ABSTRACT
A rotor assembly is provided in which a solid rotor ring is formed at either end of a stack of laminated discs, the solid rotor rings yielding improved electrical and mechanical characteristics in a low weight assembly. The solid rotor rings are fabricated by brazing slugs between the end portions of the rotor bars, the braze joints contacting a large percentage (at least 90%) of the rotor bar end portions.
ROTOR DESIGN FOR AN ELECTRIC MOTOR

CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 12/947,851, filed Mar. 17, 2012, which is a continuation of U.S. patent application Ser. No. 11/452,793, filed Jan. 16, 2006, the disclosures of which are incorporated herein by reference for any and all purposes.

FIELD OF THE INVENTION

The present invention relates generally to electric motors and, more specifically, to an electric motor rotor assembly.

BACKGROUND OF THE INVENTION

AC induction motors are widely used in a variety of industrial and residential applications. In general, this type of motor includes a laminated magnetic core mounted on a drive shaft. The laminated magnetic core may be fabricated from a plurality of laminated magnetic discs, or from a plurality of arc-like core segments. The laminated magnetic core includes a plurality of longitudinal slots into which bars of electrically conductive metal are fit. The ends of the bars extend beyond either end of the laminated magnetic core. An end-ring or end-cup at either end of the laminated magnetic core is used to mechanically and electrically join the ends of the rotor bars.

It will be appreciated that there are numerous techniques that may be used to fabricate the rotor assembly in general and the cap assembly in particular. Typically these techniques make trade-offs between several, often competing, factors that include (i) maximizing the electrical conductivity between the rotor bars; (ii) rotor weight; (iii) material cost; and (iv) fabrication/assembly cost and complexity. One approach that has been used to fabricate the rotor assembly is disclosed in U.S. Pat. No. 3,778,652. As described, a casting process is used to cast aluminum conductors bars in the slots within the laminated magnetic core. To improve the fit between the cast bars and the slots of the core, this patent discloses utilizing projections within the slots, thereby confining and minimizing the shrinkage of the cast bars to small regions. The casting process can be used to cast both the conductor bars and the end rings that electrically couple the bars together.

U.S. Pat. No. 4,064,410 discloses an alternate rotor fabrication process. As disclosed, rotor bars are first inserted into a laminated core such that end portions of each bar protrude beyond the end laminations at either end of the core. An end ring is then positioned over the shaft at either end of the core, the end rings having a plurality of channels on the inner ring surface that are designed to accept the ends of the rotor bars. Welding is then used to fuse the end portions of the rotor bars to the end rings, the welding process being carried out while applying an axial compression of the two rings toward one another.

U.S. Pat. No. 6,088,906 discloses several techniques for forming a joint between the rotor bars that extend beyond the laminated core and the end rings positioned at either end of the rotor assembly. In one of the disclosed techniques, the end rings are rotated about their rotational axes at high speed, and then simultaneously pushed into contact with the ends of the rotor bars. Frictional heating causes the ends of the rotor bars to fuse into the complementary surfaces of the rings. This frictional heating approach may be augmented by applying a high axial current to the end rings. Also disclosed is a technique in which a pulsed current generator is used to heat a foil of a brazing alloy to form a braze joint between the end rings and the ends of the rotor bars.

Japanese Patent Application No. 2003020929 (Publication No. 2004007949) discloses a rotor fabrication technique in which the end rings are formed of multiple, individual arc-like end ring pieces. The end ring pieces are positioned at the ends of the laminated core, between the rotor bars. A rotary tool is used to friction weld the end surfaces of the rotor bars to the end ring pieces.

While the prior art discloses a number of techniques that may be used to fabricate the rotor assembly of an electric motor, these techniques tend to provide inferior electrical conductivity, often while utilizing relatively bulky and weighty end rings. Accordingly, what is needed is a rotor assembly that can be easily fabricated while minimizing rotor weight and maximizing conductivity between rotor bars. The present invention provides a such a rotor assembly.

SUMMARY OF THE INVENTION

A rotor assembly is disclosed which provides a solid rotor ring located at either end of a stack of laminated discs, the solid rotor rings yielding improved electrical and mechanical characteristics in a low weight assembly. The solid rotor rings are fabricated by brazing slugs between the end portions of the rotor bars, the braze joints contacting a large percentage (at least 90%) of the rotor bar end portions.

In one aspect of the invention, an electric motor rotor assembly is provided, the assembly including (i) a rotor shaft; (ii) a plurality of laminated discs formed into a stack, wherein each laminated disc has a plurality of slots, the slots being co-aligned within the stack; (iii) a plurality of rotor bars passing through the slots within the stack and extending out and away from either end of the stack; (iv) a first plurality of slugs interposed between adjacent rotor bar surfaces of a first portion of the rotor bars to form a first rotor bar/slug assembly located on one side of the laminated disc stack, where the slugs are sized to contact at least 90% (alternately, at least 95%; alternately, at least 99%) of the adjacent rotor bar surfaces; and (v) a second plurality of slugs interposed between adjacent rotor bar surfaces of a second portion of the rotor bars to form a second rotor bar/ slug assembly located on a second side of the laminated disc stack, where the slugs are sized to contact at least 90% (alternately, at least 95%; alternately, at least 99%) of the adjacent rotor bar surfaces. The assembly may further include first and second containment rings positioned around the first and second rotor bar/ slug assemblies, for example over regions of the assemblies that have been machined. The rotor bars may be formed from copper. The slugs may be formed of copper and coated with silver.

A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a perspective view of the primary components of a rotor assembly, shown in an exploded relation, in accordance with a preferred embodiment of the invention;
FIG. 2 is an illustration of a laminated disc used in the laminated disc assembly;

FIG. 3 is a detailed view of three of the slots of the laminated disc shown in FIG. 2;

FIG. 4 is a cross-sectional view of a rotor bar suitable for use with the laminated disc shown in FIG. 2;

FIG. 5 provides a perspective view of the stack of laminated discs with the rotor bars having been inserted into the assembly;

FIG. 6 provides a perspective view of a slug;

FIG. 7 is a cross-sectional view of the slug shown in FIG. 6;

FIG. 8 provides a side view of the rotor core assembly after insertion of the rotor bars into the stock of laminated discs and after placement of the slugs between the ends of the rotor bars;

FIG. 9 provides an end view of the assembly shown in FIG. 8;

FIG. 10 is a detailed view of a portion of the assembly shown in FIG. 9;

FIG. 11 illustrates the assembly shown in FIG. 8 after brazing and machining; and

FIG. 12 illustrates the assembly of FIG. 11 after installation of the rotor assembly containment rings.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

FIG. 1 is an exploded, perspective view of the primary components of a rotor assembly 100 in accordance with a preferred embodiment of the invention. It will be appreciated that other configurations may be used with the invention, and the specific designs and dimensions provided relative to the preferred embodiment are only meant to illustrate, not limit, the invention.

As described in further detail below, the core assembly 101 is comprised of a plurality of laminated discs, a plurality of conductor bars (also referred to herein as rotor bars), and a plurality of slugs that are positioned between, and brazed to, the end portions of the conductor bars. Core assembly 101 is coaxially mounted to a rotor shaft 103, shaft 103 preferably including keys 105, or similar means, for locating and positioning the core assembly about its central axis. At either end of core assembly 101 is a rotor containment ring 107. Additionally, and as shown in FIG. 1, rotor assembly 100 includes ball bearing assemblies 109, washers 111 and retaining rings 113.

FIG. 2 illustrates a single laminated steel disc 200. It will be appreciated that the invention may utilize laminated discs of a different size, with a different number of slots, and with a differently shaped slot design without departing from the invention. A stack of discs 200 form the stack comprising core assembly 101. The center 201 of each disc is removed, for example utilizing a boring or stamping procedure, center 201 sized to fit rotor shaft 103. Preferably each disc 200 includes a slot 203 suitably sized to fit keys 105. As shown, each disc 200 includes a plurality of slots 205, slots 205 having substantially the same shape. In the illustrated embodiment, disc 200 includes 68 equally spaced slots 205. Slots 205 radiate outwards from center 201 and are positioned near the outer edge of disc 200. The discs 200 comprising the laminated core assembly are positioned to insure that the slots in all of the discs are aligned. A detailed view 207 of three slots 205 is provided in FIG. 3.

Slots 205 are generally rectangular in shape. In the preferred embodiment, and as illustrated, each slot 205 has an upper width 301 of 2.97 millimeters, a lower width 303 of 1.75 millimeters and a height 305 of 16.50 millimeters. The outermost edge of slot 205 is 0.5 millimeters from the outer edge of disc 200. The lowermost edge of slot 205 has a radius of curvature of 0.88 millimeters. The uppermost edge of slot 205 is non-planar, as shown. Slot-to-slot spacing is 2.50 millimeters at the upper edge of the slots (i.e., spacing 307), and 2.30 millimeters at the lower edge of the slots (i.e., spacing 309).

Core assembly 101 is further comprised of a plurality of rotor bars, the number of rotor bars being equivalent to the number of slots 205 (e.g., 68 in the preferred embodiment). Preferably the rotor bars are extruded from oxygen free copper. FIG. 4 provides a cross-sectional view of a rotor bar 400, illustrating that the rotor bars have substantially the same shape as slots 205, although the dimensions are slightly smaller, thus allowing the bars to be inserted into slots 205. In the preferred embodiment, each bar 400 has an upper width 401 of 2.725 millimeters, a lower width 403 of 1.51 millimeters and a height 405 of 16.26 millimeters. Also in the preferred embodiment, and as illustrated in FIG. 5, the stack of laminated discs 501 has an overall length 503 of 153.3 millimeters while the length 405 of each rotor bar is 214.0 millimeters. Accordingly, in the illustrated embodiment each rotor bar 400 extends out either end of the laminated stack 501 by approximately 30.35 millimeters.

After assembly of the stack of laminated discs 501 and the insertion of rotor bars 400 into slots 205, the end assemblies are fabricated. The first step in the fabrication of the end assemblies is the insertion of a slug into each gap formed between adjacent rotor bars 400 located at either end of laminated disc stack 501. FIGS. 6 and 7 show perspective and cross-sectional views, respectively, of a slug 600.

Each slug 600 is preferably fabricated from oxygen free copper using, for example, an extrusion process. Preferably the lower portion 601 of each slug 600 is chamfered, thus making it easier to slip the slugs in between adjacent rotor bars. The upper edge 603 preferably includes some form of marking. For example, in the preferred embodiment an artifact of the extrusion process is a groove running along the length of edge 603, as shown. While not required, a groove or other marking simplifies the fabrication process by providing a quick means of determining the proper orientation of the slug prior to insertion into the rotor assembly.

Each slug 600 is coated with a thin film, approximately 0.016 millimeters thick, of silver. It will be appreciated that the coating may be comprised of other suitable brazing materials, e.g., silver alloys. After deposition of the silver film, in the preferred embodiment each slug 600 has an upper width 701 of 2.746 millimeters, a lower width 703 of 2.494 millimeters and a height 705 of 20.00 millimeters. The length of each slug is preferably slightly longer than the amount each rotor bar extends from the stack of laminated disc. Thus, for example, in the preferred embodiment each slug has a length of 31.3 millimeters as compared to the distance the rotor bar extends out of the laminated stack, i.e., 30.35 millimeters.

Regardless of the dimensions and the exact shape of the elements of the rotor assembly, e.g., the rotor bars, slugs and laminated discs, preferably the size and shape of the slugs are chosen to insure that the entire side surface of each rotor bar extending away from the laminated stack is in contact
with a coated slug surface. Alternately, at least 99% of the side surface of the portion of each rotor that extends away from the laminated stack is in contact with a coated slug surface. Alternately, at least 95% of the surface of the portion of each rotor that extends away from the laminated stack is in contact with a coated slug surface. Alternately, at least 90% of the surface of the portion of each rotor that extends away from the laminated stack is in contact with a coated slug surface. This aspect of the invention is illustrated in FIGS. 8-10. FIG. 8 provides a side view of the rotor core assembly after insertion of the rotor bars 400 into the stack of laminated discs 501 and placement of the slugs 600 between the end portions of the rotor bars. Slugs 600 may be positioned between the rotor bar end portions by hand or utilizing an automated system. As shown, the length 801 of the combination of the laminated stack 501 (length 803) and the slugs 600 (length 805) is slightly longer than the length 807 of rotor bars 400. This preferred configuration insures that the entire length of the portion of each rotor bar that extends out and away from the laminated stack is in contact with a slug. FIG. 9 provides an end view of the assembly shown in FIG. 8. A detailed view 901 of the ends of several rotor bars 400 and the ends of several slugs 600 is provided in FIG. 10. As shown, preferably the dimensions of the slugs, with coating, are selected to insure that the slugs extend completely through the region separating the rotor bars. As a result, and as previously noted, during slugging, at least 90%, more preferably at least 95%, still more preferably at least 99%, and yet still more preferably 100% of the adjacent surface area of the rotor bars that extend away from the laminated disc stack is in contact with a coated slug.

After slugs 600 are positioned between the adjacent surfaces of the rotor bars, the slugs are brazed. As a result of the brazing operation and the previously described configuration, both ends of the rotor bar assembly are formed into solid rings. It will be appreciated that this configuration offers improved electrical characteristics (i.e., lower rotor bar to rotor bar resistance) and improved strength over a configuration in which only small regions of the end portions of each rotor bar are brazed or welded to a slug or cap assembly. The present configuration also offers lower weight than prior art assemblies utilizing an external cap assembly in which fins of the cap assembly are positioned between adjacent rotor bars.

In a preferred process, the rotor assembly 800 is heated using a conventional furnace to a sufficient temperature and for a sufficient length of time to braze slugs 600 to rotor bars 400. It will be appreciated that by coating each copper slug 600 with silver, as preferred, a separate brazing material is not required. In one embodiment, rotor assembly 800 is brazed in a vacuum furnace. It will be appreciated that while vacuum furnace brazing is preferred, other brazing methods may be employed, e.g., hydrogen furnace brazing, induction brazing, etc.

As the inventors have found that it is generally preferable to allow the slugs to float during the brazing procedure, in a preferred rotor fabrication and assembly process no brazing fixture is used. In an alternate process, a brazing fixture is used, but one that does not impart a significant compressive, radial force on the slugs during the brazing operation. In this process the brazing fixture simply insures that the slugs remain in place during brazing. Thus, for example, in one embodiment a wire (e.g., a stainless steel wire, a molybdenum wire, etc.) is simply wrapped around the circumference of the rotor/slug assembly at either end of the core assembly, the ends of the wire(s) being twist tied to hold the wires and slugs in place during brazing.

As previously noted, the braze joint of the present invention provides a solid rotor ring at either end of the laminated disc stack. As a result, once the assembly has been cooled, the ring at either end of the assembly that is comprised of the ends of the rotor bars and the slugs may be machined to obtain the desired shape and finish. Due to the complete braze joint between the ends of the rotor bars and the adjacent slugs, greater flexibility in machining this region is possible than with the prior art configurations. In the preferred embodiment of the present invention, the rotor bar/slug assembly at either end of the laminated disc stack is machined to (i) lower weight and inertial resistance; (ii) insure concentricity with the rotor shaft; and (iii) balance the rotor assembly. Note that the machining of the assembly may be performed using a lathe, mill, grinder, sander, or other means or combination of means.

In the preferred embodiment of the invention, and as illustrated in FIG. 11, a portion 1101 of the rotor bar and slug assembly located at either end of the assembly is removed via machining. Once machined, rotor containment rings 107 are positioned over the ends of the assembly as shown in FIG. 12. Preferably the rotor containment rings are fabricated from stainless steel, although other materials may be used (e.g., beryllium-copper alloys, etc.). Rotor containment rings 107 may be press-fit over the rotor bar/slug assembly in regions 1101, thereby achieving an interference fit. Note that the rotor containment rings may also be soldered, bonded, or welded in place. Additionally, temperature differentials (i.e., containment ring heating and/or assembly cooling) may be used to simplify assembly and/or achieve the desired interference fit.

The remaining portions of the rotor assembly 100 can be finished using conventional rotor components with the finished rotor being used to build a conventional electric motor using conventional techniques.

As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.

What is claimed is:

1. A rotor assembly for an electric motor, comprising:
a rotor shaft;
a plurality of laminated discs formed into a stack of laminated discs, wherein each of said plurality of laminated discs includes a plurality of slots, wherein said plurality of slots of each of said plurality of laminated discs are co-aligned within said stack of laminated discs, and wherein said stack of laminated discs is mounted to said rotor shaft;
a plurality of rotor bars passing through said plurality of slots of said stack of laminated discs, wherein a first end portion of each of said plurality of rotor bars extends out and away from a first end surface of said stack of laminated discs, and wherein a second end portion of each of said plurality of rotor bars extends out and away from a second end surface of said stack of laminated disc;
a first plurality of slugs, wherein each of said first plurality of slugs is interposed between said first end portions of a corresponding pair of said plurality of rotor bars, and
wherein each of said first plurality of slugs is joined to said first end portions of said corresponding pair of said plurality of rotor bars via a first pair of braze joints, and wherein each of said first pair of braze joints is brazed to at least 90% of said first end portions of said corresponding pair of said plurality of rotor bars; and

a second plurality of slugs, wherein each of said second plurality of slugs is interposed between said second end portions of a corresponding pair of said plurality of rotor bars, and wherein each of said second plurality of slugs is joined to said second end portions of said corresponding pair of said plurality of rotor bars via a second pair of braze joints, and wherein each of said second pair of braze joints is brazed to at least 90% of said second end portions of said corresponding pair of said plurality of rotor bars.

2. The rotor assembly of claim 1, further comprising:

a first containment ring positioned around a section of said first end portions of said plurality of rotor bars and over a section of said first plurality of slugs brazed to said first end portions of said plurality of rotor bars; and

a second containment ring positioned around a section of said second end portions of said plurality of rotor bars and over a section of said second plurality of slugs brazed to said second end portions of said plurality of rotor bars.

3. The rotor assembly of claim 2, wherein said section of said first end portions of said plurality of rotor bars and said section of said first plurality of slugs brazed to said first end portions of said plurality of rotor bars is machined prior to positioning said first containment ring, and wherein said section of said second end portions of said plurality of rotor bars and said section of said second plurality of slugs brazed to said second end portions of said plurality of rotor bars is machined prior to positioning said second containment ring.

4. The rotor assembly of claim 1, wherein said plurality of rotor bars are formed from copper, wherein said first plurality of slugs are formed from copper and subsequently coated with silver, and wherein said second plurality of slugs are formed from copper and subsequently coated with silver.

5. The rotor assembly of claim 1, wherein each of said first pair of braze joints is brazed to at least 95% of said first end portions of said corresponding pair of said plurality of rotor bars, and wherein each of said second pair of braze joints is brazed to at least 95% of said second end portions of said corresponding pair of said plurality of rotor bars.

6. The rotor assembly of claim 1, wherein each of said first pair of braze joints is brazed to at least 99% of said first end portions of said corresponding pair of said plurality of rotor bars, and wherein each of said second pair of braze joints is brazed to at least 99% of said second end portions of said corresponding pair of said plurality of rotor bars.

* * * * *