

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 January 2009 (29.01.2009)

PCT

(10) International Publication Number
WO 2009/014671 A1

(51) International Patent Classification:

H04L 12/56 (2006.01)

(21) International Application Number:

PCT/US2008/008848

(22) International Filing Date: 21 July 2008 (21.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

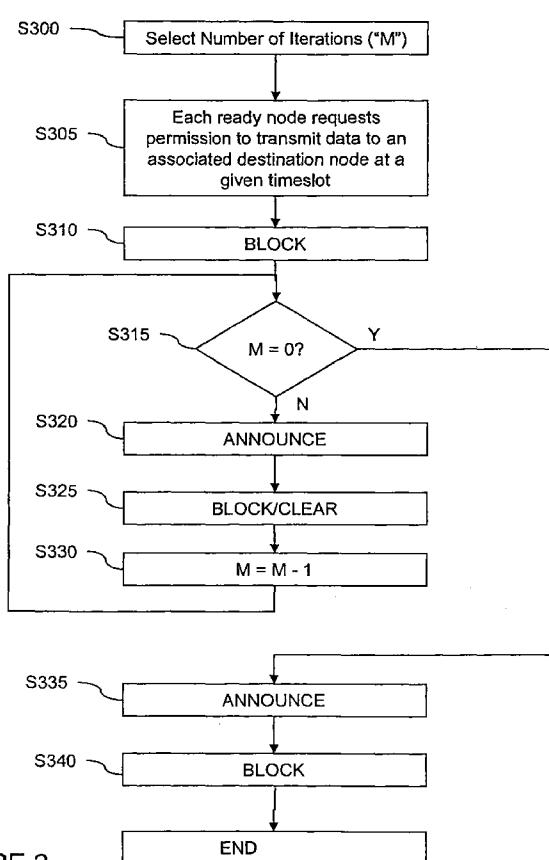
11/878,494 25 July 2007 (25.07.2007) US

(71) Applicant (for all designated States except US): LUCENT TECHNOLOGIES INC. [US/US]; 600-700 Mountain Avenue, Murray Hill, NJ 07974-0636 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AVIDOR, Dan [US/US]; 220 Herring Court, Little Silver, NJ 07739 (US). LING, Jonathan [US/US]; 33 Silver Hollow, North Brunswick, NJ 08902 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,


AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(54) Title: METHOD OF MANAGING TRANSMISSION WITHIN A WIRELESS COMMUNICATIONS NETWORK

(57) Abstract: The method includes sending a request for permission to transmit by each ready node in the wireless network. Each ready node is a node of the wireless network ready to transmit, each request identifies a node in the network that is the destination, and each request is sent over a control channel. An iterative process based on priorities determined for the ready nodes is then performed to determine which ready nodes to block from transmission and which ready nodes to clear for transmission. Transmissions are sent over a payload channel from ready nodes in the clear to transmit state.

WO 2009/014671 A1

FIGURE 2

5 **METHOD OF MANAGING TRANSMISSION WITHIN A WIRELESS
COMMUNICATIONS NETWORK**

BACKGROUND

1. *Field*

10 Example embodiments of the present invention are related generally to a method of scheduling data transmission within a wireless communications network.

2. *Description of the Related Art*

15 Conventional wireless networks (e.g., WLAN, WAN, etc.) include a plurality of inter-connected nodes, with each node sharing a common wide band transmission channel. If multiple nodes in close proximity to each other transmit data at the same time, the respective data transmissions may interfere with each other, which may reduce 20 throughput and degrade system performance.

 A medium access control (MAC) protocol may be used to reduce the number of concurrent data transmissions at mutually interfering nodes in the network. A conventional MAC protocol allows only a subset of the nodes to transmit at any given time in order to reduce 25 the number of “collisions” (e.g., interfering data transmissions).

 Generally, a MAC algorithm seeks to schedule data transmissions so as to maximize the data throughput of the wireless network without prohibitive delays, and also to maintain a certain

5 degree of fairness. However, executing a MAC protocol for large networks is difficult and inefficient.

SUMMARY OF THE INVENTION

10 The present invention relates to a method of managing transmission in a wireless network.

In one embodiment, the method includes sending a request for permission to transmit by each ready node in the wireless network.

Each ready node is a node of the wireless network ready to transmit, 15 each request identifies a node in the network that is the destination, and each request is sent over a control channel. A block operation is performed at each destination node such that each destination node selectively sends block messages to neighboring nodes based on respective transmission priorities for the ready nodes neighboring the 20 destination node. The block messages instruct the neighboring node not to transmit. An announce operation is performed at each ready node to announce a transmission state of the ready node. The transmission state is one of a blocked-from-transmitting state and a cleared-to-transmit state. The blocked-from-transmitting state is a 25 state in which at least one uncleared block message has been received by the ready node, and the cleared-to-transmit state is a state in which no uncleared block messages have been received at the ready node. A block/clear operation is performed at each destination node

5 such that each destination node selectively sends block messages and clear messages to neighboring nodes based on the transmission state of each neighboring node. The clear message clears any block message previously sent by the destination node. The announce and block/clear operations are repeated for a number of iterations, and

10 transmissions are sent over a payload channel from ready nodes in the cleared-to-transmit state.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will become more fully understood from

15 the detailed description provided below and the accompanying drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus are not limiting of the present invention and wherein:

Figure 1 illustrates a wireless network according to an example embodiment.

Figure 2 illustrates a transmission scheduling method according to an example embodiment.

Figure 3 illustrates an example embodiment of the time division structure employed by the method of Figure 2.

25 Figure 4 illustrates a block operation performed during the process of Figure 2 according to an example embodiment.

Figure 5 illustrates an announce operation performed during the process of Figure 2 according to an example embodiment.

5 Figure 6 illustrates a block/clear operation performed during
the process of Figure 2 according to an example embodiment.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

In order to better understand the present invention, an example
10 wireless network will be described, followed by a description of a
transmission scheduling process performed within the wireless
Network. Then, a discussion of load on a control channel, which is
used to support the transmission scheduling process, will be
described.

15

Example Wireless Network

Figure 1 illustrates a wireless network 200 according to an
example embodiment.

In the example embodiment of Figure 1, the wireless network
200 may be a WLAN, WAN, etc. and includes a plurality of nodes (e.g.,
mobile phones, laptop computers, handheld video game consoles with
wireless connectivity, etc.). Neighbor nodes, or nodes which can
communicate with each other directly, are illustrated as connected
with dotted lines.

25 In the example embodiment of Figure 1, node 205 is denoted as
R₁ because node 205 is a “ready node” (e.g., a node attempting to
transmit data to another node). In this example, assume node 205
intends to transmit data to node 210. Accordingly, node 210 is a

5 “destination node” (e.g., a node to which another node intends to send data), and is denoted as D_1 .

Network Assumptions

The assumptions regarding the wireless network 200 will now
10 be described in greater detail.

For a given representative pair of nodes i and j (e.g., nodes 205 and 210), nodes i and j may either be classified as neighbors or “one-hop” neighbors if nodes i and j are capable of direct communication, or as non-neighbors.

15 In an example, if node i transmits to node j , which is a neighbor of node i , and a third node (e.g., node 215 in Figure 2), which is a neighbor of node j , also transmits on the same timeslot, a “collision” occurs. In this example, if the collision occurs, it is assumed that node j will not receive any transmission from either of the mutually
20 interfering nodes. In contrast, nodes that are not neighbors of node j may transmit on the same timeslot without causing a collision with node i ’s transmission to node j .

It is understood that in the “real world” classifying non-neighbors of node j as being incapable of interfering with reception at
25 node j is not necessarily always the case. However, it will be hereafter assumed that non-neighbors of a given node (e.g., node k) are incapable of interfering with the given node within the context of

5 example embodiments described below. This assumption is discussed below in greater detail.

It is further assumed that a node cannot receive and transmit during the same timeslot, and that each node within the wireless network 200 is “synchronized” such that timeslots and/or frames at 10 each node in the wireless network are aligned.

Further, the example embodiments described below are not addressing “routing” of messages (i.e., choosing a complete multi-hop route from the node generating a message to the destination node), but rather are limited to one-hop data transfers between neighbor 15 nodes within the wireless network 200. However, it will be readily appreciated that a higher-level routing protocol could be implemented within example embodiments in the sense that multiple “hops” may be executed (e.g., in consecutive timeslots) pursuant to the higher-level routing protocol.

20 Further, if the number of nodes requesting permission to transmit in a given timeslot is denoted as N_1 and the number of nodes granted permission to transmit in the given timeslot is denoted as N_2 , then N_2/N_1 is a metric that may be used to evaluate the utilization or efficiency of the example transmission scheduling process, as will now 25 be discussed in greater detail.

Example Transmission Scheduling Process

5 Figure 2 illustrates a transmission scheduling method according to an example embodiment.

Within the example embodiment of Figure 2, it is assumed that communication (e.g., data transmission) only occurs between nodes and neighbors of these nodes. Accordingly, each node is assumed to 10 ignore all data transmissions from any non-neighbor node (e.g., as discussed above, it is assumed that non-neighbors cannot interfere with each other). It is further assumed that each node knows the priority number (PN) of each of its respective neighbor nodes for a given timeslot (e.g., a next time slot, a time slot for which transmission 15 permissions are being scheduled, etc.). The PN is discussed in greater detail below.

Figure 3 illustrates an example embodiment of the time division structure employed by the method of Figure 2. In particular, Figure 3 shows a payload channel and a control channel employed in the 20 network 200 of Figure 1. In the example embodiment of Figure 3, the “payload channel” (e.g., alternatively referred to as “data channel”) corresponds to the time interval or frequency band allocated for the data channel, and the “control channel” corresponds to time interval or frequency band upon which control messages are transmitted 25 between the respective nodes within the network 200. In an example, the payload channel and the control channel are orthogonal to each other, such that control channel transmissions do not interfere with payload channel transmissions.

5 As shown in the example embodiment of Figure 3, for each timeslot or data frame in the payload channel (e.g., where one fixed-length data packet may be transmitted), the control channel includes a plurality of minislots. Each minislot includes a plurality of microslots. The control channel and its associated minislots and
10 microslots will be described in greater detail below.

Returning to the example embodiment of Figure 2, it is assumed that the first minislot within a given data frame or timeslot is reserved for nodes to announce their request for permission to transmit data during a future timeslot (e.g., the next timeslot or data frame), as well
15 as identifying the destination node associated with the requested data transmission. In an example, as will be discussed in greater detail below, data transmission requests may be issued on separately assigned microslots within the reserved or first minislot.

In the example embodiment, R may be used to denote a set of
20 all ready nodes (i.e., nodes requesting to transmit to destination nodes), D may be used to denote the set of associated destination nodes, “transmit nodes” denote ready nodes that are neighbors of a destination node under consideration, “receive nodes” denote destination nodes that are neighbors of a ready node under
25 consideration, a “Block” command corresponds to a message or instruction sent to a ready node (e.g., over a control channel, which is discussed below in greater detail) instructing the ready node not to transmit and a “Clear” command cancels a Block message previously

5 sent by the node issuing the “Clear” command. Accordingly, if more than one node blocks a ready node from transmitting, it will be appreciated that a Clear command from a single node may not grant the ready node permission to transmit (e.g., unless each node previously sending Block commands issue subsequent Clear 10 commands). Further, it will be appreciated that R and D may overlap, such that a node may qualify as both a ready node and a destination node.

In the example embodiment of Figure 2, in step S300, a network designer selects a number M of iterations for the transmission 15 scheduling method of Figure 2. Generally, the network designer selects a positive integer as an initial value for M. As will be described below in greater detail, higher values of M correspond to higher utilization for the network 200 (e.g., because more ready nodes may be granted permission to transmit without collisions). However, 20 higher values of M are also associated with higher processing load (e.g., higher overhead) such that the network designer may select the value of M based on a tradeoff between utilization and processing load.

In the example embodiment of Figure 2, in step S305, each 25 ready node requests permission to transmit data to a selected destination node at a given timeslot (e.g., a next timeslot, a future timeslot, etc.). As discussed above, in an example, each ready node may request permission to transmit data in step S305 at an assigned

5 microslot (e.g., the microslot assignment process is described in greater detail below) within the reserved minislot on the control channel.

In the example embodiment of Figure 2, in step S310, each destination node performs a BLOCK operation. The BLOCK operation

10 step S310 will now be described in greater detail with respect to Figure 4.

Figure 4 illustrates the BLOCK operation step S310 according to an example embodiment. In the example embodiment of Figure 4, in step S500, each destination node among the D destination nodes 15 determines the priority number for the set of transmit nodes associated with the destination node. If a destination node is also a ready node, the destination node may also determine a priority number for itself. Example methodologies for calculating the priority number will be described in greater detail below.

20 In the example embodiment of Figure 4, in step S505, each destination node determines which node(s) to block based on the determined priority numbers from step S500. Then, in step S510, each destination node blocks the nodes determined in step S505.

More specifically, the destination node determines the ready 25 node with the highest priority number among the set containing the ready nodes neighboring the destination node and the destination node, if the destination node is a ready node. The destination node

5 determines to block the ready nodes requesting permission to transmit to the destination node if the destination node is determined to have the highest priority number among the set; determines to block the ready nodes neighboring the destination node that have requested permission to transmit to the destination node if the ready 10 node determined to have the highest priority number among the set has requested permission to transmit to a node other than the destination node; and determines to block the ready nodes neighboring the destination node, except for the ready node determined to have the highest priority number among the set, if this 15 node requested permission to transmit to the destination node. The destination node then send block messages to the nodes determined to be blocked.

Returning to the example embodiment of Figure 2, after the BLOCK operation step S310, the process advances to step S315. In 20 step S315, each node within the network 200 determines whether the iteration counter M equals 0. If M is determined to equal 0, the process advances to step S335; otherwise, the process advances to step S320.

In step S320, each ready node within the network 200 performs 25 an ANNOUNCE operation. The ANNOUNCE operation of step S320 will now be described in greater detail with reference to Figure 5.

Figure 5 illustrates the ANNOUNCE operation step S320 of Figure 2 according to an example embodiment.

5 In the example embodiment of Figure 5, in step S600, each ready node determines whether it is blocked. A ready node is blocked if it received one or more "block" messages (e.g., in step S310, during a past iteration of step S325 which is discussed below, etc.), and did not receive associated "clear" messages. A ready node is not blocked if
10 it received a clear message associated with each block message, or it did not receive any block messages. If a ready node is clear, then the node "announces" to its neighbor nodes (e.g., via control channel messaging) that it is in a clear to transmit data state in step S605. Otherwise, if the ready node determines that it is blocked, the ready
15 node announces to its neighbor nodes (e.g., via control channel messaging) that the ready node is in a blocked from transmission state (e.g., not clear to transmit data) in step S610.

 Returning to the example embodiment of Figure 2, in step S325, each destination node performs a BLOCK/CLEAR operation. The
20 BLOCK/CLEAR operation of step S325 will now be described in greater detail with reference to Figure 6.

 Figure 6 illustrates the BLOCK/CLEAR operation of step S325 according to an example embodiment. In the example embodiment of Figure 6, in step S700, each destination node among the D
25 destination nodes determines the priority number for each of its neighboring transmit nodes. If a destination node is also a ready node, the destination node determines the priority number for itself

5 also. Example methodologies for calculating the priority number will be described in greater detail below.

In the example embodiment of Figure 6, in step S705, each destination node determines whether to block or clear certain nodes based on the determined priority numbers for the set of nodes in step 10 S700. If step S705 determines to block one or more of the ready nodes, the process advances to step S710 and the node or nodes are blocked (e.g., via messaging on the control channel). Otherwise, if step S705 determines to clear one or more of the ready nodes, the process advances to step S715 and the node or nodes are cleared (e.g., 15 via messaging on the control channel).

More specifically, the destination node determines the ready node with the highest priority number among a set containing the ready nodes neighboring the destination node and the destination node, if the destination node is a ready node; determines to block the 20 ready nodes requesting permission to transmit to the destination node if the destination node is determined to have the highest priority number among the set; determines to block the ready nodes neighboring the destination node that have requested permission to transmit to the destination node if the ready node determined to have 25 the highest priority number among the set has requested permission to transmit to a node other than the destination node; determines to block the ready nodes neighboring the destination node, except for the ready node determined to have the highest priority number

5 among the set, if this node requested permission to transmit to the destination node; determining to clear the ready nodes neighboring the destination node that have requested permission to transmit to a node other than the destination node if no nodes neighboring the destination node are in the cleared to transmit state and the ready

10 10 node with the highest priority number requested permission to transmit to a node other than the destination node; and determines to clear an identified node neighboring the destination node if no nodes neighboring the destination node are in the cleared to transmit state and the identified neighboring node requests permission to transmit to

15 the destination node, the identified neighboring node being the node neighboring the destination node with the highest priority number.

Returning to the example embodiment of Figure 2, after the BLOCK/CLEAR operation of step S325, the value of the iteration counter M is decremented (e.g., by one). The process returns to step 20 S315 and the above-described repeats until step S315 determines that M equals 0.

As discussed above, after M is determined to equal 0 in step S315, the process advances to step S335. In step S335, the ANNOUNCE operation (e.g., see step S320) is performed again, 25 followed by the BLOCK operation (e.g., see step S305), and the process of Figure 2 terminates until being executed again for a scheduling of data transmissions for another timeslot. If M is large enough, the method converges. After the method has converged, addition of

5 another node will cause collision. Furthermore, replacement of a node
permitted to transmit with a node having a higher priority will also
cause collision.

Following the execution of the process of Figure 2, ready nodes
which have been “cleared”, transmit data on the data channel in the
10 given timeslot (e.g., a next timeslot). It will be appreciated from the
above description of the process of Figure 2 that a “cleared” ready
node may either never have been blocked or may have been blocked
and later cleared by each node which had previously blocked it. A set
of nodes Ψ may denote the resultant “cleared” set of nodes after the
15 process of Figure 2.

During the execution of the process of Figure 2, each step
requiring an exchange of control messaging is assumed to consume or
cost one “minislot” of time (e.g., see discussion of Figure 3, above). In
an example, steps S305, S310, S320, S325, S335 and S340 each
20 consume or cost one minislot within the time interval allocated to the
control channel in each timeslot.

From a review of the process of Figure 2, it will be appreciated
that if acknowledgements (ACKs) from destination nodes are desired, a
time interval may be allocated for this purpose (e.g., at the end of each
25 timeslot). The ACK messaging may be performed on the payload
channel right after the data itself, but in the opposite direction. It is
easy to verify that since data packets don't collide, the same will be
true for the ACK messages.

5 Further, the method of Figure 2 is efficient in the sense that any
nodes added to the set Ψ (i.e., the set of nodes cleared to transmit)
after the execution of the method will cause a collision.

Priority Management

10 Good overall throughput performance may not necessarily
correlate with fairness. For example, nodes with a relatively small
number of neighbors may expect permission to transmit more often
than nodes having many neighbors. While obtaining equal degrees of
fairness among nodes may not be possible, the use of priority
15 management via priority numbers may increase the degree of fairness
within the network and lower the delay jitter.

20 The example method of Figures 2 through 6 have been above-
described as based upon a determination of node priority (i.e., the
priority number). An example of calculating priority numbers for
nodes will now be described in greater detail.

Initially, assume that each node within network 200 includes an
identical maximal length binary feedback shift register (FSR), which,
when clocked at the timeslot rate, generates each element of the field
of polynomials $GF(2^m)$ except the "0" polynomial, where m is a positive
25 integer. The feedback network of the FSR implements an irreducible
polynomial of degree m (where m is greater than 1), which is the
minimal polynomial of the field element $\alpha = t$. The polynomial t is

5 therefore a primitive element of the field, and each non-zero element of the field may be represented as t raised to a certain power:

$1, t, t^2, \dots, t^{2^m-2}$. The multiplication operation may be performed as conventional polynomial multiplication modulo the feedback polynomial. The periodic binary sequences generated by the FSRs of

10 different nodes are identical, but each node has a distinct phase (e.g., a shift with respect to the first node). For simplicity of description, assume that the FSR of each node is initialized concurrently (e.g., simultaneously), with each node having a different initial phase (“seed”), which is the “serial number” of the node. Further assume

15 that each node has a unique serial number (e.g., $2^m - 1 > N$).

The binary number stored in the m stage FSR of each node during the current timeslot is the node’s current priority number (PN). Each node may then determine the PN of its neighbors based on the serial numbers of the respective neighbors at any given timeslot. A

20 node i (e.g., having the serial number i) may calculate the current PN of node j by multiplying its own current PN by t^{j-i} (note, $t^{-k} = t^{2^m-k-1}$). In an example, the multiplication of two such elements in a field of polynomials modulo $f(D)$ may be executed in hardware.

Accordingly, a node may calculate the PN of its neighbors in the

25 coming timeslot based on its own serial number, the serial number of its neighbors, and its current PN. However, due to mobility, the set of neighbors of any node may change in time, and therefore “refreshing”

5 the priority information (e.g., sending serial number and/or current
 FSR values between the nodes) may be performed periodically (e.g.,
 every a certain number of time slots, etc.).

In order to add a new node to the network, the new node is
 allocated a unique serial number and then “clocked forward” until the
 10 new node is synchronized with the first node (e.g., the number of
 “clocks” since the initiation of the network or priority management
 process). The “clock forward” or synchronizing operation may be
 performed via multiplication with the polynomial t raised to the
 corresponding power.

15 Accordingly, the PN of each node may cycle through all
 $2^m - 1$ values of the finite field. Further, let $PN_n(T)$ be the PN of node
 n at timeslot T . Then, for any subset Φ of nodes, with cardinality
 $C_\Phi \leq N$, and any node $i \in \Phi$, arbitrary t , and m large (e.g., $m > 15$), the
 following is true with high probability:

20

$$\frac{1}{2^m - 1} \sum_{T=t+1}^{t+2^m-1} l_{i,\Phi}(T) \approx \frac{1}{C_\Phi}$$

Equation 1

25 where

$$5 \quad l_{i,\Phi}(T) \equiv \begin{cases} 1, & PN_i(T) > \max_{\substack{j \in \Phi \\ j \neq i}} (PN_j(T)) \\ 0, & PN_i(T) < \max_{\substack{j \in \Phi \\ j \neq i}} (PN_j(T)) \end{cases}$$

Accordingly, over a complete period of $2^m - 1$ timeslots, the PN of any node may be larger than the PN of any other node in Φ approximately $1/C_\Phi$ times. It will be appreciated that determining the priority number in this manner may increase the degree of fairness during the execution of the method of Figure 2.

Further, while a very specific process for calculating priority numbers of nodes has been described above, it will be appreciated that other example embodiments may calculate priority numbers in any well-known manner.

Control Channel Management

The example method of Figure 2 has been above described with reference to messaging on the control channel. The control channel and its associated messaging will now be described in greater detail.

The Control Channel

We assume that the control channel is orthogonal to the payload channel, so that control messages can be transmitted on the

5 control channel, while data can be transmitted on the data channel during the same timeslot with no mutual interference. This can be accomplished in many known ways, e.g., through TDMA, i.e., dividing each timeslot to two non-overlapping time intervals, through FDM, i.e., assigning different segments of the spectrum to the two channels, 10 or even through OFDM, where a different sub-carrier can be assigned to support one minislot of the control channel, and each microslot (see below) is implemented as a different time interval on one of the sub-carriers). Whatever the implementation is, we, for convenience, talk about minislots and microslots, as though they are time intervals.

15 The description of the example method of Figure 2 makes an implicit assumption that non-neighbors of a node (e.g., node j) cannot interfere with data reception at the node. In the “real world”, this assumption may not necessarily be true. For example, in addition to the set of neighbors of node j, other nodes may also interfere with 20 reception at node j. This type of non-neighbor interference may be reduced if the control channel is configured to have a longer communication range than the payload or data channel (e.g., by reducing the data rate, using a more robust modulation scheme and/or reducing the coding rate on the control channel) as compared 25 to the payload or data channel.

As discussed above with respect to Figure 3, the control channel is divided to timeslots, which, for simplicity, may be assumed to overlap with the timeslots of the payload channel as shown in Fig. 3.

5 In an example, referring to the example embodiment of Figure 3, during timeslot $n-1$, the method of Figure 2 may be executed on the control channel, and may produce the set of nodes permitted to transmit data packets on the payload channel during timeslot n . Each timeslot of the control channel contains $2M+4$ (for $M > 0$, or 2 if $M = 0$) minislots, and each minislot is divided into $J > L+1$ microslots, where L is the largest number of two-hop neighbors (i.e., nodes that can be reached by at most two-hops) of any node in the network. Each node is assigned one microslot for transmission during each minislot, which is not shared by any of its two-hop neighbors. Each node may 10 therefore transmit to its one-hop neighbors with no collisions.

15

Auxiliary Contention Channel

20 Distributed management of the control channel will now be described in accordance with an example embodiment. In an example, the microslot assignments described below are repeated from time-to-time because the set of, for example, two-hop neighbors changes as a result of node mobility.

25 As explained above, some minislots are used by ready nodes to transmit control messages to destination nodes, while the rest are used by destination nodes to transmit control messages to ready nodes. To prevent collisions between such transmissions, each minislot is broken down to microslots and a different microslot is

5 assigned to all one and two hop neighbors of each node. In this example embodiment, a contention channel is provided for this purpose. The contention channel is another orthogonal channel (e.g., different time segment, different frequency, etc. from the other channels). Using the contention channel, each node advertises its own
10 microslot, and the microslots used by its one-hop neighbors. The message or advertisement is transmitted relatively infrequently in comparison to the duration of a timeslot, by each node at random times. By monitoring the advertisements of its neighbors, a node may detect conflicts with the assignments of its one-hop and/or two-hop
15 neighbors. If a conflict is detected, a replacement microslot may be randomly selected from among the set of microslots not yet assigned to one of its one or two hop neighbors.

Next, the node advertises the new assignment. Success is not guaranteed in one step, because the same conflict is detected by all
20 nodes involved, and these nodes may attempt concurrent re-assignments to the same microslot. However, when the number of microslots per minislot is sufficiently larger than the maximum number of two-hop neighbors of any node in the network, success is practically guaranteed within several attempts. Note, also, that the
25 mean number of two-hop neighbors is typically lower than the maximum number. The assignment process may be ongoing simultaneously in diverse parts of the network with small localized and temporal effects. Assuming that the network changes slowly, the

5 contention channel should not occupy a significant fraction of the total capacity available to the network.

Load on the Control Channel

As explained above, the iterative method of Figure 2 uses a series of inter-node message exchanges to establish a transmission 10 scheduling among the nodes of network 200. To correctly process a message, a node receiving a message must determine the identity of the transmitting node.

As discussed above, nodes transmit on the control channel in their appointed microslots, and it is assumed that each neighbor node 15 is aware of the microslot assignments (e.g., through periodic advertisements on the contention channel as discussed above), such that identifying the sender of a message is simply based on the microslot the message is received on

With the above assumptions, the Block messages include space 20 to identify one neighboring node, and another bit to specify the required action. An “Announce” messages include a single bit (e.g., because the source identifier is implicit based on the microslot) to indicate whether or not the sending node is blocked. The “Block/Clear” messages include sufficient space to identify one 25 neighboring node plus two bits. The two bits are required to distinguish between the possible situations discussed above with respect to step S325 and FIG. 6.

5 Accordingly, it will be appreciated that the first minislot contains sufficient space for J nodes to identify their destination nodes. Assuming A bits are required to identify a given node, this means the first minislot may include at least AJ bits. The second minislot ($M = 0$) requires at least $J(A+1)$ bits, $M \geq 1$ requires at least 10 $JA + (A+1)J + MJ + MJ(A+2) + J + (A+1)J = 3J(A+M+1) + JAM$ bits. In an example, if $M = 1$, $A = 8$, $J = 20$, then 760 bits may be required per timeslot.

With regard to the space (e.g., the number of bits) for the address field to identify a given node (e.g., a destination node), it will 15 be appreciated that a unique identification for each node of the network 200, is not really required, because communication, as described above, is limited to one-hop and/or two-hop neighbors. Accordingly, the space for the address field need only be sufficient for “local” unique identification. For example, the address field may be 20 configured to include $\log_2 J$ bits. In this example, the address stored within the address field may be the index of the microslot assigned the identified node (e.g., which is known to its respective neighbor nodes).

Further, it is understood that the above bit-length examples related to the load on the control channel are given for example 25 purposes only, and “real world” data loads on the control channel may include additional bits, for example, related to a preamble, synchronization, etc. The method of Figure 2 may also take into

5 account fixed time intervals for propagation delays, and switching time (e.g., switching of a node from transmit mode to receive mode). Accordingly, the overhead for the control channel may be higher than the examples given above in real world scenarios. Thus, based on case-specific network parameters, the higher load may lead, in some 10 cases, to excessive overhead.

In an example, the node degree (i.e., the highest number of neighbors for any node in the network) may be limited via local topology control. Topology control is a preparatory process carried out before routing is attempted. Topology control is used by designers of 15 wireless packet networks to lower the node degree, simplify routing and lower the nodes' energy consumption, while preserving strong connectivity. Topology control may reduce or shorten longer branches from routing paths by replacing the longer branches with a series of short hops. The traffic into and out of each node is then routed via a 20 reduced set of neighbors. The number of two-hop neighbors is also thereby reduced. Topology control may also be implemented in a distributed fashion, such that each node may independently execute its respective topology control process. Topology control is well-known in the art and will not be discussed further for the sake of brevity.

25 In another example, the load or traffic on the control channel may be reduced by grouping a number of timeslots into a single, longer frame. The method of Figure 2 may then be executed once per frame. The control channel messaging for each combined frame may

5 carry information associated with data transmission scheduling for the entirety of the longer frame. The information content of each control channel message scales with the number of timeslots per frame, but other parameters (e.g., synchronization bits, the “dead” time intervals during which no data is transmitted, etc.) are not

10 necessarily affected, such that the control channel load per timeslot goes down. However, grouping frames in this manner may increase the delay.

Example embodiments of the present invention being thus described, it will be obvious that the same may be varied in many ways. For example, while above-described example embodiments are directed to wireless networks, it is understood that other example embodiments of the present invention may be directed to any wireless network having at least a portion being wireless compliant. For example, while not explicitly shown in Figure 2, any given node in the 20 example wireless network 200 described above may further be connected to an Internet source, a telecommunication source, etc.

Such variations are not to be regarded as a departure from the spirit and scope of the exemplary embodiments of the invention, and all such modifications as would be obvious to one skilled in the art are 25 intended to be included within the scope of the invention.

5 What is claimed:

1. A method of managing transmission in a wireless network,

comprising:

10 sending (S305) a request for permission to transmit by each ready node in the wireless network, each ready node being a node of the wireless network ready to transmit, each request identifying a node in the network that is the destination, and each request being sent over a control channel;

15 performing (S310) a block operation at each destination node such that each destination node selectively sends Block messages to neighboring nodes based on respective transmission priorities for the ready nodes neighboring the destination node, the block message instructing the neighboring node not to transmit;

20 performing (S320) (S335) an announce operation at each ready node to announce a transmission state of the ready node, the transmission state being one of a blocked from transmitting state and a cleared to transmit state, the blocked from transmitting state being a state in which at least one uncleared block message has been received by the ready node, and the cleared to transmit state being a 25 state in which no uncleared block messages have been received at the ready node;

27 performing (S325) a block/clear operation at each destination node such that each destination node selectively sends block

- 5 messages and clear messages to neighboring nodes based on the transmission state of each neighboring node, the clear message clearing any block message previously sent by the destination node; repeating the announce and block/clear operations for a number of iterations;
- 10 sending transmissions over a payload channel from ready nodes in the clear to transmit state.

2. The method of claim 1, wherein the block operation at each destination node comprises:

- 15 determining a priority number for each ready node neighboring the destination node;
- determining a priority number for the destination node if the destination node is also a ready node;
- determining nodes to be blocked based on the determined priority numbers; and
- 20 sending a block message to each of the nodes determined to be blocked.

3. The method of claim 2, wherein the determining nodes to be blocked step comprises, for each destination node:
 - 25 determining the ready node with the highest priority number among a set containing the ready nodes neighboring the destination node and the destination node, if the destination node is a ready node;

5 determining to block the ready nodes requesting permission to
transmit to the destination node if the destination node is determined
to have the highest priority number among the set;
 determining to block the ready nodes neighboring the
destination node that have requested permission to transmit to the
10 destination node if the ready node determined to have the highest
priority number among the set has requested permission to transmit
to a node other than the destination node; and
 determining to block the ready nodes neighboring the
destination node, except for the ready node determined to have the
15 highest priority number among the set, if this node requested
permission to transmit to the destination node.

4. The method of claim 1, wherein the announce operation at each
ready node comprises:
20 sending an announce message indicating the ready node is in
the blocked from transmission state if the ready node has received at
least one uncleared block message; and
 sending an announce message indicating the ready node is in
the cleared to transmit state if the ready node has not received at least
25 one uncleared block message.

5. The method of claim 1, wherein the block/clear operation

- 5 is performed at each destination node such that each destination node selectively sends block messages or clear messages to neighboring nodes based on the transmission state of each neighboring node and the transmission priority of each neighboring node.
- 10 6. The method of claim 1, wherein the block/clear operation performed comprises, for each destination node:
 - determining a priority number for each ready node neighboring the destination node;
 - determining a priority number for the destination node if the destination node is also a ready node;
 - 15 determining the ready node with the highest priority number among a set containing the ready nodes neighboring the destination node and the destination node, if the destination node is a ready node;
 - determining to block the ready nodes requesting permission to transmit to the destination node if the destination node is determined to have the highest priority number among the set;
 - 20 determining to block the ready nodes neighboring the destination node that have requested permission to transmit to the destination node if the ready node determined to have the highest priority number among the set has requested permission to transmit to a node other than the destination node;
 - 25 determining to block the ready nodes neighboring the destination node, except for the ready node determined to have the

- 5 highest priority number among the set, if this node requested permission to transmit to the destination node;
 - determining to clear the ready nodes neighboring the destination node that have requested permission to transmit to a node other than the destination node if no nodes neighboring the destination node are in the cleared to transmit state and the ready node with the highest priority number requested permission to transmit to a node other than the destination node; and
 - determining to clear an identified node neighboring the destination node if no nodes neighboring the destination node are in the cleared to transmit state and the identified neighboring node requests permission to transmit to the destination node, the identified neighboring node being the node neighboring the destination node with the highest priority number.
- 10
- 15
- 20 7. The method of claim 1, further comprising:
 - sending, from each destination node receiving a transmission on the payload channel, an acknowledgement over the payload channel.
- 25 8. The method of claim 2, wherein the determining a priority number for the destination node step determines the priority number based on a serial number of the destination node.

5 9. The method of claim 2, wherein the determining a priority number
for each ready node step uses a feedback shift register at each ready
node to generate a different priority number for each ready node.

10 10. The method of claim 9, wherein the feedback shift register is
clocked at the timeslot rate.

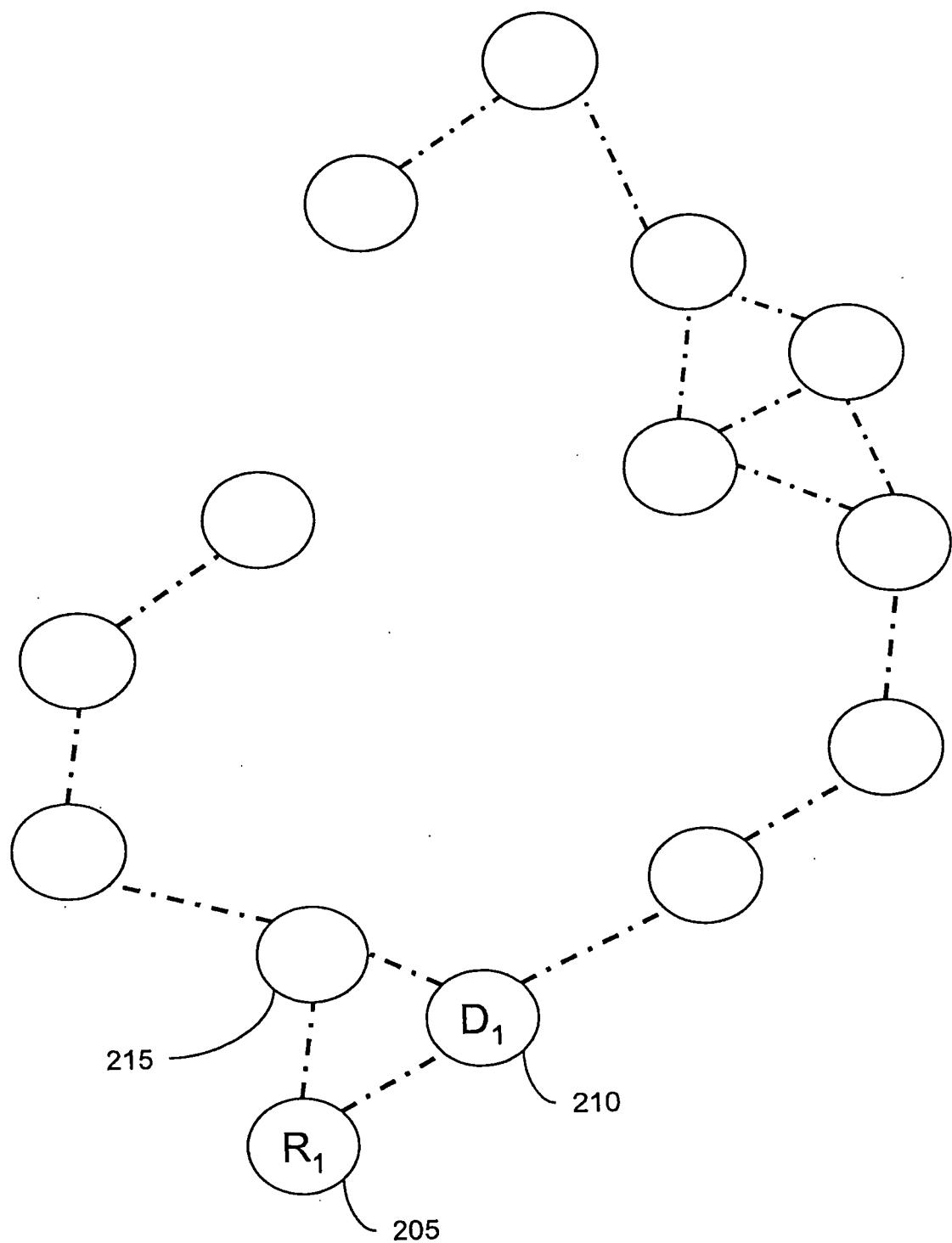

200

FIGURE 1

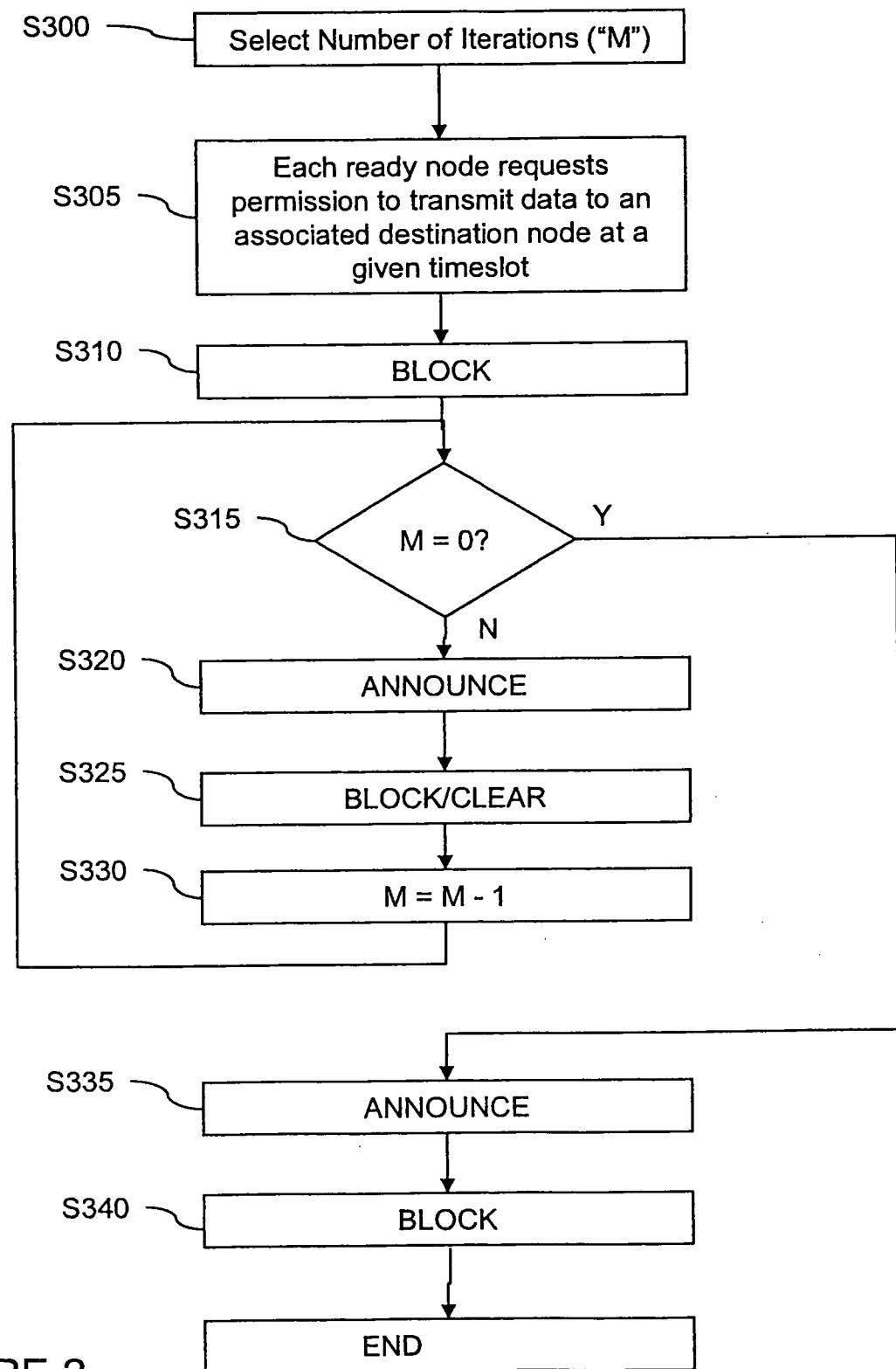


FIGURE 2

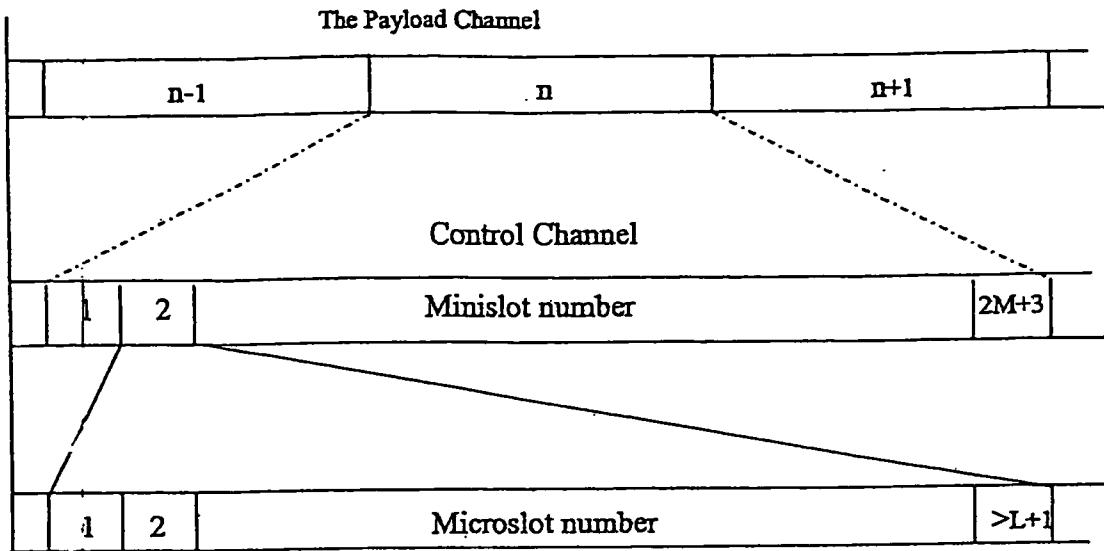
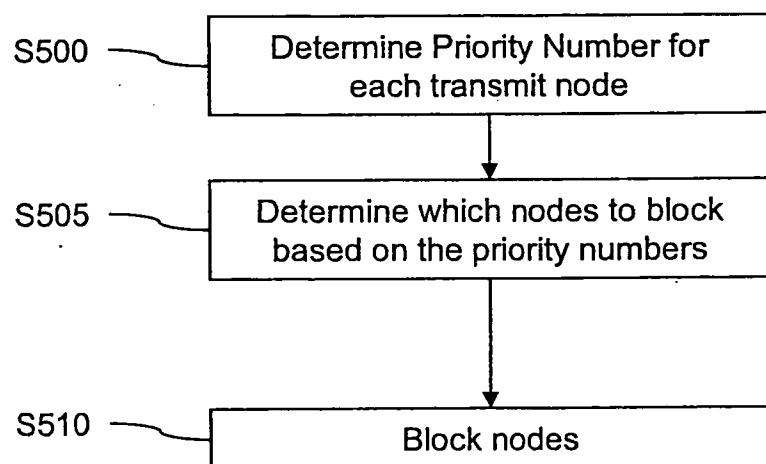



FIGURE 3

FIGURE 4

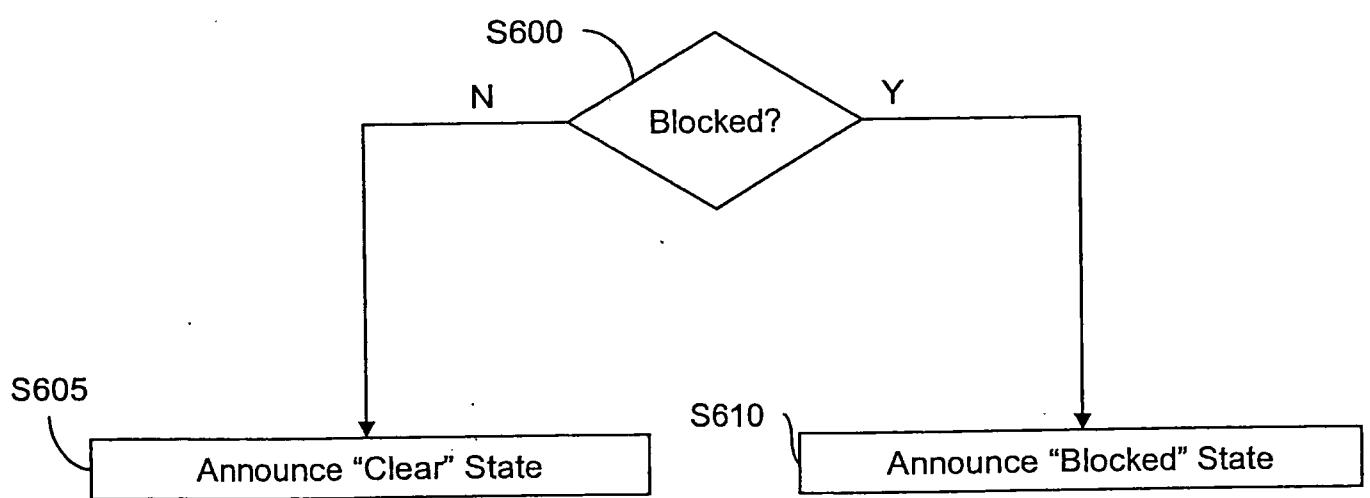


FIGURE 5

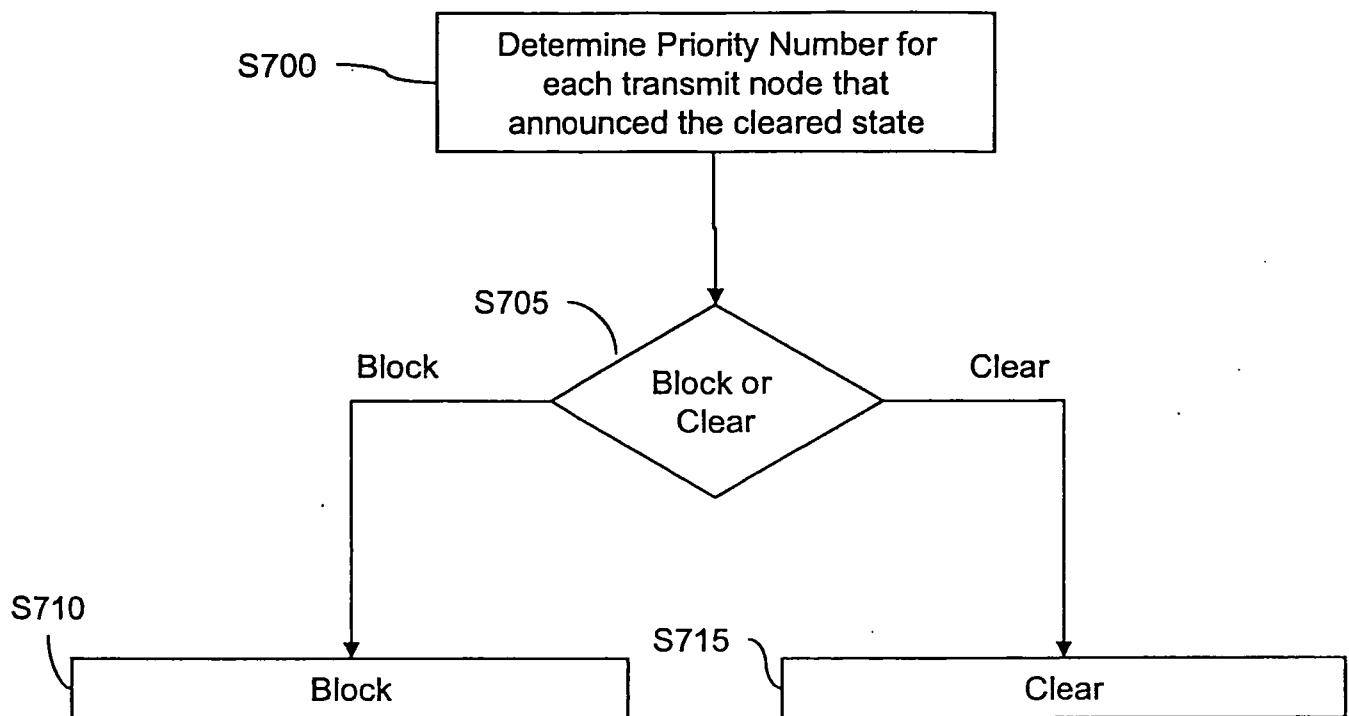


FIGURE 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2008/008848

A. CLASSIFICATION OF SUBJECT MATTER
INV. H04L12/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	BAO L ET AL: "RECEIVER-ORIENTED MULTIPLE ACCESS IN AD HOC NETWORKS WITH DIRECTIONAL ANTENNAS" WIRELESS NETWORKS, ACM, NEW YORK, NY, US, vol. 11, no. 1/02, 1 January 2005 (2005-01-01), pages 67-79, XP001224848 ISSN: 1022-0038 paragraph [03.2]; figures 5-7 -----	1-10
A	EP 1 768 438 A (NIPPON TELEGRAPH & TELEPHONE [JP]) 28 March 2007 (2007-03-28) paragraph [0005] - paragraph [0007] -----	1-10

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

11 November 2008

19/11/2008

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Orfanos, Georgios

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/US2008/008848

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 1768438	A 28-03-2007 EP	1768439 A2	28-03-2007