Office de la Propriete Canadian CA 2543761 A1 2005/05/19

Intellectuelle Intellectual Property
du Canada Office (21) 2 543 761
“n organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(86) Date de dépét PCT/PCT Filing Date: 2004/10/27 (51) Cl.Int./Int.Cl. GO6F 21/00(2006.01),
(87) Date publication PCT/PCT Publication Date: 2005/05/19 GO6F 21/22(2006.01)

(71) Demandeur/Applicant:
EXENT TECHNOLOGIES, LTD., IL

(72) Inventeurs/Inventors:

(85) Entree phase nationale/National Entry: 2006/04/27
(86) N° demande PCT/PCT Application No.: US 2004/035442

(87) N° publication PCT/PCT Publication No.: 2005/045616 NAVE. ITAY, IL:
(30) Priorités/Priorities: 2003/10/28 (US10/694.435); SHEORY, OHAD, IL
2004/04/02 (US10/815,962) (74) Agent: MBM & CO.

(54) Titre : ELEMENTS DE SECURITE DANS LA REMISE EN LIGNE ET HORS LIGNE D'APPLICATIONS
54) Title: SECURITY FEATURES IN ON-LINE AND OFF-LINE DELIVERY OF APPLICATIONS

100
J
Quary 135
Bt Database
115
Ticket 140
T _—hh-‘&-\\
Management Requested
Yy Server data
Updates/ 133 165
queries -
Vendor LS — l
Server —
110 L
Application
Server(s)
A
[120
A
Ticket Content
140 155
Directions 145 Y
-
- —— — Client
Selection 132 105
Available titles 130 . Player
Component “‘\
Contaet/configureﬁion 125 - \

131

(57) Abrégée/Abstract:
A method and system for determining whether a client Is attempting to copy an application or use the application without
authorization. First, data for at least one prediction log file for the application Is created. Then, based on the at least one prediction

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

CA 2543761 A1 2005/05/19

(21) 2 543 761
(13) A1

(57) Abrege(suite)/Abstract(continued):

log file, prediction knowledge Is determined for the application, where the prediction knowledge Is stored In a prediction file. The
prediction file Is then forwarded to the client executing the application. It is then determined by using the predication file whether the
client I1s attempting to copy the application or use the application without authorization. If the client Iis attempting to copy the
application or use the application without authorization, then the client~s access to the application is terminated. In an offline mode,

usage information Iis bound to user saved data such that modification of usage information renders user saved data unusable. This
prevents unauthorized access to an offline delivered application.

wO 2005/045616 A2 I B0 ! A0 YR 00 L

CA 02543761 2006-04-27

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date

19 May 2005 (19.05.2005) PCT
(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2004/035442

(22) International Filing Date: 27 October 2004 (27.10.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
10/694,435
10/815,962

28 October 2003 (28.10.2003) US
2 April 2004 (02.04.2004) US

(71) Applicant (for all designated States except US): EXENT
TECHNOLOGIES, INC. [US/US]; 7910 Woodmont Av-
enue, Suite 430, Bethesda, MD 20814 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): NAVE, Itay [IL/IL];

(74)

(81)

(84)

(10) International Publication Number

WO 2005/045616 A2

Kfar Hess (IL). SHEORY, Ohad [IL/IL]; 29 Rimon Street,
Neve-Monosson (IL).

Agents: LEE, MICHAEL, Q. et al.; Sterne, Kessler,
Goldstein & Fox PL.L.C., 1100 New York Avenue, N.W.,
Washington, DC 20005 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KL,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: SECURITY FEATURES IN ON-LINE AND OFF-LINE DELIVERY OF APPLICATIONS

100

Query 135
» Database
115
| Ticket 140
Management Requested
Y Server data
Updates/ 133
queries
Vendor 160 ~— l
Server
110
Application
Server(s)
4 4 120
A
Ticket Content
140 185
l
Directions 145 Y
- -
: Client
Selection 132 105
Available titles 130 . | Player
Component “\
Contact/configuration 125 =

131

(57) Abstract: A method and system for determin-
ing whether a client is attempting to copy an appli-
cation or use the application without authorization.
First, data for at least one prediction log file for the
application is created. Then, based on the at least
one prediction log file, prediction knowledge is de-
termined for the application, where the prediction
knowledge is stored in a prediction file. The pre-
diction file is then forwarded to the client execut-
ing the application. It is then determined by using
the predication file whether the client is attempting
to copy the application or use the application with-
out authorization. If the client is attempting to copy
the application or use the application without autho-
rization, then the client’s access to the application is
terminated. In an offline mode, usage information is
bound to user saved data such that modification of
usage information renders user saved data unusable.
This prevents unauthorized access to an offline de-
livered application.

CA 02543761 2006-04-27

WO 2005/045616 A2 |[HIH IR FURO N0 IO 1 0 T AR AT LR

European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, 1, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IFE,
SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, GN, GQ, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
GW, ML, MR, NE, SN, TD, TG). (BF, BJ, CF, CG, Cl, CM, GA, GN, GO, GW, ML, MR, NE,
SN, TD, TG)
Declarations under Rule 4.17: — as to the applicant’s entitlement to claim the priority of the
— s to applicant’s entitlement to apply for and be granted earlier application (Rule 4.17(iii)) for all designations
a patent (Rule 4.17(ii)) for the following designations AE, — 4510 the applicant’s entitlement to claim the priority of the
AG. AL, AM, AT AU. AZ, BA. BB. BG. BR, BW. BY BZ earlier application (Rule 4.17(iii)) for all designations

CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,

EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, 1S, Published:

JP. KE, KG, KP KR, KZ, LC, LK, LR, LS, LT, LU, LV. MA, — without international search report and to be republished
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, upon receipt of that report

PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,

ITM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, For two-letter codes and other abbreviations, refer to the "Guid-
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, ance Notes on Codes and Abbreviations" appearing at the begin-
SD, SL, S7, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, ning of each regular issue of the PCT Gazette.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

SECURITY FEATURES IN ON-LINE AND OFF-LINE DELIVERY OF
APPLICATIONS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This technology relates generally to delivery of applications across a
network.

Related Art

[0002] The delivery of applications from a server to client across a network
has become commonplace. Examples of such applications include utilities,
games, and productivity applications. Nonetheless, the delivery process is not
necessarily convenient or secure. Considerable amounts of data need to be
transterred for the complete delivery of an application, and a complete
download may take hours in some circumstances. This may be followed by a
cumbersome installation process. Moreover, such transactions may be further
complicated by security considerations. A user may need to be authenticated,
for example. Additionally, there may be a need to determine whether the
unauthorized copying and/or use of the application is occurring while the
client 1s engaged in an active session with the application.

[0003] A common problem in the distribution of software is the management
of digital rights and the threat of piracy. Ideally, from the point of view of the
vendor, a software package would be sold to a buyer, and that buyer would be
the only party licensed to use the software. Unlicensed copying and/or use of
the software, 1.e. pirating, obviously represents a financial loss to the software
vendor. Currently, when a vendor sells a software package in the retail
environment, the user may have to enter a code, typically printed on the back
of the packaging during the installation process. This effectively marks the
installation and links it to the copy of the software media, such as a CD. This

code can be thought of as a CD key. Any user of the software must now

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

present the CD to the computer on which the program is installed before
operating the application. Any attempt to operate the installed application
without the CD is not authorized, and is effectively disabled.

[0004] Obviously, such a mechanism cannot be used in the on-line
distribution of an application. In such a transaction there is no packaging and
there 1s no CD key presented to the user. Nor is there a CD to be used as a
token that would allow use of the application.

[0005] Hence there 1s a need for a system and method by which unauthorized
copying and/or use of an application can be controlled, given that the
application 1s accessed over a network (i.e., accessed in online mode).

[0006] As described above, an application can be accessed and executed in
online mode. An application can also be accessed and executed in offline
mode. In offline mode, the application is completely downloaded to the user’s
computer, the user 1s given a compact disk, etc. Because the user has
complete control over the application, it is difficult to terminate the user’s
access to the application. Hence there is a need for a system and method to

limit or terminate a user’s access to an application in offline mode.
SUMMARY OF THE INVENTION

[0007] Further embodiments, features, and advantages of the present
invention, as well as the structure and operation of the various embodiments of
the present invention, are described below with reference to the accompanying
drawings.

[0008] The present mvention includes a method and system for determining
whether a client 1s attempting unauthorized copj and/or use of an application.
First, at least one prediction log file for the application is created. Then, based
on the at least one prediction log file, prediction knowledge is determined for
the application, where the prediction knowledge is stored in a prediction file.
The prediction file is then forwarded to the client executing the application. It

1s then determined by using the prediction file whether the client is attempting

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

to copy and/or use the application. If the client 1s attempting to copy and/or
use the application without authorization, then the client’s access to the
application 1s terminated.

[0009] The invention also includes a system and method for protection against
unauthorized use of an application in an offline mode. Here, user saved data is
bound with usage information, so that any unauthorized attempt to access the
usage information corrupts the user saved data, deterring or preventing further
use of the application.

[0010] Further embodiments, features, and advantages of the present
invention, as well as the structure and operation of the various embodiments of

the present invention, are described below with reference to the accompanying

drawings.

BRIEF DESCRIPTION OF THE FIGURES

[0011] FI1G. 1 1s a block diagram illustrating a system for the on-line delivery
of application programs to a chient according to an embodiment of the
invention. |

[0012] FIG. 2 1s a block diagram illustrating the system of FIG. 1 with the
prediction server according to an embodiment of the invention.

[0013] FIG. 3 1s a block diagram 1llustrating various modules of the prediction
server according to an embodiment of the invention.

[0014] FIG. 4 1s a flowchart illustrating the high level operation of the
prediction based security invention according to an embodiment of the
ivention.

[0015] FIG. 5 1llustrates a record in the connection table according to an
embodiment of the invention.

[0016] FIG. 6 illustrates a record in the count table according to an

embodiment of the invention.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-4 -

[0017} FIG. 7 1llustrates a record in the appearance table according to an
embodiment of the invention.

[0018] FIG. 8 1s a flow chart further describing step 405 of FIG. 4 according
to an embodiment of the invention.

[0019] FIG. 9 1s a flow chart further describing step 805 of FIG. 8 according
to an embodiment of the invention.

[0020] FIG. 10 1s a flow chart further describing step 915 of FIG. 9 according
to an embodiment of the invention.

[0021] FIG. 11 1s a flow chart further describing step 810 of FIG. 8 according
to an embodiment of the invention.

0022] FIG. 12 1s a flow chart further describing step 825 of FIG. 8 according
to an embodiment of the invention.

[0023] FIG. 13 1s a flow chart further describing step 430 of FIG. 4 according
to an embodiment of the invention.

[0024] FIG. 14 1s a graph that illustrates probability, average distance and
score varlables according to an embodiment of the invention.

[0025] FIG. 15 1s a flow chart illustrating the offline security process,
according to an embodiment of the invention.

[0026] FIG. 16 1s a flow chart further illustrating step 1520 of FIG. 15,
according to an embodiment of the invention.

[0027] FIG. 17 1s a block diagram illustrating the data repository and
assoclated processing, according to an embodiment of the invention.

[0028] FIG. 18 1s a block diagram illustrating an embodiment of the

computing context of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0029] A preterred embodiment of the present invention is now described with
reference to the figures, where generally like reference numbers indicate
identical or functionally similar elements. Also in the figures, generally the

left-most digit of each reference number corresponds to the figure in which the

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_5 -

reference number is first used. = While specific configurations and
arrangements are discussed, it should be understood that this is done for
illustrative purposes only. A person skilled in the relevant art will recognize
that other configurations and arrangements can be used without departing from
the spirit and scope of the invention. It will be apparent to a person skilled in
the relevant art that this invention can also be employed 1n a variety of other

- devices and applications.
Table of Contents

L. System overview

11. Prediction Baéed Security
[II. Offline Security
IV. Computing Context

IV. Conclusion

L. System overview

[0030] The present invention relates to the streaming of software applications
over a network, such as but not Iimited to the Internet, to a client "computer
(hereafter client). The invention permits the transfer of the application and
related information to take place quickly, efficiently, and with minimal
inconvenience to the user. Thus, the experience of the user with the software
content 1s not affected by the fact that delivery of the application takes place

across a network.
[0031] Referring to FIG. 1, a system for allowing streaming of software
content includes a client machine 105, a vendor server 110, a database 115, at

least one application server 120, and a management server 133. The vendor

server 110 and management server 133 share access to the database 115. The

client includes a player software component 131 1nstalled prior to the start of a

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-6 -

session. The player 131 controls the client interactions with the application
server 120. The player 131 is installed on the client 105 only once. Thus, 1f
the user previously installed the player 131 in an earlier session, there 1s no
need to reload the player 131. The vendor server 110 hosts a web site from
which the user can select one or more software applications (i.e., titles) for
execution.

[0032] The application server 120 stores the contents of various titles.
Multiple application servers 120 may be organized as a virtual file system to
permit load balancing, reduce the required file server network bandwidth, and
provide access to a large number of titles. The management server 133
communicates with the application server 120 to receive information on
current sessions and communicates with the database 115 to log information
on the current sessions. The management server 133 functions as a buitfer
between the application server 120 and the database 115, and may implement
such functions as load management and security functions.

[0033] The database 115 catalogs the address(es) of the application server(s)
120 for each offered titlé and logs the user's session data as the data 1s reported
from the management server 133. The database 115 coordinates load
management functions and identifies an application file server 120 for the
current transaction.

[0034] The user starts the session at the client 105 by visiting a web page
hosted by the vendor server 110. The communication between the client 105
and the vendor server 110 can be enabled by a browser such as Explorer or
Netscape using the hypertext transfer protocol (http), for example. A variety
of titles cataloged in the database 115 are offered on the web page for client
execution. If the player 131 has been installed on the client 105, a plugin (in
the case of Netscape) or ActiveX Control (in the case of Explorer) on the
client 105 identifies the hardware and software configuration of the client 105.
Hence the initial contact from the client 105 to vendor server 110 1s shown as
communication 125. The vendor server 110 compares the identified

configuration to the requirements (stored on the database 115) of the

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_7 -

applications being offered for rental. The user is then notified by the vendor
server 110 which titles 130 are compatible with the client's configuration.
[0035] The user selects a title through an affirmative action on the web page
(e.g., clicking a button), shown as communication 132. In response, the
Veﬁdor server 110 calls a Java Bean that is installed on the vendor server 110
to request information stored on the databasel15. This request 1s shown as
query 135. The requested information includes which application server 120
stores the title and which application server 120 is preferaﬁle for the current
user (based on, for example, load conditions and established business rules).
The database 115 sends this requested information (1.e., a ticket 140) back to
the vendor server 110, which, in turn, passes the ticket 140 and additional
information to the client 105 in the form of directions 145. The ticket 140
may contain multiple parameters, such as the user identity and information
about the rental contract, or agreement, (e.g., ticket i1ssue time (minutes) and
expiration time (hours)) previously selected by the user in the web site. The
ticket 140, created by the Java Bean using information in the database 1135, 1s
encrypted with a key that is shared between the Java Bean and the application
server 120. The directions include the ticket 140 and additional information
from the database 115 that is needed to use the application and to activate the
player 131. The directions 145 may also include an expiration time that 1s
contained in the ticket. The Java Bean creates the directions 145 using
information in the database 115. The directions 145 can be encrypted with a
static key that 1s shared between the Java Bean and the client 105, and are
protected using an algorithm such as the MD5 message digest algorithm.
[0036] After the directions 145 are passed from the vendor server 110 to the
client 105, no additional communication occurs between the client 105 and the
vendor server 110 -- the player 131 only communicates with the application
server 120 and its virtual file system for the rest of the active session. The
client 105 may post error notifications to the vendor server 110 for logging
and support purposes. Receipt of the ticket 145 by the client 105 causes the
player 131 to initialize and read the directions 145. The directions 145 tell the

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_R .

player 131 which application has been requested, provide the address of the
application server 120 for retrieval, and identify the software and hardware
requirements needed for the client 105 to execute the selected title, such as the
amount of software content to be cached before starting execution of the
selected title. If the client 105 lacks the software and hardware requirements,
or if the operating system of the client 105 1s not compatible with the selected
title, the client 105 displays a warning to the user; otherwise the transaction 1s
allowed to continue.

[0037] The player 131 initiates a session with the specified application server
120 by providing the ticket 140 in encrypted form to the application server
120 for validation. If the validation fails, an error indication 1s returned to the
player 131, otherwise the player 131 is permitted to connect to the application
server 120 to receive the requested software content. In response to the player
131 initiation of the session, the application server 120 provides information,
including encrypted data, to the client 105. This initialization information
includes a decryption key, emulation registry data (1.e., hive data) for locally
caching on the client 105, and a portion of the software content that must be
cached, or "preloaded", before execution can start. Emulation registry data 1s
described in U.S. Patent Application 09/528,582, filed March 20, 2000,
incorporated herein by reference 1n its entirety.

[0038] After initialization 1s completed and execution begins, additional
encrypted software content blocks are streamed to the client 105 m a
background process. The player 131 decrypts the streamed content using the
decryption key provided by the application server 120 in the initialization
procedure. Part of the software content 1s loaded into a first virtual drive 1n
client 105 for read and write access during execution. The other software
content is loaded into a second virtual drive in client 105 for read only access.
During execution of the software content, the player 131 intercepts requests to
the client 105°s natiye registry and redirects the requests to the emulation
registry data, or hive data. The emulation registry data allows the software

content to be executed as if all the registry data were stored in the native

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-9 -

registry. As the session proceeds, the application server 120 sends
information to the management server 133 to be logged in the database 115.
The application server 120 continues to write to the management server 133 as
changes to the state of the current session occur.

[0039] The player 131 executes a predictive algorithm during the streaming
process to ensure that the necessary software content is preloaded in cache
prior to its required execution. As execution of the title progresses, the
sequence of the software content streamed to the client 105 changes in
response to the user interaction with the executing software. Consequently,
the streaming of the software content meets or exceeds the "just in time"
requirements of the ﬁser’s session. Player 131 requests to the application
server 120 for immediate streaming of specified portions of the software
content immediately required for execution at the client 105 are substantially
eliminated. Accordingly, the user cannot distinguish the streamed session
from a session based on a local software installation.

[0040] After the user has completed title execution, the player 131 terminates
communication with the application server 120. Software content streamed to
the client 105 during the session remains in the client cache of client 105. The
virtual drives are removed (1.e., disconnected), however. Thus the streamed
software content should be inaccessible to the user. In addition, the link
between the emulation registry data in cache and the client 105's native
registry 1s broken. Consequently, the client 105 should be unable to execute
the selected title after session termination even though software content data is
not removed from the client 105.

[0041] In an optional feature, the player 131 periodically (e.g., every few
minutes) calls a "renew function" to the application server 120 to generate a
connection 1dentifier. If the network connection between the player 131 and
the application server 120 1s disrupted, the player 131 can reconnect to the
application server 120 during a limited period of time using the connection
identifier. The connection 1identifier 1s used only to recover from brief

network disconnections. The connection identifier includes (1) the expiration

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 10 -

time to limit the time for reconnecting, and (2) the application server
identification to ensure the client 105 can conmnect only to the current
application server 120. The connection identifier 1s encrypted using a key
known only to the application server 120, because the application server 120 i1s
the only device that uses the connection identifier.

[0042] In another optional feature, the management server 133 verifies the
validity of the session. If an invalid session is identified according to the
session logging the application server 120, a flag is added to a table of
database 115 to signal that a specific session is not valid. From time to time,
the application server 120 requests information from the rmanagement server
133 pertaining to the events that are relevant to the current sessions. If an
invalid event 1s detected, the application server 120 disconnects the
corresponding session. The delayed authentication feature permits
authentication without reducing performance of the executing software
content.

[0043] For 1illustrative purposes, the foregoing has been described with
reference to particular implementation examples, such as Explorer, Netscape,
Java, ActiveX, etc. Such references are provided as examples only, and are
not limiting. The invention is not restricted to these particular examples, but -
Instead may be implemented using any applications, techniques, procedures,

tools, and/or software appropriate to achieve the functionality described

herein.

I1. Prediction Based Security

[0044] As mentioned above, the player 131 communicates with the
application server 120 and its virtual file system during an active session.
Although 1t 1s the intent for the client 105 to not be able to access the streamed
software content during the active session, this is not always the case. Some
users are able, through trial and error or other software hacking mechanism, to

access the file system and copy the software content stored in the virtual file

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-11 -

system or use the software content in an unauthorized way. Once all of the
software content of the software application is copied, the user can then
illegally distribute the software application.

[0045] In general, the present invention detects abnormality in an application
(but 1s not limited to this) by using a statistical model based on a large amount
of the application’s behavior data. This behavior data may be collected from
users using the specific application to achieve a real indication of the patterns
of behavior of the application. This real indication of the patterns of behavior
of the application 1s then used to detect abnormalities.

[0046] In general, although computer software applications are very complex
they also behave under very strict rules. Thus, computer software applications
operate with very deterministic behavior. More specifically, some of the input
output (I/O) access of an appl?cation to the file system in which it 1s installed
includes highly deterministic patterns.

[0047] Most software packages are made up of about 5% of executable code
and 95% of data, where the executable code uses the data to perform tasks. In
an embodiment of the present invention, it 1s the task behavior of the
executable code, and in particular the reading and writing of data, that is
monitored to determine whether an unauthorized copy and/or use of the
application are currently occurring. Thus, if an application is running in an
authorized manner, the reading and writing tasks of the executable code and
the way-data is accessed by the executable includes very deterministic
patterns. If on the other hand, the application is not running in an authorized
manner (e.g., being copied or involved in unauthorized use) then the reading
and writing tasks of the executable code and the way data is accessed by the
executable will behave differently from 1ts normal deterministic manner.

[0048] The present invention solves the problem of a user being able to copy
the content of a software application and/or use the application without
authorization by predicting, based on blocks of the software content being
requested by the user, whether the user is copying or validly executing the

software application. Here, blocks of the software content that have a very

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-12 -

high probability of being executed a certain distance from one another are put
into a sequence. If one block is executed (or read) and another is not, wherein
the block should be executed (or read) within the certain distance, this
indicates to the present invention that there 1s an abnormality of behavior for
the application. Once this is determined, then the connection between the user
and the application 1s terminated.

[0049] Each application stored on the application server(s) 120 (FIG. 1) 1s
organized into blocks of data (representative of the software content). Some
of these blocks are required every time the application is launched or at start
up time. Other blocks are only required when the user uses a specific part of
the application. Thus, for certain parts of an application as it is being
executed, the present invention determines with varying certainty which
blocks of data will be accessed via a predictive algorithm. The present
invention compares which blocks of data are actively being requested by the
client 105 and makes a determination as to whether it 1s likely the user 1s
trying to copy the application and/or use the application without authorization.
FIG. 2 is described next with reference to this prediction based security
invention.

[0050] FIG. 2 illustrates an overview of the prediction based secunty
invention and how it interacts with the components already described above
with reference to FIG. 1. As shown in FIG. 2, a prediction server 2035
communicates with the client 105 (via the player 131).

[0051] In order to predict which blocks of the application are likely to be
accessed once a certain block 1s accessed by the client 105, the player 131
builds a prediction thread from a list of all bocks that have been accessed by
the application. In an embodiment of the present invention, the prediction
thread is represented in three tables, as will be described in more detail with
reference to FIGs. 5-7 below. The player 131 saves the prediction thread to a
prediction log file during the execution or active session of an application.

The player 131 sends the prediction log file to the prediction server 205 during

the active session and also once the application terminates.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 13 -

[0052] An initial prediction log file may be generated based on information
regarding behavior of the average user. As the prediction server 205 processes
an increased number of prediction log files, the prediction becomes more
reliable regarding the determination of whether there is an attempt to copy
and/or use the application. The method of prediction based security 1is
described in detail below with reference to FIGs. 4-13. The prediction server
205 is further described next with reference to FIG. 3.

[0053] Referring to FIG. 3, the prediction server 205 is comprised of a logs
consumer module 305 and a prediction producer module 310. The role of the
logs consumer module 305 is to collect the prediction log files and save them
to disk. The role of the prediction producer module 310 is to process the
prediction log files for each application and to generate a prediction file for
each application. In an embodiment of the present invention, modules 305 and
310 typically run in parallel and are synchronized with each other. In
addition, the prediction server 205 may have two web interfaces (not shown in
FIG. 3). One of these web interfaces 1s used for collecting prediction log files
from the player 131, while the other 1s used for supplying prediction files to
the player 131. The operation of the present invention is described next with
reference to FIG. 4.

[0054] FIG. 4 is a flowchart that illustrates the high level operation of the
prediction based security invention. The flowchart starts at step 405, where
prediction log files are created for multiple respective clients executing a
specific application via a predictive algorithm. As described above, the player
131 builds a prediction thread from a list of all blocks that have been accessed
for the application to create the prediction log file for its client. The player
131 sends the prediction log file to the prediction server 205 during the active

session and also once the application terminates. Step 405 1s described in

more detail below with reference to FIG. 8. Control then passes to step 410.

[0055] In step 410, the created prediction log files are gathered by the

prediction server 205 for further analysis in step 415.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 14 -

[0056] In step 415, the prediction server 205, based on the gathered prediction
log files, determines the most probable prediction knowledge for the specific
application. In general, the prediction server 205 looks at all of the gathered
prediction files and determines with varying certainty (for certain parts of an
application as it i1s being executed) which blocks of data will be accessed
given that a certain block of data has already been accessed.

[0057] In step 420, the prediction server 205 saves the prediction knowledge

to a prediction file.

[0058] In step 425, the prediction file is sent to a client 105 currently
executing the specific application.

[0059] In step 430, the player 131 (of client 105) uses the prediction file to

| determine if the client 105 (i.e., user) 1s attempting to copy and/or use the
application without authorization. Step 430 is described 1n more detail below
with reterence to F1G. 13.

[0060] In step 435, if the user 1s attempting to copy and/or use the application
without authorization, then the connection between the client 105 and the
application server 120 1s disconnected. The flowchart in FIG. 4 ends at this
point.

[0061] Note that apart from the security function, prediction has an
operational function as well. Client 105 can use the prediction process to
determine what blocks are to be read from the application server 120. If the
application requests block A where blocks B and C are predicted to be
required next, then the prediction client will ensure that when the application
requests these latter blocks, they will have been obtained and already available
in the local cache. This allows for faster, more efficient processing.

[0062] As described above with reference to step 405 of FIG. 4, the player
131 builds a prediction thread from a list of all blocks that have been accessed
by the application to create the prediction log file for its client. In an
embodiment of the present invention, the prediction log file and prediction
thread are represented by three tables, including a connection table, a count

table and an appearance table. The present mvention 1s not limited to these

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_ 15 -

three tables. Individual records of each of these tables are described next with
reference to FIGs. 5-7. The description of the tables will facilitate the
understanding of FIG. 8 that further describes step 405 of FIG. 4.

[0063] FIG. 5 illustrates a record 505 of the connection table. In general, the
connection table contains data about pairs of block IDs in a sequence. Record
505 includes a key field 510, an accumulated distance number field 525 and an
accumulated appearance number field 530. Key block ID field 510 1s further
comprises of two fields, including block ID field 515 and block ID field 520.
Each of these is described next in more detail.

[0064] Each block of data in an application is assigned an ID. The key field
510 represents a pair of block IDs (block ID field 515 and block ID field 520)
that appear in order in a sequence of IDs. The pair of block IDs i the
sequence can be distanced from each other (i.e., other blocks can come
between them in the sequence).

[0065] The accumulated distance number field 525 represents the distance
between two specific block IDs in the sequence. A distance 1s defined as the
number of steps between the two IDs. For example, in the sequence A B CD
E (with A, B, etc. representing block IDs), A’s distance.from E 1s 4.

[0066] The accumulated appearance number field 530 represents the
accumulated appearance of a pair of block IDs m the sequence (1.e., the
number of times the pair of block IDs are seen together in the sequence). For
example, in the sequence A B CD E C A B, the A B pair 1s seen twice, so that
the accumulated appearance number for this pair 1s two.

[0067] The connection table 1s filled by first determining a value fdr a look
ahead distance (L) variable. L represents the maximum distance that one can
pair two block IDs in the sequence. For example, 1f the sequence 1s AB C D
E and L is three, then the block ID pairs A B, A C and A D would be
represented as a record in the connection table. Note that the block ID pair A
E would not appear as a record, since these two blocks are four steps apart,

which exceeds L=3.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 16 -

[0068] The count table is described next with reference to FIG. 6. The count
table contains data about the number of times a block 1s seen in a sequence.
FIG. 6 illustrates a record 605 of the count table. Record 605 includes a key
block ID field 610 and a count number field 615. For example, in the
sequence A B C D E C A B, the block ID A 1s seen two times. Hence field 615
contains the count number 2.

[0069] The appearance table is described next with reference to FIG. 7. The
appearance table contains the number of appearances of block IDs i a
sequence and the accumulated distance of a specific block ID from the
beginning of the sequence. FIG. 7 illustrates a record 705 of the appearance
table. Record 705 includes a key block ID field 710, a count number field 715
and an accumulated distance field 720, where the latter 1s measured from the
sequence beginning. The key block field 710 represents a block ID. The
count number field 715 represents the number of times the block ID appears in
a specific sequence. The accumulated distance from sequence beginning
number field 720 represents the accumulated distance of a specific block ID
from the beginning of the sequence.

[0070] Described next with reference to FIG. 8 1s a flowchart that illustrates
the predictive algorithm (or trigger scheme) utilized by the prediction based
security algorithm to create the prediction log files for a client (step 405 of
FIG. 4). There are a number of variables that are used by the predictive
algorithm that are defined as follows:

[0071] Merge minimum probability (MMP): the minimum probability from
which two block IDs are merged and thus considered one. Merger is
described in greater detail below.

[0072] Limit probability for short term (LPShort): the probability limit for
predicting short term predicted blocks. Short term refers to a sequence of
blocks starting from a current block and extending some relatively short
interval. This sequence, or string, can be viewed as the current stage of

analysis. Probability limit refers to a threshold probability. A block is

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-17 -

predicted to be in a position in a string only if its probability of appearing in
this position of the string exceeds the probability limit.

[0073] Limit probability for long term (LPLong): the probability limit for |
predicting long term predicted blocks. Long term refers to a string of blocks
beyond (but not including) the current stage.

[0074] Minimum prediction string size (Min_String Size): the minimum
number of blocks in a short term string for a block to be considered a trigger
for this string. A trigger may be viewed as a block indicating that a string of
blocks will, with a certain probability, follow. Examples of a trigger could be
when a user opens a certain file, closes a certain file, finishes a certain level in
a game, and so forth.

[0075] Maximum trigger ratio (MTRatio): the maximum ratio between a
trigger appearance count and a predicted block appearance count for the block
ID to be considered in a prediction string of the specified trigger.

[0076] String grouping size (Gsize): the size in percentage of a group in the
short term string.

[0077] Some calculations used by the steps in FIG. 8 are as follows, given
hypothetical block IDs U, V, and W:

{0078] VU average distance = (V U accumulated distance number) / (V U
accumulated appearance number). Note that the value for accumulated
distance number 1s found 1n accumulated distance number field 525 and that
the value for accumulated appearance number is found 1n accumulated
appearance number 530.

[0079] Probability of a pair = ((V U accumulated appearance)*) / (V count) *
(U count). Note that the values for V count U count are found in the count

table at count number field 615.

[0080] Referring now to FIG. 8, 1n the step 805, block ID pairs stored in the

connection table are merged. Assume that the values for the connection table

record 505 are as follows: block ID 515 1s V and block ID 520 1s U. Step 805

1s described 1n detail next with reference to FIGs. 9 and 10.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_ 18 -

[0081] FIG. 9 starts in step 905 where all of the records in the connection
table that contain V as the first ID in the key (i.e., block ID 515) are gathered

and stored in a file called VRecords.

[0082] In step 910, for each second ID key U (i.e., block ID 520) in the
VRecords, sort by V U average distance, ascending.
[0083] In step 915, merge V U and UW pairs of block IDs. Step 915 1s further

described next with reference to FIG. 10.

[0084] FIG. 10 starts in step 1005 where it is determined whether a V W
record exists in the connection table. If not, then a V W record is created in
the connection table. The V W record is assigned the same values for its
accumulated distance number and accumulated appearance number
(accumulated distance number 525 and accumulated appearance number 530,
respectively) as is stored for the U W record.

[0085] In step 1010, if a V W record already exists in the connection table,
then new values are calculated for its accumulated distance number and
accumulated appearance number values. In an embodiment of the present
invention, the new value for the accumulated distance number 1s calculated as
follows:

[0086] New accumulated appearance of V W = maximum of APP VW and
APP UW, where APP_XY is the accumulated appearance value of the XY
record. |

[0087] The new value for the accumulated distance number 1s calculated as
follows:

[0088] New accumulated distance of VW= (D VW * APP VW + (D _VU +
D VW) * APP UW) / (APP_. VW + APP UW) * (New accumulated
appearance), where D VW i1s the VW average distance value of the VW
record, D VU is the VU average distance value of the VU record, APP_ VW is
the accumulated appearance value of the VW record, and APP UW 1s the

accumulated appearance value of the UW record.

[0089] The flowchart in FIG. 10 ends at this point.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 19 -

[0090] Returning to FIG. 8, in step 810 short term strings are created. FIG. 11
describes step 810 in more detail. In step 1105 of FIG. 11, for each second ID
key U in the Vrecord, it is determined whether its probability is higher than
the limit probability for short term (LPShort).

[0091] In step 1110, for each second ID key U in the Vrecord, it is determined
whether its ratio is lower than the maximum trigger ratio (MTRat10).

[0092] In step 1115, for each second ID key U in the Vrecord that has a
probability higher than the limit probability for short term (LPShort) and has a
ratio lower than the maximum trigger ratio (MTRatio), add 1t to a V short term
string. The flowchart in FIG. 11 ends at this point.

[0093] Step 815 of FIG. 8 is described next. In step 815, all triggers are
deleted if their short term string length is lower than the minimum prediction
string size (Min_String_Size). Here, for each second ID key U in the Vrecord,
if the short term string length of V (VshortTerm) plus CertainV size 1s less
than Min String Size, then mark V as not being a trigger. A trigger may be
represented as a block ID that indicates a string of block IDs i a certain
probability will follow after it. Examples of a trigger could be when a user
opens a certain file, closes a certain file, finishes a certain level 1n a game, and
so forth.

[0094] In step 820, loﬁg term strings are created. Here, all triggers that exceed
the long term limit probability (LPLong) are added to the long term string.
Here, for each second ID key U in the Vrecord, if the probability 1s more than
LPLong, then add it to the long term string of V (called VLongTerm).

[0095] In step 825, all of the short and long term strings are sorted. Step 825
is described in more detail with reference to FIG. 12. In step 1205 of FIG. 12,
the short term string of V (VShortTerm) is ordered based on GSize. In step
1210, each group is sorted by distance. In step 1215, the long term string of V
(VLongTerm) is sorted by probability. The flowchart in FIG. 12 ends at this
point.

[0096] Returning to FIG. 8, step 830 1s described next. In step 830, the

triggers scheme data structure is created. From the above calculations, all of

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

=20 -

the triggers and their predicated block IDs, certain IDs, short term IDs and the
most probable triggers that come after each trigger are determined. In an
embodiment of the invention, the triggers scheme data structure is a header
with the LPLong value, the Gsize value and the number of triggers value. For
each trigger sorted by IDs, the triggers scheme data structure also has the
triggers ID and its long and short term strings oftset from the beginning of the
triggers scheme data structure. Also included in the triggers scheme data
structure is a boolean flag that indicates if a particular trigger has long term
prediction or not. Also included in the triggers scheme data structure is
compressed metadata for each trigger, first with the certain group, then the
short term strings, and lastly with the long term strings. The flowchart 1n FIG.
8 ends at this point.

[0097] Returning to FIG. 4, in step 430 the player 131 (of client 105) uses the
prediction file to determine if the client 105 1s attempting to copy the

application and/or user the application without authorization. This step is

described next in more detail with reference to FIG. 13.

0098} In step 1305 of FIG. 13, the prediction file 1s used to determine the
pairs of block IDs that are most likely to be accessed together. Assume one of
the pairs of block IDs that are most likely to be accessed together 1s U V. In
step 1310, when the client accesses block V, then a counter is set to reflect a
predefined number of block requests. In step 1315, if the client has not
accessed block U after the predefined number of block requests, then a flag 1s

set reflecting a possible attempt to copy the application and/or use the

application without authorization.

[0099] Another concept of the present invention, called sequence scheme, 1s
described next. Genérally, different prediction methods, or schemes, perform
with different degrees of precision. Different schemes can therefore be
assigned different priorities. If the trigger scheme (described above) yields no
prediction, then the sequence scheme can be used. The sequence scheme of the
present invention is therefore a lower priority scheme. In an embodiment of

the present invention, the sequence scheme 1s a predefined string of block IDs

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-~ 21 -

where the order of blocks in the sequence i1s determined statistically from
application log files.

[0100] There are two dominant parameters that affect the ordering of the
block IDs in the predefined string of block IDs of the sequence scheme. The
first is the probability of the block IDs appearing in the sequence of an
application log. The second is the unique distance of the block ID from the
beginning of the sequence. To create a one dimensional predefined string of
block IDs two values need to be determined to produce a score for each block
ID in the predefined string. The two values include a probability and an
average distance. The block IDs are then sorted according to th¢ir sCore.

The probability, average distance and score are calculated as follows and are

illustrated 1in FIG. 14.

[0101] Probability = Count / Number of sequences

[0102] Average Distance = Accumulated Distance from beginning / Count
[0103] Score = (1 — (1 — Probability)®) / (Average Distance)

[0104] The present invention utilizes the appearance table and the number of

sequences value to sort the block IDs 1n descending order according to the
score formula above. The score formula gives the best score for block IDs that
have the best probability and the shortest distance from the beginning. The
score formula gives more priority to blocks that appear less than a 100% of the
time if they appear very close to the beginning of a sequence, and less priority
to blocks that appear 100% of the time 1f they appear a very large distance
from the beginning of a sequence.The underlying abnormality detector theory
of the prediction based security inveniion may be applied to many
applications. For example, the same theory could be applied to how a user
types at a keyboard. Here, 1t can be determined how fast a user types, the
force a user applies to each key, the general rhythm of a user when typing, and
so forth. The invention would collect this information and use it to create
prediction log files and then use the prediction log files to create a prediction
file. The prediction file would be sent to a client executing an application. If

the user does not type on the keyboard 1n the predicted manner (as stored in

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_29 .

the prediction file), then this could indicate an unauthorized user or other
abnormality, and the connection between the client and the application server
would be terminated. :

[0105] A more particular example of this would be evaluation of the way a
user 1s typing his user name and password. More specifically, the time
between each key stroke while typing the user name and password could be
predicted. statistically In general, the present invention is not limited to the
applications described herein, but may be applied to any application where a

user’s actions can be recorded and predicted.

I11. Offline Security

[0106] As described above, an application can also be accessed and executed
in an offline mode. In such a mode, the application is read from an offline
medium, such as a compact disk, etc., rather than being accessed by a client
online. Because the user has greater control over the application offline, it is
difficult to control the user’s access to an application in this mode.

[0107] The goal of the offline security feature of the present invention is to
control a user’s access to an application in the offline mode. One example of a
situation 1 which such access control would be desirable would be during the
marketing of an application where the application is supplied to a user offline,
wherein the user is allowed to try the application on a limited basis before
buying the application. Here, the user might be allowed to start the
application some fixed number of times, or use the application for some time
interval, or otherwise use some application function on a limited basis. After
having used the application for the designated number of trials or after having
used the application for the predefined period, further access to the application
would be denied unless the user were to actually purchase the application.
Similarly, the user may have purchased an application such that the sale was

intended to be for a limited use. This would be analogous to renting the

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_23 -

application for some fixed number of startups, etc., after which further access
to the application would be denied.

[0108] The invention solves this problem by binding two forms of user data.
The first is referred to as usage information. Usage information can be viewed
as a set of parameters that describe how the user has used the application
content. In the context of a game, for example, user data could include the
number of times the game has been played, the total time for which the game
has been played, and/or other parameters. These parameters would normally
be updated as the user accesses the content. Playing the game for an
additional ten minutes, for example, would result in incrementing the playtime
parameter by ten minutes. Similarly, each time the game 1s started, the play
count parameter would be incremented by one.

[0109] The second form of data used by the invention 1s referred to as user
saved data. This refers to data that 1s normally saved by a user while running
the program. In the context of a game, user saved data would include saved
games. In the context of a word processing application, user saved data would
include saved documents. In any case, usage information is important to the
end user and the end user wants to be able to access it in future sessions of the
application.

[0110] In this invention, usage data 1s bound to user saved data. The binding
is performed such that accessing or altering usage data, when not authorized,
corrupts the saved data. This deters the user from running the application, and
can, in some circumstances, prevent the user from running the application
further. The usage data and the user saved data are stored collectively 1n a
repository. The repository can take any of several forms, such as a database, a
cache, or other data structure, as would be known to a person of skill in the art.
As will be described 1n greater detail below, the alteration of anything in the
repository damages the integrity of all data in the repository. Alternatively,
such alteration could block any additional usage of the application without

authorization (e.g., the user’s purchase of the application). In any case the user

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 24 -

will be able to continue running the application and use its saved data only
after buying the application or otherwise obtaining authorization.

[0111] The offline security process 1s illustrated generally in FIG. 15. In step
1510, the application i1s loaded. In step 1520, any file I/O that results from
execution of the application i1s intercepted for purposes of redirection to a
repository. While an application 1s running, the application typically writes
data to the hard disk or other storage device from time to time. One method
by which such file I/O can be intercepted 1s by the setting of file system hooks.
A file system hook 1s a function that 1s installed instead of the normal file
system service function for a specific service. The file system’s original
service function 1s a function supplied by the operating system that serves one
or more operations for the application or for the operating system. Examples
of such functions include those which open a file, write to a file, or find a file.
In an embodiment of the invention, alternative versions of such functions are
created and replace the standard versions of such functions. The new
functions then receive all requests to do, say, an open file operation. This new
function 1s called whenever a file open process 1s required by the application.
Such a request that is not geﬁerated by the application is handled by calling the
original file system service function. The new version of the open file
function (or the write function, or the read function) serves to redirect the I/O
to or from the repository. In other embodiments of the invention, the
interception of file /O can be performed by file system filtering, or by
replacing appropriate file system APIs using the software development kit
(SDK), as would be known to a person of skill in the art. In step 1530, the
usage information is bound with the user saved data, in a manner to be
described in greater detail below.

[0112] Step 1520, the step of intercepting file /O, is illustrated in greater
detail mm FIG. 16. In step 1610, the application is identified. Only by
establishing the application’s identity can it be determined that this application
1s an application of interest, such that its I/O must be redirected. This

identification information is referred to as a process ID. In some system

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_25 .

contexts, the operation system provides a service by which the process ID can
be retrieved. If the operating system does not supply such as service, an API
can be used to derive a process ID that will be used every time there 1s a need
to identify the application. The derivation of a process ID is well known to
those of skill in the art. The process ID of the application of interest can then
be compared to the process ID of an application that is issuing a file I/O
request. If the process ID refers to an application of interest, then redirection
of I/O can be performed.

[0113] Note that retrieving an application's process ID can be done 1n several
ways. An operating system’s application launcher can be intercepted, for
example. This can be done by hooking the process creation APL
Alternatively, the software development kit can be used to create an interface
to retrieve the process ID from a running application. In any event, for every
request for file I/O, the process ID of the current caller 1s determined and

compared to the process ID of the application of interest.

[0114] In step 1620, the file I/O 1s redirected to the repository. All data that
the application of interest requests to be saved, 1s saved in the repository.
Likewise, any data that the application requests to be read is fetched from the
repository and directed to the application. This two-way of redirection is
performed by interception of both write and read operations.

[0115] The binding of user saved data and usage information can be
implemented in a variety of ways. Generally, an integrity function can be
implemented. For example, the user saved data can be stored with the usage
information, and a cyclic redundancy code (CRC) can be calculated on the
agegregate data. The CRC can then be stored as part of the repository's
metadata. Any unauthorized access to the repository to modify usage
information results in a body of data that will not yield the stored CRC. If the
CRC is calculated on the modified repository data and the result compared to
the stored CRC, a mismatch results. A mismatch therefore implies that data in
the repository has been altered. If a mismatch in CRCs 1s detected, then

further access to the repository may not be permitted, and the user 1s denied

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

-6 -

access to user saved data. The unauthorized user is forced to buy the
application or otherwise obtain the necessary authorization to use the
application, in order to continue accessing the saved data.

[0116] In an alternative eﬁbodiment, the user saved data is encrypted using a
CRC that is generated on the basis of the usage information. In this case,
changes to the usage information make the saved data invalid. This 1s because
the revised usage information results in a revised CRC. Use of this revised
CRC to decrypt saved data will result in invalid saved data. In general, such
integrity checks are imposed at an appropriate time, e.g., after the trial period
has concluded for the application. This keeps a user from manipulating the
usage data, which would allow the user to use the application beyond the trial
period.

[0117] The structure of the repository is illustrated in FIG. 17. A reposttory
1705 1s shown with an application 1710. I/O 1720 to and from application
1710 1s redirected by process 1730 to repository 1705. The repository 1705 is
shown to include user saved data 1740 and usage information 1750. Also
included in repository 1705 1s a checkword 1760. Checkword 1760 is some
function of both user saved data 1740 and usage information 1750. An
example of checkword 1760 1s the CRC described above.

[0118] In an alternative embodiment of the invention, the usage data can be
bound with license information for this or some other application.
Conceptually, license mformation replaces usage information 1750 above. In
this case, unauthorized alteration of usage data effectively corrupts or
otherwise denies access to the license information. This serves to invalidate

the license, and prevents further access of the application.

IV. Computing context

[0119] The logic of the present mvention may be implemented using
hardware, software or a combination thereof. In an embodiment of the

invention, the security prediction and offline security processes are

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_27 -

implemented in software that executes on prediction server 205 and client 105.
Generally, each of these machines is a computer system or other processing
system. An example of such a computer system 1800 is shown in FIG. 18.
The computer system 1800 includes one or more processors, such as processor
1804. The processor 1804 is connected to a communication infrastructure
1806, such as a bus or network. After reading this description, it will become
apparent to a person skilled in the relevant art how to implement the invention
using other computer systems and/or computer architectures.

[0120] Computer system 1800 also includes a main memory 1808, preferably
random access memory (RAM), and may also include a secondary memory
1810. The secondary memory 1810 may include, for example, a hard disk
drive 1812 and/or a removable storage drive 1814. The removable storage
drive 1814 reads from and/or writes to a removable storage unit 1818 1n a well
known manner. Removable storage unit 1818 represents a floppy disk,
magnetic tape, optical disk, or other storage medium which is read by and
written to by removable storage drive 1814. The removable storage unit 1818
includes a computer usable storage medium having stored theremn computer
‘soﬂware and/or data.

| [0121] In alternative implementations, secondary memory 1810 may include
other means for allowing computer programs or other instructions to be loaded
into computer system 1800. Such means may include, for example, a
removable storage unit 1822 and an interface 1820. Examples ot such means
may include a removable memory chip (such as an EPROM, or PROM) and
associated socket, and other removable storage units 1822 and interfaces 1820
which allow software and data to be transferred from the removable storage
unit 1822 to computer system 1800.

[0122] Computer system 1800 may also include a communications interface
1824. Communications interface 1824 allows software and data to be
transferred between computer system 1800 and external devices. Examples of
communications interface 1824 may include a modem, a network interface

(such as an Ethernet card), a communications port, a PCMCIA slot and card,

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- I8 .

etc. Software and data transferred via communications interface 1824 are in
the form of signals 1828 which may be electronic, electromagnetic, optical or
other signals capable of being received by communications interface 1824.
These signals 1828 are provided to communications interface 1824 via a
communications path (i.e., channel) 1826. This channel 1826 carries signals
1828 and may be implemented using wire or cable, fiber optics, a phone line, a
cellular phone link, an RF link and other communications channels.

[0123] In this document, the terms "computer program medium" and
"computer usable medium" are used to generally refer to media such as
removable storage units 1818 and 1822, a hard disk installed in hard disk drive
1812, and signals 1828. These computer program products are means for
providing software to computer system 1800.

[0124] Computer programs (also called computer control logic) are stored 1n
main memory 1808 and/or secondary memory 1810. Computer programs may
also be received via communications interface 1824, Such computer
programs, when executed, enable the computer system 1800 to implement the
present invention as discussed herein. In particular, the computer programs,
when executed, enable the processor 1804 to implement the present invention.
Accordingly, such computer programs represent controllers of the computer
system 1800. Where the invention 1s implemented using software, the
software may be stored in a computer program product and loaded into

computer system 1800 using removable storage drive 1814, hard drive 1812 or

communications interface 1824.

V. Conclusion

[0125] While some embodiments of the present invention has been described
above, 1t should be understood that it has been presented by way of examples
only, and not meant to limit the invention. It will be understood by those
skilled 1n the art that various changes in form and detail may be made therein |

without departing from the spirit and scope of the invention as defined in the

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

Yo

appended claims. Thus, the breadth and scope of the present invention should
not be limited by the above-described exemplary embodiments, but should be
defined only in accordance with the following claims and their equivalents.

Each document cited herein is hereby incorporated by reference in its entirety.

CA 02543761 2006-04-27

WO 2005/045616 PCT/US2004/035442
- 30 -
WHAT IS CLAIMED IS:
1. A method for determining whether a client is attempting to

copy an application or use the application without authorization, the method
comprising:

creating data for at least one prediction log file for the application;

based on said at least one prediction log file, determining prediction
knowledge for the application, wherein said prediction knowledge 1s stored 1n
a prediction file;

forwarding said prediction file to the client executing the application;
and

using said prediction file to determine whether the client is attempting

to copy the application or use the application without authorization.

2. The method of claim 1, further comprising:

if 1t 1s determined that the client 1s attempting to access the application

without authorization, then terminating the client’s access to the application.

3. . The method of claim 1, wherein the step of creating 1s

comprised of the following:
merging block IDs;
creating short term strings;
deleting triggers;
creating long term strings;
sorting said short term strings and said long term strings; and

creating the triggers scheme data structure to create said at least one

prediction log file.

4. The method of claim 3, wherein the step of merging block IDs

1s comprised of the following:

gathering at least one record in a connection table, wherein said at least

one record has a first ID key and an second ID key;

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 31 -

sorting said gathered records by said second ID key, wherein said
second ID key in said sorted records is sorted by average distance ascending;
and

merging said gathered records with said first ID key and said second
ID key with records with said second ID key and a third ID key to create
records with said first ID key and said third ID key.

5. The method of claim 1, wherein the step of using said
pred‘iction file is comprised of the following;:

using said prediction file to determine pairs of block IDs that are most
likely to be accessed together, wherein said pairs of block IDs has a first ID
block and a second ID block;

when the client accesses said first ID block, then starting a counter of
D block requests; and

after D block requests if the client has not accessed said second ID
block, then indicating that the client is attempting to copy the application or

use the application without authorization.

6. A system for determining whether a client 1s attempting to copy
an application or use the application without authorization, the method
comprising:

means for creating data for at least one prediction log file for the
application;

based on said at least one prediction log file, means for determining
prediction knowledge for the application, wherein said prediction knowledge
is stored 1n a prediction file;

means for forwarding said prediction file to the client executing the
application; and

means for using said prediction file to determine whether the client 1s

attempting to copy the application or use the application without authorization.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

_39 -

7. The system of claim 6, further comprising:
means for terminating the client’s access to the application if it is
determined that the client 1s attempting to access the application without

authorization.

8. The system of claiam 6, wherein the means for creating is
comprised of the following:

means for merging block IDs;

means for creating short term strings;

means for deleting triggers;

means for éreating long term strings;

means for sorting said short term strings and said long term strings;
and 1

means for creating the triggers scheme data structure to create said at

least one prediction log file.

9. The system of claim 8, wherein the means for merging block
IDs 1s comprised of the following:

means for gathering at least one record in a connection table, wherein
said at least one record has a first ID key and an second ID key;

means for sorting said gathered records by said second ID key, wherein
said second ID key in said sorted records is sorted by average distance
ascending; and

means for merging said gathered records with said first ID key and said
second ID key with records with said second ID key and a third ID key to
create records with said first ID key and said third ID key.

10. The system of claim 6, wherein the means for using said

prediction file 1s comprised of the following:

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

- 33 -

means for using said prediction file to determine pairs of block IDs that
are most likely to be accessed together, wherein said pairs of block IDs has a
first ID block and a second ID block;

means for starting a counter of D block requests when the client
accesses said first ID block; and

means for indicating that the client 1s attempting to copy the
application or use the application without authorization after D block requests

if the client has not accessed said second ID block.

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

1/18
100

/

Query 135

Database
115

Management Requested

Server data

Updates/ 133 165
queries '

Vendor 160 —— l
Server

110

Ticket 140

Application

Server(s)
120

Ticket Content
140 155

Directions 145

- . Client
Selection 132 105

Available titles 130 Player
Component

o —

déntac{/conﬁguration 125 131
3

CA 02543761 2006-04-27

WO 2005/045616 PCT/US2004/035442
2/18
100
Query 135
Database
115
Ticket 140
| Management Requested
Server data
Updates/ | 133 165
queries |
Vendor 180 —n__ -
Server *
110 [i 3 Prediction
Server
| Application
Server(s)
120 .
205
Ticket Content
140 155
Directions 145
- T — Client
Selection 132 105

Available titles 130

Contact/configuration 125

- .

—l

Player
Component

e M.

131

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

3/18

310

Prediction
Producer
Module

205

FIG. 3

305

L.ogs Consumer
Module

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

4/18

405
Create prediction log files for multiple

clients executing a specific application

410
Gather the created prediction log files

Based on the gathered predlction log files,
determine the most probable prediction
knowledge for the specuﬂc appllcatuon
o 1/4’20
Save the prediction knowledge to a
prediction file

Send the prediction file to a client
executing the specific application

}

.a_

Use the prediction file to determme if the | 430
client (i.e., user) is attempting to copy the
specific applloatlon

If it is determlned that the useris
attempting to copy the specific
application, then terminate the connection
between the client and the application

server

FIG. 4

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

5/18

Connection table record 505

510 T 025 530

d ’d—-* C-j
e g . Slaat —re— - L by e e

| |
Key Block ID
J Accumulated Accumuiated 1
— — Distance . Appearance
{ Number Number
5151 Block ID | Block ID
N 1 L - |
| ~—
520 |

FIG. 5

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

6/18

Count table record 605

N

610 . 615
Count
Key Block ID | NUmber

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

7/18

Appearance table record 705

\.

10 715 720
— ___c_‘/_)_) [/m 3 _.
Accumulated
Key Block ID Count Distance from
Number Sequence Beginning

Number

FIG. 7

WO 2005/045616

CA 02543761 2006-04-27

8/18

— e 805

Merge block IDs

— 4 810
Create short term stringsj/J
L I

815

Delete triggers

820

Create long term strings

il

825

Sort long and short term
strings

830

Create the tﬁggers
scheme data structure

FIG. 8

PCT/US2004/035442

405

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

9/18

805

005
Gather all records in the
connection table containing V as
the first ID in the key and store
as VRecords
910

For each second ID key U in the
VRecords, sort by VU average
distance ascending

e o e —uy
e

__J_ o 915

Merge VU and UW pairs of ’/
block IDs

FIG. 9

WO 2005/045616

CA 02543761 2006-04-27

10/18

If a VW record does not exist in the
connection table, then create a VW
record and set the accumulated
distance and accumulated appearance
values for the VW record the same as it

is for the UW record

e ——

1005

P el i

F‘lr s T ap— Pt 4.
O —— e —— i t e

1010

If a VW record does exist in the
connection table, then calculate new
values for the accumulated distance

and the accumulated appearance

o Rl ! e

FIG. 10

-

PCT/US2004/035442

915

WO 2005/045616

CA 02543761 2006-04-27

11/18

1105

For each second ID key U in the

VRecord, determine whether its

probability is higher than the
short-term probability

— ——

X Y _ 1110

For each second ID key U in the
VRecord, determine whether its
ratio is lower than the maximum

ﬂ

trigger ratio
_ . —

| i 1115

,—For each second ID key U in the
VRecord that has a probability

higher than the short term

| probability and a ratio lower than
| the maximum trigger ratio, add it
to a V short term string

FIG. 11

PCT/US2004/035442

810

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

12/18

825

— 1206

Dissect the short term string of V
into groups of GSize

B l 1210
Sort each group by dlstance l

l 1215

Sort the long term string of V by
probability

FIG. 12

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

13/18

430

/

Use the prediction file to
determine the pairs of block IDs
(e.g., (V, U)) that are most likely
to be accessed together

1305

Y 1310

When the client accesses block
ID V, then start a counter of D
block requests

R g ——-

_l 1315

If after D block requests the
client has not accessed block ID
U, then set a flag reflecting a
possible attempt to copy the

application

A, el i, - P, iy e—

FIG. 13

PCT/US2004/035442
14/18

CA 02543761 2006-04-27

WO 2005/045616

.
..?’- C’\.‘.‘.c{i.s PR R RN
Ve e me .<\v1,w ey e eem
vy Ty gy = @1
- T B ok % .d\.ﬂi..:.{.}....ini 49,
L - .
.

R '] .‘. Bis JipT-.V
D TSI 1 300 M ET T i iy |
N 3 A0 LA L4 T A A T AR T T
ae ton s \ﬁ...ule.{...lﬁ.,..i > g i B

AN A d . S

...................t..
.\.ct.\..«ﬂ,.!.
.

ik

¥

+ 4

g ‘--c\

- ”ﬁf

= : . W

"f‘ o "0.0 -c » “e"'i) . . . 3N 2 .“ .t . = .. o's O . N a 11-0. A8 4 . N ' [} .. .“ -.mﬂ '._.a__ ”__..
-y -lm * amm el ome P e e R . ot - AL e : - Ve G e, . g : 4 - .. L Aa I . A% .ﬁ' -__WWW A

IR y _FHM._ ia
i

. ot .o . 1 A L : =8 U ULt L S . 3 . B !
v -{ 4 . ees or 2R . ' N 3 .
> ’ -, - . . . N . . vyl
Ot . 3 2! L TR T 4 4 . -

>

P we LR I o'l.ril\oﬁ.\

- e . A PRV ST SRR AL R T o S Yt o 7 W L : bod SEhpb s Y b iFeint # g T v T (T e
P PRI NLS el S P i e P ks Jr et NS ALTOACI ¢ REA e b S e S TR Ml i U
a ™ : . ST b~ S Ry . i . . y L)) = AL : .. -] ¢ L' R .—ﬁ*ﬂ

- &) ”..“... DE ' Y : g N 3 y ... oy ,.I.L.ldl. .n.. . L) .“.... ..- H.. . - {-ﬁlr."«u-f.
IQ‘.I’M‘ P e, 6’ - m ¥y . N LS N ”h..nf“.. ; i . A . ; ..L.Q._. y 5
XA VY gt St e W TG il

s & TEE A :_.:g.i_.u....... i W . : R T gt o ! |

;ltc'o'o.l‘-"ll'b .Dhl‘nu“-t..h’h...v;[“”ﬁ!’lf .,hl.hhhqt.rﬁvi.f. R sy o° v A ¥ %ﬁm—“ 3 b_.-ﬁ_,rﬁm
] A e b N — & - T angp . . kLA] g Ko PR35 TN

"esy Tl e : I’"Juls ‘ - A q 't s ¢ 4 Y A . LY 0 y v J\F _L.v

: LN,»mam..wwn.m_w_

. H B £E™ H S
Th Ll ...l’s. .r.. L
L .r, ;.m-:-\..ﬂ

C 2L U 2 “* A iy .
¢ 0. MQ’) < 0..0 L4 ’ .t !0* A..“"".. “.u.“.._..)Mn o B
R T A 2 .s." P RT .4 ,..?rm,_
¢ E AR R KRS . PN :.hﬁ..q ;
IO T X R PSR AP i S A T st fis

..”.\-....J. b
faseiah O CICE
 aner it T2

B ORI

2 3N

M.

- WA

g

|

WO 2005/045616

CA 02543761 2006-04-27

15/18

1510

Load application

1520

Intercept File 1/0

o 1 1530

Bind usage information with
saved data

FIG. 15

PCT/US2004/035442

1500

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

16/18

1520

1610

Identify application

o 1 1620

Redirect File I/0

- -y’ R gy oy sy gy — i s

FIG. 16

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

17/18

1700

1710
Application

/O

1720
" Redirection’

1730
User Usage
saved information Repository
* . data 1750 1705
1720 1740

Ay

Checkword 1760 .

E—

FIG. 17

CA 02543761 2006-04-27
WO 2005/045616 PCT/US2004/035442

18/18

- Processor 1804
, Main Memory 1808
-]

//1800

Secondary Memory 1810

o m——
y— —

Communication Hard Disk Drive
infrastructure 1812
1806

Removable Storage Removable

b RS vt Gheiegh el

Drive 1814 Storage Unit 1818 |

!
Interface 1820 ——— — W

| Storage Unit 1822

vl paan S —— — r— ———

!

/.

Network |- —-
Interface 1824 |

-
— L Communications Path

1826
FIG. 18

100

Query 135

Database
115

Management Requested
Server data
Updates/ 133 165
queries -

Vendor 160 —
Server
110

Ticket 140

Application
Server(s)
120

Ticket Content
140 155

Directions 145

— . Client
Selection 132 105

Available titles 130 | Player
Component

ééntacf/oogﬁguration 125

131

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - abstract drawing

