A multimedia gateway for enabling a remote device to access a local device located in a private network via a residential gateway of the private network is provided. The multimedia gateway includes connecting means for connecting to the private network and a multimedia service network, first receiving means for receiving authentication information from the remote device over the private network, storing means for storing the authentication information in a memory, second receiving means for receiving a session invite message from the remote device over the multimedia service network, the session invite message including authentication information, and authenticating means for authenticating the remote device by determining whether or not the authentication information included in the session invite message has been stored in the memory by the storing means.
A METHOD AND ARRANGEMENT OF A MULTIMEDIA GATEWAY
AND COMMUNICATION TERMINALS

TECHNICAL FIELD

[0001] The present invention generally relates to a multimedia gateway for enabling a remote device to access a local device located in a private network, a method for controlling the multimedia gateway, a communication terminal, and a method for controlling the communication terminal. The present invention particularly relates, but is not limited, to a technology in which the multimedia gateway receives authentication information from the remote device and stores it.

BACKGROUND

[0002] A network architecture called "IP Multimedia Subsystem" (IMS) has been developed by the 3rd Generation Partnership Project (3GPP) as an open standard for handling multimedia services and sessions in the packet domain (refer to http://www.3gpp.org/ftp/Specs/html-info/22173.htm). These days, various communication terminals and devices (hereinafter referred to as IMS terminals) are known that conform to an IMS standard. A typical example of
an IMS terminal is a mobile phone with IMS functionality. A personal computer (PC), a personal digital assistant (PDA), etc. can also be IMS terminals if they are equipped with IMS functionality. IMS terminals can provide multimedia services by, for example, receiving video streaming from a video-streaming server over an IMS network.

[0003] However, there still exist a lot of communication terminals (hereinafter referred to as non-IMS terminals) that do not have IMS functionality. International Publication No. WO 2006/045706 discloses a multimedia gateway called a "Home IMS Gateway" (HIGA), which enables these non-IMS terminals to access the IMS network.

[0004] According to WO 2006/045706, the HIGA is located in a private network, to which at least one non-IMS terminal is connected. The HIGA includes a Session Initiation Protocol (SIP) Back-to-Back User Agent (B2BUA) for communications between non-IMS terminals and the IMS network. The HIGA also includes a SIP gateway (implemented according to 3GPP TS 24.229 and IETF RFC 3261). The SIP gateway allows inter-working between various client terminal signalling protocols and the SIP used by the IMS. For example, the SIP gateway may provide
translation between ISDN-based signalling protocols and SIP. Accordingly, the non-IMS terminals may or may not have SIP functionality. [0005] The B2BUA is equipped with an IMS Subscriber Identity Module (ISIM) application that stores an IMS Private Identity (IMPI) for respective non-IMS terminals as well as at least one IMS Public Identity (IMPU) for respective non-IMS terminals. The B2BUA handles IMS signalling on behalf of non-IMS terminals such that all signalling concerning respective non-IMS terminals is associated with the corresponding IMPI on the ISIM application. For example, if a non-IMS terminal sends an SIP REGISTER message to the HIGA, the B2BUA translates the message into an IMS REGISTER message that contains both an IMPI and an IMPU corresponding to the non-IMS terminal. Thus, the HIGA act as an IMS terminal on behalf of the non-IMS terminal, thereby enabling the non-IMS terminal to access the IMS network.

[0006] Non-IMS terminals (as well as IMS terminals) in the private network can communicate with the HIGA using an architecture according to Universal Plug-and-Play (UPnP). UPnP is developed in a multi-vendor collaboration for establishing standard device control protocols.
UPnP provides peer-to-peer connectivity for communication between all types of devices in the private network, regardless of access technology, operating system, programming language, format standard, and communication protocol of the device. The UPnP technology is based on Internet standards such as IP, TCP, UDP, HTTP, and XML, and can use any transport medium such as a telephone line, Ethernet and different types of wireless media. UPnP defines base protocol sets for each type of device.

Further, UPnP supports an automatic "discovery" process, also referred to as "pairing". Using the discovery process, a local device can dynamically join a private network, obtain a private IP address, announce its name and IP address, and provide its capabilities to other devices (i.e., terminals in the private network) upon request. In this way, each local device in the private network can also obtain information on the presence and capabilities of other devices in the private network.

Digital Living Network Alliance (DLNA) is a new technology developed by leading manufacturers of electronic consumer equipment for acquiring, storing and accessing digital content such as music, films and images from any
device in a private network. Devices with DLNA functionality (hereinafter referred to as DLNA devices) incorporate a networking component called "Device and Service Discovery and Control" for automatic self-configuration of networking properties such as private IP addresses, which corresponds to the above-mentioned discovery functionality of UPnP. To accomplish this functionality, DLNA uses a standardized UPnP protocol according to the UPnP Device Architecture, Version 1, providing simple and effective device networking in the home.

[0009] Nowadays, it is desired to make it possible for a remote device located outside the private network to access local devices in the same manner as when located inside the private network. A co-pending International Patent Application No. PCT/SE2006/004122, filed on September 13, 2006, addresses this desire.

[0010] According to PCT/SE2006/004122, the HIGA is configured to enable the remote device to access the local devices in the private network. In addition, the HIGA has pre-stored authentication information indicating which users or remote devices are permitted to access local devices in the private network. Thus, the HIGA authenticates the remote device and prevents an
unauthorized remote device from invading the private network.

[0011] However, PCT/SE2006/004122 does not address how to pre-store the authentication information in the HIGA. One possible solution could be that the user manually registers the authentication information in the HIGA, but this solution will be burdensome for the user.

[0012] The present invention has been conceived in light of the above-mentioned problem, and it is a feature thereof to reduce the user's burden to register authentication information in an HIGA, as well as to enable the remote device to access local devices by means of the HIGA.

SUMMARY

[0013] According to an aspect of the present invention, there is provided a multimedia gateway for enabling a remote device to access a local device located in a private network via a residential gateway of the private network. The multimedia gateway includes: connecting means for connecting to the private network and a multimedia service network, first receiving means for receiving authentication information from the remote device over the private network, storing
means for storing the authentication information in a memory, second receiving means for receiving a session invite message from the remote device over the multimedia service network, the session invite message including authentication information, authenticating means for authenticating the remote device by determining whether or not the authentication information included in the session invite message has been stored in the memory by the storing means, establishing means for, if it is determined by the authenticating means that the authentication information included in the session invite message has been stored in the memory by the storing means, establishing connection parameters of the residential gateway for communication with the remote device, and sending means for sending the connection parameters to the remote device over the multimedia service network as a response to the session invite message.

[0014] According to another aspect of the present invention, there is provided a method for controlling a multimedia gateway for enabling a remote device to access a local device located in a private network via a residential gateway of the private network. The multimedia gateway is connected to the private network and a multimedia
service network. The method includes steps of: receiving authentication information from the remote device over the private network, storing the authentication information in a memory, receiving a session invite message from the remote device over the multimedia service network, the session invite message including authentication information, authenticating the remote device by determining whether or not the authentication information included in the session invite message has been stored in the memory in the step of storing, establishing, if it is determined in the step of authenticating that the authentication information included in the session invite message has been stored in the memory in the step of storing, connection parameters of the residential gateway for communication with the remote device, and sending the connection parameters to the remote device over the multimedia service network as a response to the session invite message.

[0015] According to yet another aspect of the present invention, there is provided a communication terminal that includes: first sending means for sending authentication information to a multimedia gateway over a private network to which the multimedia gateway
is connected, the authentication information being stored by the multimedia gateway, second sending means for sending a session invite message to the multimedia gateway over a multimedia service network to which the multimedia gateway is connected, said session invite message including the authentication information, receiving means for receiving connection parameters of a residential gateway of the private network from the multimedia gateway over the multimedia service network as a response to the session invite message that includes the authentication information stored by the multimedia gateway, and establishing means for establishing a communication link with the multimedia gateway or a local device located in the private network via the residential gateway based on the connection parameters.

[0016] According to another aspect of the present invention, there is provided a method for controlling a communication terminal that includes steps of: sending authentication information to a multimedia gateway over a private network to which the multimedia gateway is connected, the authentication information being stored by the multimedia gateway, sending a session invite message to the multimedia gateway
over a multimedia service network to which the multimedia gateway is connected, said session invite message including the authentication information, receiving connection parameters of a residential gateway of the private network from the multimedia gateway over the multimedia service network as a response to the session invite message that includes the authentication information stored by the multimedia gateway, and establishing a communication link with the multimedia gateway or a local device located in the private network via the residential gateway based on the connection parameters.

[0017] The main advantage of the present invention is as follows. The multimedia gateway receives authentication information from the remote device over the private network, to which the multimedia gateway is connected, and stores the authentication information in the memory. Accordingly, it is not necessary for the user of the multimedia gateway to manually register the authentication information, and the user's burden is reduced.

[0018] Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
BRIEF DESCRIPTION OF DRAWINGS

[0019] Fig. 1 illustrates a schematic scenario example of a communication system according to the embodiment;

[0020] Fig. 2 is a schematic block diagram of the remote device according to the embodiment;

[0021] Fig. 3 is a schematic block diagram of the residential gateway (RGW) according to the embodiment;

[0022] Fig. 4 is a schematic block diagram of the Home IMS Gateway (HIGA) according to the embodiment;

[0023] Fig. 5 is a sequence diagram showing the process where the HIGA receives authentication information from the remote device and stores the authentication information in the memory; and

[0024] Fig. 6 is a sequence diagram showing the process where the remote device accesses local devices remotely.

DETAILED DESCRIPTION

[0025] Preferred embodiments of the present invention will now be described with reference to the attached drawings. Each embodiment described below will be helpful in understanding a variety
of concepts from the generic to the more specific.

[0026] It should be noted that the technical scope of the present invention is defined by claims, and is not limited by each embodiment described below. In addition, all combinations of the features described in the embodiments are not always indispensable for the present invention.

[0027] Briefly described, the present invention enables a multimedia gateway to automatically gather authentication information related to a remote device in advance when the remote device is located in a private network, to which the multimedia gateway is connected. This automatic gathering can be achieved through the communication between the multimedia gateway and the remote device using Universal Plug and Play (UPnP).

[0028] In this description, the multimedia gateway will be referred to as a Home IMS Gateway (HIGA) connected to a multimedia service network such as an IP Multimedia Subsystem (IMS) network, and the term UPnP will be used to represent the private network architecture. However, the present invention is basically not limited to these specific terms, or to any specific
protocols and standards referred to in the following.

[0029] Fig. 1 illustrates a schematic scenario example of a communication system 100 according to the present embodiment. The communication system 100 comprises a private network 102, which may be a UPnP network. Moreover, the private network 102 may be a wireless or wired local area network, which may conduct an access control. For example, only authorized devices (e.g., devices that have a valid Media Access Control (MAC) address) may join the private network 102.

[0030] The private network 102 includes an HIGA 104 for controlling multimedia services, and a residential gateway (RGW) 106 for the transport of data and media. Two local devices are shown in the private network 102, namely a wireless terminal 108 and a media server 110, although further local devices may well be present in the private network 102.

[0031] In this example, the wireless terminal 108 may move outside the private network 102, as indicated by a dashed arrow, and may be connected to a public access network (not shown). Thereby, the wireless terminal 108 becomes a remote device with regard to the private network 102 in this
[0032] In the present embodiment, both the remote device 108 and the HIGA 104 are equipped with IMS functionality and are capable of connecting to an IMS network 112. Further, the remote device 108 is equipped with a specific application adapted for remotely accessing local devices in the private network 102, which will generally be referred to as a "Local device Access Client" (HDAC) in the following description. The HDAC application may also be adapted to check whether or not the remote device 108 is currently connected to the private network 102.

[0033] After a user has activated the HDAC in remote device 108, a session invite message such as a regular SIP INVITE message is sent directed to the HIGA 104 in the private network 102. Existing mechanisms are then utilized for establishing a multimedia session with the HIGA 104, and the session can be used for accessing a selected local device (e.g., the media server 110) in the private network 102. Alternatively, the session can be used for accessing a proxy function in the HIGA 104 to access the private network 102. The remote device 108 then obtains local device information from the proxy function.
in a synchronization process.

[0034] The HIGA 104 then responds by establishing connection parameters in RGW 106, including an IP address/port number combination, which can then be used for communication with a selected local device or with a proxy function in the HIGA 104. The connection parameters are then sent to the remote device 108, preferably included in a regular session setup message in response to the session invite message. For example, the connection parameters may be included in an SDP message embedded in an SIP 200 OK message, which is a regular response message to the SIP INVITE.

[0035] In this example, the user wants to access the media server 110 in order to fetch some media content therefrom, for example music or images, for playback or display on the remote device 108. If the remote device 108 has executed a discovery process in advance when located in the private network 102, device information will already be stored in the remote device 108, such as names, device identities, and device capabilities. The user of the remote device 108 can use the device information to select a local device to be accessed. The user may even browse for media content stored in the
local devices, if such supplemental information was exchanged during the discovery process and stored in the remote device 108.

[0036] If device information of local devices is available in the remote device 108, a list of local devices may be presented on a display screen to the user for selection. Depending on the implementation, the user may select a local device to be accessed before activating the HDAC in the remote device 108. If the user in this way selects the media server 110 before the session invite message is sent, the HDAC in remote device 108 may, when activated, include an identification of the selected local device (i.e., the media server 110) in, for example, an SDP message embedded in an SIP INVITE message. The local device identification may also be included in the header (e.g., "To:" field) of the SIP INVITE message. The local device identification may be a name, a private network address (e.g. an IP address or a MAC address), a Universally Unique Identifier (UUID), or any other device identification recognized in the private network 102.

[0037] On the other hand, if no local device information is available in the remote device 108, the local device information can be obtained
from the HIGA 104 after receiving the connection parameters including a network address and port number. In that case, the HDAC in the remote device 108 will send a "plain" session invite message, which does not include an identification of any local device. The term "plain" is merely used to indicate the lack of such local device identification. However, an identification of the above-mentioned proxy function in the HIGA 104 may be included in the plain session invite message.

[0038] Being a part of the private network 102, the HIGA 104 participates in any executed discovery processes, and has therefore acquired device information of respective local devices in the private network 102. The HIGA 104 then stores the acquired device information in a database 105 in a memory. The discovery process may be executed by a UPnP proxy function in the HIGA 104. Thus, the HIGA 104 will send valid information on the local devices to the remote device 108, including their names, device identities and capabilities, in response to the session invite message. The user can then select a local device for communication.

[0039] In addition to device information, the HIGA 104 receives authentication information from
local devices that have the authentication information. In this context, the local devices include the remote device 108 located in the private network 102. That is, when the remote device 108 is located in the private network 102, it acts in a way similar to other local devices. The HIGA 104 stores the authentication information in the database 105, and utilizes it to authenticate the remote device 108 when it tries to access the local devices from outside the private network 102. The authentication information and utilization thereof will be described in more detail later.

[0040] Fig. 2 is a schematic block diagram of the remote device 108. The remote device 108 comprises an HDAC 202 for interacting with local devices in the private network.

[0041] The remote device 108 comprises a UPnP Control Point (CP) 204. When the remote device 108 is present in the private network 102, it functions as a local device using the UPnP CP 204 for connectivity and device discovery. The remote device also comprises an IMS User Agent (UA) 206. When the remote device 108 is outside the private network 102, the IMS UA 206 is used to obtain connection parameters of the RGW 106 (e.g. a routable IP address/port number
combination) for communication with local devices in the private network.

[0042] The remote device 108 further comprises a UPnP proxy 208 and a connectivity client (CC) 210. The UPnP proxy is used to synchronize UPnP discovery messages between the remote device 108 and the private network 102. The CC 210 is used to establish a connection based on the IP address of the RGW 106, which can be retrieved by means of regular SIP messages over the IMS network 112. The remote device 108 also comprises a memory 212, which includes a database 214 for storing local device information.

[0043] Fig. 3 is a schematic block diagram of the RGW 106. The RGW 106 is a conventional residential gateway comprising a NAT function 302 and a UPnP Internet Gateway Device (IGD) 304, for controlling the NAT IP address and port mapping.

[0044] Fig. 4 is a schematic block diagram of the HIGA 104. The HIGA 104 comprises a memory 402, which includes a database 105 for storing private IP addresses of local devices and device information of the local devices gathered by means of a discovery process as described above. The device information of the local devices stored in the database 105 may also include names
and capabilities of the local devices. The private IP addresses and device information of the local devices may be stored in separate databases, depending on the implementation.

[0045] The HIGA 104 further comprises an HIGA logic function 406 and a B2BUA 408 for communications between local devices and the IMS network 112.

[0046] The HIGA 104 also comprises a UPnP CP 410, a UPnP proxy 412, and a CC 414. The UPnP proxy 412 can be utilized for conveying, for example, multicast UPnP discovery messages to the remote device 108, in order to facilitate the synchronization of the device information between the HIGA 104 and the remote device 108.

[0047] Thus, the HIGA 104 connects to the private network 102 and the IMS network 112 by means of the UPnP CP 410 and the B2BUA 408.

[0048] It should be noted that Figs. 2-4 illustrate the respective structures purely logically, and a skilled person will be able to implement these functions in practice by means of any suitable hardware and software.

[0049] Moreover, functionality of each block shown in Figs. 2-4 is generally implemented by a processor (not shown) executing dedicated software. However, a person skilled in the art
will understand that they may be implemented by dedicated hardware, or the combination of software and hardware. Accordingly, for example, if a computer with a CPU and a memory is provided with a program that causes the CPU to execute each functionality of the HIGA 104, the computer can be deemed as the HIGA 104.

[0050] Fig. 5 is a sequence diagram showing the process where the HIGA 104 receives authentication information from the remote device 108 and stores the authentication information in the memory 402.

[0051] In Fig. 5, UPnP functionality 501 comprises the UPnP CP 410, the UPnP proxy 412, and the connectivity client 414 shown in Fig. 4. Also, UPnP functionality 502 comprises the UPnP CP 204, the UPnP proxy 208, and the connectivity client 210 shown in Fig. 2. After the remote device 108 joins the private network 102 using the UPnP functionality 502, the process of Fig. 5 starts. As described above, the private network 102 may prevent unauthorized devices from joining the private network 102. Thus, it is possible for the owner of the HIGA 104 to restrict the devices that are permitted to access the private network 102 remotely as a result of the process of Fig. 5.
In step S501, the HIGA 104 transmits a UPnP Discovery message to the private network 102 in order to search for a new device (e.g., the remote device 108), which will access the private network 102 from outside the private network 102. Alternatively, the remote device 108 may transmit a UPnP Discovery message to the private network 102 in order to search for the HIGA 104.

In step S502, the HIGA 104 asks the remote device 108 for its device description.

In step S503, the HIGA 104 receives the device description, which may contain authentication information, from the remote device 108. The authentication information may comprise information associated with the remote device 108 or the user of the remote device 108. For example, the authentication information may comprise a model number and a serial number of the remote device 108, or an IMPU stored in a UICC of the remote device 108.

In step S504, the HIGA 104 extracts the authentication information from the device description.

In step S505, the HIGA 105 asks the remote device 108 for verification information. The verification information is, for example, a password of the HIGA 104. The remote device 108
prompts the user to input the password via a user interface of the remote device 108, and sends the input password to the HIGA 104. Alternatively, the remote device 108 may automatically send a pre-set password to the HIGA 104.

[0057] In step S506, the HIGA 104 receives the verification information from the remote device 108.

[0058] In step S507, the HIGA 104 verifies the received verification information.

[0059] In step S508, the HIGA 104 stores the authentication information, which was extracted in step S504, in the memory 402 if the verification information is valid.

[0060] Although the use of verification information is optional, it enhances the security of the private network 102. The private network 102 itself may be protected so that only authorized devices can join it. However, there is the case where a visitor (e.g., a friend of the owner of the HIGA 104) wants his/her device to join the private network 102. In this case, the owner of the HIGA 104 may permit the visitor's device to join the private network 102, but the owner may not want the visitor's device to access the private network 102 remotely. Accordingly, the verification information
increases the flexibility of the access control. That is, the owner of the HIGA 104 can flexibly decide which device's authentication information is to be stored in the memory 402 of the HIGA 104.

[0061] In some embodiments, the device description, which the HIGA 104 receives in step S503, does not include authentication information. In this case, in step S504, the HIGA 104 may instead ask the remote device 108 for its service description, and request the remote device 108 to send the authentication information according to the service description.

[0062] As a result of the process of Fig. 5, a set of authentication information is stored in the memory 402. Thus, the HIGA 104 is ready to decide which device is permitted to access the private network 102 remotely based on the set of authentication information.

[0063] Fig. 6 is a sequence diagram showing the process where the remote device 108 accesses local devices (e.g., the media server 110) remotely (i.e., outside from the private network 102).

[0064] In step S601, a user of the remote device 108, who wants to access local devices, activates the HDAC 202. This process can be
performed in the same manner when the remote
device 108 is located either inside or outside
the private network 102. As mentioned above, the
user may have selected a local device (e.g., the
media server 110) before activating the HDAC 202
in step S601.

[0065] In step S602, the HDAC 202 asks the
UPnP CP 204 in the UPnP functionality 502 whether
or not the remote device 108 is currently
connected to and located inside the private
network 102.

[0066] In step S603, in response to the query
of step S602, the UPnP functionality 502 replies
either "yes" (inside, connected) or "no"
(outside, connect remotely). In the case that
the HDAC 202 receives "yes", the process proceeds
to step S615, and the UPnP functionality 502 can
access the media server 110 without the support
of the IMS UA 206 because the remote device 108
is inside the private network 102; otherwise the
process proceeds to step S604.

[0067] In step S604, the HDAC 202 initiates
the IMS UA 206 to send an IMS-based SIP INVITE as
a session invite message, which is directed to
the HIGA 104. The SIP INVITE includes the
authentication information (e.g., IMPU stored in
the UICC of the remote device 108), and may also
include an identification of a selected local device, that is, the media server 110 in this example.

[0068] In step S605, the IMS UA 206 issues the SIP INVITE, which is received by the B2BUA 408 of the HIGA 104 over the IMS network 112.

[0069] In step S606, the B2BUA 408 authenticates the remote device 108 (or the user thereof) by determining whether or not the authentication information included in the SIP INVITE has been stored in the memory 402 (in step S508 of Fig. 5). If it is determined that the authentication information included in the SIP INVITE has been stored in the memory 402, the remote device 108 is permitted to access local devices remotely and the process proceeds to step S607; otherwise the B2BUA rejects the attempted access from the remote device 108 and the process ends (not shown).

[0070] In step S607, the B2BUA 408 notifies the UPnP CP 410 in the UPnP functionality 501 of the received SIP INVITE.

[0071] In step S608, in response to the notification of step S607, the UPnP CP 410 in the UPnP functionality 501 requests the UPnP IGD 304 in the RGW 106 to perform a NAT binding. The NAT binding is performed concerning the IP address
and port number of the remote device 108, which are normally supplied in the SDP message of the SIP INVITE, and the local IP address and the port number of the selected local device. The UPnP functionality 501 can retrieve the local IP address of the selected local device from the database 105 in the memory 402, using the received local device identification included in the SIP INVITE. In the case that any local devices are not selected in the SIP INVITE, the NAT binding is performed concerning the local IP address and the port number of the UPnP proxy 412 in the UPnP functionality 501 instead of the local device.

[0072] In step S609, the UPnP IGD 304 confirms the NAT binding. Hence, steps S608 and S609 represent the establishment of connection parameters of the private network 102.

[0073] In step S610, after the connection parameters have been established for communication with the local device, the B2BUA 408 sends a standard acknowledge message in SIP (i.e., a 200 OK message) to the IMS UA 206 over the IMS network 112. The 200 OK message includes an SDP message containing the connection parameters, which the remote device 108 can use for communicating any messages and data to and
from the selected local device or the UPnP proxy 412.

[0074] In step S611, the IMS UA 206 forwards the SDP message to the HDAC 202.

[0075] In step S612, the HDAC 202 initiates the connectivity client 210 in the UPnP functionality 502 to establish a VPN tunnel (e.g. IPSec) to the selected local device or the UPnP proxy 412 in the UPnP functionality 501, using the connection parameters received in the SDP message in step S611. Note that establishing the VPN tunnel is optional although the VPN tunnel contributes to enhance the security.

[0076] In step S613, the UPnP functionality 502 establishes the VPN tunnel as requested in step S612. The VPN tunnel may, for example, be established according to the technique disclosed in the International Publication No. WO 2006/079891.

[0077] As a result of the processes in the above steps, the remote device 108 is now able to communicate with local devices (including the UPnP proxy 412) as if it was located in the private network 102. The following steps indicate processes as an example in which the remote device 108 receives video streaming from the media server 110.
[0078] In step S614, in the case that any local devices are not selected in the SIP INVITE in step S605, the UPnP proxy 208 in the UPnP functionality 502 synchronizes with the UPnP proxy 412 in the UPnP functionality 501 with respect to local device information. Thus, the remote device 108 discovers local devices and available services in the private network 102.

[0079] In step S615, the UPnP functionality 502 receives a content list of the media server 110 so that the user of the remote device 108 can browse for media content in the media server 110.

[0080] In step S616, the UPnP functionality 502 selects media content on the media server 110 by sending an HTTP GET command to the media server 110.

[0081] In step S617, the UPnP functionality 502 receives the selected media content from the media server 110.

[0082] It should be noted that the communication between the remote device 108 and media server 110 in steps S615, S616, and S617 is conveyed over the RGW 106 using the established NAT binding.

[0083] As described above (particularly with reference to Fig. 5), the present invention is advantageous in that the HIGA 104 automatically
collects and stores authentication information of remote devices (e.g., the remote device 108) when they are inside the private network 102 to which the HIGA is connected. Therefore, it is not necessary for the owner (user) of the HIGA 104 to manually register the authentication information, and the user's burden is reduced.

[0084] While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
CLAIMS

1. A multimedia gateway (104) for enabling a remote device (108) to access a local device (110) located in a private network (102) via a residential gateway (106) of said private network (102), said multimedia gateway (104) comprising:
 connecting means (408; 410) for connecting to said private network (102) and a multimedia service network (112);
 first receiving means (410) for receiving authentication information from the remote device (108) over the private network (102);
 storing means (410) for storing the authentication information in a memory (402);
 second receiving means (408) for receiving a session invite message from the remote device (108) over the multimedia service network (112), said session invite message including authentication information;
 authenticating means (408) for authenticating the remote device (108) by determining whether or not the authentication information included in the session invite message has been stored in the memory (402) by the storing means (410);
 establishing means (410) for, if it is
determined by the authenticating means (408) that the authentication information included in the session invite message has been stored in the memory (402) by the storing means (410), establishing connection parameters of the residential gateway (106) for communication with the remote device (108); and sending means (408) for sending the connection parameters to the remote device (108) over the multimedia service network (112) as a response to the session invite message.

2. The multimedia gateway (104) according to claim 1, further comprising searching means (410) for periodically searching for the remote device (108) in the private network (102), wherein the first receiving means (410) requests the remote device (108) to send the authentication information if the remote device (108) is found by the searching means (410).

3. The multimedia gateway (104) according to claim 2, wherein the private network (102) is a Universal Plug and Play (UPnP) network, and the searching means (410) searches for the remote device (108) by sending a UPnP Discovery
message to the private network (102).

4. The multimedia gateway (104) according to claim 3, wherein the first receiving means (410) receives a UPnP Description of the remote device (108), the UPnP Description including the authentication information.

5. The multimedia gateway (104) according to claim 3 or 4, wherein the residential gateway (106) comprises a UPnP Internet Gateway Device.

6. The multimedia gateway (104) according to any of claims 1-5, wherein

 the first receiving means (410) receives verification information from the remote device (108), and

 the storing means (410) stores the authentication information in the memory (402) only when the verification information is valid.

7. The multimedia gateway (104) according to any of claims 1-6, wherein the authentication information comprises information associated with the remote device (108) or a user of the remote device (108).
8. The multimedia gateway (104) according to any of claims 1-7, wherein the session invite message is a Session Initiation Protocol (SIP) INVITE message.

9. The multimedia gateway (104) according to claim 8, wherein the multimedia service network (112) is an IP Multimedia Subsystem (IMS) network.

10. The multimedia gateway (104) according to claim 9, wherein the authentication information comprises an IMS Public User Identity or an IMS Private User Identity.

11. The multimedia gateway (104) according to any of claims 1-10, wherein
 if the session invite message includes identification of the local device (110), the establishing means (410) establishes the connection parameters including a private address and a port number of the local device (110), and
 if the session invite message does not include the identification of the local device (110), the establishing means (410) establishes the connection parameters including a private address and a port number of said multimedia
12. A method for controlling a multimedia gateway (104) for enabling a remote device (108) to access a local device (110) located in a private network (102) via a residential gateway (106) of said private network (102), wherein said multimedia gateway (104) is connected to said private network (102) and a multimedia service network (112), said method comprising steps of:

- receiving (S503) authentication information from the remote device (108) over the private network (102);
- storing (S508) the authentication information in a memory (402);
- receiving (S605) a session invite message from the remote device (108) over the multimedia service network (112), said session invite message including authentication information;
- authenticating (S606) the remote device (108) by determining whether or not the authentication information included in the session invite message has been stored in the memory (402) in the step of storing (S508);
- establishing (S608), if it is determined in the step of authenticating (S606) that the authentication information included in the
session invite message has been stored in the memory (402) in the step of storing (S508), connection parameters of the residential gateway (106) for communication with the remote device (108); and

sending (S610) the connection parameters to the remote device (108) over the multimedia service network (112) as a response to the session invite message.

13. The method according to claim 12, further comprising a step of periodically searching (S501) for the remote device (108) in the private network (102),

wherein, if the remote device (108) is found in the step of searching (S501), the remote device (108) is requested to send the authentication information in the step of receiving (S503) the authentication information.

14. The method according to claim 13, wherein

the private network (102) is a Universal Plug and Play (UPnP) network, and

in the step of searching (S501), the remote device (108) is searched for by sending a UPnP Discovery message to the private network (102).
15. The method according to claim 14, wherein, in the step of receiving (S503) the authentication information, a UPnP Description of the remote device (108) is received, the UPnP Description including the authentication information.

16. The method according to claim 14 or 15, wherein the residential gateway (106) comprises a UPnP Internet Gateway Device.

17. The method according to any of claims 12-16, further comprising:

 a step of receiving (S506) verification information from the remote device (108), wherein, in the step of storing (S508), the authentication information is stored in the memory (402) only when the verification information is valid.

18. The method according to any of claims 12-17, wherein the authentication information comprises information associated with the remote device (108) or a user of the remote device (108).

19. The method according to any of claims 12-18, wherein the session invite message is a Session
Initiation Protocol (SIP) INVITE message.

20. The method according to claim 19, wherein the multimedia service network (112) is an IP Multimedia Subsystem (IMS) network.

21. The method according to claim 20, wherein the authentication information comprises an IMS Public User Identity or an IMS Private User Identity.

22. The method according to any of claims 12-21, wherein

 if the session invite message includes identification of the local device (110), the connection parameters including a private address and a port number of the local device (110) is established in the step of establishing (S608), and

 if the session invite message does not include the identification of the local device (110), the connection parameters including a private address and a port number of said multimedia gateway (104) is established in the step of establishing (S608).

23. A communication terminal (108) comprising:
first sending means (204) for sending authentication information to a multimedia gateway (104) over a private network (102) to which the multimedia gateway (104) is connected, the authentication information being stored by the multimedia gateway (104);

second sending means (206) for sending a session invite message to the multimedia gateway (104) over a multimedia service network (112) to which the multimedia gateway (104) is connected, said session invite message including the authentication information;

receiving means (206) for receiving connection parameters of a residential gateway (106) of the private network (102) from the multimedia gateway (104) over the multimedia service network (112) as a response to the session invite message that includes the authentication information stored by the multimedia gateway (104); and

establishing means (204) for establishing a communication link with the multimedia gateway (104) or a local device (110) located in the private network (102) via the residential gateway (106) based on the connection parameters.

24. The communication terminal (108) according
to claim 23, wherein

the private network (102) is a UPnP network,
and

the first sending means (204) sends a UPnP Description of said communication terminal (108),
the UPnP Description including the authentication information.

25. The communication terminal (108) according to claim 24, wherein the residential gateway (106) comprises a UPnP Internet Gateway Device.

26. The communication terminal (108) according to any of claims 23-25, wherein the first sending means (204) sends verification information that is used to determine whether or not the multimedia gateway (104) stores the authentication information sent by the sending means.

27. The communication terminal (108) according to any of claims 23-26, wherein the authentication information comprises information associated with said communication terminal (108) or a user of said communication terminal (108).

28. The communication terminal (108) according
to any of claims 23-27, wherein the session invite message is a SIP INVITE message.

29. The communication terminal (108) according to claim 28, wherein the multimedia service network (112) is an IMS network.

30. The communication terminal (108) according to claim 29, wherein the authentication information comprises an IMS Public User Identity or an IMS Private User Identity.

31. The communication terminal (108) according to any of claims 23-30, wherein if the session invite message includes identification of the local device (110), the connection parameters include a private address and a port number of the local device (110), and if the session invite message does not include the identification of the local device (110), the connection parameters includes a private address and a port number of the multimedia gateway (104).

32. A method for controlling a communication terminal (108) comprising steps of:
 sending (S503) authentication information to
a multimedia gateway (104) over a private network (102) to which the multimedia gateway (104) is connected, the authentication information being stored by the multimedia gateway (104);

sending (S605) a session invite message to the multimedia gateway (104) over a multimedia service network (112) to which the multimedia gateway (104) is connected, said session invite message including the authentication information;

receiving (S610) connection parameters of a residential gateway (106) of the private network (102) from the multimedia gateway (104) over the multimedia service network (112) as a response to the session invite message that includes the authentication information stored by the multimedia gateway (104); and

establishing (S613) a communication link with the multimedia gateway (104) or a local device (110) located in the private network (102) via the residential gateway (106) based on the connection parameters.

33. The method according to claim 32, wherein the private network (102) is a UPnP network, and

in the step of sending (S503) the authentication information, a UPnP Description of
the communication terminal (108) is sent, the UPnP Description including the authentication information.

34. The method according to claim 33, wherein the residential gateway (106) comprises a UPnP Internet Gateway Device.

35. The method according to any of claims 32-34, wherein, in the step of sending (S503) the authentication information, verification information is sent that is used to determine whether or not the multimedia gateway (104) stores the authentication information sent in the step of sending (S503) the authentication information.

36. The method according to any of claims 32-35, wherein the authentication information comprises information associated with the communication terminal (108) or a user of the communication terminal (108).

37. The method according to any of claims 32-36, wherein the session invite message is a SIP INVITE message.
38. The method according to claim 37, wherein
the multimedia service network (112) is an IMS
network.

39. The method according to claim 38, wherein
the authentication information comprises an IMS
Public User Identity or an IMS Private User
Identity.

40. The method according to any of claims 32-39,
wherein

if the session invite message includes
identification of the local device (110), the
connection parameters include a private address
and a port number of the local device (110), and

if the session invite message does not
include the identification of the local device
(110), the connection parameters includes a
private address and a port number of the
multimedia gateway (104).
FIG. 3

106

RGW

302

NAT

304

UPnP IGD
FIG. 4

104

HIGA

MEMORY

DB

105

HIGA LOGIC

406

B2B UA

408

UPnP CP

410

UPnP PROXY

412

CONNECTIVITY CLIENT

414
FIG. 5

PRIVATE NETWORK

HIGA
MEMORY ~ 402
UPnP ~ 501

UPnP DISCOVERY SEARCH S501

UPnP GET DEVICE DESCRIPTION S502

DEVICE DESCRIPTION S503

EXTRACT AUTHENTICATION INFORMATION S504

ASK FOR VERIFICATION INFORMATION S505

RECEIVE VERIFICATION INFORMATION S506

STORE AUTHENTICATION INFORMATION S507

VERIFY S508

REMOTE DEVICE 108
UPnP 502
INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE2007/050658

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-INTERNAL, WPI, DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2007069942 A1 (TELEFONAKTI EBOLAGET IM ERICSSON (PUBL)), 21 June 2007 (21.06.2007), page 5; page 7, line 12 - line 19; page 8, line 11 - line 20, page 11, line 19 - page 12, line 29; page 17, line 6 - line 8; page 17, line 31 - page 18, line 4, claims 1-12, abstract</td>
<td>1-40</td>
</tr>
<tr>
<td>Y</td>
<td>US 20060126603 A1 (SHIMIZU, N ET AL), 15 June 2006 (15.06.2006), figures 1, 9a, 17a, 17b, 17c, claims 1-2, paragraphs [0003], [0026], abstract</td>
<td>1-40</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C

[X] See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "I" document which may throw doubts on priority claim(s) or which is cited to establish thepublication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict. With the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance. The claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance. The claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 17 June 2008
Date of mailing of the international search report: 9-06-2008

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Anders Edlund/CC
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (April 2007)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2007061345 A1 (TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)), 31 May 2007 (31.05.2007), page 1; page 6 - page 10; page 15, line 27 - line 31, page 17, line 9 - line 24, figure 2, claims 1-5, abstract</td>
<td>1-40</td>
</tr>
<tr>
<td>A</td>
<td>US 20070195805 A1 (LINDGREN, H), 23 August 2007 (23.08.2007), claims 1-8, abstract, paragraphs [0004]-[0012]</td>
<td>1-40</td>
</tr>
</tbody>
</table>
International patent classification (IPC)
H04L 29/06 (2006.01)
H04L 12/28 (2006.01)
H04M 7/12 (2006.01)

Download your patent documents at www.prv.se
The cited patent documents can be downloaded at www.prv.se by following the links:
 • In English/Searches and advisory services/Cited documents (service in English) or
 • e-tjanster/anförda dokument (service in Swedish).
Use the application number as username.
The password is NOHNP JGYDJ.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).
Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application Number</th>
<th>Publication Date</th>
<th>Publication</th>
<th>Priority</th>
<th>Application Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO</td>
<td>2007069942</td>
<td>21/06/2007</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20060126603</td>
<td>15/06/2006</td>
<td>CN</td>
<td>1780219</td>
<td>31/05/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>1659732</td>
<td>24/05/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP</td>
<td>2006148661</td>
<td>08/06/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KR</td>
<td>20060056845</td>
<td>25/05/2006</td>
</tr>
<tr>
<td>WO</td>
<td>2007061345</td>
<td>31/05/2007</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20070195805</td>
<td>23/08/2007</td>
<td>CA</td>
<td>2583633</td>
<td>04/05/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CN</td>
<td>101091374</td>
<td>19/12/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GB</td>
<td>0423845</td>
<td>00/00/0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GB</td>
<td>2419774</td>
<td>03/05/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WO</td>
<td>2006045706</td>
<td>04/05/2006</td>
</tr>
</tbody>
</table>