

(19) DANMARK

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(10) DK/EP 2593136 T3

(51) Int.Cl.: **A 61 K 39/23 (2006.01)** **C 07 K 14/015 (2006.01)** **C 12 N 7/04 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2017-05-08**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2017-03-08**

(86) Europæisk ansøgning nr.: **11732480.6**

(86) Europæisk indleveringsdag: **2011-07-18**

(87) Den europæiske ansøgnings publiceringsdag: **2013-05-22**

(86) International ansøgning nr.: **EP2011062203**

(87) Internationalt publikationsnr.: **WO2012007589**

(30) Prioritet: **2010-07-16 EP 10169872** **2010-07-19 US 365684 P**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Intervet International B.V., Wim de Körverstraat 35, 5831 AN Boxmeer, Holland**

(72) Opfinder: **SPIBEY, Norman, Walton Manor, Walton, Milton Keynes, Storbritannien**

(74) Fuldmægtig i Danmark: **Marks & Clerk (Luxembourg) LLP, 44 rue de la Vallée, B.P. 1775, L-1017 Luxembourg, Luxembourg**

(54) Benævnelse: **LEVENDE, SVÆKKET PARVOVIRUS**

(56) Fremdragne publikationer:
Intervet: "Nobivac DHPPi", Intervet/Schering-Plough Animal Health Products , 2009, XP002600419, Retrieved from the Internet: URL:http://www.intervet.co.uk/Products_Pub lic/Nobivac_DHPPi/010_Overview.aspx [retrieved on 2010-09-09]
YOON SOOK HEE ET AL: "Molecular insights into the phylogeny of canine parvovirus 2 (CPV-2) with emphasis on Korean isolates: a Bayesian approach", ARCHIVES OF VIROLOGY, vol. 154, no. 8, August 2009 (2009-08), pages 1353-1360, XP002600420, ISSN: 0304-8608, DOI: DOI:10.1007/S00705-009-0444-3 & DATABASE EMBL [Online] E.B.I. Hinxton U.K.; 27 August 2009 (2009-08-27), Yoon S.H. et al: "Canine parvovirus 2 strain CPVint(vaccine) VP2 (VP2) gene, complete cds", XP002600421, Database accession no. FJ197846 & DATABASE EMBL [Online] E.B.I. Hinxton U.K.; 3 March 2009 (2009-03-03), Yoon S.H. et al: "SubName: Full=VP2", XP002600422, Database accession no. B8XCV0 & DATABASE EMBL [Online] EBI Hinxton UK; 13 October 2009 (2009-10-13), Yoon SH et al: "SubName: Full=VP2", XP002600423, Database accession no. C7SHF6 & DATABASE EMBL [Online] E.B.I. Hinxton U.K.; 27 August 2009 (2009-08-27), Yoon SH et al: "Ca DECARO N ET AL: "Genetic analysis of canine parvovirus type 2c", VIROLOGY, ACADEMIC PRESS,ORLANDO, US LNKD- DOI:10.1016/J.VIROL.2008.12.016, vol. 385, no. 1, 1 March 2009 (2009-03-01) , pages 5-10, XP025958562, ISSN: 0042-6822 [retrieved on 2009-01-14] & DATABASE EMBL [Online] E.B.I. Hinxton U.K.; 13 January 2009 (2009-01-13), Decaro N et al: "Canine parvovirus 2 strain 388/05-3 capsid protein (VP2) gene, complete cds.", XP002600425, Database accession no. FJ222824
DATABASE EMBL [Online] EBI Hinxton UK; 23 September 2008 (2008-09-23), JUO S.-D., LIN M.-Y.;: "SubName:

Fortsættes ...

Full=VP2 protein", XP002600426, Database accession no. B5B405 & DATABASE EMBL [Online] Ebi hinxton uk; 18 August 2008 (2008-08-18), Juo S.-D., Lin M.-Y.;: "Canine parvovirus isolate Pfizer/vaccine/06 VP2 protein gene, complete cds", XP002600427, Database accession no. EU914139
MOCHIZUKI M ET AL: "Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures", JOURNAL OF VETERINARY MEDICAL SCIENCE - NIHON JUIGAKU ZASSHI, JAPANESE SOCIETY OF VETERINARY SCIENCE, TOKYO, JP, vol. 70, no. 12, 1 December 2008 (2008-12-01), pages 1305-1314, XP002598416, ISSN: 0916-7250
BADGETT M ET AL: "Evolutionary dynamics of viral attenuation", JOURNAL OF VIROLOGY, vol. 76, no. 20, October 2002 (2002-10), pages 10524-10529, XP002600428, ISSN: 0022-538X

DESCRIPTION

[0001] The invention relates to live attenuated parvoviruses, their uses, vaccines comprising such live attenuated parvoviruses, as well as methods for their production.

[0002] Parvovirus belongs to the family of single stranded DNA viruses. Parvoviruses can cause disease in various animals such as cats, dogs and pigs. Because the viruses require actively dividing cells in order to replicate, the type of tissue infected varies with the age of the animal. The gastrointestinal tract and lymphatic system can be affected at any age, leading to vomiting, diarrhea and immunosuppression, but cerebellar hypoplasia is only seen in cats that were infected in the womb or at less than two weeks of age, and disease of the myocardium is seen in puppies infected between the ages of three and eight weeks.

[0003] Canine parvovirus (CPV) is a particularly deadly disease in puppies, about 80% fatal, causing gastrointestinal tract damage and dehydration as well as a cardiac syndrome in very young pups. It is spread by contact with infected dog's feces. Symptoms include lethargy, severe diarrhea, fever, vomiting, loss of appetite, and dehydration. Porcine parvovirus causes a reproductive disease in swine known as SMEDI, which stands for stillbirth, mummification, embryonic death, and infertility. Feline panleukopenia, commonly known as feline distemper, is a viral infection affecting cats, caused by feline parvovirus (FPV), a close relative of canine parvovirus. Feline panleukopenia is common in kittens and causes fever, low white blood cell count, diarrhea, and death. Infection of the cat fetus and kittens less than two weeks old causes cerebellar hypoplasia. Mink enteritis virus is similar in effect to feline panleukopenia, except that it does not cause cerebellar hypoplasia. A different parvovirus causes Aleutian Disease in minks and other mustelids, characterized by lymphadenopathy, splenomegaly, glomerulonephritis, anemia, and death. The most accurate diagnosis of parvovirus is by ELISA. Dogs, cats and swine are commonly vaccinated against parvovirus.

[0004] At the DNA level, canine, feline and porcine parvoviruses are known to have a highly homologous genome. Canine parvovirus CPV2 is a virus which is responsible for an acute and sometimes fatal enteritis in dogs (Kelly, Aust. Vet. J. 54; 593, 1978; Appel et al., Vet. Rec. 105; 156-159, 1979). The virus, which first appeared around 1977, probably arose from a very closely related virus in cats, feline panleukopenia virus (FPLV) through a small number of mutations in the single capsid protein; a species jump which may have involved intermediate passage in other carnivores such as mink or raccoons (Truyen et al., Virology 215, 186-189, 1996).

[0005] As early as 1979 the first variants of CPV2 appeared, termed CPV2a, and they were quickly followed by the appearance of CPV2b in 1984. (Parrish et al., Science 230, 1046-1048, 1985, and J. Virol. 65; 6544-6552, 1991).

[0006] The original type 2 virus has now disappeared from the field having been replaced by the 2a and 2b types, although the relative proportions of these two types varies from country to country (Truyen et al., *supra*; Chinchkar et al., Arch. Virol. 151, 1881-1887, 2006; Pereira et al., Infect. Genet. Evol. 3, 399-409, 2007). The amino acid changes in the capsid protein (VP2), which characterize the shift from 2 to 2a and to 2b, are very limited. Substitutions at positions 87 (Met to Leu), 300 (Ala to Gly), 305 (Asp to Tyr) and 555 (Val to Ile) occurred in the evolution of 2 to 2a and 426 (Asn to Asp) and 555 (Ile to Val) in the emergence of 2b from 2a (Parrish et al., *supra*; Truyen et al., J. Virol. 69, 4702-4710, 1995). Recently, 2a strains lacking the Val to Ile substitution at position 555 have been reported (Wang et al., Virus Genes 31, 171-174, 2005; Martella et al., Virus Genes 33, 11-13, 2006). It appeared that a single amino acid change can differentiate the CPV2a and CPV2b VP2 sequences.

[0007] More recently strains have emerged in Italy in which the amino acid at position 426 (Asn in 2a and Asp in 2b) has become a glutamic acid (Glu) residue (Buonavoglia et al., J. Gen. Virol. 82, 3021-3025, 2001; Martella et al., J. Clin. Microbiol. 42, 1333-1336, 2004). The fact that these Glu 426 variants, termed CPV2c viruses, are circulating and co-existing with other CPV types in Italy and other European countries (Decaro et al., J. Vet. Med. B. Infect. Dis. Vet. Public Health 53, 468-472, 2006) and have also been isolated in countries as geographically diverse as Vietnam and Scotland (Nakamura et al., Arch Virol. 149, 2261-2269, 2004; Spibey et al., Vet. Microbiol 128, 48-55, 2008) suggests that they have an advantage in at least a proportion of the dog population.

[0008] The relatively rapid evolution of canine parvovirus has resulted in the loss and then re-gaining of the feline host range (Truyen et al., 1996 *supra*), and this regained ability to replicate in cats may well account for the replacement of the original type 2 virus with the 2a, 2b and 2c variants. In the late 1970s and early 1980s both live and inactivated FPL vaccines were used to protect dogs against CPV disease due to the shared antigens which stimulated cross-protection, however the level of protection they afforded was poor and duration of immunity was short. These vaccines were replaced by live attenuated CPV vaccines, which provided good protection and longer duration of immunity. Currently the live attenuated vaccines are derived from either CPV2b isolates or the original type 2 virus. Since the type 2 virus has been entirely replaced in the field by 2a, 2b and now 2c

viruses there has been concern over the level of protection afforded by attenuated type 2 vaccines (Pratelli et al., Clin. Diag. Lab. Immunol. 8, 612-615, 2001; Tryuen, Vet. Microbiol. 69, 47-50, 1999).

[0009] However, based on studies with available monoclonal antibodies each new antigenic variant has lost at least one neutralizing epitope compared with the former variant (Strassheim et al., Virology 198, 175-184, 1994; Pereira et al., *supra*). Previously it has been demonstrated that the live attenuated CPV2 vaccine is able to protect dogs against 2a and 2b field challenges (Greenwood et al., Vet. Record. 136, 63-67, 1995) even though cross-neutralization studies conducted in vitro using sera raised against the various antigenic types do show marked differences (Pratelli et al., *supra*).

[0010] Recently, it was shown that live attenuated type 2 vaccine (Nobivac-Intervet) was able to protect dogs from challenge with the most recent CPV variant, CPV2c (Spibey et al., Vet. Microbiol. 128, 48-55, 2008).

[0011] Nevertheless there exists a need in the field for vaccines that combine the induction of a sufficient level of immunity in animals, in particular cats, dogs and pigs against infection with parvoviruses with a highly attenuated behavior. A high level of attenuation is synonymous with safety, especially in young and old animals.

[0012] It is an objective of the present invention to provide new live parvoviruses that are attenuated while still immunogenic. Such viruses provide a basis for safe vaccines.

[0013] The invention in its broadest sense is as defined in the independent claims.

[0014] In this respect, one embodiment of the present invention relates to live attenuated CPV2 parvovirus, characterised in that said CPV2 comprises a capsid gene of CPV2 serotype 2a, 2b or 2c coding for an amino acid other than Isoleucine at amino acid position 219 of the capsid protein and/or an amino acid other than Glutamine at amino acid position 386 of the capsid protein, and characterised in that a DNA fragment of a part of the non-capsid region of said CPV2 is replaced by a homologous DNA fragment of a part of the non-capsid region derived from a second parvovirus, wherein said homologous DNA fragment of said second parvovirus carries an attenuating mutation.

[0015] The live attenuated CPV2 parvovirus of the invention is not the CPV that is present in canine parvovirus vaccine Nobivac Parvo C. A sequence comprised in the CPV of canine parvovirus vaccine Nobivac Parvo C is given in SEQ ID NO: 1.

[0016] It was surprisingly found, that these two sites, at amino acid position 219 and 386 of the capsid gene, play an important role in the attenuation of the virus. Until now it was assumed that mainly amino acids outside the capsid region are involved in the virulence/attenuation of the virus.

[0017] The location of the Isoleucine at amino acid position 219 of the capsid protein and a Glutamine at amino acid position 386 of the capsid protein is identical in both canine and feline parvoviruses, regardless of the serotype.

[0018] The prior art describes the CPV that is present in canine parvovirus vaccine Nobivac Parvo C (Intervet Schering-Plough Animal Health) that comprises the sequence as given in SEQ ID NO: 1.

[0019] Merely to indicate the location of the Isoleucine at amino acid position 219 and the Glutamine at amino acid position 386, the two amino acids are shown below (in bold characters) in an example of the sequential context found in most CPV and FPV strains.

yfqwdrlipshgtsg (Isoleucine 219 = bold)

yafgrqhggqktttget (Glutamine 386 = bold)

[0020] Depending upon the strain that is used as the starting material for the substitution of one or both amino acids according to the invention, it may be that a single substitution of the amino acid at position 219 or 386 is not sufficient to e.g. make the virus safe in very young animals. If a further attenuation is required, the substitution of both the amino acid at position 219 and 386 is preferred.

[0021] Therefore, a preferred form of this embodiment relates to a live attenuated CPV2 according to the invention that comprises a capsid gene coding for an amino acid other than Isoleucine at amino acid position 219 of the capsid protein and an amino acid other than Glutamine at amino acid position 386 of the capsid protein.

[0022] A more preferred form of this embodiment relates to a live attenuated CPV2 according to the invention, that comprises a capsid gene coding for a Valine at amino acid position 219 of the capsid protein and/or a Lysine at amino acid position 386 of the capsid protein.

[0023] An even more preferred form of this embodiment relates to a live attenuated CPV2 according to the invention, that comprises a capsid gene coding for a Valine at amino acid position 219 of the capsid protein and a Lysine at amino acid position 386 of the capsid protein.

[0024] A parvovirus that already has an attenuating mutation located outside the capsid region may be used as the starting material for the introduction of an amino acid substitution in order to prepare a live attenuated CPV2 according to the invention. An alternative may be the replacement of a DNA fragment of a part of the non-capsid region of a virus comprising a capsid gene of CPV2 serotype 2a, 2b or 2c coding for an amino acid other than Isoleucine at amino acid position 219 of the capsid protein and/or an amino acid other than Glutamine at amino acid position 386 of the capsid protein, with a homologous non-capsid region of a parvovirus strain that carries an attenuation in that region. Parvoviruses carrying an attenuation in a part of the non-capsid region are e.g. the commercially available canine parvovirus vaccine Nobivac Parvo C (Intervet Schering-Plough Animal Health).

[0025] The advantage of such an approach is, that such viruses have an even higher attenuation level than a CPV2 parvovirus comprising said attenuating mutation in the non-capsid region but a capsid gene of CPV2 serotype 2a, 2b or 2c coding for Isoleucine at amino acid position 219 and Glutamine at amino acid position 386 of the capsid protein.

[0026] A homologous DNA fragment of a part of the non-capsid region from a second parvovirus is a DNA fragment that has the same function as the DNA fragment of the CPV2 parvovirus comprising a capsid gene of CPV2 serotype 2a, 2b or 2c according to the invention, but differs from that DNA fragment in that it carries a mutation that leads to attenuated behavior of the virus. Merely as an example, if a DNA fragment comprises an attenuating mutation in a DNA-fragment between two specific restriction sites, and these two restriction sites are also present at the same location in a virus not having that mutation, the restriction fragment carrying the mutation would be considered homologous with the same fragment from the virus not having that mutation.

[0027] A highly preferred form of this embodiment relates to a live attenuated CPV2 parvovirus according to the invention wherein the homologous DNA fragment of said second parvovirus carries an attenuating mutation in the nonstructural region, in the region from position 2061 to 2070 of SeqIdNo.1.

[0028] The capsid gene of the virus according to the invention encodes a capsid protein of CPV serotype 2a, 2b or 2c comprising an amino acid other than Isoleucine at amino acid position 219 and/or an amino acid other than Glutamine at amino acid position 386.

[0029] Another embodiment of the present invention relates to vaccines for the protection of animals against infection with CPV2 parvovirus, wherein such vaccines comprise a live attenuated CPV2 parvovirus according to the invention and a pharmaceutically acceptable carrier.

[0030] A suitable amount of parvovirus according to the invention, for use in a vaccine would in many cases be within the range of 10^3 - 10^9 TCID₅₀, depending on the level of attenuation and the replication characteristics of the virus. An infectious dose of virus that is below 10^3 TCID₅₀ would in many cases be considered to be too low, since it would take too much time for the virus to replicate to a sufficiently high level to trigger the immune system. Amounts that exceed 10^9 TCID₅₀ would be unattractive, if only for commercial reasons.

[0031] A very suitable dose would be in the range of 10^5 - 10^8 TCID₅₀, even better between 10^6 - 10^8 TCID₅₀.

[0032] Pharmaceutically acceptable carriers are well-known in the art. Merely as an example; such a carrier can be as simple as sterile water or a buffer solution such as PBS.

[0033] Vaccines according to the invention can be administered in several ways. Since the vaccine comprises a live attenuated virus, many ways of administration, such as oral, intranasal, I.M. and subcutaneous administration are feasible. A preferred route of administration is the subcutaneous administration.

[0034] Animals susceptible to parvovirus infection such as i.a. cats and dogs are frequently vaccinated against several other

diseases at the same time. Therefore it would be practical to combine a vaccine according to the invention with an additional antigen of a virus or micro-organism pathogenic to dogs and cats or genetic information encoding said antigen.

[0035] Thus, another embodiment of the invention relates to a combination vaccine comprising a vaccine according to the invention and an additional antigen of a virus or micro-organism pathogenic to animals or genetic information encoding an immunogenic polypeptide of said virus or micro-organism.

[0036] The additional antigen of a virus or a micro-organism can be the whole virus or micro-organism (in a live attenuated form or in an inactivated form) or an immunogenic polypeptide or another immunogenic part of that virus or micro-organism such as e.g. a (lipo-)polysaccharide, capable of inducing a protective immune response.

[0037] Preferably, the virus or micro-organism pathogenic to animals is selected from the group of *Ehrlichia canis*, *Babesia gibsoni*, *vogeli*, *rossi*, *Leishmania donovani*-complex, Canine adenovirus, Canine coronavirus, Canine distempervirus, *Leptospira interrogans* serovar *canicola*, *icterohaemorrhagiae*, *pomona*, *grippotyphosa*, *bratislava*, Canine hepatitisvirus, Canine parainfluenzavirus, rabies virus, *Hepatozoon canis*, *Borrelia burgdorferi*, *Bordetella bronchiseptica*, feline Herpesvirus, feline calicivirus, feline panleucopenia and *Chlamydyphila felis*.

[0038] Vaccines comprising live attenuated viruses must be stored at low temperature, or they have to be in a freeze-dried form. Freeze-dried vaccines can be kept under moderate cooling conditions or even at room temperature. Often, the vaccine is mixed with stabilizers, e.g. to protect degradation-prone proteins from being degraded, to enhance the shelf-life of the vaccine, or to improve freeze-drying efficiency. Useful stabilizers are i.a. SPGA, carbohydrates e.g. sorbitol, mannitol, trehalose, starch, sucrose, dextran or glucose, proteins such as albumin or casein or degradation products thereof, and buffers, such as alkali metal phosphates.

[0039] Therefore, preferably, the (combination) vaccine according to the invention is in a freeze-dried form. In addition, the vaccine may be suspended in a physiologically acceptable diluent. Such buffers can e.g. be sterile water, a buffer and the like.

[0040] It goes without saying, that diluents and compounds for emulsifying or stabilizing viruses are also embodied in the present invention.

[0041] Again another embodiment of the invention relates to methods for the manufacture of a (combination) vaccine according to the invention wherein these methods comprise the mixing of a live attenuated CPV2 parvovirus according to the invention and a pharmaceutically acceptable carrier.

[0042] Still another embodiment of the invention relates to live attenuated CPV2 parvovirus according to the invention for use as a medicament. More specifically, this embodiment relates to live attenuated CPV2 parvovirus according to the invention for use in the treatment of parvovirus infection.

[0043] Finally, another embodiment of the present invention relates to methods for the preparation of a CPV2 parvovirus mutant according to the invention, wherein such methods comprise exchanging in a gene encoding a capsid protein of CPV2 serotype 2a, 2b or 2c of a canine parvovirus that is already attenuated in a part other than the part encoding the capsid a DNA fragment encoding at least part of the parvovirus capsid protein having at amino acid position 219 a codon encoding Isoleucine and/or having at amino acid position 386 a codon encoding Glutamine, by a DNA fragment encoding at least part of the parvovirus capsid protein having at amino acid position 219 a codon encoding an amino acid other than Isoleucine and/or having at amino acid position 386 a codon encoding an amino acid other than Glutamine.

[0044] Such exchanging of DNA can be done using recombinant DNA techniques well-known in the art, such as site-directed mutagenesis, exchange of restriction fragments and the like. There are several ways of making the 219 Isoleucine an X1 or 386 Glutamine an X2 substitution. Such changes could be introduced by chemical synthesis or PCR followed by recombination of the newly synthesized fragment with viral DNA.

Examples

Example 1: Production of Canine parvovirus Clone 630att

Starting Materials**[0045]****Viruses:**

Virus	Source	Cell substrate	Other Information
Nobivac parvo	Intervet (Nobivac parvoC vaccine vial)	A72	Virus is a type 2 strain dating from before 1979
Isolate "Jes"	Intervet inc. Millsboro USA	CrFK	Type 2c virus isolated in USA in 2008. Typing performed by DNA sequence analysis

E. coli strains

[0046] The E. Coli strains JC811 obtained from the E. coli genetic stock centre (USA) and strain DL795 (Kramel Biotech UK) were selected for plasmid propagation of complete infectious clones.

DNA synthesis

[0047] Custom DNA synthesis was performed by Eurofins MWG GmbH. The synthesised DNA fragment was supplied in the pBluescript cloning plasmid.

[0048] The construction of the canine parvovirus clone 630att was a multi-step process and is described here in its separate steps.

1) Construction of an infectious molecular clone of Nobivac Parvo C (p154att)

[0049] Replicative form (RF) viral DNA was obtained from A72 cells infected with Nobivac Parvo C infected cells using a modified "Hirt" preparation method (Parrish et al 1988, Virology 166, 293-307). Viral DNA was digested with a number of restriction enzymes and the genome was assembled in pBluescript using routine cloning methodology. The cloning scheme is outlined in figure 1-4.

RF DNA of CPV 154att was first "end filled" using T4 DNA polymerase. The DNA was then digested with EcoRI and Spel. These enzymes cut once at positions 1099 and 3459 respectively. This digestion results in three fragments labelled A, B & C in order of their size. Fragments were separated by gel electrophoresis and the EcoRI/Spel fragment (fragment A) was then cloned into plasmid pBluescript which had been prepared by digestion with the same enzymes (see figure 1). The EcoRI terminal fragment (fragment C) from the RF DNA digest was then cloned into pBluescript digested with EcoRI and EcoRV to produce pCPV C (see figure 2).

The canine parvovirus A and C fragments were sub-cloned together into the same plasmid. Plasmids pCPV A and pCPV C were digested with Spel and EcoRI. The CPV insert was purified from pCPV A and the vector portion was taken from pCPV C. Ligation then resulted in a plasmid in which fragments A and C were "re-united" (see figure 3).

The Spel terminal fragment (fragment B) from the CPV RF DNA digest was then cloned into pCPV AC. Plasmid pCPV AC was digested with Spe I and an enzyme Hincl which cuts leaving a blunt ends. The fragments were ligated and cloned. (see figure 4).

[0050] The resultant plasmid was called p154att.

[0051] Confirmation that a complete clone had been assembled was achieved by transfection of the plasmid DNA into A72 cells resulting in the production of infectious virus.

[0052] DNA sequence analysis of the plasmid clone was performed; this sequence was shown to be identical to that determined from viral DNA extracted from infected cells, as shown further below.

2). Construction of 2/2c Hybrid D9

[0053] Viral DNA was obtained from both Nobivac parvo C infected cells and separately from CPV2c "Jes" infected cells. Viral DNA preparations were each digested with a single restriction enzyme to produce 2 DNA fragments from each. The enzyme digests were done in such a way that the left hand fragment of the Nobivac genome and the right hand fragment of the "Jes" genome shared >200bp of overlapping sequence. The Nobivac left end and "Jes" right end fragments were separated purified and mixed (Figure 7).

[0054] Transfection of A72 and CrFK cells with these overlapping fragments allowed infectious virus to be produced by natural recombination. The resulting virus was cloned by limiting dilution and termed 2/2c hybrid D9.

3). Construction of Clone 630.

[0055] Clone 630 was developed from the infectious plasmid clone p154att and DNA prepared from 2/2c hybrid D9.

[0056] The restriction enzyme *PacI* cuts the CPV genome in two places around positions 561 and 4651; the far left and right ends of the genome. Therefore the plasmid p154att was digested with *PacI* and the ~4kb *PacI* fragment containing over 80% of the genome was separated from the vector and terminal sequences and replaced with that obtained from 2/2c hybrid D9 DNA. The resultant plasmid was termed p630. This is illustrated in Figure 5.

[0057] As predicted, transfection of A72 or CrFK cells with p630 results in the generation of infectious virus, this virus is termed 630.

[0058] Virus 630 like 2/2c hybrid D9 retained a low level of pathogenicity.

4). Construction of Clone 630att

[0059] 630 virus showed some low level clinical signs when injected into dogs.

[0060] A portion of the capsid gene was chemically synthesised incorporating amino acid changes observed in Nobivac parvo C but not found to occur in field strains. This fragment was then substituted for the same region in plasmid p630 to create plasmid p630att; this is illustrated in Figure 6.

[0061] The DNA sequence corresponding to that between positions 3356 and 4029 on the CPV genome was synthesised. The exact DNA sequence, provided here as SEQ ID NO: 2, is shown below

```

1  agatctgaga cattgggtt ttatccatgg aaaccaacca taccacactc
  atggatgat tattttcaat gggatagaac atttagtacca ttcgcatactg
101  gaactatgg cacaccaace aataatatacc atggatcaga tccagatgt
  gttcattttt atactatgtt aaattctgtt ccagatcact tactaagaac
201  aggtgtgaa tttgtctacag gaacattttt ttttgtattt aaaccatgtt
  gacttaacaca tacatggcaaa acaaataatgg cattgggtt accaccaattt
301  ctaaattctt tgctctaagg tgaaggagggtt actaactttt gttatatagg
  agttcaacaa gataaaaagac gtgggtgttac tcaaattggaa aatacaaaact
401  atattactgtt agtctactttt atggagaccag ctgggggtt ttatagtgtca
  ccattattttt cttttgaggc gtctacacaaa gggccattttt aaacacccat
501  tgcagcagga cggggggggggc cgccaaacaga tgaaaatccaa gcagcagatgt
  gtgtatccaat ttgttagacaac atggtaaaaaa aactaccacaa

601  acaggagaaa caccctgagag atttacatata atggacacatc aagatcagg
  aagatatcca gaaggagatt gg

```

[0062] The restriction enzyme sites *Bgl* II and *Xcm*I are shown in bold and underlined.

[0063] The sequence was liberated from the plasmid in which it was provided by digestion with *Bgl* II and *Xcm*I. The DNA fragments were separated by agarose gel electrophoresis and the 672 bp fragment was isolated and purified.

[0064] Transfection of A72 or CrFK cells with p630att resulted in the generation of infectious virus (630att) which when

administered to pups gave no clinical signs.

[0065] In a comparative study, a vaccine comprising clone 630 and a vaccine comprising clone 630att were compared.

Five MDA negative dogs were vaccinated subcutaneous $10^{8.0}$ - $10^{8.3}$ TCID₅₀ of Clone 630 in 1 ml. This led to mild to moderate signs in all dogs. Weight change over 5 day period was -6% on average in 5 dogs, as follows from the table below.

		day -1	day +3	day +4	day +5	Change
Clone 630	964	7145	6740	6440	6650	-7
	320	7840	7625	7270	7060	-10
	148	6115	5915	5665	5740	-6
	761	5740	5525	5595	5530	-4
	959	5040	4890	5030	4910	-3
	Mean	6376	6139	6000	5978	-6

[0066] Five MDA negative dogs were vaccinated subcutaneous $10^{8.0}$ - $10^{8.3}$ TCID₅₀ of Clone 630att in 1 ml.

[0067] In this group, no clinical symptoms, no temperature rises, no leukopaenia, no diarrhoea or vomiting was seen. Moreover, there was a substantial weight gain in this group, as follows from the table below.

% Weight Gain			
	Days -4 to 0	Days 0 to +7	Days +7 to +14
Group 1 630att	7	13	11

[0068] It was therefore concluded that vaccines on the basis of clone 630att indeed behave attenuated when compared to clone 630, and have an excellent safety profile.

Example 2: generation of a recombinant virus having an attenuating mutation outside the capsid gene

[0069] Strain 154 att was obtained from a commercially available Nobivac Parvo C (Intervet Schering-Plough Animal Health) and strain Jess was a field isolate of a type 2c virus.

[0070] Viruses were grown on adherent canine or feline kidney cells (e.g. A72 & CrFK) using M6B8 medium containing 5% fetal calf serum. Replicative form (RF) DNA was prepared from infected cell cultures using a modification of the standard "Hirt" method (McMaster et al 1981).

[0071] RF DNA prepared from the 154 att strain was digested with the restriction enzyme PstI and the fragments separated by agarose gel electrophoresis. The 3055 base pair (bp) band (corresponding to the left hand end of CPV) was excised from the gel and purified using Qiagen Qiaquick gel extraction columns. RF DNA isolated from CPV Jess infected cells was digested with the restriction enzyme XbaI. Again the DNA fragments were separated by agarose gel electrophoresis followed by purification of an approximately 2750 bp band (corresponding to the right hand end of CPV including the capsid sequence) using Qiagen Qiaquick gel extraction columns.

[0072] The purified 3055 bp and 2750 bp fragments from 154att and Jess were combined and transfected into A72 or CrFK cells in culture. Transfections were performed using Lipofectamine 2000 (Invitrogen) with approximately 3 μ g of each fragment, following the manufacturers instructions.

[0073] Following transfection, cells were passaged and monitored by haemagglutination (HA) assay. Virus was detected by HA at pass 4. DNA sequence determination of hybrid viruses was performed using standard DNA sequencing protocols using either RF DNA or PCR fragment templates. Virus was purified by limiting dilution on adherent susceptible canine or feline cells.

Example 3: Recombinant Virus Constructed from Cloned Viral DNA

[0074] Recombinant virus was generated from cloned fragments. The genome of virus strain 154att was cloned into the standard cloning vector pBluescript (Stratagene inc.). In order to maintain the palindromic terminal sequences intact the plasmid was propagated in the bacterial host DL795 which is defective in a number of recombination systems. Cloning of parvovirus genomes has been described in the literature and the techniques required are known to someone skilled in the art.

The obtained clone of 154att (p154att) was digested with the restriction enzyme Pac I such that the digestion was not allowed to go to completion, i.e. the restriction enzyme digest was only partial. The digested fragments were then subjected to digestion with the restriction enzyme Xmn I. The digested DNA fragments were then separated by agarose gel electrophoresis and the fragment indicated in the diagram below was excised from the gel and purified using Qiagen Qiaquick gel extraction columns. The Xmn I and right hand Pac sites flank the capsid region in the parvovirus genome.

The capsid gene of 154 att was replaced by the capsid gene of a virulent strain of CPV as follows. The Xmn I site and the right hand Pac I indicated in figure 8 lie outside the boundaries of the capsid gene. The approximately 110bp sequence between the Pac I site and the end of the capsid gene differs significantly between the 154att strain and virulent isolates. There are as yet no recorded sequence changes in the short sequence (-55 bp) between the Xmn I site and the start of the capsid gene. Therefore in order to limit the exchange of material just to the capsid sequence; the virulent CPV capsid sequence was chemically synthesized and vaccine specific sequence between the PacI site and the capsid stop signal was retained.

[0075] Below, the chemically synthesized sequence is shown containing the CPV capsid gene. The sequence as shown below is provided herein as SEQ ID NO: 3.

```

AGAGGCAGACCTGAGAGCCATCTTACTCTGAACAATTGGAAGAAGATTTTCGAGA
Xmn I
CGACTTGGATTAAGGTACGATGGCACCTCCGCCAAAGAGAGCCAGGAGAGGTAAAGGGTGT
GTTAGTAAAGTGGGGAGAGGAAAGATTTAATAACTTAACTAAGTATGTGTTTTTAT
AGGACTTGTGCTCCAGGTATAAATATCTTGGGCTGGAACAGTCTTGACCAAGGAGA
ACCAACTAACCTCTGACGCCGCTGCAAAGAACACGACGAAGCTTACGCTGCTTATCT
TCGCTCTGGTAAAACCCATACTTATATTCTGCCAGCAGATCAACGCTTATAGATCA
AACTAAGGACCTAAAGATTGGGGGGAAATAGGACATTATTTTTAGAGCTAAAAAA
GGCAATTGCTCCAGTATTAACTGATCACCCAGATCATCACATCAACATCAAGACCAACAAA
ACCAACTAAAAGAAGTAAACCACCCACTCATTTTCAATTATCTTGCAAAAAAA
AGCCGGTGCAGGACAAGTAAAAGAGACAACTTGCACCAATGAGTGATGGAGCAGTTCA
ACCAAGCGGTGGTCAACCTGCTGTCAGAAATGAAAGAGCAACAGGATCTGGGAACGGGTG
TGGAGGCGGGGGTGGTGGTCTGGGGTGTGGGATTCTACGGGTACTTTCAATAA
TCAGACGGAATTAAATTGGAAAACGGATGGGTGGAAATCACAGCAAACCTCAAGCAG
ACTTGTACATTAAATATGCCAGAAAGTGAAGATTATAGAAGAGTGGTGTAAATAATT
GGATAAAACTGCAGTTAACGGAAACATGGCTTATGATGATACTCATGCACAAATTGTAAC
ACCTTGGTCATTGGTGATGCAAATGCTTGGGGAGTTTGGTTAATCAGGAGATTGGCA
ACTAATTGTTAATACTATGAGTGAGTTGATTTAGTTAGTTGAACAAGAAATTAA
TGTGTTTAAAGACTGTTTGCAGAATCTGCTACTCAGCCACCAACTAAAGTTATAATAA
TGATTTAATGCATCATTGATGGTGCATTAGATGATAATAACTATGCCATTACTCC
AGCAGCTATGAGACTTGAGACATTGGGTTTATCCATGGAAACCAACCATACCAACTCC
ATGGAGATATTTCATGGGATAGAACATTAATACCATCTCATACTGGAACTAGTGG
CACACCAACAAATATAACCATGGTACAGATCCAGATGATGTTCAATTTATACATTGA
AAATTCTGTGCCAGTACACTTAAGAACAGGTGATGAATTGCTACAGGAACATTAA
TTTGATTGTAACCATGAGACTTAACACATACATGCCAAACAAATAGAGCATTGGCTT
ACCACTTTCTAAATTCTTGCTCAAGCTGAAGGGGTACTAACTTGGTTATATAGG
AGTTCAACAAGATAAAAGACGTGGTGTAACTCAATGGAAATACAAACTTATTTACTGA
AGCTACTATTATGAGACCGCTGAGGTTGGTTATAGTCACCATATTCTTTGAGGC
GTCTACACAAGGCCATTAAACACCTATTGCAGCAGGACGGGGGGAGCGCAAACAGA
TGAAAATCAAGCAGCAGATGGTATCCAAGATATGCATTGGTAGACAACATGGTAAAA

```

```

AACTACCACAAACAGGAGAACACCTGAGAGATTACATATATAGCACATCAAGATAACGG
AAGATATCCAGAAGGAGATTGGATTCAAAATATTAACCTTAAACCTCTGTAAACAGAAGA
TAATGTATTGCTACCAACAGATCCAATTGGAGGTAAAACAGGAATTAACTATACTAATAT
ATTTAATACCTTATGGCCTTTAACGCATTAATAATGTACCCACAGTTATCCAAATGG
TCAAATTGGATAAGAATTGTACTGACTTAAACCAAGACTTCATGTAAATGCACC
ATTGTTTGTCAAAATAATTGCTCTGTCATTATTTGTAAGGTTGGCCCTAATTAAAC
AAATGAATATGATCTGATGCATCTGCTAAATATGTCAAGAATTGTAACCTACTCAGATT
TTGGTGGAAAGGTAAATTAGTATTAAAGCTAAACTAAGAGCCTCTCATACTTGGAAATCC
AATTCAACAAATGAGTATTAAATGTAGATAACCAATTAACTATGTACCAAGTAAATTGG
AGGTATGAAAATTGTATATGAAAAACTCTCAGCTAGCACCTAGAAAATTATATTAACATAC
TTACTATGTTTATGTTTATTACATATCAACTAACCTAGAAAATTATATTAAATATAC
TTACTATGTTTATGTTTATTACATATTATTTAAGTTAATTAAGGCGCGCC

```

PacI

[0076] The Xmn I & Pac I sites are indicated and underlined. The stop codon (TAA) of the capsid coding region The capsid (Vp1/Vp2) coding sequence is in bold.

[0077] The synthesized fragment was liberated from the plasmid in which it was provided using the enzymes Xmn I and Pac I, it was then ligated to the fragment shown in Figure 9. Competent *E. coli* (strain DL795) was transformed with the ligation mix using standard protocols and bacteria harboring the recombinant plasmids isolated and identified. The resultant plasmid p 1542c illustrated below (Figure 10) was then prepared from the cloned *E. coli*.

Hybrid virus was prepared as follows. Plasmid p 15 42c DNA was transfected into A72 or CrFK cells in culture. Transfections were performed using Lipofectamine 2000 (Invitrogen) with approximately 3 microgram of DNA, following the manufacturer's instructions. Following transfection, cells were passaged and monitored by haemagglutination (HA) assay. Virus was detected by HA at pass 4. DNA sequence determination of hybrid viruses was performed using standard DNA sequencing protocols using either RF DNA or PCR fragment templates. Virus was purified by limiting dilution on adherent susceptible canine or feline cells.

Legend to the figures.

[0078]

[Figure 1: Construction of pCPV A](#)

[Figure 2: Construction of pCPV C](#)

[Figure 3: Construction of pCPV AC](#)

[Figure 4: Construction of pCPV 154_{att}](#)

[Figure 5: Construction of p630](#)

[Figure 6: Construction of p630_{att}](#)

[Figure 7: schematic representation of the natural recombination \(non-GM\) method of obtaining a hybrid 2/2c virus isolate. Two overlapping fragments from the type 2 vaccine and type 2c field virus were transfected into cells and virus isolated following homologous recombination.](#)

[Figure 8: schematic representation of the infectious plasmid clone of CPV strain 154att showing the restriction enzyme sites Pac I and Xmn I. The shaded boxes illustrate the terminal palindrome sequences](#)

[Figure 9: schematic showing the selected product of the partial Pac I / Xmn I digest that was selected for further manipulation](#)

[Figure 10: plasmid containing the 154att vaccine virus DNA in which the capsid gene is substituted by a virulent CPV2c capsid sequence.](#)

SEQUENCE LISTING

[0079]

<110> Intervet International B.V.

<120> Live attenuated parvovirus

<130> 2010.016

<160> 5

<170> PatentIn version 3.5

<210> 1

<211> 5003

<212> DNA

<213> parvovirus

<400> 1

atcaatgttt	agaaccaact	gaccaagttc	acgtacgtat	gacgtgatga	cgcgcgctgc	60
gcccgtcgcc	tacggcagtc	acacgtcata	cgtacgtcc	ttggtcagtt	ggttctaaag	120
aatgataggg	ggtttgcgtg	ttttaacttg	ggccggaaaa	ggtgccgggc	taatttgtgg	180
cgtggttaaa	ggtataaaag	acaaaccata	gaccgttact	gacattcgct	tcttgtcttt	240
gacagagtga	acctcttctta	ctttgactaa	ccatgtctgg	caaccatgt	actgaggaag	300
ttatgggggg	atgaaatgg	ttaaagaac	atgcagaaaa	tgaagcattt	tcgtttgttt	360
ttaaatgtga	caacgtccaa	cttataatggaa	aggatgttcg	ctggaaacaac	tataccaaac	420
caattcaaaa	tgaagagacta	acatctttaa	tttagggagc	acaaaacagca	atggatcaaa	480
ccgaagaaga	agaaatggac	tggaaatcgg	aagttgatag	tctcgccaaa	aagcaagtac	540
aaacttttga	tgcatattaatt	aaaaaatgtc	ttttgttgcgt	ttttgttct	aaaaatatacg	600
aaccaatga	atgtgtttgg	tttattcaac	atgaatgggg	aaaagatcaa	ggctggcatt	660
gtcatgtttt	acttcatagt	aaagaacttc	aacaagcac	tggtaaatgg	ctacgcagac	720
aaatgataal	gtattggat	agatgggtgg	tgactctttg	ttcggtaaac	ttaacaccaa	780
ctgaaaagat	taagctcaga	gaaattgcag	aaagatgtga	atgggtgact	atattaacat	840
acagacataa	gcaaaacaaa	aaagactatg	ttaaaatggt	tcattttgga	aatatgtatag	900
catattactt	ttaaacaag	aaaaaaatttg	tccacatgc	aaaagaaaatgt	ggctattttt	960
taagtactga	ttctgggtgg	aaatttaact	ttatgaagta	tcaagacaga	caaattgtca	1020
gcacacttta	cactgaacaa	atgaaacccag	aaaccgttgc	aaccacatgt	acgcacagcac	1080
agggaaacaaa	gcgcgggaga	attcaaacta	aaaaggaagt	gtcaatcaaa	tgtactttgc	1140
gggacttgg	tagtaaaaga	gttacatcac	ctgaagactg	gtatgttta	caaccagata	1200
gttatattga	aatgtatggca	caaccaggag	gtgaaaatct	ttaaaaaat	acacttgaaa	1260
tttggtaattt	gaatttttagca	agaacaaaaaa	cagcatttgc	atataatactt	gaaaaacgag	1320
ataatactaa	actaactaac	tttgatcttg	caaattctag	acatgtcaa	atttttgaa	1380
tgcacggat	aaattttgtc	aaagtatagc	acgctatagc	atgtgttttta	aatagacaag	1440
gtggtaaaag	aaatacaagtt	ctttttcatg	gaccagcaag	tacaggaaaa	tctatcatttgc	1500
ctcaaggccat	agcacacagct	gtgggttaatg	ttgggtgttt	taatgcacca	aatgtaaaatt	1560
ttccatattaa	tgactgttacc	aaaaaaattt	taattttggat	tgaagaagct	gtttaactttg	1620
gtcaacaagt	taatcaattt	aaageaattt	gttctggaca	aaaaatttgc	attgtatcaa	1680
aaggtaaaagg	aaatgtttttt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	1740
taacaattgt	gaggatttgg	tgtttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	1800
gaatgttggaa	cattaaatgtt	tttttttttttt	tttttttttttt	tttttttttttt	tttttttttttt	1860

<210> 2
<211> 672
<212> DNA
<213> parvovirus

<400> 2

atgatctgaga	cattgggttt	ttatccatgg	aaaccaacca	taccaactcc	atggagatat	60
tattttcaat	gggatagaac	attatgtatca	tctcatactg	gaactagttg	cacccaaca	120
aatatatacc	atggtagaca	tccagatgtat	gttcaatttt	atactatgttga	aaattctgtg	180
ccagtagact	tactaagaac	aggtagatgaa	tttgcatacg	gaacatttttt	ttttgtatgt	240
aaaccatgtat	gactaacaca	tacatggcaa	acaaatagag	cattgggctt	accaccattt	300
cttaatttttctt	tgccctaa	tgaaaggaggt	actaacttttgc	gttataatagg	agttcaacaa	360
gataaaaagac	gtgggtgtaa	tcaaatggga	aatacaaaact	atattactgt	agctactattt	420
atgagaccgg	ctggagggttgc	ttatagtgc	ccatattattt	cttttggggc	gtctacacaa	480
gggcccattta	aaaacacccat	tgccggcgg	cggggggggg	cgccaaacaga	tgaaaatcaa	540
gcagccatgt	gtgtatccaa	atatgcattt	ggtagacaaac	atggtaaaaa	aactaccacaa	600
acaggagaaa	caccctggag	atttacatata	atagcacatc	aagatacagg	aagatatacc	660
gaaggagatt	gg					672

<210> 3

<211> 2451

<212> DNA

<213> parvovirus

<400> 3

agaggcagac ctgagagcc tcttacttc tgaacaattt gaagaaggatt ttgcagacga 60
cttggattaa ggtacgatgg cacccggc aaagagagcc aggagaggta agggtgtgtt 120
agtaaagtgg ggggagagga aagatattaat aacttaacta agtatgtgtt tttttatagg 180
acttgtgcct ccaggttata aatacttgg gcttggaaac agtcttgacc aaggagaacc 240
aactaaccct tctgacgccc ctgaaaaaga acacgacgaa gcttacgctg cttatcttc 300
ctctggtaaa aaccatact tatatttctc gccagcatg caacgcttta tagatcaaaac 360
taaggacgt aagatgtgg gggggaaaat aggacattat ttttttagag ctaaaaaggc 420
aattgtctca gtatatactt atacucacaga tcatccatca acatcaagac eaacaaaacc 480

aactaaaaaa agtaaaccac cacccatata tttcattat cttgcaaaaa aaaaaaaaaagc 540
cggtcagggaa caagtaaaaa gagacaatct tgccaccaatg agtgatggag cagttcaacc 600
agacggtgtt caacctgtgt tcgaaaaatgaa aagggacaaa ggatctggaa acgggtctgg 660
aggcggggtt ggtgtgtgtt ctgggggtgt ggggatttct acgggtactt tcaataatca 720
gacggaaattt aaatttttgg aaaaacggatg ggtggaaatc acagcaaact caagcagact 780
tgtacatata aatatggccaa aagtgaaaaa ttatagaaga gttgtgttataattttggaa 840
taaaaactgca gttaaacggaa acatggctt agatgataact catgcacaaa ttgttaacacc 900
ttggtcattt gttgtatgcaaa atgtctgggg agttttgtt aatccaggag attggcaact 960
aattgttaat actatgagtg agttgtcattt agttgtttt gaacaagaaa tttttatgt 1020
tgttttaaag actgttttgc aatctgtctac tcagccacca actaaaatgtt ataataatgaa 1080
tttaactgca tattgtatgg ttgcattttaga tagataataat actatgccc ttactccagc 1140
agctatgaga tctgagacat tgggttttta tccatggaaa ccaaccatac caactccatg 1200
gagatattttt tttcaatggg atagaacattt aatccatct catactggaa ctatgtggcac 1260
acccaaataat atataccatg gtacagatcc agatgtgtt caattttata ctatgtggaaa 1320
ttctgtgcctaa gtacacttac taagaacagg tgatgtatgg gctacaggaa cattttttttt 1380
tgatgttaaa ccatgttagac taacacatc atggcaaca aatagagcat tgggcttacc 1440
accatttctca aattttttgc ctaacgctga aggaggactt aacttttggat atataggagt 1500
tcaacaagat aaagacgctg gtgtaaactca aatggggaaat acaaaactata ttactgtggc 1560
tactattatg agaccagctg aggttggtaa tagtgcacca tattatttttctt ttgaggcgctc 1620
tacacaaggg ccatttttaaa caccatttgc agcaggacgg gggggggcgcc aaacagatgaa 1680
aaatcaagac gcatgtggt atccaaagata tgcattttgtt agacaacatg gtcaaaaaac 1740
taccacaaaca ggagaaacac ctgagagatt tacatataataa gcacatcaag atacaggaa 1800
atatccagaaa ggagattggtaa ttcaaaaatata taactttaaat cttctgttataa cagaagataa 1860
tgttattgtca ccaacagatc caatttggagg taatggaggaa attaactata ctaatattttt 1920
taataacttattt gtccctttaa ctgcattttaaa taatgtacca ccaatgttata caaatgttca 1980
aattttggat aaaaatgtt atactgtgtt aaaaaccaaga cttcatgttata atgcaccattt 2040
tgtttgtcaaa aataatgttgc ctgggtcaattt atttggtaaaa gttgcgcctaa atttacaaa 2100
tgaatatgtat cctgtatgtat cttcaagaattt gtaacttactt cagatgtttt 2160
gtggaaaggat aatattgtat ttaaagactaa actaaagggcc tcttcataactt ggaatccat 2220
tcaacaaaatg agtattaaatg tagataacca aatccatctt gatccacatg atatgggggg 2280
tatgaaaattt gtatgtggaa aatctgtgtt agcaccatgaa aatattatattt aacataactt 2340
ctatgtttttt atgttttata catatcaactt aacacccatgaa aatattatattt aatataactt 2400
ctatgtttttt atgttttata catatattttt taagattat ttaaggccgcgc c 2451

<210> 4
 <211> 17
 <212> PRT
 <213> parvovirus

<400> 4
 Tyr Phe Gln Trp Asp Arg Thr Leu Val Pro Ser His Thr Gly Thr Ser
 1 5 10 15

Gly

<210> 5
 <211> 17
 <212> PRT
 <213> parvovirus

<400> 5
 Tyr Ala Phe Gly Arg Gln His Gly Lys Lys Thr Thr Thr Thr Gly Glu
 1 5 10 15

Thr

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

- **KELLY**Aust. Vet. J., 1978, vol. 54, 593- [\[0004\]](#)
- **APPEL** et al.Vet. Rec., 1979, vol. 105, 156-159 [\[0004\]](#)
- **TRUYEN** et al.Virology, 1996, vol. 215, 186-189 [\[0004\]](#)
- **PARRISH** et al.Science, 1985, vol. 230, 1046-1048 [\[0005\]](#)
- J. Virol., 1991, vol. 65, 6544-6552 [\[0005\]](#)
- **CHINCHKAR** et al.Arch. Virol., 2006, vol. 151, 1881-1887 [\[0006\]](#)
- **PEREIRA** et al.Infect. Genet. Evol., 2007, vol. 3, 399-409 [\[0006\]](#)
- **TRUYEN** et al.J. Virol., 1995, vol. 69, 4702-4710 [\[0006\]](#)
- **WANG** et al.Virus Genes, 2005, vol. 31, 171-174 [\[0006\]](#)
- **MARTELLA** et al.Virus Genes, 2006, vol. 33, 11-13 [\[0006\]](#)
- **BUONAVOGLIA** et al.J. Gen. Virol., 2001, vol. 82, 3021-3025 [\[0007\]](#)
- **MARTELLA** et al.J. Clin. Microbiol., 2004, vol. 42, 1333-1336 [\[0007\]](#)
- **DECARO** et al.J. Vet. Med. B. Infect. Dis. Vet. Public Health 20060000 vol. 53, 468-472 [\[0007\]](#)
- **NAKAMURA** et al.Arch Virol., 2004, vol. 149, 2261-2269 [\[0007\]](#)
- **SPIBEY** et al.Vet. Microbiol., 2008, vol. 128, 48-55 [\[0007\]](#) [\[0010\]](#)
- **PRATELLI** et al.Clin. Diag. Lab. Immunol., 2001, vol. 8, 612-615 [\[0008\]](#)
- **TRUYEN**Vet. Microbiol., 1999, vol. 69, 47-50 [\[0008\]](#)
- **STRASSHEIM** et al.Virology, 1994, vol. 198, 175-184 [\[0009\]](#)
- **GREENWOOD** et al.Vet. Record., 1995, vol. 136, 63-67 [\[0009\]](#)
- **PARRISH** et al.Virology, 1988, vol. 166, 293-307 [\[0049\]](#)

LEVENDE, SVÆKKET PARVOVIRUS

PATENTKRAV

1. Levende, svækket CPV2-parvovirus, kendetegnet ved, at CPV2 omfatter et capsidgen af CPV2 serotype 2a, 2b eller 2c, der koder for en anden aminosyre end isoleucin ved aminosyreposition 219 af capsidproteinet og/eller en anden aminosyre end glutamin ved aminosyreposition 386 af capsidproteinet, og kendetegnet ved, at et DNA-fragment af en del af ikke-capsidområdet af CPV2 udskiftes af et homologt DNA-fragment af en del af ikke-capsidområdet afledt af et andet parvovirus, hvor det homologe DNA-fragment af det andet parvovirus bærer en svækende mutation.
2. Levende, svækket CPV2 ifølge krav 1, kendetegnet ved, at CPV2 omfatter et capsidgen, der koder for en anden aminosyre end isoleucin ved aminosyreposition 219 af capsidproteinet, og en anden aminosyre end glutamin ved aminosyreposition 386 af capsidproteinet.
3. Levende, svækket CPV2 ifølge krav 2, kendetegnet ved, at CPV2 omfatter et capsidgen, der koder for et valin ved aminosyreposition 219 af capsidproteinet og/eller et lysin ved aminosyreposition 386 af capsidproteinet.
4. Levende, svækket CPV2-parvovirus ifølge et hvilket som helst af kravene 1-3, kendetegnet ved, at det homologe DNA-fragment af det andet parvovirus bærer en svækende mutation i det ikke-strukturelle område, i området fra position 2061 til 2070 ifølge SEQ ID NO: 1.
5. Vaccine til beskyttelse af dyr mod infektion med CPV2-parvovirus, kendetegnet ved, at vaccinen omfatter et levende, svækket CPV2-parvovirus ifølge et hvilket som helst af kravene 1-4 og en farmaceutisk acceptabel bærer.
6. Kombinationsvaccine til beskyttelse af dyr mod patogener, kendetegnet ved, at kombinationsvaccinen omfatter en vaccine ifølge krav 5 og et supplerende antigen af et virus eller en mikroorganisme, der er patogen for dyr, eller genetiske informationer, der koder for et immunogen protein af virusset eller mikroorganismen.
7. Kombinationsvaccine ifølge krav 6, kendetegnet ved, at virusset eller mikroorganismen, der er patogen for dyr, er udvalgt fra gruppen bestående af *Ehrlichia canis*, *Babesia gibsoni*, *vogeli*, *rossi*, *Leishmania donovani-complex*, hunde-adenvirus, hunde-coronavirus, hunde-distempervirus, *Leptospira interrogans* serovar *canicola*, *icterohaemorrhagiae*, *pomona*, *grippotyphosa*, *bratislava*, hunde-hepatitisvirus, hunde-parainfluenzavirus, rabiesvirus, *Hepatozoon canis*, *Borrelia burgdorferi*, *Bordetella bronchiseptica*, katte-herpesvirus, katte-calicivirus, katte-panleuopeni og *Chlamydophila felis*.
8. Fremgangsmåde til fremstilling af en vaccine ifølge krav 5 eller en kombinationsvaccine ifølge krav 6 eller 7, kendetegnet ved, at fremgangsmåden omfatter blanding af et levende, svækket CPV2-parvovirus ifølge et hvilket som helst af kravene 1-4 og en farmaceutisk acceptabel bærer.
9. Levende, svækket CPV2-parvovirus ifølge et hvilket som helst af kravene 1-4 til anvendelse som et medikament.
10. Levende, svækket CPV2-parvovirus ifølge et hvilket som helst af kravene 1-4 til anvendelse i behandlingen af en parvovirusinfektion.

- 2 -

11. Fremgangsmåde til fremstilling af en CPV2-parvovirusmutant ifølge et hvilket som helst af kravene 1-4, kendtegnet ved, at fremgangsmåden omfatter trinnet med ændring i et gen, der koder for et capsidprotein af CPV2 serotype 2a, 2b eller 2c, af et hunde-parvovirus, der allerede er svækket i en anden del end den del, der koder for capsidet, ved rekombinante DNA-teknikker, et codon ved aminosyreposition 219, der koder for isoleucin og/eller et codon ved aminosyreposition 386, der koder for glutamin, ind i et codon ved aminosyreposition 219, der koder for en anden aminosyre end isoleucin og/eller et codon, der koder for en anden aminosyre end glutamin ved aminosyreposition 386.
12. Fremgangsmåde til fremstilling af en CPV2-parvovirusmutant ifølge et hvilket som helst af kravene 1-4, kendtegnet ved, at fremgangsmåden omfatter udskiftning i et gen, der koder for et capsidprotein af CPV2 serotype 2a, 2b eller 2c, af et hunde-parvovirus, der allerede er svækket i en anden del end den del, der koder for capsidet, et DNA-fragment, der koder for mindst en del af parvoviruscapsidprotein, der ved aminosyreposition 219 har et codon, der koder for isoleucin og/eller ved aminosyreposition 386 har et codon, der koder for glutamin, med et DNA-fragment, der koder for den samme del af parvoviruscapsidproteinet, der nu ved aminosyreposition 219 har et codon, der koder for en anden aminosyre end isoleucin og/eller ved aminosyreposition 386 har et codon, der koder for en anden aminosyre end glutamin.

DRAWINGS

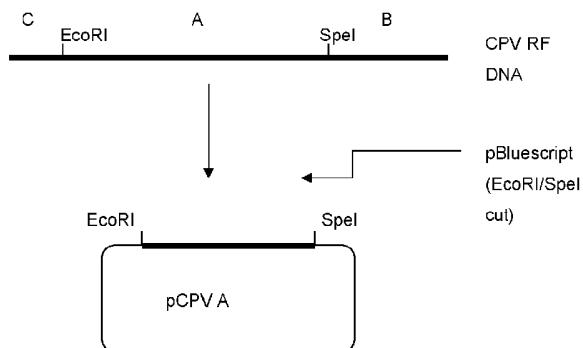


Figure 1

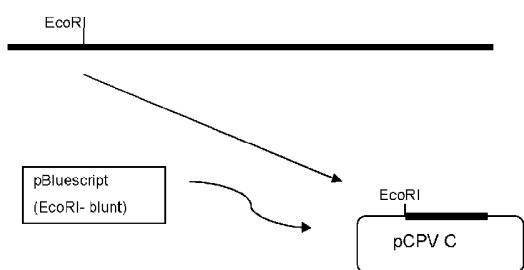


Figure 2

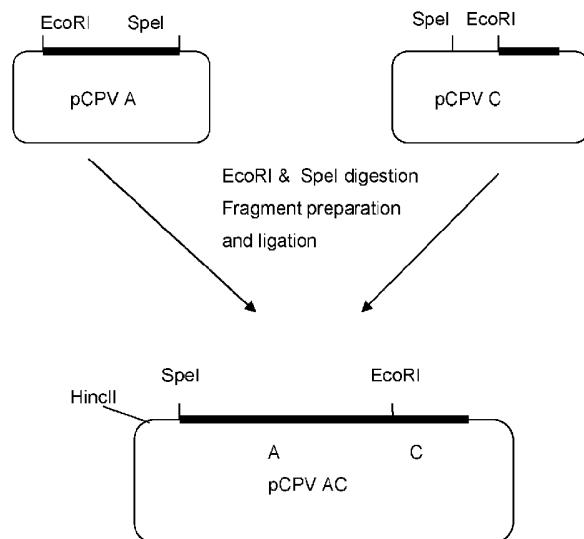


Figure 3

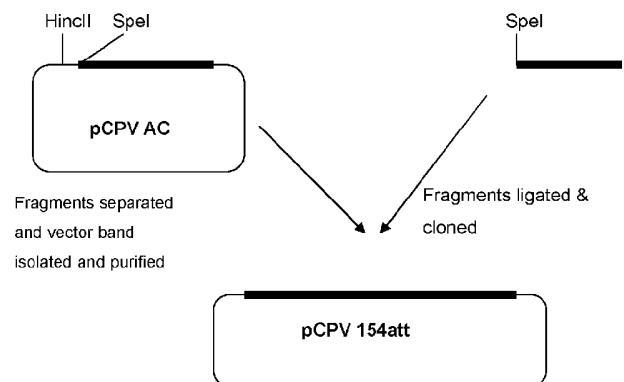


Figure 4

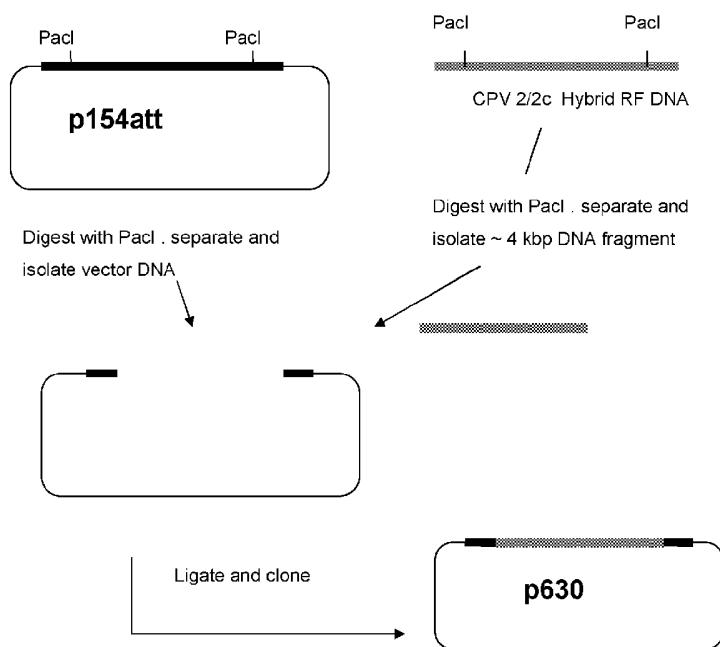


Figure 5

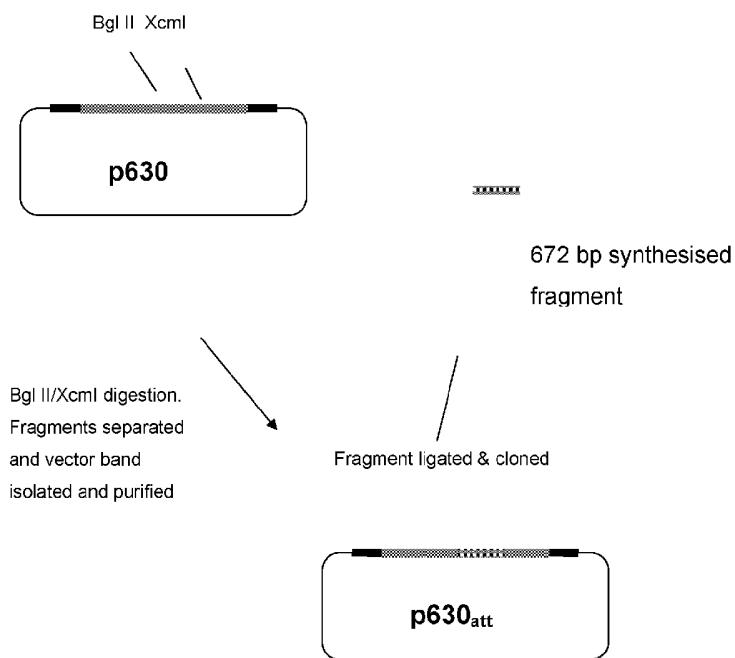


Figure 6

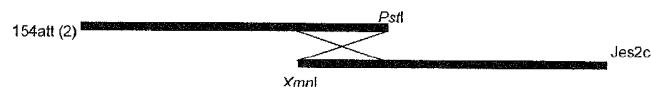


Figure 7

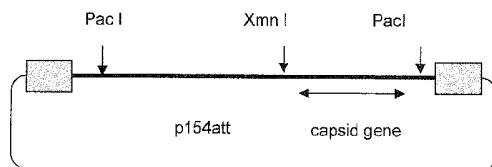


Figure 8



Figure 9

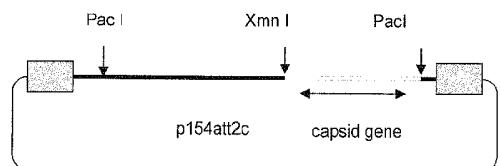


Figure 10