发明名称：基于互连网 OBD-Ⅱ标准汽车故障远程检测系统

摘要
本发明公开了一种基于互联网的第二代随车在线诊断 (OBD-Ⅱ) 标准汽车故障远程检测系统，该系统包括便携式 OBD-Ⅱ 自动检测仪、计算机系统、通信系统以及汽车检测维修网站。本发明采用国际通用的 OBD-Ⅱ 技术，利用便携式 OBD-Ⅱ 汽车故障检测仪及计算机进行汽车的故障在线分析，并通过互联网实现远程数据传输和诊断，从而为用户包括汽车检测、维修咨询、汽车配件和整车销售、汽车技术咨询等服务。
1、一种基于互联网的第二代随车在线诊断（OBD-II）标准汽车故障远程检测系统，其特征在于：该系统包括便携式 OBD-II 汽车故障检测仪、计算机系统、通信系统以及汽车检测维修网站，其中便携式 OBD-II 汽车故障检测仪用于实现 OBD-II 诊断座与计算机串口之间的协议转换；计算机系统用于实现随车在线计算机解码、诊断和计算机通信，提供人机操作界面和系统设置等功能；通信系统及汽车检测维修网站实现远程数据传送和远程检测，并提供汽车的全方位维护服务。

2、如权利要求 1 所述的基于互联网的 OBD-II 标准汽车故障远程检测系统，其特征在于：所述的便携式 OBD-II 汽车故障检测仪是一个汽车和计算机之间连接的协议转换装置，采用单片机 CPU，以汇编语言编写程序，实现通信功能，主要完成协议的物理层和数据链路层的转换；所述的便携式 OBD-II 汽车故障检测仪与汽车 OBD-II 诊断座接口依照 SAE J1962 标准，与电脑相连端是标准的 RS232 接口。

3、如权利要求 1 所述的基于互联网的 OBD-II 标准汽车故障远程检测系统，其特征在于：所述的基于互联网的汽车检测维修网站平台，其远程访问和故障诊断通过开放的互联网实现。

基于互连网的 OBD-II 标准汽车故障远程检测系统

本发明涉及一种汽车故障远程检测系统，特别是涉及一种基于互联网的汽车故障远程检测系统。

随车在线诊断 OBD（On-Board Diagnostics）系统在现代汽车服务体系中占有很重要的位置。它通过采集汽车上各种传感器的输出信号，根据一定的协议和标准，集中进行故障诊断和信息传输，是车辆维修中故障诊断的主要技术依据。随车在线诊断系统在 1993 年以前称为第一代。当时各国各汽车厂家采用不同的诊断信息插座，不同的故障代码，不同的诊断功能，造成了不同品牌车辆的检测方法互不通用。这些 1993 年以前的随车诊断系统，按美国标准称为第一代随车在线诊断系统（OBD-I）。这种诊断系统自成体系，不具有通用性，且种类繁多，不利于使用统一的专用仪器，给汽车的售后服务、维修造成诸多不便。这种诊断系统已不适用现代汽车结构日趋先进、机电一体化、微机化、标准化和智能化方向发展的需要。如前所述，由于汽车自诊断系统故障代码的含义、读取以及消除方法的不同，给汽车的检修带来许多不便。90 年代初，美国汽车工程师学会（SAE）提出了新一代随车诊断系统 OBD-II，即第二代随车在线诊断系统。该标准经美国环保局（EPA）和美国加州资源协会（CARA）认证通过。90 年代后期，美国本土生产的汽车以及进口到美国的汽车，随车诊断系统必须符合 OBD-II 的标准。由于美国的市场经济地位，该标准相对具有权威性。从 1989 年起，国际标准化组织（ISO）根据 SAE 的标准，先后四次颁布了关于随车在线诊断系统（OBD）的国际标准，即 ISO 9141～ISO 9141-3，
统一了包括随车诊断插座、故障码、通信协议、测试方法、测试条件、功率要求、网络环境等等在内的一系列标准，为汽车测试的智能化、自动化奠定了基础。到目前为止，世界上各大汽车公司基本上全面采用了 OBD-II 随车在线诊断系统。由于标准的统一，使得采用一台标准的诊断仪器，对各种不同品牌、不同型号的车辆进行检修成为可能，大大地提高了汽车的检修质量，提高故障诊断的准确性和工作效率。

自 80 年代后期，国内开始陆续有人提出或开发出一些汽车自动检测手段，包括自动故障检测仪、便携式故障测试器等等，也申请了一些这方面的专利。但是从现有的产品或专利来看，国内所开发的仪器设备或专利技术还没有基于 OBD-II 技术标准的，也即意味着这些产品或技术都不是通用故障检测仪器，特别是不能适用于九十年代后期出厂的高档轿车。
在国外，虽然已出现了基于 OBD-II 的随车故障诊断仪之类的产品，但是把汽车在线故障诊断仪与互联网相连，构成一个远程在线故障诊断系统，提供全面的汽车维护、维修服务体系，即使在国外也未曾见报道。

本发明的目的是提供一种基于互联网的第二代随车在线诊断（OBD-II）标准汽车故障远程检测系统，该系统通过互联网可提供全面的汽车维护、维修服务。

本发明提供的基于互联网的第二代随车在线诊断（OBD-II）标准汽车故障远程检测系统，包括便携式 OBD-II 汽车故障检测仪、计算机系统、通信系统以及汽车检测维修网站，其中便携式 OBD-II 汽车故障检测仪用于实现 OBD-II 诊断座与计算机串口之间的协议转换；计算机系统用于实现随车在线计算机解码、诊断和计算机通信，提供人机操作界面和系统设
置等功能；通信系统及汽车检测维修网站实现远程数据传送和远程检测，并提供汽车的全方面维护服务。

本发明系统所述的所述的便携式 OBD-II 汽车故障检测仪是一个汽车和计算机之间连接的协议转换装置，采用单片机 CPU，以汇编语言编写程序，实现通信功能，主要完成协议的物理层和数据链路层的转换；其与汽车 OBD-II 诊断座接口依照 SAE J1962 标准，与电脑相连端是标准的 RS232 接口。

本发明系统所述的基于互联网的汽车检测维修网站平台，其远程访问和故障诊断通过开放的互联网实现，不需要专用的数据传输设备。


本发明采用国际通用的 OBD-II 技术，利用便携式 OBD-II 汽车故障检测仪及计算机进行汽车的故障在线分析，并通过互联网实现远程数据传输和诊断，从而为用户提供包括汽车检测、维修咨询、汽车配件和整车销售、汽车技术咨询、汽车消费娱乐等服务，且可为汽车维修厂节约设备支出。

下面结合附图及实施例对本发明作进一步的说明。

图 1 为本发明的系统方框图；

图 2 为本发明中便携式 OBD-II 汽车故障检测仪的电路图；

图 3 为本发明系统工作流程图。

如图 1 所示，本发明基于互连网的 OBD-II 标准汽车故障远程检测系
统，由便携式 OBD-II 汽车故障检测仪、计算机系统、通信系统以及汽车检测维修网站等四部分组成。

（1）便携式 OBD-II 汽车故障检测仪，是单片机的嵌入式系统，以汇编语言编写程序，完成 OBD-II 诊断座与计算机串口之间的协议转换，其中与汽车 OBD-II 诊断座的接口依照 SAE J1962 标准，与电脑相连端是标准的 RS232 接口，可自动识别 OBD-II 的协议并与之通信，主要完成协议的物理层和数据链路层的转换。另外，该便携式 OBD-II 汽车故障检测仪也对通信进行监护，以防通信中断或冲突，该便携式 OBD-II 汽车故障检测仪电路如图 2 所示。

便携式 OBD-II 汽车故障检测仪的主要特点如下：

1、按照 SAE J1962 标准规定，所有达标的汽车均采用统一型式的 16 端子 OBD-II 诊断插座，并统一安装在驾驶室仪表板下方。

2、采用统一含义的故障代码，统一的故障代码有 4 部分组成。

3、具有数据通讯传输和分析功能 DLC（Data Link Connector），利用 OBD-II 的 DLC 功能，能够了解该车型各控制系统的有关资料。

4、具有行车记录功能，检修人员通过读取故障代码，能够得知故障的性质和范围。而利用 OBD-II 的行车记录功能，能够获得故障车辆行驶过程中的有关数据资料，通过与基本数据资料对比，便可很快分析出故障的原因。

5、具有利用仪器读取和消除故障代码的功能。

6、具有记忆和重新显示故障代码的功能。

（2）计算机系统，采用 C++语言进行编程，具有良好的人机界面。
软件按 SAE J1979 及 ISO 9141-2 标准与便携式 OBD-II 汽车故障检测仪进行数据交换，根据读到的故障码确定故障类型，在显示给本地用户的的同时，将故障信息和有关数据上传至汽车维护网站，供给网站的专业维修工程师进行远程维修指导和服务。

（3）通信系统，主要完成与汽车检测维修网站间的通信。本发明采用基于互连网的 ASP 平台，远程数据访问和诊断是通过开放的互联网实现的，不需要专用的数据传输设备，只需普通电话线和调制解调器就可拨号上网。

（4）汽车检测维修网站，其服务器具有强大的数据库备份，将每一辆车的信息存下来，可提供包括汽车维修、维护、汽车配件和整车销售、汽车的技术咨询、汽车的消费娱乐等内容。它建立在一个三级结构上，远程服务器由 SQL 和 IIS 等软件进行支持，主要以 ASP 和 C/C++进行编码。

本发明基于互连网的 OBD-II 标准汽车故障远程检测系统的完整工作程序如图 3 所示。
图 1

图 2
进入windows

联接国际互联网

把联结器的RS232端驳接手提电脑或PDA

OBD-II故障检测仪驳接汽车 OBD-II诊断座

有无汽车检测程序

有

进入www.51qiche.net

浏览网页下载汽车检测程序

启动汽车检测程序

检测汽车的数据

发送数据给服务器

接收来自服务器的故障报告及维修建议

无

图3