Nail sticker using rear print and method for manufacturing the same

The present disclosure relates to a nail sticker using a rear print and a method for manufacturing the same, and the nail sticker (100) using a rear print according to the present disclosure includes a substrate (110) made of polyurethane, a print layer (120) having light-reflective particles (125) and directly printed to the substrate (110), an adhesive layer (130) formed on the print layer (120), and a release layer (140) formed on the adhesive layer (130).

FIG. 1a
Description

CROSS-REFERENCE TO RELATED APPLICATIONS

TECHNICAL FIELD

[0002] The following disclosure relates to a nail sticker using a rear print and a method for manufacturing the same.

BACKGROUND

[0003] As one of modes for expressing physical beauty pursued by the human being, the cosmetic business is developing faster and subdivided into various industries. In particular, from the 20th century, the cosmetic market is rapidly increasing, and the cosmetic business becomes more popular to the public.

[0004] Generally, in order to improve the shape of the nail, a user applies a nail polish to perform a nail art in a desired design. However, the nail art in which a nail polish is applied to the nail is difficult and cumbersome and takes much time to dry the applied solution. Further, if a user directly perform the nail art to his own nail, the shape of the applied nail art is not uniform depending on whether the user is a right-hander or a left-hander.

[0005] To solve this problem, a nail shop or the like which performs the nail art professionally has appeared to decorate the nail. However, the French nail art performed by a specialist should be paid each time, which increases the expense. Therefore, a nail sticker market which allows unskilled persons to easily perform the nail art is gradually increasing.

[0006] Meanwhile, in a general nail sticker, as disclosed in the patent literature below, a three-dimensional decoration is formed on a substrate layer to give the same effect as jewels attached thereto.

[0007] In addition to the above three-dimensional decoration, as shown in FIG. 6, light-reflective particles 2 may be added to the substrate layer 1 to emphasize various kinds of aesthetic senses. In order to protect the light-reflective particles 2, a top coating 3 may be formed on the upper layer of the light-reflective particles 2. However, if the top coating 3 is formed on the upper layer of the light-reflective particles 2, due to the volume and irregular sizes of the light-reflective particles 2, an unevenness is formed at the top coating 3, which may cause diffused reflection, and therefore the twinkling effect of the light-reflective particles 2 seriously deteriorates.

RELATED LITERATURES]

Patent Literature

[0008] (Patent Literature 1) KR10-1207316 B1

SUMMARY

[0009] An embodiment of the present invention is directed to providing a nail sticker using a rear print, which may prevent an unevenness from being generated at a substrate disposed at the outermost side in a final stage, by printing a print layer having light-reflective particles to the rear surface of the substrate, and a method for manufacturing the same.

[0010] In one aspect, there is provided a nail sticker using a rear print, which includes: a substrate made of polyurethane; a print layer having light-reflective particles and directly printed to the substrate; an adhesive layer formed on the print layer; and a release layer formed on the adhesive layer.

[0011] In the nail sticker using a rear print according to an embodiment of the present disclosure, the light-reflective particles may include glitter, bling, spangle, confetti, or pearl.

[0012] In the nail sticker using a rear print according to an embodiment of the present disclosure, one surface of the substrate to which the print layer is printed may be treated by means of acryl-based primer, urethane-based primer, plasma treatment, or corona treatment.

[0013] In the nail sticker using a rear print according to an embodiment of the present disclosure, after the release layer is removed, when the adhesive layer is adhered to a nail, the adhesive layer, the print layer, and the substrate may be disposed in order from the nail.

[0014] In the nail sticker using a rear print according to an embodiment of the present disclosure, the adhesive layer may be made of a pressure sensitive adhesive (PSA).

[0015] In the nail sticker using a rear print according to an embodiment of the present disclosure, the release layer
The nail sticker using a rear print according to an embodiment of the present disclosure may further include a binder layer formed between the adhesive layer and the print layer. In the nail sticker using a rear print according to an embodiment of the present disclosure, the binder layer may be made of any one of acryl-based materials, urethane-based materials, silicon-based materials, epoxy-based materials, and combinations thereof.

The nail sticker using a rear print according to an embodiment of the present disclosure may further include a three-dimensional decoration formed on a surface of the substrate which is opposite to the surface thereof to which the print layer is printed.

In the nail sticker using a rear print according to an embodiment of the present disclosure, the print layer may be printed by using a roll coater, a bar coater, or a screen printing.

In the nail sticker using a rear print according to an embodiment of the present disclosure, the print layer may be formed by mixing the light-reflective particles with any one of acryl-based resins, urethane-based resins, and combinations thereof.

In the nail sticker using a rear print according to an embodiment of the present disclosure, the light-reflective particles may be mixed with any one of the acryl-based resins, the urethane-based resins, and combinations thereof by means of screen printing, scattering, or spraying.

In another aspect, there is provided a method for manufacturing a nail sticker using a rear print, which includes: (A) printing a print layer having light-reflective particles to a substrate made of polyurethane; (B) forming an adhesive layer on the print layer; and (C) forming a release layer on the adhesive layer.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, in the step (A), the light-reflective particles may include glitter, bling, spangle, confetti, or pearl.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, in the step (A), the print layer may be formed by mixing the light-reflective particles with any one of acryl-based resins, urethane-based resins, and combinations thereof.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, in the step (B), the adhesive layer may be made of a pressure sensitive adhesive (PSA).

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, in the step (C), the print layer may be made of any one of polyethylene terephthalate (PET), polypropylene (PP), and combinations thereof.

The method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure may further include, before the step (B), forming a binder layer on the print layer.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, after the release layer is removed, when the adhesive layer is adhered to a nail, the adhesive layer, the print layer, and the substrate may be disposed in order from the nail.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, the light-reflective particles may be mixed with any one of the acryl-based resins, the urethane-based resins, and combinations thereof by means of screen printing, scattering, or spraying.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, the print layer may be formed by mixing the light-reflective particles with any one of acryl-based resins, urethane-based resins, and combinations thereof by means of screen printing, scattering, or spraying.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, between the step (A) and the step (B), forming a binder layer on the print layer.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, the binder layer may be made of any one of acryl-based materials, urethane-based materials, silicon-based materials, epoxy-based materials, and combinations thereof.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, after the release layer is removed, when the adhesive layer is adhered to a nail, the adhesive layer, the print layer, and the substrate may be disposed in order from the nail.

The method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure may further include, between the step (A) and the step (B), forming a binder layer on the print layer.

The method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, in the step (A), the print layer may be printed by using a roll coater, a bar coater, or a screen printing.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, in the step (A), the print layer may be formed by mixing the light-reflective particles with any one of acryl-based resins, urethane-based resins, and combinations thereof.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, the light-reflective particles may be mixed with any one of the acryl-based resins, the urethane-based resins, and combinations thereof by means of screen printing, scattering, or spraying.

In the method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, the print layer may be made of any one of polyethylene terephthalate (PET), polypropylene (PP), and combinations thereof.

Features and advantages of the present disclosure will be apparent from the following detailed description taken in conjunction with the accompanying drawings.

Prior to the description, it should be understood that the terms used in the specification and the appended claims should not be construed as limited to general and dictionary meanings, but interpreted based on the meanings and concepts corresponding to technical aspects of the present disclosure on the basis of the principle that the inventor is allowed to define terms appropriately for the best explanation.

According to the present disclosure, since a print layer having light-reflective particles is printed to the rear
surface of a substrate, it is possible to prevent an unevenness from being generated at the substrate which is disposed at the outermost side in a final stage. Therefore, the deep and shiny feeling and twinkling effect of the light-reflective particles may be enhanced.

[0037] In addition, according to the present disclosure, by using a substrate made of polyurethane with an excellent printing property, the print layer having light-reflective particles may be directly printed to the substrate.

[0038] Moreover, according to the present disclosure, since one surface of the substrate is treated by means of acryl-based primer, urethane-based primer, plasma treatment, or corona treatment, the printing property of the substrate may be enhanced, which allows the print layer having light-reflective particles to be more effectively printed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] The above and other objects, features and advantages of the present disclosure will become apparent from the following description of certain exemplary embodiments given in conjunction with the accompanying drawings, in which:

FIGS. 1a and 1b are cross-sectional views showing a nail sticker using a rear print according to an embodiment of the present disclosure;
FIGS. 2a and 2b are perspective views for illustrating a process of using the nail sticker using a rear print according to an embodiment of the present disclosure;
FIG. 3 is a cross-sectional view showing a nail sticker using a rear print according to another embodiment of the present disclosure;
FIG. 4 is a cross-sectional view for illustrating a method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, according to a process order;
FIG. 5 is a cross-sectional view for illustrating a method for manufacturing a nail sticker using a rear print according to another embodiment of the present disclosure, according to a process order; and
FIG. 6 is a cross-sectional view showing a general nail sticker.

Reference Symbols

<table>
<thead>
<tr>
<th>100: nail sticker</th>
<th>110: substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>115: surface treatment</td>
<td>120: print layer</td>
</tr>
<tr>
<td>125: light-reflective particles</td>
<td>130: adhesive layer</td>
</tr>
<tr>
<td>140: release layer</td>
<td>150: binder layer</td>
</tr>
<tr>
<td>160: three-dimensional decoration</td>
<td></td>
</tr>
</tbody>
</table>

DETAILED DESCRIPTION OF EMBODIMENTS

[0040] Objects, specific advantages and new features of the present disclosure will be more apparent from the following detailed description and embodiments taken in conjunction with the accompanying drawings. In the specification, when reference numerals are endowed to components in each drawing, it should be noted that like reference numerals denote like elements even though they are depicted in several drawings. In addition, the terms "first", "second", and the like are used for distinguishing one component from another, and components are not limited to the terms. Hereinafter, in a case where detailed description of known functions or configurations in relation to the present disclosure is judged as unnecessarily making the essence of the present disclosure vague, the detailed description will be excluded.

[0041] Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.

[0042] FIGS. 1a and 1b are cross-sectional views showing a nail sticker using a rear print according to an embodiment of the present disclosure.

[0043] As shown in FIGS. 1a and 1b, the nail sticker 100 using a rear print according to this embodiment includes a substrate 110 made of polyurethane, a print layer 120 having light-reflective particles 125 and directly printed to the substrate 110, an adhesive layer 130 formed on the print layer 120, and a release layer 140 formed on the adhesive layer 130.

[0044] Here, in the nail sticker 100 using a rear print according to this embodiment, the print layer 120 having the light-reflective particles 125 is directed printed to the rear surface of the substrate 110, and the flat substrate 110 is disposed at the outermost side in a final stage. Therefore, the deep and shiny feeling and twinkling effect of the light-reflective particles 125 may be sufficiently exhibited.
The substrate 110 gives an area to print the print layer 120 during a manufacturing process, and if being actually adhered to the nail, the substrate 110 is disposed at the outermost side to protect the print layer 120. Here, the substrate 110 is made of polyurethane. The polyurethane has more excellent printing property in comparison to other materials such as PVC. Therefore, the print layer 120 may be effectively printed to the substrate 110 made of polyurethane. Additionally, by performing a surface treatment 115 such as acryl-based primer, urethane-based primer, plasma treatment, and corona treatment print to one surface of the substrate 110 to which the layer 120 is printed, the printing property of the substrate 110 is enhanced, which allows the print layer 120 having the light-reflective particles 125 to be more effectively printed. In detail, the acryl-based primer and the urethane-based primer may enhance the adhering force between the substrate 110 and the print layer 120 and reinforce the persistency of the adhesion. In addition, the plasma treatment or the corona treatment may enhance a surface tension of the substrate 110. Therefore, the surface tension of the substrate 110 serving as a target to be adhered increases in comparison to the surface tension of the print layer 120 serving as an adhesion target and thus improves wettability, which allows the print layer 120 to be effectively adhered and printed to the substrate 110.

The print layer 120 plays a role of substantially giving an aesthetic feeling at the nail sticker 100. Here, the print layer 120 may be directly printed to the substrate 110. At this time, the print layer 120 may be printed to the substrate 110 by using a roll coater, a bar coater, or a screen printing. In addition, the print layer 120 includes light-reflective particles 125 which reflect light. At this time, the print layer 120 may be formed by mixing the light-reflective particles 125 with any one of acryl-based resins, urethane-based resins, and combinations thereof, and the light-reflective particles 125 may be mixed with any one of the acryl-based resins, the urethane-based resins, and combinations thereof by means of screen printing, scattering, or spraying. Here, the light-reflective particles 125 include glitter, bling, spangle, confetti, or pearl and have a predetermined volume. Since the light-reflective particles 125 have a predetermined volume as described above, if the print layer 120 having the light-reflective particles is printed to the front surface of the substrate 110, instead of rear printing, the twinkling effect of the light-reflective particles 125 may deteriorate. In detail, if the print layer 120 is printed to the front surface of the substrate 110 and a top coating is formed at the outermost side to protect the print layer 120, an unevenness is formed at the top coating due to the volume and irregular sizes of the light-reflective particles 125. Therefore, diffusion reflection occurs, which seriously deteriorates the twinkling effect of the light-reflective particles 125. However, in the nail sticker 100 using a rear print according to this embodiment, the print layer 120 having the light-reflective particles 125 is printed to the rear surface of the substrate 110, and the substrate 110 is disposed at the outermost side in a final stage. As a result, since the flat substrate 110 is disposed at the outermost side, regular reflection occurs (see the arrow of FIG. 1 a) instead of diffused reflection, and so the deep and shiny feeling and twinkling effect of the light-reflective particles 125 may be sufficiently realized.

The adhesive layer 130 plays a role of adhering the nail sticker 100 to the nail and is formed on the print layer 120. Here, the adhesive layer 130 may be made of pressure sensitive adhesive (PSA), without being limited thereto. The PSA is a decompressing adhesive material which applies an adhesive force when a pressure is applied thereto for the adhesion to the nail.

The release layer 140 plays a role of protecting the adhesive layer 130 until the nail sticker 100 is adhered to the nail, and is formed on the adhesive layer 130. Here, the material of the release layer 140 is not specially limited if it may be easily separated from the adhesive layer 130 for the convenience of the user, but the release layer 140 may be made of, for example, any one of polyethylene terephthalate (PET), polypropylene (PP), and combinations thereof, which is matt-treated at a surface thereof opposite to the surface contacting the adhesive layer 130. As described above, by matt-treating the release layer 140, it is possible to give a slipping property. Therefore, during the manufacturing process, the release layer 140 may effectively pass through an automatic printing machine or the like, and it is possible to prevent release layers 140 of adjacent products from being adhered to each other.

In addition, as shown in FIG. 1b, at a surface of the substrate 110 opposite to the surface thereof to which the print layer 120 is printed, a three-dimensional decoration 160 may be formed to protrude. Here, the three-dimensional decoration 160 may be formed with limestone or transparent paint having a jewel shape. By forming such a three-dimensional decoration 160, it is possible to give an aesthetic feeling as if an actual jewel is attached.

FIGS. 2a and 2b are perspective views for illustrating a process of using the nail sticker using a rear print according to an embodiment of the present disclosure.

As shown in FIGS. 2a and 2b, in the nail sticker 100 using a rear print according to this embodiment, after the release layer 140 is removed (see FIG. 2a), the adhesive layer 130 is adhered to the nail (see FIG. 2b). In this case, the adhesive layer 130, the print layer 120, and the substrate 110 are disposed in order from the nail. In other words, the flat substrate 110 is disposed at the upper side of the print layer 120 having the light-reflective particles 125. As described above, since the flat substrate 110 is disposed at the upper side of the print layer 120, diffused reflection does not occur, and accordingly the deep and shiny feeling and twinkling effect of the light-reflective particles 125 may be sufficiently realized.

Meanwhile, FIG. 3 is a cross-sectional view showing a nail sticker using a rear print according to another embodiment of the present disclosure.
As shown in FIG. 3, a binder layer 150 may be additionally formed between the adhesive layer 130 and the print layer 120. Here, the binder layer 150 plays a role of preventing an unevenness from being generated at the adhesive layer 130 by the light-reflective particles 125 included in the print layer 120. In detail, if the adhesive layer 130 is directly formed on the print layer 120 having the light-reflective particles 125, an unevenness may be generated at the adhesive layer 130 due to a volume or irregular sizes of the light-reflective particles 125. The unevenness of the adhesive layer 130 deteriorates the adhesion to the nail as well as bends the nail sticker 100 and deteriorates the flatness of the substrate 110 as a whole, which may deteriorate deep and shiny feeling and twinkling effect of the light-reflective particles 125. However, if the binder layer 150 is added between the adhesive layer 130 and the print layer 120, the binder layer 150 absorbs the volume or irregular sizes of the light-reflective particles 125, thereby preventing the flatness of the substrate 110 from deteriorating.

FIG. 4 is a cross-sectional view for illustrating a method for manufacturing a nail sticker using a rear print according to an embodiment of the present disclosure, according to a process order. As shown in FIG. 4, a method for manufacturing a nail sticker 100 using a rear print according to this embodiment includes (A) printing a print layer 120 having light-reflective particles 125 to a substrate 110 made of polyeurethane, (B) forming an adhesive layer 130 on the print layer 120, and (C) forming a release layer 140 on the adhesive layer 130.

First, as shown in FIG. 4a, the substrate 110 is prepared. Here, the substrate 110 is made of polyeurethane with an excellent printing property. In addition, in order to further reinforce the printing property of the substrate 110, a surface treatment 115 such as acryl-based primer, urethane-based primer, plasma treatment, and corona treatment print may be performed to one surface of the substrate 110 to which the layer 120 is printed.

Next, as shown in FIG. 4b, the print layer 120 is printed to the substrate 110. Here, the print layer 120 may be printed by using a roll coater, a bar coater, or a screen printing. In addition, the print layer 120 may be made of any one of acryl-based resins, urethane-based resins, and combinations thereof, the light-reflective particles 125 may be mixed to the print layer 120. At this time, the light-reflective particles 125 may be mixed with any one of the acryl-based resins, the urethane-based resins, and combinations thereof by means of screen printing, scattering, or spraying. Meanwhile, the light-reflective particles 125 include glitter, bling, spangle, confetti, or pearl and have a predetermined volume.

In this step, since the print layer 120 is printed to the rear surface of the flat substrate 110 and the substrate 110 is at the outermost side in a final stage (see FIG. 4e), the volume or irregular sizes of the light-reflective particles 125 included in the print layer 120 does not give an influence on the flatness of the outermost member (the substrate 110). Therefore, diffused reflection does not occur, and thus the twinkling effect of the light-reflective particles 125 may be sufficiently realized, as described above.

Next, as shown in FIG. 4c, the adhesive layer 130 is formed on the print layer 120. Here, the adhesive layer 130 is finally adhered to the nail and may be made of, for example, PSA.

Next, as shown in FIG. 4d, the release layer 140 is formed on the adhesive layer 130. Here, the release layer 140 protects the adhesive layer 130, and for example, the release layer 140 may be made of, for example, any one of polyethylene terephthalate (PET), polypropylene (PP), and combinations thereof, which is matt-treated at a surface thereof opposite to the surface contacting the adhesive layer 130.

Next, as shown in FIG. 4e, the three-dimensional decoration 160 is formed on an exposed surface of the substrate 110. Here, the three-dimensional decoration 160 may be formed with limestone or transparent paint having a jewel shape. However, this step is optional and may be excluded.

Meanwhile, FIG. 5 is a cross-sectional view for illustrating a method for manufacturing a nail sticker using a rear print according to another embodiment of the present disclosure, according to a process order. The method for manufacturing a nail sticker 100 using a rear print as shown in FIG. 5 is substantially identical to the method for manufacturing a nail sticker 100 using a rear print as shown in FIG. 4, until the step of forming the print layer 120 on the substrate 110 (see FIGS. 5a and 5b).

However, as shown in FIG. 5c, before the step of forming the print layer 120 and the step of forming the adhesive layer 130, a step of forming a binder layer 150 on the print layer 120 may be added. Here, the binder layer 150 may be made of any one of acryl-based materials, urethane-based materials, silicon-based materials, epoxy-based materials, and combinations thereof. In addition, the binder layer 150 absorbs the volume or irregular sizes of the light-reflective particles 125 included in the print layer 120. In other words, the binder layer 150 plays a role of leveling the print layer 120. Therefore, as shown in FIG. 5d, even though the adhesive layer 130 is formed on the binder layer 150, an unevenness is not generated at the adhesive layer 130, which may prevent the nail sticker 100 from being bent as a whole. Meanwhile, after the adhesive layer 130 is formed on the binder layer 150, as shown in FIG. 5e, the release layer 140 may be formed on the adhesive layer 130, and as shown in FIG. 5f, the three-dimensional decoration 160 may be formed on an exposed surface of the substrate 110.

While the present invention has been described with respect to the third embodiment, this is just for illustrating the present disclosure in detail, and the present disclosure is not limited thereto. It will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present disclosure.
Simple changes or modifications of the present disclosure belong to the scope of the present disclosure, and the protection range of the present disclosure will be apparent from the appended claims.

Claims

1. A nail sticker using a rear print, comprising:
 a substrate made of polyurethane;
 a print layer having light-reflective particles and directly printed to the substrate;
 an adhesive layer formed on the print layer; and
 a release layer formed on the adhesive layer.

2. The nail sticker using a rear print according to claim 1,
 wherein the light-reflective particles include glitter, bling, spangle, confetti, or pearl.

3. The nail sticker using a rear print according to claim 1,
 wherein one surface of the substrate to which the print layer is printed is treated by means of acryl-based primer,
 urethane-based primer, plasma treatment, or corona treatment.

4. The nail sticker using a rear print according to claim 1,
 wherein after the release layer is removed, when the adhesive layer is adhered to a nail, the adhesive layer, the print layer, and the substrate are disposed in order from the nail.

5. The nail sticker using a rear print according to claim 1,
 wherein the release layer is made of any one of polyethylene terephthalate (PET), polypropylene (PP), and combinations thereof, which is matt-treated at a surface thereof opposite to the surface contacting the adhesive layer.

6. The nail sticker using a rear print according to claim 1, further comprising a binder layer formed between the adhesive layer and the print layer.

7. The nail sticker using a rear print according to claim 1, further comprising a three-dimensional decoration formed on a surface of the substrate which is opposite to the surface thereof to which the print layer is printed.

8. A method for manufacturing a nail sticker using a rear print, comprising:
 (A) printing a print layer having light-reflective particles to a substrate made of polyurethane;
 (B) forming an adhesive layer on the print layer; and
 (C) forming a release layer on the adhesive layer.

9. The method for manufacturing a nail sticker using a rear print according to claim 8,
 wherein in the step (A), the light-reflective particles include glitter, bling, spangle, confetti, or pearl.

10. The method for manufacturing a nail sticker using a rear print according to claim 8, before the step (A), further comprising:
 treating one surface of the substrate to which the print layer is to be printed is treated, by means of acryl-based primer, urethane-based primer, plasma treatment, or corona treatment.

11. The method for manufacturing a nail sticker using a rear print according to claim 8,
 wherein after the release layer is removed, when the adhesive layer is adhered to a nail, the adhesive layer, the print layer, and the substrate are disposed in order from the nail.

12. The method for manufacturing a nail sticker using a rear print according to claim 8,
 wherein in the step (C), the release layer is made of any one of polyethylene terephthalate (PET), polypropylene (PP), and combinations thereof, which is matt-treated at a surface thereof opposite to the surface contacting the adhesive layer.
13. The method for manufacturing a nail sticker using a rear print according to claim 8, between the step (A) and the step (B), further comprising:

forming a binder layer on the print layer.

14. The method for manufacturing a nail sticker using a rear print according to claim 8, after the step (C), further comprising:

forming a three-dimensional decoration at an exposed surface of the substrate.

15. The method for manufacturing a nail sticker using a rear print according to claim 8, wherein in the step (A), the print layer is printed by using a roll coater, a bar coater, or a screen printing.
FIG. 3
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

A45D A61Q A61K

The present search report has been drawn up for all claims

Place of search: The Hague
Date of completion of the search: 29 August 2014
Examiner: Ionescu, C
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-08-2014

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2012263905 A1</td>
<td>18-10-2012</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 2545802 A2</td>
<td>16-01-2013</td>
<td>CA 2782951 A1</td>
<td>11-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102871333 A</td>
<td>16-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2545802 A2</td>
<td>16-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5460683 B2</td>
<td>02-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013017805 A</td>
<td>31-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013017324 A1</td>
<td>17-01-2013</td>
</tr>
<tr>
<td>US 2007025936 A1</td>
<td>01-02-2007</td>
<td>CN 101641028 A</td>
<td>03-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2112895 A2</td>
<td>04-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5345938 B2</td>
<td>20-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010505843 A</td>
<td>25-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014012691 A</td>
<td>23-01-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2010107190 A</td>
<td>20-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007025936 A1</td>
<td>01-02-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008045282 A2</td>
<td>17-04-2008</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• KR 1020130049929 [0001]
• KR 101207316 B1 [0008]