01/33337 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2001 (10.05.2001)

PCT

(10) International Publication Number

WO 01/33337 A2

(51) International Patent Classification’: GOG6F 9/00

(21) International Application Number: PCT/US00/29907
(22) International Filing Date: 30 October 2000 (30.10.2000)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/162,825
09/672,562

1 November 1999 (01.11.1999)
28 September 2000 (28.09.2000)

Us
Us

(71) Applicant: CURL CORPORATION [US/US]; 8th Floor,

400 Technology Square, Cambridge, MA 02139 (US).

(72) Inventors: HALSTEAD, Robert, H., Jr.; 24 Louise
Road, Belmont, MA 02478 (US). KRANZ, David, A.;
115 High Haith Road, Arlington, MA 02476 (US). TER-
MAN, Christopher, J.; 60 Cedar Street, Newton Center,
MA 02459 (US). WARD, Stephen, A.; 199 Coolidge

Avenue, #803, Watertown, MA 02472 (US).

(74) Agents: SMITH, James, M. et al.; Hamilton, Brook,
Smith & Reynolds, P.C., Two Militia Drive, Lexington,
MA 02421 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD SUPPORTING PROPERTY VALUES AS OPTIONS

INSTANCE OF CLASS
OPTIONS o—t—
20 — 22
PROPERTY 1| VALUE 1 /
PROPERTY 10| VALUE 10 24 26 28
([(
~i e > o— >
PROPERTY 3 PROPERTY 8 PROPERTY 13
VALUE 3 VALUE 8 VALUE 13

(57) Abstract: To support values of properties, a class includes fields to support values in preallocated memory space and with an
option data structure which supports, in instances of the class, references to option values without preallocation of memory space.
The field and option values are accessed in an instance object of the class using expressions of the same syntactic form. During
compilation, the compiler checks the type of an option value against a type description within the option data structure. If a value
has not been set for an instance object, a get operation results in getting of the default value for the class. Different classes may
support different forms of data structures such as a linked list or a hash table. During compilation, a method call to an object is
encoded without regard to the form of the option data structure. When an option value is changed, a change handler identified by an
option biding of the data structure is processed. That option binding may be located by first searching a mapping data structure for
a previously computed mapping to the option binding or by computing the mapping to the option binding. An option value may be
set in an option data structure from an initialization expression which includes the name of the option value and, as an argument, the
option value. Nonlocal option values may be applied to plural objects in a nonlocal option hierarchy such as a graphical hierarchy.

WO 01/33337 PCT/US00/29907

-1-
SYSTEM AND METHOD SUPPORTING PROPERTY VALUES AS OPTIONS

BACKGROUND OF THE INVENTION

In typical data processing systems, a compiler reads source code and creates
the object code which is ultimately processed. Typically, the compiler creates a data
structure which will support property values which are defined later in the source
code or during run time. In an object oriented system, the compiler may create a
class and a mechanism for creating instances of that class with defined fields of
preallocated memory space into which the values are stored.

An alternative data structure which has, for example, been supported in the
[incr Tk] language allows values to be stored in strings or arrays as options
associated with an instance object. Using that data structure, memory space is only
used for those properties which are given values since the space for those values is
not preallocated. Rather, the space is only allocated when a value is optionally

added to a list of values associated with the instance object.

SUMMARY OF THE INVENTION

In accordance with the present invention, an object is defined with fields to
support values in preallocated memory space and with an option data structure
which supports references to option values without preallocation of memory space
for the full option values. Both field values and option values may be accessed in
the object using expressions of the same syntactic form.

The option data structure may comprise a linked list of option items having
option values. A nonlocal option value may apply to other objects in a nonlocal
option hierarchy such as a graphical hierarchy.

The option data structure may additionally identify change handler code that
is executed when an option value changes. Change handler code for one option may
be defined in different classes within a class inheritance hierarchy, and change

handler code from each class is executed when the option value changes.

WO 01/33337 PCT/US00/29907

2-

A change handler may be identified by an option binding which may be
located by first searching a mapping data structure for a previously computed
mapping to the option binding. If no mapping was previously computed, the
mapping to the option binding is computed and stored in the mapping data structure.

The option data structure may be supported by a class which includes a type
description of the option value. During compilation, the type description in the
option data structure is used to process an operation. For example, the declared type
of a value to be set may be checked against that of the option data structure when the
compiler processes a set operation. Also, the legality of an operation to be
performed on a value obtained in a get operation may be checked based on the type
description.

The option data structure may include a default value. In a get operation to
an instance of the class, if an option value which applies to the instance has been set,
the set option value may be obtained. If no value which applies has been set, the
default value for the class is obtained.

Different classes may support option data structures of different forms.
During compilation, an option operation, such as a get, set or is set? operation on an
option value, is encoded as a method call to an object without regard to the form of
the option data structure supported by the class. The ultimate form of the data

structure is dependent on the called object.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention
will be apparent from the following more particular description of preferred
embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead being placed upon
illustrating the principles of the invention.

Figure 1 illustrates the use of an option list to define properties in accordance

with the present invention.

WO 01/33337 PCT/US00/29907

3-

Figures 2A illustrates an example class hierarchy with option binding lists to
illustrate the present invention.

Figures 2B-2F illustrate an instance of a class type having different option
item data structures.

Figures 3A and 3B present flowcharts of the procedure for finding a most
specific option binding for an option item.

Figure 4 is a flowchart illustrating the process of getting a local option value.

Figure 5 is a flowchart illustrating the method of adding a local option value
to an option list.

Figure 6 is a flowchart illustrating the method of running change handlers
when a local option value is changed.

Figures 7A illustrates a hash table for rapidly identifying option bindings for
options, and Figure 7B is a flowchart illustrating a process of using the hash table of
Figure 7A.

Figure 8 illustrates a class hierarchy for graphical objects in a system
embodying the invention.

Figure 9 illustrates an example class hierarchy with option binding lists for
illustrating the use of nonlocal options in accordance with the present invention.

Figure 10 is a sample graphical hierarchy for illustrating principles of the
invention.

Figure 11 is a flowchart illustrating the process of getting a nonlocal option
value.

Figure 12 1s a flowchart illustrating the process of determining whether a
nonlocal option value has been set.

Figures 13A and 13B present a flowchart for the method of registering
nonlocal options.

Figure 14 presents another graphical hierarchy for illustrating principles of
the invention.

Figure 15 is a flowchart for the process of reregistering nonlocal options.

Figure 16 is a flowchart illustrating the process of adding a nonlocal option

value to an option list.

WO 01/33337 PCT/US00/29907

-4-

Figure 17 is a flowchart for processing change handlers when a nonlocal
option value is changed.

Figure 18 illustrates the use of a hash table for processing nonlocal options in
packages.

Figure 19 illustrates relationships between objects in a graphical hierarchy
that contains tables.

Figure 20 illustrates a typical personal computer in which the invention may
be implemented.

Figure 21 illustrates details of the computer of Figure 20.

DETAILED DESCRIPTION OF THE INVENTION

A description of preferred embodiments of the invention follows.

The preferred embodiment of the invention is presented with respect to the
Curl™ language developed by Curl Corporation of Cambridge, Massachusetts. The
programming language is based upon a language developed at Massachusetts
Institute of Technology and presented in "Curl: A Gentle Slope Language for the
Web," WorldWideWeb Journal, by M. Hostetter et al., Vol II. Issue 2, OReilly &

Associates, Spring 1997.

Like many object-oriented languages (such as Java), the Curl language has
the capability to define "classes" that have "fields." Within those fields, values of
various properties of a class instance may be defined. For example, for a rectangle,
parameters of location, dimensions, color, font and so forth may be defined.

If a class C has a field x, and an instance ¢ of the class C is created by an

expression such as

let c:C = {C}

it is then possible to read the value of ¢'s field x using the expression

CcX

WO 01/33337 PCT/US00/29907

-5-
and it is possible to set the value of ¢'s field x using the statement

set ¢.Xx = new-value

Moreover, the compiler knows the type of the expression c.x based on the

declared type of the field x. The compiler also can check that the new-value in
set ¢.x = new-value

is of a suitable type to be stored into the field x, and can issue an error message if
this is not the case.

For each field that is defined for a class C, each instance of C will have some
space set aside to store the value of that field.

Unlike other object-oriented languages, the Curl language has a mechanism
known as "options" that works like fields but offers a different space/time tradeoff.
An example is presented in Figure 1. Consider an instance 20 of a class which has
several properties which must be defined for that instance. A field might be
provided in the instance for each property and a value for that property provided in
its associated field. Where no value is provided, a default for the class would be
used. However, where the use of defaults is the norm, providing a field for each
property wastes memory space. In accordance with the present invention, fields may
be provided for only those properties which are likely not to use the default. For
example, values of property one and property 10 are included in fields of the
instance 20. To allow for definition of other properties, the embodiment of Figure 1
includes an options pointer to a linked list 22. Only those properties which do not
have fields in the instance and which do not rely on the default value are included in
that linked list. To determine a particular property (option) value, the system
searches the linked list for the desired property, and if the property is not included in
the list, relies on the default. The search of the linked list is more time—ponsuming

than directly accessing a value from a field, but there is a substantial savings in

WO 01/33337 PCT/US00/29907

-6-

memory space where the number of properties which do not rely on the default value
is small.

In the example of Figure 1, any code which requires either property 1 or
property 10 directly accesses the value 1 or value 10 from the associated field in the
instance 20. If, for example, property 8 is required, the system does not find that
property in a field, and the system follows the option pointer to option item 24. The
desired property 8 is compared against the key property 3 in option item 24 and
when no match is found, the pointer to the next option item 26 is followed. Here the
desired property matches the key of option item 26 and the value of property 8
stored in the option item is returned. The system need not search further to the final
option item 28. If property 7 were required, the system would search the option list,
and not finding a match to any of the keys of the option items, would return the class
default for property 7.

As will be seen, the same syntax is used to read or change values regardless
of whether the value is stored in the field or an option list. The compiler is able to
respond appropriately in either case and provide the appropriate type checking.

There are two kinds of options: local and nonlocal. Local options are
discussed immediately below. Nonlocal options provide a mechanism for

propagating values from object to object and are discussed later.

Local Options
If a class C of the Curl language has a local option called y, the option's value

can be accessed using the same expression syntax

c.y

that can be used for fields. The option's value can also be set using the same syntax

that works for fields:

set c.y = new-value

WO 01/33337 PCT/US00/29907

-7-

However, each option has a "default value" that is the initial value of that
option when an instance of the class is created. If a class C has one or more options,
then each instance of C contains an "option list” field that points to a (possibly
empty) linked list of "option items," each containing an "option key" and a value. If

¢ is an instance of C and the expression

cy

is evaluated, c's option list is searched to see whether it contains an option item
whose option key corresponds to y. If so, the associated value is returned. If not, the

default value of the option y is returned.

When the statement

set ¢.y = new-value
is executed, the result depends on whether ¢ already has an option item
corresponding to y. If so, the value in that option item can be replaced with
new-value. (Alternatively, the existing option item can be discarded and a new
option item created.) If there is not a previously existing option item corresponding
to y, an option item corresponding to y is created, new-value is put into it, and the
option item is added to the option list of c.

The option mechanism also supports two other operations:

unset c.y

removes from c the option item, if any, that corresponds to y. This has the effect of

restoring c.y to its default value.

{is-set? c.y}

WO 01/33337 PCT/US00/29907

-8-

returns true or false according to whether a binding for y currently exists on c's
option list. This operation is needed in situations where it is necessary to distinguish
the case where the option y has not been set (or has subsequently been unset) from

the case where the option y has been set to a value that equals its default value.

The use of option lists makes it possible to define a very large set of possible
options for a class without requiring the size of each instance of the class to be
proportional to the number of possible options. The size of each instance is only

proportional to the number of options that have been set on that instance.

Change Handlers
Every option declaration can define a "change handler," which is some code
that is executed whenever the option's value changes. Thus, the most general way to

declare a local option is as follows:

{local-option <name>:<type>=<default value>

<change handler>}

The following is a concrete example:

{define-class Graphic {inherits OptionList}

{local-option border-width:float=0.0
{self.border-width-changed border-width} }

In this example, border-width is a local option of the class Graphic. The
permissible values of this option are of type "float" and the default value is 0.0.
Whenever there is a change (including a transition between set and unset) in the

value of the border-width option for some instance g of Graphic, that instance's

WO 01/33337 PCT/US00/29907

9.

border-width-changed method is invoked with the new border-width value as the
argument.

If the change handler has been invoked because the option was unset, then
the value supplied will be the option's default value. If the program needs to
distinguish between the option's becoming unset and its becoming set to its default
value, the change handler can use the is-set? operation to determine which is the
case.

The change handler mechanism is integrated with class inheritance: if
Rectangle is a subclass of Graphic, the definitions of both the
Rectangle and Graphic classes can include option declarations for the

same option, specifying different change handlers:
{define-class Graphic {inherits OptionList}

{local-option border-width:float=0.0
{self border-width-changed border-width}}

{define-class Rectangle {inherits Graphic}

{local-option border-width:float

{self.rectangle-border-processing border-width} }

In this situation, if the border-width option of an instance of Rectangle is set,
both change handlers will be invoked. This allows a subclass to extend the change
handling that is performed by its base class. Note also that the default value need

not be repeated in the subclass's option declaration.

WO 01/33337 PCT/US00/29907

-10-

Implementation of Options

The Curl compiler processes the option declaration and therefore knows
which option names are valid for any given class, and also knows the declared type
for each such option name. Accordingly (and significantly), it can perform type
checking on uses of options in exactly the same way as it can type-check uses of
fields. Assuming that the type check reveals no problems, the compiler generates

code for each of the fundamental option constructs by translating them as follows:

c.X becomes {c.get-option <x>}
setc.x =17 becomes {c.add-option <x> 17}
unset c.x becomes {c.remove-option <x>}
{is-set? c.x} becomes {c.option-set? <x>}

The notation <x> represents an "option binding" generated by the compiler
that serves as a key for option storage and lookup. Each class that contains an
option declaration for x has an associated option binding for x. When the compiler
compiles a reference such as c.x, where ¢ is an instance of a class C, the compiler
locates the most specific option binding for x that is in the class C or one of its
superclasses. The lookup algorithm used for this process is exactly the same as is
used when compiling references to fields. Thus, if C itself contains a declaration of
the option x, the binding associated with that declaration is used. If not, then if C's
base class D has such a declaration, D's binding is used. If not, the algorithm
proceeds in the same fashion until a declaration of x is located. The term "most
specific option binding" is used for the result: this computation is said to return the
most specific option binding of x in C.

In cases such as the Rectangle/Graphic example above, where declarations of
the same option occur at multiple levels of the class hierarchy, the associated option
bindings are linked together. The option binding corresponding to
Rectangle.border-width contains a "superclass binding pointer" that points to the
option binding corresponding to Graphic.border-width. Each option binding also

contains a "base class binding pointer” that points directly to the end of the chain of

WO 01/33337 PCT/US00/29907

-11-

supérclass binding pointers, providing a quick way to reach the option binding
corresponding to the given option name that lies closest to the root of the class
hierarchy. This "base class option binding" has a special role in the option
implementation. One aspect of this role is that the default value of the option is
always stored in this binding. Other aspects are discussed later.

Each of the methods get-option, add-option, remove-option, and option-set?
is a method of the abstract class OptionCache. All classes that contain option

declarations inherit, directly or indirectly, from OptionCache:

{define-class abstract public OptionCache
{method public abstract {get-option key:OptionBinding}:any}
{method public abstract {add-option key:OptionBinding, value:any}:void}
{method public abstract {remove-option key:OptionBinding}:void}
{method public abstract {option-set? key:OptionBinding}:bool}

The Curl language has a concrete class OptionList which is a subclass of

OptionCache and which provides the linked list of option items described above:

{define-class public OptionList {inherits OptionCache}
field options:Optionltem

Implementations of get-option, add-option, remove-option, and option-set?

}

Thus, it is OptionList that actually contains the "options" field that points to the
linked list of option items. The option key that is used in these option items is the
base option binding. OptionList includes the code required to get and change
options in the option list.

Suppose we then define the following subclasses:

{define-class public A {inherits OptionList}

WO 01/33337 PCT/US00/29907

-12-

{local-option length:float=5.0
{self.request-draw}

}

{local-option width:float=3.0
{self.request-draw}

}
Other code

}

{define-class public B {inherits A}

Code that does not involve the length or width options

}

{define-class public C {inherits B}
{local-option length:float
{self.tell-user length}

}
Other code

}

When these definitions are compiled, the compiler generates an
OptionBinding object corresponding to each local-option declaration in the program
as illustrated at 30, 32 and 34 of Figure 2 A. Each OptionBinding object has fields

including the following:

name: the name of the option

nonlocal?: true if the option is a nonlocal option

type: the type of values to which the option can be set
default-value: the default value of the option, or else null

has-change-handler?: true if the option declaration included a change handler

WO 01/33337 PCT/US00/29907

-13-

change-handler: a procedure containing the code for the change handler, if
one was specified

superclass-option-binding: the OptionBinding, if any, corresponding to the
closest declaration of this option in a superclass

base-option-binding: the OptionBinding that is reached by following the
superclass-option-binding links repeatedly until the last OptionBinding in the chain
1s reached

next: used to build a linked list of the OptionBindings that correspond to

declarations in a particular class

The compiler also generates an object 36, 38, 40 to describe each class (e.g.,
A, B, and C); each of these objects points to a list of all the OptionBinding objects
corresponding to option declarations appearing in the definition of that class.

More specifically, class type object 36 for class A points to its base class
OptionList. It also points to a linked list of its option bindings including bindings 30
and 32. Option binding 30 is for the property "length" and option binding 32 is for
the property "width." The fields are filled in accordance with the class definitions
presented above.

Class type B 38 references its base class A 36 from which it inherits, and also
points to a linked list of option bindings. Those option bindings do not involve the
length or width options and thus are not illustrated in this example.

Class type object C 40 inherits from and refers to its base class B and also
points to an option binding linked list which includes an option binding for the.
property "length." In this case, superclass A has the only other declaration of
length, so both the superclass-option-binding and base-option-binding pointers point
to option binding 30 of superclass A.

Figures 2B through 2E illustrate four possible instances of class C. In Figure
2B, the instance object points to the class type 40 for class C in Figure 2A. It may
include values in other fields. In this case, the option pointer is null so the default

values are used for all properties not included in fields. In particular, the length and

WO 01/33337 PCT/US00/29907

-14-

width values are both taken as the defaults of option bindings 30 and 32 of the base
class A.

In the case of Figure 2C, the length option of this instance is explicitly set to
12 and the width option is set to 8. The instance still points to the class type object
40 and additionally has a pointer to an option list including option items 46 and 48.
Within that linked list, option item 46 includes as its key a pointer to the base option
binding 30 for class A, "length," and the option item 46 also includes a value of 12.
The option item 48 includes as its key a pointer to the base option binding 32 of
Figure 2A and a value 8.

If another option for the color blue were added, the linked list would be
extended as illustrated in Figure 2D. The key for option item 50 would point to a
base option binding for color, not previously described, as well as the value blue.

Finally, if the width option were unset, the option item 48 would be removed
from the linked list and the next pointer of option item 46 would be changed to point
to option item 50 as illustrated in Figure 2E.

When an option item is added to an option list, the compiler must determine
the base option binding to be inserted as the key in the option item. To that end, the
compiler first looks to the class objects and their option binding lists to determine
the most specific option binding. For example, if the instance is of Type C, the
compiler first looks to the option binding list of ClassType C object 40 for an option
binding having an option name which matches that of the option item being created.
For example, for a "length" option item such as Optionltem 46, option binding 34 is
located. That option binding then provides the appropriate base option binding to be
included as the key in the option item. If a matching binding were not found in the
option binding list of class C, the option binding list of the class ancestors of class C
would be searched for the most specific option binding. In the case of the "width"
option, for example, the compiler would next look to the option binding list of class
B 38 and, finding no match, would continue to the option binding list of class A 36.
A match would be found at option binding 32, and since the base option binding

field in that option binding points to option binding 32 itself, option binding 32

WO 01/33337 PCT/US00/29907

-15-

would be taken as both the most specific option binding and the base option binding
and would be used as the key in the option item.

When the compiler compiles a reference to an option (e.g., x.length), it
operates as in Figure 3A, using the subroutine get-option-binding of Figure 3B to
find the most specific option binding b. At 31, c is defined as the class type object
that represents x's type, n is the option name, such as length, for which the most
specific option binding is being searched. At 31, the subroutine get-option-binding
of Figure 3B is called. This is a recursive routine which first searches through the
option bindings list of the class c and then, if an option binding is not found, is
called again to search base classes, that is, immediate parents of the class object. At
33, b is defined as the option bindings pointer of class ¢ which points to the linked
list of option bindings. For example, if the class type is object 40 of Figure 2A, the
option binding pointer is a pointer to option binding 34. At 35, if there is an options
binding list, b is not null and the name of the first option binding is compared to the
name being searched at 37. If the names match, the most specific option binding has
been located and is returned to 31 of Figure 3A. If the names do not match at 37, b
is changed at 41 to the next pointer value of the option binding considered. Thus,
the system loops through 35, 37 and 41 until a match is found with the option name
or the option binding list is completed.

Once the search of an option binding list is completed, the system defines the
array bcs as an array of the base classes at 43. A base class is an immediate parent
class. For example, class 38 is the base class of class 40. An index i is set to zero
and a limit is set at the number of base classes in the array bes. At 45, if it is
determined that there is gbase class, the get-option-binding subroutine of Figure 3B
is called for that base class. Thus, that parent option binding list is searched for a
match with the option name. If there is no match, the system continues to that
parent's base classes and so on. If no option binding is returned at 47, as determined
at 49, the index i is incremented at 53 in order to call get-option-binding for another
parent. Once all parents have been searched with no returned option binding, null is
returned at 55 to 31. If the test at 49 shows that bb contains an option binding, then
that option binding is returned to 31 at 51.

WO 01/33337 PCT/US00/29907

-16-

Once the get-option-binding routine is complete, either an option binding or
null has been returned at 57. If null is returned, a compilation error "Class member
n not found" is returned. If an option binding was located, code for the requested
option operation is emitted using the returned option binding as the most specific
option binding.

When a program contains an operation to get a local option value (e.g.,

x.length), the compiler translates that operation to a method call

{x.get-option b}

where b is the most specific OptionBinding for the length option for the ClassType
object that represents the type of x. For example, in the case of an instance of class
type C 40, b for the length option would be option binding 34. On the other hand, b
for the width option would be option binding 32 of ClassType A. The get-option-
binding routine of Figure 3B would return the most specific option binding 32 for
width by searching the class hierarchy.

The operation of the get-option method is illustrated in the flowchart of
Figure 4. At 52, the variable bb is defined as the base-option-binding of b, and the
variable p is taken as the options pointer from the instance object (e.g., 42). If at 54,
it is determined that the options pointer is null, the default value is returned from the
base option binding at 56. In the example of Figure 2B, for example, the default
value 5.0 is returned from option binding 30. If the option pointer is not null, the
pointer is used to access the first option item, and the key of that option item is .
compared to the base option binding at 58. If there is a match, such as at 46 in
Figure 2C, the value of the option item 46 is returned at 60. If there is no match, the
pointer p becomes the next pointer of the option item at 62 and is checked for null at
54. The process proceeds until a value is returned.

Certain subclasses of OptionList use subclasses of Optionltem to represent
the option items. This flexibility allows additional information to be attached to the
option items for certain purposes. For example, Table class represents tables that

have rows and columns represented by the classes TableRow and TableColumn,

WO 01/33337 PCT/US00/29907

-17-

each of which is a subclass of OptionList. The Optionltem subclass used by
TableRow and TableColumn has an extra field for a sequence number that records
the order in which options were set. Thus, when a given option is looked up by a
table cell, its associated row and column are both queried for the presence of that
option. If the option is set on both of them, the conflict is resolved by returning the
value associated with whichever option item was set more recently. Further
information about this extension is presented below.

The separation between the abstract OptionCache class and the concrete
OptionList class allows the Curl language to accommodate alternative
representations for the collection of currently set options. For example,
OptionCache can have another subclass OptionHashTable that maintains a hash
table of currently set options instead of storing the information as a linked list.
Thus, classes that inherit from OptionHashTable instead of OptionList would rely on
the hash table to define options. Since the compiler translates an option operation
‘into a method call on an object, and it is the object which defines the operations, the
compiler need not specify a routine or be aware of the specific data structure used
for a particular option.

For example, Figure 2F illustrates the case of an instance object 43 which
points to a class type D. Class type D inherits from a class E which, in turn, inherits
from OptionHashTable. The options pointer of instance 43 points to an Option
Table 45, rather than a linked list. Option Table 45 includes pointers to base option
bindings of class E as keys and includes specific values for those keys. Only keys

for which values have been set are included in the table.

Invoking Change Handlers

When an option item is created or modified, the associated change handlers
need to run. First the most specific option binding is located by getting the option
name out of the option key (base option binding) and then, using the routines of
Figures 3A and B, finding the most specific option binding for that name in the class
of the object whose option value has changed. This most specific option binding is

the head of a chain of option bindings that can be traversed by following the

WO 01/33337 PCT/US00/29907

-18-

superclass option binding pointers. Each of these option bindings has a field that
may contain a pointer, supplied during compilation, to a change handler procedure.
Each change handler found during this traversal is invoked.

Each change handler procedure is a procedure of two arguments. When
invoking a change handler procedure, the first argument should be the object
(instance) whose option changed, and the second argument should be the new value
of that option for that object.

For example, when a program contains an operation to set a local option

value (e.g., set x.length = v), the compiler translates that operation to a method call

{x.add-option b, v}

where b is the most specific OptionBinding for the length option for the ClassType
object that represents the type of x. The operation of the add-option method is
illustrated in the flowchart of Figure 5.

At 64, bb is defined as the base-option-binding of b, and a pointer index p is
set equal to the options pointer of the instance object. If the pointer is null at 66, an
option list is begun by adding an option item at 68, the option item having the base
option binding as a key and v as the value. Then, at 70, notification of the change is
made as discussed below. If at 66, the pointer p is not null, it is used to access the
first option item and the key of that option item is compared to the base option
binding at 72. If there is a match, the value of that option item is changed to v at 74
and notification through change handlers is made at 70. If at 72, the key does not
match, the pointer index p takes on the value of the next pointer of the option item at
76 and the system returns to the null check at 66. The system continues to walk
through the option list until the value is set in an appropriate option item or the next
pointer is null and an option item is added with the value.

The subroutine {local-option-change-notify x, bb, v} runs the change
handlers on the object x, for the option whose base option binding is bb, to notify the
object's change handlers that the value of this option has become v. This subroutine

operates as in Figure 6. At 78, c is the class type object that represents the type of

WO 01/33337 PCT/US00/29907

-19-

the instance object. For example, for the instance object 42 of Figure 2C the class
type object is object 40 of Figure 2A. The subclass binding sb is determined as the
most specific option binding 34 of class 40 having the same name as the base option
binding 30 referenced in the changed option, item 46 in Figure 2C. One might
expect that this binding sb would always equal the binding b referenced at 64 in
Figure 5. However, this is not necessarily the case. The binding b will be the most
specific option binding for the class that is the declared type of the variable or
expression x, but sb will be the most specific binding for the class that is the actual
type of the value used for x. This latter class may be a subclass of the former class,
and hence the most specific option bindings in the two cases may differ.

At 80, it is determined whether the subclass binding sb has a change handler.
If so, as in the case where sb is option binding 34, that change handler is called with
the value v as the new option value at 82. Then, at 84, the superclass option binding
of the subclass biﬁding sb is followed. In the case of Figure 2A, the superclass
option binding is the same as the base option binding, but in more complex cases,
other intermediate classes may be referenced. If the option binding had no change
handler at 80, the system would in any case continue to follow a thread of superclass
option bindings at 84. At 86, it is determined whether that new superclass option
binding is null at 86, and if so, the routine is done at 88. If not, the change handler is
checked at the next superclass option binding at 80 and the system continues.

Obtaining the most specific option binding is a potentially expensive
operation, since it needs to be done at run time each time the value of an option
changes. The straightforward implementation of this operation is a potentially .
expensive search of the data structures generated by the compiler when the classes in
question were compiled, but there is a shortcut. A hash table, indexed by the option
name and the class of the object on which the option is being changed, can quickly
yield the right option binding. When (as is currently the case in the Curl language)
option declarations can occur only within class definitions, this strategy is safe
because options on a class can only be set after instances of the class are created,
which in turn can only happen after the class definition has finished being compiled.

Once a class definition has been compiled, the mapping between option names and

WO 01/33337 PCT/US00/29907

-20-

their most specific option bindings for that class can never change, so there is no risk
of the information in the hash table becoming invalid.

A hash table to obtain most specific option bindings is illustrated in Figure
7A. Each entry in the hash table 90 includes a pointer to a class type object 92 and
an option name such as "length." It also includes a pointer to the most specific
option binding for that option name of that class type 94. For example, if
ClassType 92 in Figure 7A is the class type C 40 of Figure 2A, then OptionBinding
94 will be the option binding 34 of Figure 2A. To access an option binding through
the hash table, a subroutine {get-option-binding-with-hash c, n} is presented in
Figure 7B. At 96, the hash table is checked for the (class type, option name) pair. If
there is a match, the option binding found in the hash table is returned at 98. If there
is no match, the hash table is updated by first running the get-option-binding routine
of Figure 3B for that class and name. In that routine, the option bindings of the class
and, if necessary, option bindings of its base classes, are searched for the required
name. When the option binding is located, the mapping to that option binding is
stored in the hash table at 102 and returned at 104. Alternative embodiments may
allow options to be declared for a class after the class itself has already been defined
and instances of the class have already been created. In that case, the declaration of
a new option outside of a class definition will need to invalidate the hash table so
that it can be rebuilt from the new information in the class descriptors and option
bindings. Since the declaration of new options is expected to be a very infrequent
event compared to the setting of options and invocation of change handlers, the

hash-table strategy will still provide a good performance improvement.

Nonlocal Options

Nonlocal options provide a mechanism by which the setting of an option
value on one object can influence the value that is read using the same option name
on another object. This sort of capability is useful, for example, in building
hierarchies of graphical objects, where setting, say, the background color or font size

on a table affects the background color or font size of the objects within the table.

WO 01/33337 PCT/US00/29907

21-

In the Curl language, this capability is currently used within graphic
hierarchies, which are trees of graphical objects rooted (typically) by an object that
represents a window visible on the screen. However, nonlocal options could be used
in other situations not necessarily connected with graphics. Therefore, the nonlocal
options mechanism is formulated in terms of an "option hierarchy" that could be, but
need not be, a graphic hierarchy. In the case of a graphic hierarchy, an object's
option parent is generally the same as its graphical parent, and an object's option
children are generally the same as its graphical children. However, there are cases in
the Curl graphics system in which an object's option parent and graphical parent
differ. Further, members of a graphical (option) hierarchy are instances of classes
which are members of a distinct class hierarchy. For example a text label may be a
child of a VBox in a graphical hierarchy, and its type TextLabel may separately be a
subclass of the Graphic class in a class hierarchy.

With nonlocal options, an option at one node of a graphical object propagates
down through its children. When a change is made in the option at the root node, all
of the descendants which make use of that option must be notified of the change and
the change handlers for each of those descendants must be processed. With a get or
is-set? operation on local options, it is sufficient to check just the option list of the
particular object of the method call, followed (in the case of a get operation) by use
of the default value in the base option binding if the option is not within the option
list; with nonlocal options, however, the option list of each ancestor in the graphical
hierarchy must be checked for the option before the default value is returned.
Similarly, with a change in an option value, it is not sufficient that the change
handler of the affected object and the like change handlers of that object's ancestors
in the class hierarchy be processed. Rather, all associated change handlers must be
processed throughout the class hierarchy of each affected descendant object in the

graphical hierarchy.

WO 01/33337 PCT/US00/29907

22

An object in an option hierarchy can have one "option parent" and some
number (possibly zero) of "option children." If b is an object and z is declared as a

nonlocal option, the evaluation of the expression
b.z

proceeds as follows. If there is an option item corresponding to z on b's option list,
the associated value is returned. If not, then if b has an option parent, the same
operation is repeated on b's option parent and so on until either a value for z is found
or an object with no option parent is reached. If no value is found anywhere along
the chain, then the default value of the option is returned.

Similarly, when the operation

{is-set? b.z}
is performed on a nonlocal option z, the result is true if the option is set anywhere
along the path of option parents starting with the object b.

Setting and unsetting of nonlocal options works in much the same way as

with local options. In particular, when these operations are performed on an object,

they never affect the object's option parent or more distant option ancestors.
setb.z=17

adds or updates an option item attached to b, and
unset b.z

removes the option item that is attached to b and corresponds to z; if there is no such

option item, then the operation does nothing. A distinction from local options to be

discussed below is that it is not sufficient that just the change handlers of class

WO 01/33337 PCT/US00/29907

23-

ancestors of the changed object be processed. Additionally change handlers of the
object's graphical descendants and their class ancestors must also be processed.

A unique characteristic of nonlocal options is that it must be possible to set a
nonlocal option on any object d in an option hierarchy, even if the option is not
explicitly declared in the class D of the object d or on any of D's superclasses. This
is required because, for example, in a graphic hierarchy one may want to set some
option such as font-size on a container object that displays no text itself but which
may have child objects that display text. To affect the appearance of all of these
children with one option assignment, the option must be set on the container.

This requirement is supported in the Curl language graphic hierarchies by
establishing a common class GraphicOptions that is a subclass of OptionList and is a
superclass of Visual, which is in turn a superclass of every graphical class. Ignoring
other classes not relevant to this discussion, the resulting class hierarchy looks like
Figure 8.

If, say, the definition of the Rectangle class contains a declaration such as

{nonlocal-option background:any="white"}

an option binding for background will also be created in the class GraphicOptions,
which means that the background option will be able to be set not just on a
Rectangle but also on a VBox, HBox, or any other Graphic.

Consider the following code whose compilation produces the data structure

of Figure 9:

{define-class public GraphicOptions {inherits OptionList}
}

We can then define the following subclasses:

{define-class public Visual {inherits GraphicOptions}

{nonlocal-option font-size:float=10.0

WO 01/33337 PCT/US00/29907

-24-

}
Other code

}

{define-class public Graphic {inherits Visual}

Code that does not involve the font-size option

}

{define-class public TextLabel {inherits Graphic}
{nonlocal-option font-size:float
{self.request-layout}

}
Other code

}

The above definitions can be seen to compile directly to the class type object 110
from the GraphicOptions definition; to the class type object 112 having a "font-size"
option binding 114 from the Visual definition; to the class type object 116 from the
Graphic definition; and to the class type object 118 with "font-size" option binding
120 from the TextLabel definition. Further, when the nonlocal-option declarations
are compiled, the compiler produces an Option binding for "font-size" 122 on the
option-bindings list of GraphicOptions.

To avoid building knowledge of the GraphicOptions class into the compiler
and restricting the options mechanism to the case of graphic hierarchies, the decision
about where to create the base class option binding is implemented as follows.
When a nonlocal option is declared for a class C, the compiler finds the superclass
of C that is the closest to the root of the class hierarchy and contains concrete
implementations of get-option and the other methods that provide the interface to the
options implementation (add-option, remove-option, and option-set?). In the above
example, this superclass is OptionList. The base class option binding is then created

at the immediate subclass of this class that is located along the path toward the class

WO 01/33337 PCT/US00/29907

-25-

C. In the above example, then, the base class option binding is created in the
GraphicOptions class.

The provision of nonlocal options need not be coupled, as it is in the Curl
language, with a strategy of storing option values in linked lists, even though the two
approaches do complement each other well.

Figure 10 illustrates a set of instance objects in a graphical hierarchy. An
instance 130 of VBox has two TextLabel instances 132 and 134 as its graphical
children. Each of the instances of TextLabel points to the class type for TextLabel
118 of Figure 9. Each refers to the instance 130 as its option-parent. Only
TextLabel 134 has an OptionList pointing to the option item 135. Option item 135
has as its key a pointer to the GraphicOptions. font-size option binding 122 of Figure
9. VBox also includes an OptionList which includes an option item 136 having as
its key the option binding 122.

When a program contains an operation to get a nonlocal option value (e.g.,

x.font-size), the compiler translates that operation to a method call

{x.get-option b}

where b is the most specific OptionBinding for the font-size option for the
ClassType object that represents the type of x. The operation of the get-option
method when applied to a nonlocal option is illustrated in the flowchart of Figure 11.

At 138, bb is defined as the base option binding of b. To get the font size
option of either text label 132 or text label 134 of Figure 10, that base option binding
would be option binding 122 of Figure 9. At 140, the index p is defined as the
options pointer of the instance under consideration.

Consider the TextLabel 134 where it is determined at 142 that the options
pointer is not null. Then, the pointer is followed to option item 135 where the key is
compared to bb at 144. In this case, there is a match so the value 18.0 is returned
from option item 135 at 146. If there had not been a match of the key, the linked list
of option items would be followed by searching for a match of the key, changing the

index key to the next value found in the option item. If no match were found in the

WO 01/33337 PCT/US00/29907

-26-

option list, p would be null at 142 for the last option item. Similarly, if the instance
of interest were TextLabel 132, p would initially be null because the options entry of
instance 132 is null. In either case, the option parent pointer would be followed at
150 to the parent instance, a distinction from local options where the default value
would be immediately returned from the base option binding.

In the case of option item 132, the option parent pointer leads to the VBox
instance 130. If at 152 it is determined that there is no parent instance, the default
value of the base option binding is returned. In the above example, the value 10.0
would be returned from option binding 122. However, if as in the example of
instance 132 there is an option-parent, the index p becomes the option pointer of that
parent and any linked list of that parent is followed in the loop of 142, 144, 148. In
the example of Figure 10, the instance 130 points to option item 136 which, at 144,
is noted to have a matching key, so the value 24.0 is returned at 146.

When a program contains an operation to determine whether a nonlocal
option value (e.g., x.font-size) is set, the compiler translates that operation to a

method call

{x.option-set? b}

where b is the most specific OptionBinding for the font-size option for the
ClassType object that represents the type of x. The operation of the option-set?
method when applied to a nonlocal option is illustrated in the flowchart of Figure 12.

The Figure 12 procedure is very similar to that of Figure 11 except that when
a key is found to match the base option binding at 164, a true response is returned at
165, and once all linked lists of the instance and its parents have been searched to
find no match, a false is returned at 172. More specifically, at 158 bb is defined as
the base option binding, and at 160 the index p is defined as the options pointer of
the instance being reviewed. If that pointer is determined to not be null at 162, the
key of the first option item is compared with the base option key at 164. The search
of the option list continues through 166. Once the option list has been followed with

WO 01/33337 PCT/US00/29907

27-

no matches, the option parent of the instance is determined at 168. If that option

parent is not null at 170, the option list of the option parent is searched.

Propagation of Information in the Nonlocal Option Hierarchy

Change handlers can be specified for nonlocal options as well as for local
options, but the logic for determining when to invoke a change handler for a
nonlocal option, and what arguments to supply to the change handler, is quite a bit
more complicated than in the case of local options.

If a class such as Rectangle in the above example has a nonlocal option
declaration such as

{nonlocal-option background:any="white"

{self.repaint-background background} }

then the repaint-background method of a Rectangle r will be invoked every time
there is a change in the value of r.background. This means that the change handler
needs to be invoked whenever the value of the background option is set at r or at any
class ancestor of r whose background value is visible to r (i.e., is not shadowed by a
value of the background option set at an intervening object). For efficiency, it is also
desirable to limit the propagation of option-change notifications to subtrees of the
option hierarchy containing at least one object that has a change handler for the
option in question.

These goals are satisfied by code in OptionList that can examine data
structures produced by the compiler and can produce a list of nonlocal option names
for which that object has change handlers. OptionList has a method register-options
that can be invoked to construct this list. Every object that can have option children
must override this basic register-options method with additional code that asks the
option children for their lists of registered options and merges all of this information
into a list of options that is reported by its register-options method.

The operation of x.register-options when x has no option children proceeds
via Figures 13A and 13B. In Figure 13A the variable c is defined as the class type
object that represents the type of x, e.g., the type of TextLabel 134 that has no

WO 01/33337 PCT/US00/29907

-28-

children. An empty list 1 of option bindings is established and is to be filled through
a recursive process in which the option bindings of each class ancestor of the object,
such as TextLabel 134, are checked to determine whether they include nonlocal
options of ¢ with change handlers. To perform that recursive search, a subroutine
{register-class-options c,l} of Figure 13B is called. The completed list is a list of
base option bindings for which this particular object, for example, TextLabel 134, is
registering with the object OptionList for notification of any changes.

Figure 13B will be explained relative to the class definitions of Figure 9. At
202, the variable b is defined as the option bindings pointer of the TextLabel class
type 118. At 204, b is determined to be not null since there is an option binding 120
on the class type 118. At 206, the option binding 120 is checked to determine
whether it includes a nonlocal option with a change handler. With both conditions
true, the base option binding of option binding 120, i.e., option binding 122 is added
to the list at 208 unless that option binding had already been presented in the list.

At 208, it is the base option binding of the option binding which is included
in the list. The class GraphicOptions serves as a common class in which all
graphical objects can locate an option binding which can be recognized by every
object in the graphical hierarchy. That is, the base option binding in GraphicOptions
is a unique option binding to which all graphical objects refer when referring to an
option such as the font size.

At 210, the system continues to follow the option binding list of class type
118 following the next pointers. Through this loop, each option binding of class
type 118 which is nonlocal and has a change handler is added to the list. When that
option binding list is complete, the system defines a set bes which contains the base
classes of class type 118, the immediate parents of class 118 from which the class
directly inherits. The number of those class types is defined as the limit. In this
case, class type 118 has only one parent, class type Graphic 116, which is included
in the set bes. At 214, the limit is greater than zero so the limit has not been
reached. Thus, at 216 the subroutine register-class-options is called for the specified
parent. As a result, all of the parents of the parent 116 are ultimately processed

recursively. Specifically, at 216 the option bindings of class type 116 are checked

WO 01/33337 PCT/US00/29907

-29-

and through that pass of the subroutine register-class-options, all parents of class
type 116 are similarly checked. Once all of the ancestors of class type 116 have
been checked through subroutine calls and all of the appropriate option bindings
have been added to the list 1, the index i is incremented at 218. In this case, there
was only one parent to class type 118, so the limit is reached at 214 and the list is
returned to OptionList at 220.

Once an instance object such as Rectangle 232 or TextLabel 234 in Figure 14
identifies an option for which it is registered to receive information, this option is
included in the list of registered options in its parent VBox 230. That list of
registered options is shown at 236. In the example of Figure 14, the Rectangle
registers to be notified about changes in the nonlocal option fill-color and the
TextLabel registers to be notified about changes in the nonlocal option font-size. As
a result, the registered-options field of the VBox points to a table of option names
including both fill-color and font-size.

Some option parents in the Curl language follow this procedure to recompute
their registered option list each time they are asked for it. Other option parents save
the registered option list when they compute it, and then just return the saved list of
registered options if asked for it again. In either case, there is a need to notify option
parents (and more distant ancestors) when a new object is added to the option
hierarchy and has new option names to register. Thus, when an option parent p
somewhere in the hierarchy gains a new child c, it invokes the
option-reregister-request method of its option parent q unless it can determine that
the addition of ¢ to the hierarchy does not change p's set of registered options. This
invocation prompts q to recompute its own set of registered options and, if
necessary, propagate the reregister request higher up in the option hierarchy. Similar
processing could occur when removing an object from the option hierarchy, to
reduce its parent's set of registered options, but the Curl language does not
implement a protocol for doing this.

Where an object such as VBox 230 of Figure 14 has a list of registered
options, during the reregistration process it must not only register its own options

but those of its children. This process is performed as illustrated in Figure 15. At

WO 01/33337 PCT/US00/29907

-30-

240, the register-class-options subroutine of Figure 13B is called for an object such
as VBox 230, thus obtaining a list of nonlocal option bindings with change handlers
for all class ancestors of VBox 230. A set of graphical children to the VBox 230 is
defined as xc with a number of children nc. The set xc contains all immediate
children but not the more remote descendants of the object. The index i is initially
set at zero. In this example, VBox 230 has two children 232 and 234 which are
included in xc. At 242, the number of children nc is initially greater than zero, so at
244 the system initiates the register-options operation of Figures 13A and 13B for
the first child rectangle 232. Recall that the process is a recursive process by which
all nonlocal options having change handlers are identified for the class Rectangle
and all of the class ancestors of Rectangles. Recall also that, if the object xc[i] can
itself have option children, then the definition of that object will override the
register-options method shown in Figure 13A, adding processing to compute the
options registered by the option children. The list of option bindings located in that
operation are added to the list 1. At 246, the index i is incremented, and in the
example of Figure 14, the system loops back at 242 to run the operation register-
options for the TextLabel object 234.

Once the list | is complete, the list is used at 248 to complete the registered
options list 236 for object 230. Further, the option-reregister-request is next applied
to the graphical parent, in this case the graphical parent of VBox 230. Thus, the
reregistration process is required through the full ancestry of the graphical hierarchy,
and at each object in that ancestry, all graphical children are caused to search their
class hierarchies for nonlocal options having change handlers.

When a set or unset operation occurs on a nonlocal option z at an object a,
the change handlers for z are invoked on a, just as though z were a local option.
Then, each option child ¢ of a that has registered for option z is notified of the
change. If the option z is also set at ¢, no action needs to occur at ¢ because the
value c.z shadows the value a.z. If the option z is not set at c, then c's change
handlers for z (if any) are invoked and then the process is repeated for those option

children of ¢ that have registered for z.

WO 01/33337 PCT/US00/29907

231-

When a program contains an operation to set a nonlocal option value (e.g.,

set x.font-size = v), the compiler translates that operation to a method call

{x.add-option b, v}

where b is the most specific OptionBinding for the font-size option for the
ClassType object that represents the type of x. The operation of the add-option
method in this case is illustrated in the flowchart of Figure 16. By comparison of
Figure 16 to Figure 5, it can be seen that the operation of setting a nonlocal option to
an option list is substantially the same as that of setting a local option. Specifically,
from the definition of the base option binding and of the initial pointer to the option
list at 252, the system searches the option list through the loop of 254, 256 and 258
to locate a matching key at 256. If that key is found, the value is changed at 260. If
the key is not found, an option item is added to the list at 262. The difference in the
two operations is that for nonlocal options, the subroutine nonlocal-option-change-
notify is called at 264.

The subroutine {nonlocal-option-change-notify x, bb, v} runs the change
handlers on the object x for the option whose base option binding is bb, to notify the
object's change handlers that the value of this option has become v. The change
handlers of x's option children and their descendants are also executed if appropriate.
This subroutine operates as in Figure 17. At 270, the local-option-change-notify
routine of Figure 6 is first called to process the change handlers of all of the
superclasses of the object x. In addition, it is determined from the register-options
list of the object, such as list 236 of object 230 in Figure 14, whether any children
need to be notified of the change in the option. At 272, it is determined whether the
base option binding of interest is present in the list 1. If not, the process is done. If
so, all graphical children of the object are notified. At 274, all immediate option
children of the object x, such as object 230, are included in the set xc. The variable
nc is set at the number of children, and the index i is set at zero. At 276, nc is
compared to i to determine whether there are additional children to be notified. If

so, at 278 it is determined whether the option represented by bb is already set in the

WO 01/33337 PCT/US00/29907

-32-

option list of the child. If so, no notification is required and the index i is
incremented at 280. If the option represented by bb is not included in that child's
list, the nonlocal-option-change-notify subroutine of Figure 17 is called for that
child. As aresult, that child will notify its own change handlers and also require that
its children and their descendants notify their change handlers, if applicable.
Keyword Init Arguments

The Curl language allows both positional and keyword arguments to be
supplied when an object is created. These arguments are supplied to the "init"
(initialization) method of the object's class. The Curl language also allows an init
method to specify "..." in its formal parameter list, in which case the positional and
keyword arguments that didn't match other formal parameters specified by the init
method are packaged up into an array.

By convention, graphical objects in the Curl language interpret most
keyword arguments as specifications of options to set on the object, enabling the

following sort of very compact initialization expression:

{VBox background="green", border-width=2pt, font-family="sernf",
{text bold?=true, Top Dog},
{Rectangle width=2cm, height=1cm, fill-color="red"},
{text Bottom of the Barrel} }

Thus, instead of requiring separate set statements for each option argument,
the values of options such as "background" and "fill-color" can be set through the
single initialization expression.

Among the mechanisms provided by OptionList (actually, by a superclass of
OptionList) is a method that can be used to scan for otherwise unmatched keyword

arguments and apply them as option settings to the current object.

Packages and Sharing
The operating system process that executes Curl language computations is

divided into a number of entities, referred to as CurlProcesses, that constitute the

WO 01/33337 PCT/US00/29907

-33-

different protection and storage management domains of the application. Thus, in a
Curl browser, each displayed page of content has its own CurlProcess, and system
functions such as those that operate the "Back" and "Stop" buttons will operate
within yet another CurlProcess. It is a goal of this architecture that packages of code
can be loaded independently into the various CurlProcesses, so that certain classes
would be loaded in some CurlProcesses but not in others. For time and space
efficiency, however, it is desirable that when the same package of the code is loaded
into more than one CurlProcess, the executable code and immutable data structures
associated with the package should be shared and not replicated.

This architecture creates some challenges for the options mechanism,
specifically the mechanism that creates OptionBindings for nonlocal options. If a
package contains a class called Rectangle that declares a nonlocal option u, then
according to the class hierarchy shown above, an option binding for u will be
attached to the GraphicOptions class. However, the GraphicOptions class could be
in a different package from Rectangle, and there could be some CurlProcesses in
which both GraphicOptions and Rectangle are defined, while in other CurlProcesses
it might be the case that only GraphicOptions is defined. The option u should only
be visible in those CurlProcesses where Rectangle is defined, but simple schemes for
managing option bindings would attach the bindings directly to the shared data
structures that represent the GraphicOptions class, causing the option u to become
visible in all the CurlProcesses.

To deal with this problem, the Curl language has a two-tier strategy for
managing option bindings. Whenever an option binding attaches to a class that is
defined in the same package that contains the option binding declaration, the binding
is handled as described in the above presentation. If an option binding declared in a
package P needs to be attached to a class in a different package Q, however, Q's
shared
data structures are not modified. Instead, an entry including the option binding is
made in a hash table that is private to the CurlProcess into which P is being loaded.
Now, in order to determine whether a given class C has an option binding for an

option z, a two-step lookup process is required. This process must check both the

WO 01/33337 PCT/US00/29907

-34-

shared package data structure and the CurlProcess-private hash table to see whether
either of them contains the option binding of interest. Except for this difference, all
of the implementation algorithms described above can be used unchanged.

In Figure 18, each package is represented by an object 290 of type Package,
which has a field "nonlocal-option-table" that points to a hash table 292. Hash table
292 maps ClassType objects to Option Binding objects representing nonlocal
options that should be treated as thoﬁgh they were part of the chain of
OptionBinding objects pointed to by the option-bindings field of the ClassType
object.

The presence of packages changes the logic of "get-option-binding" (Figures
3A and 3B) by adding more processing where Figure 3B returns null. When
packages are present, the "Return null" step in that flowchart is replaced by a search

of the data structures shown in Figure 18.

Table Row/Column Options

The option hierarchy model described above handles most of the
requirements of the Curl language's graphics system, but for tables a more
sophisticated model is useful. In the case of tables, it is useful to be able to attach
options to entire rows or columns, as well as to a table as a whole or just to an
individual table element. The Curl language's package for displaying tables includes
special extensions of the methods that do option lookup and option-change
notification so as to implement this sort of "branching" in the option hierarchy.
Drawing the option parents above their children, the set of ancestors for an object in
a table cell is illustrated in Figure 19.

The algorithm for looking up a nonlocal option's value at an object in the

table is as follows:

1. If the option is set at that object, then return the corresponding value.

WO 01/33337

PCT/US00/29907

-35.

If the option is set at the cell then return the corresponding value. (The
object that represents a table cell is defined so that its type is a subclass of

GraphicOptions.)

If the option is set either at the row or at the column, but not at both, then
return the corresponding value. (The objects that represent rows and

columns are defined so that their types are subclasses of GraphicOptions.)

If the option is set at both the row and the column, find out which value was
set more recently (using the subclassing technique discussed under

"Implementation of Options"), and return that corresponding value.

If the option is set at neither the row nor the column, then continue searching
for a value at the table or one of the table's option ancestors, in the usual

fashion.

This scheme has the pleasant property that after executing the following code:

let t:Table = {Table}

set {t.get-column 2}.background = "green"
set {t.get-row 3}.background = "blue"

the background of the element at position (2,3) in the table will be blue (as wi]l,the

background of all other elements in row 3), while the background of all the other

elements in column 2 will be green. And if we invert the order of the assignments:

var t:Table = {Table}
set {t.get-row 3}.background = "blue"

set {t.get-column 2} .background = "green"

WO 01/33337 PCT/US00/29907

-36-

then the situation will be the same except that the element at (2,3) will now have a
green background. This structure supports a simple semantic description in which,

for example,

set {t.get-column 2}.background = "green"

can be interpreted as just meaning, "color all the cells in column 2 green" no matter

what their color was before.

Implementation on a Computer System

Figure 20 shows an example of a computer system on which embodiments of
the present invention may be implemented. As shown, Computer 1 includes a
variety of peripherals, among them being: i) a display screen 5 for displaying
images/video or other information to a user, ii) a keyboard 6 for inputting text and
user commands. Computer 1 may be a personal computer (PC), workstation,
embedded system component, handheld computer, telecommunications device or
any device containing a memory and processor.

Figure 21 shows the internal structure of Computer 1. As illustrated,
Computer 1 includes mass storage 12, which comprises a computer-readable
medium such as a computer hard disk and/or RAID ("redundant array of inexpensive
disks™). Mass storage 12 is adapted to store applications 14, databases 15, and
operating systems 16. In preferred embodiments of the invention, the operating
system 16 is a windowing operating system, such as RedHat® Linux or Microsoft®
Windows98, although the invention may be used with other operating systems as
well. Among the applications stored in memory 12 is a programming environment
17 and source files. Programming environment 17 compiles the source files written
in a language that creates the output generated by embodiments of the present
invention. In the preferred embodiment of the invention, this language is the Curl™
language, developed by Curl Corporation of Cambridge, Massachusetts. The
programming language is based upon a language developed at Massachusetts

Institute of Technology and presented in "Curl: A Gentle Slope Language for the

WO 01/33337 PCT/US00/29907

-37-

Web," WorldWideWeb Journal, by M. Hostetter et al., Vol II. Issue 2, O'Reilly &
Associates, Spring 1997.

Computer 1 also includes display interface 19, keyboard interface 21,
computer bus 31, RAM 27, and processor 29. Processor 29 preferably comprises a
Pentium II® (Intel Corporation, Santa Clara, CA) microprocessor or the like for
executing applications, such those noted above, out of RAM 27. Such applications,
including the programming environment and/or embodiments of the present
invention 17, may be stored in memory 12 (as above). Processor 29 accesses
applications (or other data) stored in memory 12 via bus 31.

Application execution and other tasks of Computer 1 may be initiated using
keyboard 6 commands which are transmitted to processor 29 via keyboard interface
21. Output results from applications running on Computer 1 may be processed by
display interface 19 and then displayed to a user on display 5. To this end, display
interface 19 preferably comprises a display processor for forming images based on
image data provided by processor 29 over computer bus 31, and for outputting those
images to display 5.

While this invention has been particularly shown and described with
references to preferred embodiments thereof, it will be understood by those skilled
in the art that various changes in form and details may be made therein without

departing from the scope of the invention encompassed by the appended claims.

WO 01/33337 PCT/US00/29907

-38-
CLAIMS
What is claimed is:
1. A method of processing data comprising:

defining an object with defined fields to support values in
preallocated memory space and with an option data structure which supports
references to option values without preallocation of memory space for the
full option values; and

accessing a field value and accessing an option value in the object

using expressions of the same syntactic form.

2. A method as claimed in claim 1 wherein the option data structure identifies

change handler code that is executed when an option value changes.

3. A method as claimed in claim 2 wherein change handler code for one option
is defined in different classes within a class inheritance hierarchy and the
change handler code from each class is executed when the option value

changes.

4, A method as claimed in claim 1 wherein the option data structure includes a
type description of the option value, the method further comprising:
during compilation, using the type description in the option data

structure to process an operation on the option value.

5. A method as claimed in claim 1 wherein an option data structure includes a
default value, the method further comprising, in a get operation to an
instance of the class, if an option value which applies to the instance has
been set, getting the set option value and, if no value which applies has been

set, getting the default value for the class.

WO 01/33337 PCT/US00/29907

-39.

6. A method as claimed in claim 1 comprising;:

defining a first class with a first option data structure of a first form
which supports, in instances of the class, references to option values without
preallocation of memory space for the full option values;

defining a second class with a second option data structure of a
second form which supports, in instances of the second class, references to
option values without preallocation of memory space for the full option
values, the second form being different from the first form; and

during compilation, encoding an option operation as a method call to
an object of the first class and to an object of the second class without regard

to the form of the option data structure supported by the class.

7. A method as claimed in claim 1 further comprising:
notifying objects of a change in an option value through a change
handler identified by an option binding, the option binding being located by
first searching a mapping data structure for a previously computed mapping
to the option binding and, if no mapping was previously computed, by then
computing the mapping to the option binding and storing the mapping in the

mapping data structure.

8. A method as claimed in claim 1 wherein the option data structure comprises

a linked list of option items having option values.

9. A method as claimed in claim 1 wherein a nonlocal option value applies to

other objects in a nonlocal option hierarchy.

10. A method as claimed in claim 9 wherein the nonlocal option hierarchy is a

graphical hierarchy.

11. A data processing system including data objects, the data objects comprising:

defined fields to support values in preallocated memory space;

WO 01/33337

12.

13.

14.

15.

16.

17.

PCT/US00/29907

-40-

an option data structure which supports references to option values
without preallocation of memory space for the full option value, the field
value and option value being accessed in the object with expressions of the

same syntactic form.

A system as claimed in claim 11 wherein the option data structure identifies

change handler code that is executed when an option value changes.

A system as claimed in claim 12 wherein change handler code for one option
is defined in different classes within a class inheritance hierarchy and the
change handler code from each class is executed when the option value

changes.

A system as claimed in claim 11 wherein the option data structure includes a
type description of the option value, the system further comprising a
compiler which uses the type description in the option data structure to

process an operation on the option value.

A system as claimed in claim 11 wherein an option data structure includes a
default value which is obtained when no option value has been set in an

applicable instance object.

A system as claimed in claim 11 comprising plural classes having data
structures of different forms, and a compiler which encodes an option
operation as a method call to an instance object of one of the classes without

regard to the form of the option data structure supported by the class.

A system as claimed in claim 11 further comprising change handlers which
notify objects of a change in an option value and a mapping data structure
which maps an option name and class to an option binding which identifies a

change handler.

WO 01/33337

18.

19.

20.

21.

22.

23.

PCT/US00/29907

-41-

A system as claimed in claim 11 wherein the option data structure comprises

a linked list of option items having option values.

A system as claimed in claim 11 wherein a nonlocal option value applies to

other objects in a nonlocal option hierarchy.

A system as claimed in claim 19 wherein the nonlocal option hierarchy is a

graphical hierarchy.

A data processing system comprising:

means for defining an object with defined fields to support values in
preallocated memory space and with an option data structure which supports
references to option values without preallocation of memory space for the
full option values; and

means for accessing a field value and accessing an option value in the

object using expressions of the same syntactic form.

A computer program product comprising:
a computer usable medium for storing data; and
a set of computer program instructions embodied on the computer
usable medium, including instructions to
define an object with defined fields to support values in
preallocated memory space and with an option data structure which supports
references to option values without preallocation of memory space for the
full option values; and
access a field value and access an option value in the object

using expressions of the same syntactic form.

A product as claimed in claim 22 wherein the computer program instructions

include instructions to notify objects of a change in an option value.

WO 01/33337 PCT/US00/29907

-42-

24. A product as claimed in claim 22 wherein the option data structure comprises

a linked list of option items having option values.

25. A computer data signal comprising a code segment including instructions to:
define an object with defined fields to support values in preallocated
memory space and with an option data structure which supports references to
option values without preallocation of memory space for the full option
values; and
access a field value and access an option value in the object using

expressions of the same syntactic form.

PCT/US00/29907

WO 01/33337

1/25

€1 INTIVA

€1 ALH3d0o4d

8 ANTIVA

8 ALH3d0OHd

8¢

A

€ IANTVA

€ ALH3d0o4d

O

w
T4

O

H
¥e

— 0¢

0L INTVA |0} ALH3IJOHd
L 3ANIVA | | ALH3dOHd
——O SNOILJO

SSV10 40 3ONV.LSNI

WO 01/33337

ClassType

name

llAlI

base-classes

option-bindings

=

36

38~ ClassType

PCT/US00/29907

2/25
—1—>OptionList
OptionBinding 30
name|"length"
nonlocal?|false
typelfioat

default-value

5.0

has-change-handler?

true

change-handler

({self.request-draw})

superclass-option-binding

(null)

base-option-binding

L ——l

next

o]

OptionBinding

)

|32

A

name

"width"

nonlocal?

false

type

float

default-value

3.0

has-change-handler?

true

change-handler

superclass-option-binding

({self.request-draw})
@) j

name

base-option-binding

°—________-v'

base-casses

next

e

option-bindings

ClassType

name

IICII

base-classes

option-bindings

40~

OptionB

!

inding /34

name

"length”

noniocal?

false

type

float

default-value

(null)

has-change-handler?

true

change-handler

superclass-option-binding

[—————

({self.tell-user length}) {}

base-option-binding

[

next

?

FIG. 2A

!

PCT/US00/29907

WO 01/33337

3/25

UIPIM'Y 10}

Buipuig uondp eseg

J¢ OId
yibus|'y Joy
Buipuig uondp eseg
eh —
o'g | enfea oz | enea (spiay 18ul0)
~——0 Aoy o oy o suoido
(Inu) | Xeu e —o Xou All\ ? (adAy)
gy~ wayuondo o - wayuondo | o
D oy adAsse|n
dc ©Old
o —
(spiey 1oul0)
suondo
O o} adAsse|) —o (edfy)
0

PCT/US00/29907

4/25

WO 01/33337

3¢ 'Ol

.onjq, | enfea o'zl | anfea (spiey 1ou0)
~o0 L o Aoy o suondo
(Inu) | Xou e o Xau o\\ 9 (edhy)
05~ wayuondo ot~ wayuondo @ 0
dc Dld
,oniq, | enfea o'g | enea 021 | enjea (spiey 18y10)
~——0 Aoy — 0 Koy S Ao DN suondo
(Inu) | Xeu e o XoU e o Xou g ? (edhy)
om\ wayuondo wv\ wayuondo mv\ waljuondo ﬁ 9

WO 01/33337

PCT/US00/29907

5/25

CLASS TYPE FOR D

OPTION TABLE

——» KEY VALUE

° 12.0

. T
. (TYPE) |
N OPTION .
(OTHER
IELDS)

®

©

o
N

\J
BASE OPTION BINDING
FOR E. WIDTH

v

BASE OPTION BINDING
FOR E.LENGTH

FIG. 2F

45

WO 01/33337 PCT/US00/29907

6/25

Find most specific
option binding

v 31

¢ <-- the ClassType object that represents x's type
n <-- the option name (e.g. "length")

b <-- (get-option-binding ¢, n)

57 50

yes Report compilation error:
"Class member n not found."

no

| /61

Emit code for the option operation, using b as the most specific option binding

FIG. 3A

WO 01/33337 PCT/US00/29907

7/25

({get-option-binding c,@

i 33
b <-- c.option-bindings

35
yes

\ 4

== null?

e 41
b <-- b.next

, 43

39
yes bcs <-- c.base-classes
Return b j<-0

limit <-- number of elements in bcs

45
/k& 55
j no > Return null)

> i< limit

yes 47
bb <-- {get-option-binding bcs[i], n}

49
53\ es/l\ 51
< i+ 1 Y bb==null? > >(Return bb)

FIG. 3B

WO 01/33337 PCT/US00/29907

8/25

C{x.get-option b})
v

52

bb <-- b.base-option-binding
p <-- x.options

56
C Return bb.default-value)

60
{ Return p.value)

p <-- p.next

FIG. 4

WO 01/33337

9/25

C {x.add-option b, v})

64

bb <-- b.base-option-binding
p <-- x.options

76

p <-- p.next

74

p.value <-- v

PCT/US00/29907

68

Add an Optionitem to
the end of X's option
list, with bb as the key
and v as the value

<

y , 70

{local-option-change-notify x, bb, v}

FIG. 5

WO 01/33337 PCT/US00/29907

10/25

({Iocal-option-change-notify X, bb, v})

78

¢ <-- the ClassType object that represents x's type
sb <-- {get-option-binding ¢, bb.name

/82

yes| Call sb.change-handler
with v as the new
option value

Y

sb.has-change-handler?

no

86 no

sb <-- sb.superclass-option-binding |— 84

yes
88

FIG. 6

WO 01/33337 PCT/US00/29907

11/25
Hash Table 90

L/
OptionBinding 94
o ['length™] o name "length"}
nonlocal? false
ClassType 92
L/
FIG. 7A

@et—option-binding-with-hash C, /D

98

Return the
Is (c,n) in the yes _(OptionBinding
hash table? "\ foundin the

hash table

/100

b <-- {get-option-binding ¢, n}

/102

Store the mapping
(¢,n): b
in the hash table

. 104

(Return b }

FIG. 7B

WO 01/33337 PCT/US00/29907

12/25

OptionCache

OpticlmList
Graphquptions

Vislual
Graphic

Rectangle VBox HBox Table ...

FIG. 8

WO 01/33337

PCT/US00/29907

13/25
11 1| =1>OptionList
0\ ClassType OptionBinding
name|'GraphicOptions” Inarnlcg “font-size"
base-classes o nonlocal?|true 122
option-bindings o-/ typeifloat
default-value[10.0
has-change-handler?| false
change-handler
superclass-option-binding|(null) /|
base-option-binding —
1 next ?
' I
ionBindi 114
112 ClassType OptionBinding " (
FVisoal : name|"font-size
name nonlocal?|true
base-classes wI’ fype float
option-bindings °"<-\ default-value|[10.0
I has-change-handler?|false
1 change-handler
116 ClassType superclass-opt!on-b!nd?ng —
0 — base-option-binding O
name/|"Graphic —_ ;
base-classes]
option-bindings °_k_\’ l
1] 8
118\ ClassType
name)'TextLabel"
base-classes ° OptionBinding 120
option-bindings o—4> name|'font-size"
nonlocal?|true
type [float
default-valuej(null)
has-change-handler? [true

change-handler

({self.request-layout}) J

superclass-option-binding

e

base-option-binding

[« e U

next

9

FIG. 9

!

PCT/US00/29907

WO 01/33337

14/25

0L Old

0'8!1 |anjea
|—o Aoy
(inu) | au
/ wayuondo

Sel

9zIs-juoy suondooydeln)
Jo} Buipuiguondo

peL - 1eqeTixe L

[egeTfixe 1o} adA|sse|D
(spieid 18YiQ) (spial4 18y10)
o suondo (nu) | suondo
|_—o wased-uondo _—0 juased-uondo
~0 (edAy) —o0 (edhy)

lageixal \zgl

0've |anjea
«——o0 Aoy
(nu) | peu

9el -~ weyuondo

(spield4 48y10)

uaJp|Iyo

suondo

wased-uondo

(edAy)

xogA NOgElL

XOgA Jo} adA]sse|n

WO 01/33337 PCT/US00/29907
15/25
{x.get-option b}
for a nonlocal option
138
bb <-- b.base-option-binding
140
p <-- x.options
148
4
p <-- p.next
146
@eturn p.valu@:
no 152

150

X <-- x.option-parent

x == null?

FIG. 11

154
, L
@eturn bb.default-val@

WO 01/33337 PCT/US00/29907

16/25

{x.option-setAb}
for a nonlocal option

158

A

bb <-- b.base-option-binding
160
£

p <-- x.options

168
AN

X <-- x.option-parent x == null?

yes 172

Return false

FIG. 12

WO 01/33337 PCT/US00/29907

17/25
Gx.register—optionsD
J 200

¢ <-- the ClassType object that represents x's type
| <-- an empty list of OptionBindings
Call {register-class-options c, /}

Return /
FIG. 13A
Qregister—class-options C,D
v 202
b <-- option-bindings 4
/\<04
es
> b ==null? Y
/ 210
b <-- b.next
206
b.nonlocal ?
no and
b.has-change-handler
?
208
. — 212
bb <-- b.base-option-binding a

Add bb to /unless bb is bes <-- c.base-classes
already present in / i<--0

limit <-- number of elements in bcs

218 214 | 220
i<-i+1 > i< limit? >7° Return)
es

Y5 218

Call {register-class-options bcs{1], }}

FIG. 13B

PCT/US00/29907

WO 01/33337

18/25

9ZIS-]u0)

4010011}

14 E

(sp1at4 18Yi0)

suoido

wased-uondo

(edAy)

|egeIxa L N 1494

L
é |z

A

ogz ~

(spiald 18U10)
suoido
_—0 juaised-uondo
(adAy)
] 282~ o|buelosy
(spletd JaLQ)
——O0 uaipjiyo
o suondo-pala)sibai
suondo
—o0 Juated-uondo
(edAy)
0ez” xogn

PCT/US00/29907

WO 01/33337

19/25

(euoq) Gl "Old

0S¢

{1senbau-1g)sib6a101-uondo usied-uondo x} ||eD
| --> suondo-paiaisibalx

[

gy~

| U ussaud >Um9_m ale Aayj sso|

un/ o1/ jJo sjuswe|e |fe ppy
{suondo-iessibasfilox} --> gt

vz
salh
U > < L+1-->1
ou \.)
cve ove
0-->1!
OX Ul UaJpjiyo Jo Jaquinu ay) --> ou
uaIp|iyox -->ax

sBuipuiguondo jo 1s1} Aidwa u
adAy sx sjuasaidal yey 109lgo adA |} sseln ay

{i ‘o suondo-ssejo-ieisibai} D

e-->|
1-->0

ovz” 1
@mmzcm_Lmum_mmhm_-co_ao.@

WO 01/33337 PCT/US00/29907

20/25

({x.add-option b, v}

for nonlocal options

v 252

bb <-- b.base-option-binding
p <-- x.options

262

Add an Optionltem to
the end of X's option
list, with bb as the key
and v as the value

258
p <-- p.next

yes

260

p.value <-- v

&
<

i ya 264
{nonlocal-option-change-notify x, bb, v}

FIG. 16

WO 01/33337 PCT/US00/29907

21/25

({nonlocal-option-change-notify X, bb, v})

ya 270

Call {local-option-change-notify x, bb, v}
| <-- {x.register-options}

272

Is bb
presentin /?

no

yes 274

Xc <-- x.children
nc <-- the number of children in xc
i<—-0

276
no (Done

) 4

> i<nc?

278
280

f<--i+1]e

Is the option
represented by bb
set at xdi] ?

yes

282
Call {nonlocal-option-change-notify xc{i], bb, v}

FIG. 17

PCT/US00/29907

WO 01/33337

22/25

O4—> vee

IXau

v62- Bupuiguondo

d Xau

veg” Buipuiguondo

81 "©OId

y9lqo
adAlsseD

A

g6~ olqeluseH

a|gej-uondo-jeosojuou

062~

abeyoed

WO 01/33337

PCT/US00/29907
23/25
Table's parent
Talble
Row Column
Cell

Object in table

FIG. 19

WO 01/33337 PCT/US00/29907

24/25

1
5
 —
- C—————— |
— W=
/i s e e e e s e | W W W
6 /[[1T 1 1 1 1 1° 1 \XLL\Xi
/ T 1T 1 A v\ \
L T] 1111 Y\

PCT/US00/29907

WO 01/33337

25/25

s3asvav.iva g1 .
IW3ILSAS ke Ol
oNlLvHado | Ot
INJWNOHIANT | | 62 Le
ONINWVHOOHC })
AHONW3IN —cl Y 7 3
sng
, \
L
y r
3OV4YILINI JOV4H3LNI
aydvogAIM AVdSId

)
Ie

)
61

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

