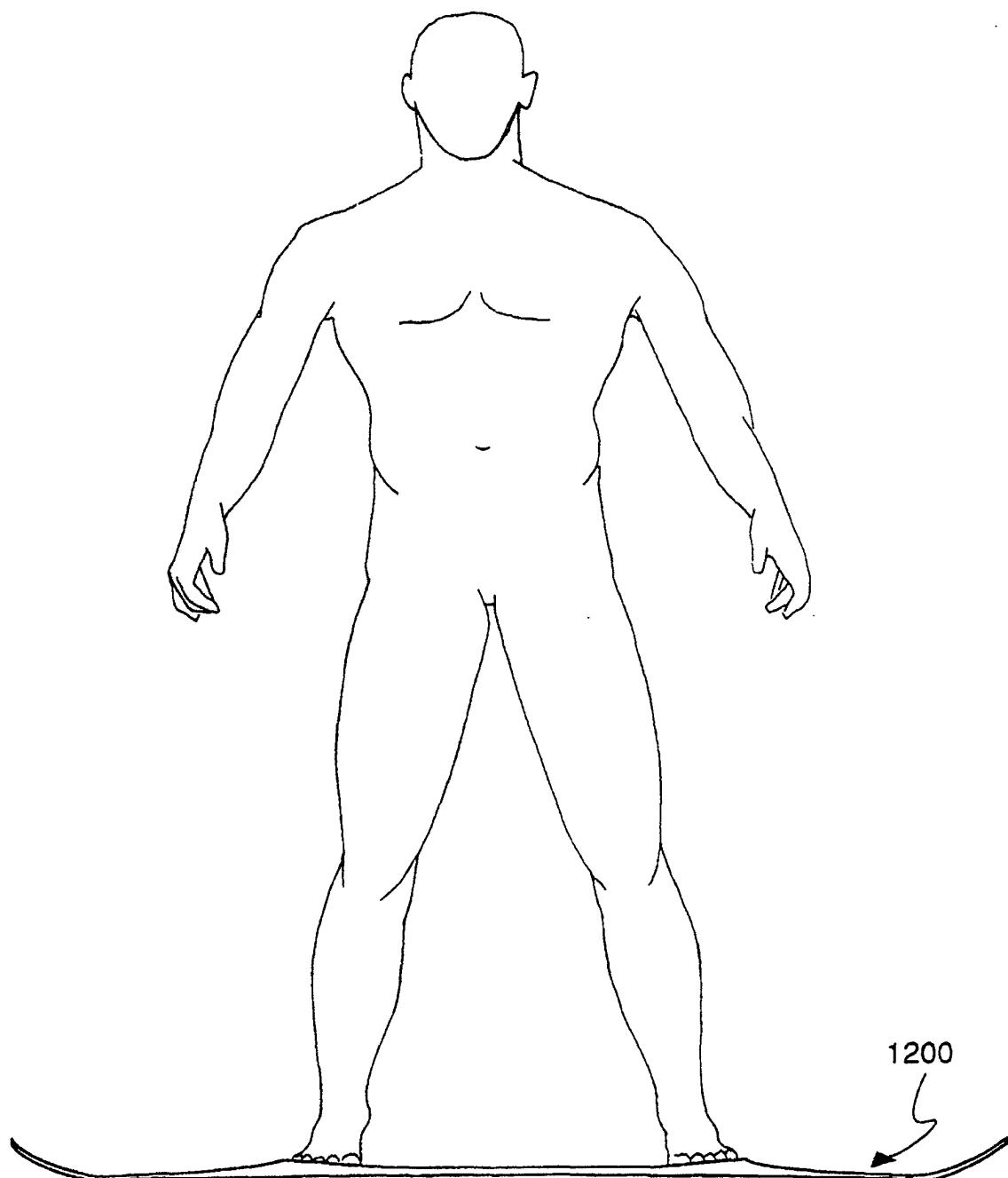


FIG. 16

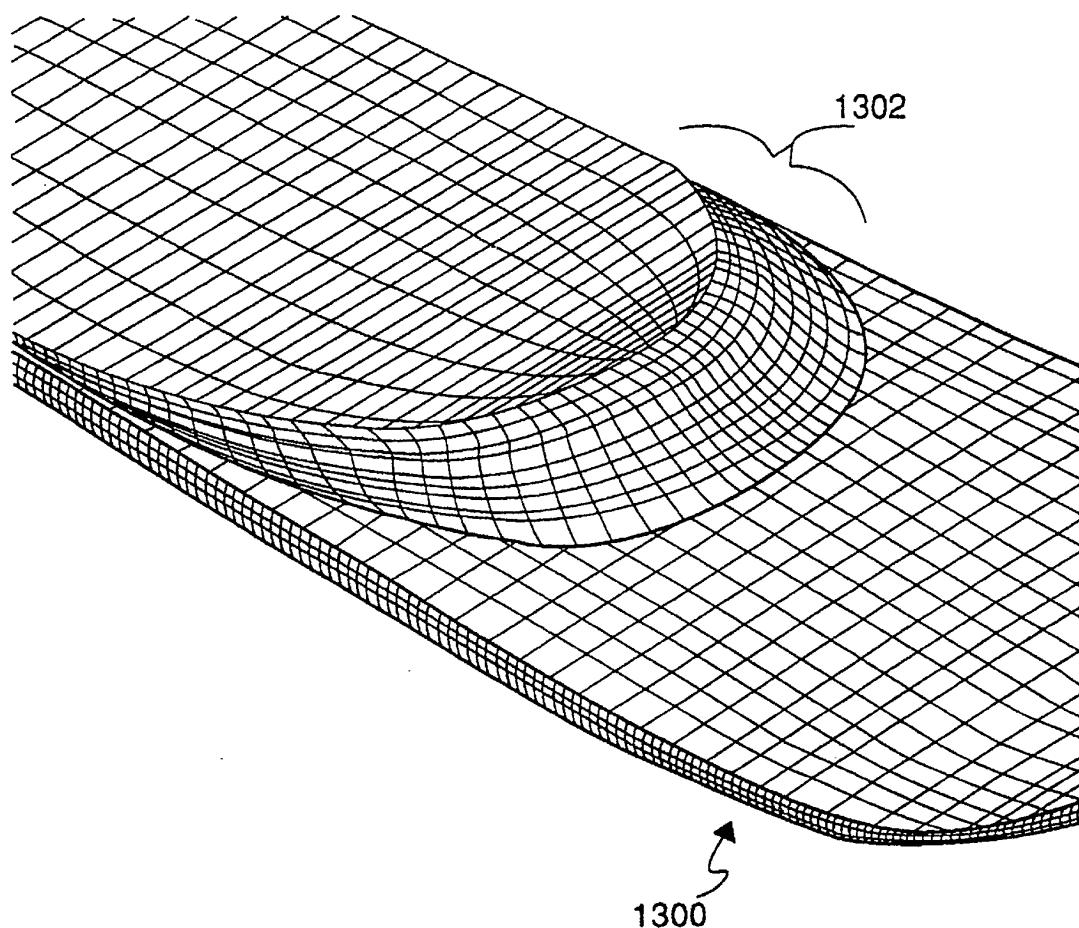


FIG. 17

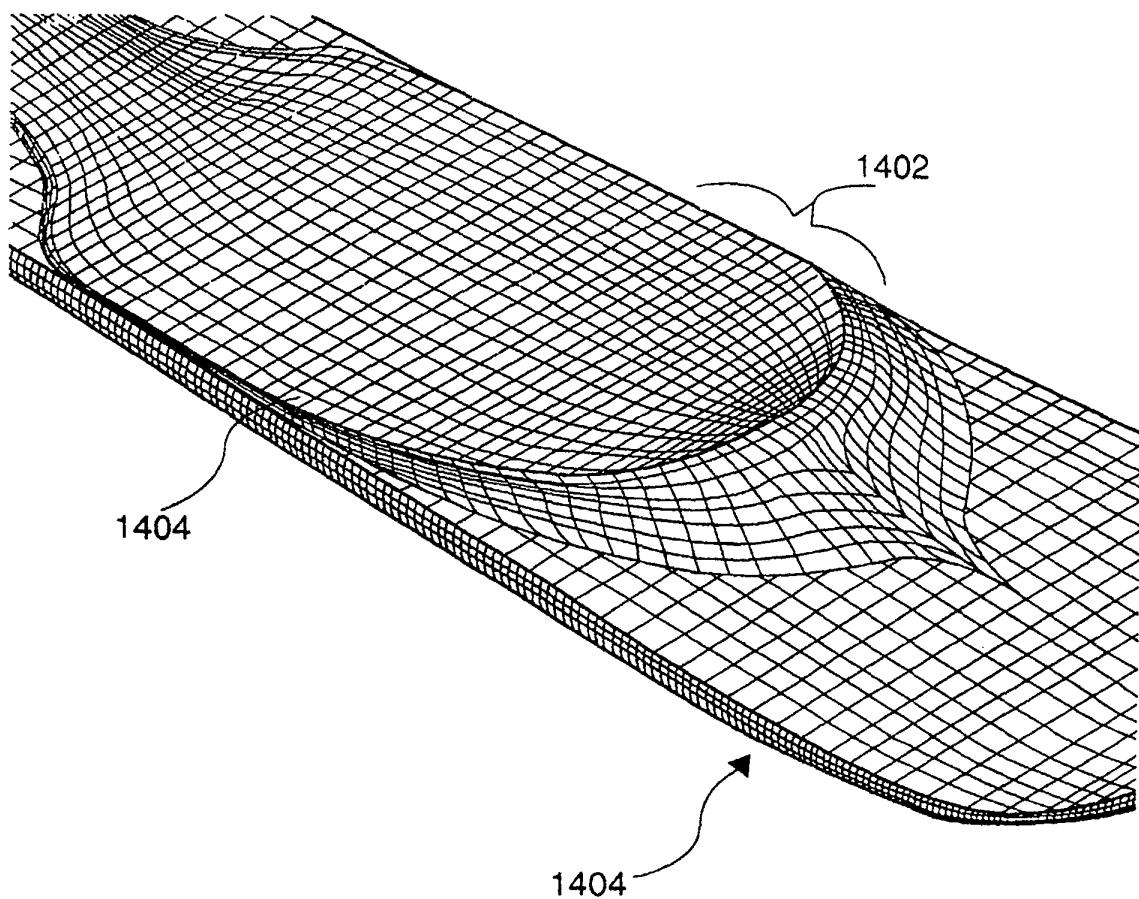


FIG. 18

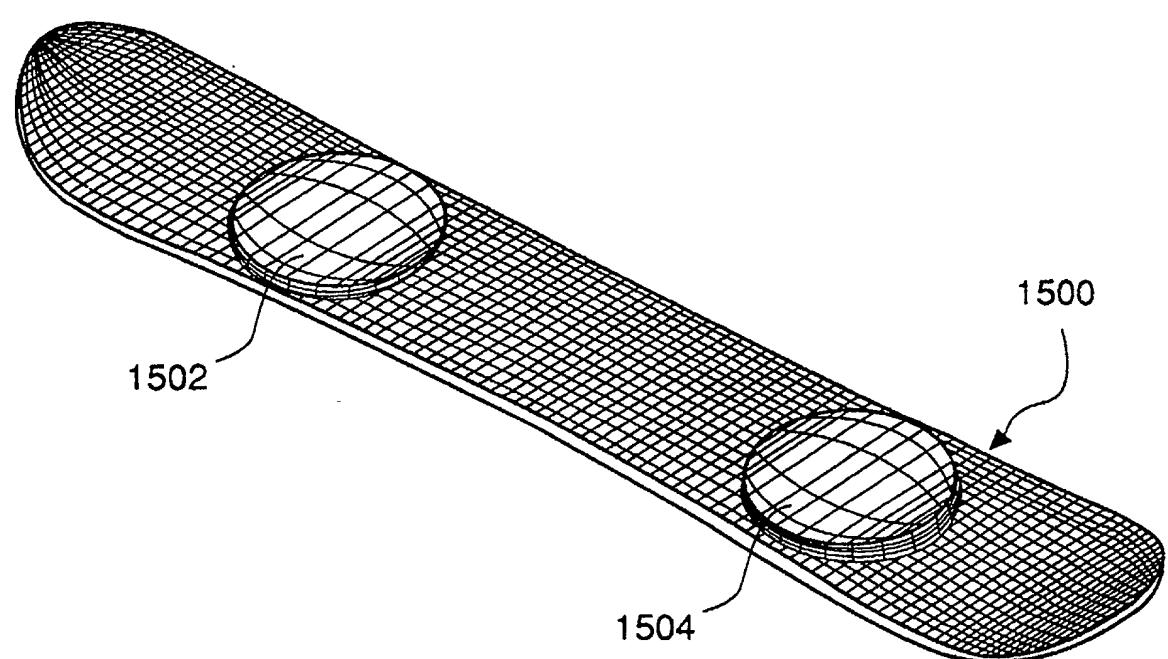


FIG. 19

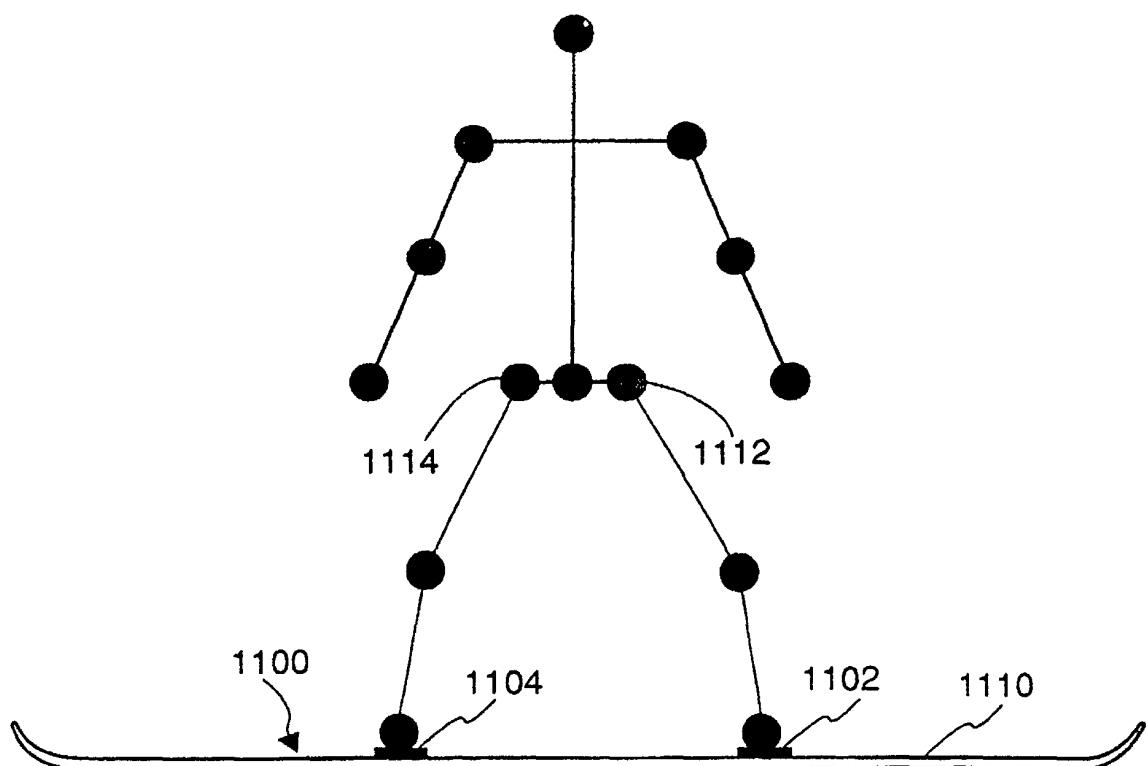


FIG. 20 (PRIOR ART)