wO 2008/070812 A2 |00 00 00O OO

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
12 June 2008 (12.06.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

lﬂb A0 OO0 A

(10) International Publication Number

WO 2008/070812 A2

(51) International Patent Classification: (74) Agents: NEEDHAM, Bruce et al.; 8 East Broadway, Suite
GOG6F 3/06 (2006.01) GOG6F 11/10 (2006.01) 600, Salt Lake City, UT 84111 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every

PCT/US2007/086702 kind of national protection available): AE, AG, AL, AM,

. - . AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

(22) International Filing DateG'D bt 2007 (06.122007 CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,

coember (06.12.2007) ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,

(25) Filing Language: English IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

.. R . LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,

(26) Publication Language: English MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL.,

(30) Priority Data: PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,

60/873,111 6 December 2006 (06.12.2006) US TJ, ™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

60/974,470 22 September 2007 (22.09.2007) US ZM, ZW.
(71) Applicants and (84) Designated States (unless otherwise indicated, for every
(72) Inventors: FLYNN, David [US/US]; 8856 Shady kind of regional protection available): ARIPO (BW, GH,

Meadow Drive, Sandy, Utah 84093 (US). THATCHER,
Jonathan [US/US]; 2259 North 2080 West, Lehi, UT
84043 (US). ZAPPE, Michael [US/US]; 4615 Simms
Street, Wheatridge, CO 80033 (US). ATKISSON, David
[US/US]; 13011 South Benchview Cove, Draper, UT

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

84030 (US).

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: APPARATUS, SYSTEM, AND METHOD FOR DATA STORAGE USING PROGRESSIVE RAID

1900

G

1904 N

Receive Request to Store N

Data Segments

h 4

1906 N

Write N Data Segments to N

Storage Devices

h 4

1908 N

Write N Data Segments to Each

Parity-Mirror Device

Storage
Consolidation
Operation?

1912 N

Calculate and Store Parity Data

Segment

1914

End

(57) Abstract: An invention is disclosed for data storage with progres-
sive RAID. A storage request receiver module (1702) receives a request
to store data. A striping module (1704) calculates a stripe pattern for
the data and each stripe includes N data segments. The striping module
(1704) writes the N data segments to N storage devices (150). Each data
segment is written to a separate storage device (150) within a set of stor-
age devices (1604) assigned to the stripe. A parity-mirror module (1706)
writes a set of N data segments to one or more parity-mirror storage de-
vices (1602) within the set of storage devices. A parity progression mod-
ule (1708) calculates a parity data segment on each parity-mirror device
(1602) in response to a storage consolidation operation, and stores the
parity data segments. The storage consolidation operation is conducted
to recover storage space and/or data on a parity-mirror storage device
(1602).

WO 2008/07081.2 A2 {000 0000000 00 0 O

Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

APPARATUS, SYSTEM, AND METHOD FOR DATA STORAGE

USING PROGRESSIVE RAID
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of and claims priority to U.S. Provisional Patent
Application Number 60/873,111 entitled “Elemental Blade System™ and filed on December 6,
2006 for David Flynn, et al., and U.S. Provisional Patent Application Number 60/974,470
entitled “Apparatus, System, and Method for Object-Oriented Solid-State Storage” and filed on
September 22, 2007 for David Flynn, et al., which are incorporated herein by reference.

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION

This invention relates to data storage and more particularly relates to storing data using a
progressive RAID system.
DESCRIPTION OF THE RELATED ART

A redundant array of independent drives (“RAID”) can be structured in many ways to
achieve various goals. As described herein, a drive is a mass storage device for data. A drive, or
storage device, may be a solid-state storage, a hard disk drive (“HDD”), a tape drive, an optical
drive, or any other mass storage device known to those of skill in the art. In one embodiment, a
drive comprises a portion of a mass storage device accessed as a virtual volume. In another
embodiment, a drive includes two or more data storage devices accessible together as a virtual
volume and configured in a storage area network (“SAN”), as a RAID, as just a bunch of
disks/drives (“JBOD”), etc. Typically, a drive is accessed as a single unit or virtual volume
through a storage controller. In a preferred embodiment, the storage controller comprises a
solid-state storage controller. One of skill in the art will recognize other forms of a drive in the
form of a mass storage device that may be configured in a RAID. In the embodiments described
herein, a drive and a storage device are used interchangeably.

Traditionally, the various RAID configurations are called RAID levels. One basic RAID
configuration is RAID level 0 which creates a mirror copy of a storage device. An advantage of
RAID 0 is that a complete copy of data on one or more storage devices is also available on a
mirror copy of the one or more storage devices so that reading the data on the primary drives or
mirrored drives is relatively fast. RAID 0 also provides a backup copy of data in case of a failure
in the primary storage devices. A disadvantage of RAID 0 is that writes are relatively slow

because written data must be written twice.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

2

Another traditional RAID configuration is RAID level 1. In RAID 1, data written to the
RAID is divided into N data segments corresponding to N storage devices in a set of storage
devices. The N data segments form a “stripe.” By striping data across multiple storage devices,
performance is enhanced because the storage devices can work in parallel to store the N data
segments faster than a single storage device can save data comprising the N data segments.
Reading data is relatively slow, however, because is data may be spread over multiple storage
devices and access time of multiple storage devices is typically slower than reading data from
one storage device containing all of the desired data. In addition, RAID 1 provides no failure
protection.

A popular RAID configuration is RAID level 5 which includes striping of N data
segments across N storage devices and storing a parity data segment on an N+1 storage device.
RAID 5 offers failure tolerance because the RAID can tolerate a single failure of a storage
device. For example, if a storage device fails, missing a data segment of a stripe can be created
using the other available data segments and the parity data segment calculated specifically for the
stripe. RAID 5 also typically uses less storage space than RAID 0 because each storage device
of the RAIDed set of storage devices is not required to store a complete copy of the data, but
only a data segment of a stripe or a parity data segment. RAID 5, like RAID 1, is relatively fast
for writing data, but is relatively slow for reading data. Writing data for a typical traditional
RAID 5 is slower than for RAID 1, however, because a parity data segment must be calculated
for each stripe from the N data segments of the stripe.

Another popular RAID configuration is RAID level 6 which includes dual distributed
parity. In RAID 6, two storage devices are assigned as parity-mirror devices (e.g. 1602a,
1602b). Each parity data segment for a stripe is calculated separately so that losing any two
storage devices in the storage device set is recoverable using the remaining, available data
segments and/or parity data segments. RAID 6 has similar performance advantages and
disadvantages as RAID 5.

Nested RAID may also be used to increase fault tolerance where high reliability is
required. For example, two storage device sets, each configured as RAID 5, may be mirrored in
a RAID O configuration. The resulting configuration may be called RAID 50. If RAID 6 is used
for each mirrored set, the configuration may be called RAID 60. Nested RAID configurations
typically have similar performance issues as the underlying RAID groups.

SUMMARY OF THE INVENTION
From the foregoing discussion, it should be apparent that a need exists for an apparatus,

system, and method for progressive RAID that offers the benefits of fault tolerance, faster data

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

3

writing than traditional fault-tolerant RAID levels, such as RAID 0, RAID 5, RAID 6, etc. while
also offering faster data reading than traditional striped RAID levels, such as RAID 1, RAID 5,
RAID 6, etc.. Beneficially, such an apparatus, system, and method would write N data segments
to a parity-mirror storage device, offering the advantage of a RAID 0 system, until the parity data
segment is required to be calculated, such as before or part of a storage consolidation operation.

The present invention has been developed in response to the present state of the art, and
in particular, in response to the problems and needs in the art that have not yet been fully solved
by currently available data management systems. Accordingly, the present invention has been
developed to provide an apparatus, system, and method for reliable, high performance storage of
data with progressive raid that overcome many or all of the above-discussed shortcomings in the
art.

The apparatus for progressive RAID is provided with a plurality of modules including a
storage request receiver module, a striping module, a parity-mirror module, and a parity
progression module. The storage request receiver module receives a request to store data. The
data includes data of a file or of an object. The striping module calculates a stripe pattern for the
data. The stripe pattern includes one or more stripes, and each stripe includes a set of N data
segments. The striping module also writes the N data segments of a stripe to N storage devices,
where each of the N data segments is written to a separate storage device within a set of storage
devices assigned to the stripe.

The parity-mirror module writes a set of N data segments of the stripe to one or more
parity-mirror storage devices within the set of storage devices. The parity-mirror storage devices
are in addition to the N storage devices. The parity progression module calculates one or more
parity data segments for the stripe in response to a storage consolidation operation. The one or
more parity data segments are calculated from the N data segments stored on the one or more
parity-mirror storage devices. The parity progression module also stores a parity data segment
on each of the one or more parity-mirror storage devices. The storage consolidation operation is
conducted to recover at least one of storage space and data on at least one of the one or more
parity-mirror storage devices.

The apparatus, in one embodiment, may include a parity alternation module that
alternates, for each stripe, which of the storage devices within the storage device set are assigned
to be the one or more parity-mirror storage devices for the stripe. In another embodiment, the
storage consolidation operation is conducted autonomously from the storage operations of the

storage receiver module, the striping module, and the parity-mirror module.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

4

In one embodiment, the storage device set includes a first storage device set and the
apparatus includes a mirrored set module that creates one or more storage device sets in addition
to the first storage set, where each of the one or more additional storage device sets include at
least an associated striping module that writes the N data segments to N storage devices of each
of the one or more additional storage sets. In a further embodiment, each of the one or more
additional storage device sets include an associated parity-mirror module for storing a set of the
N data segments. In yet a further embodiment, apparatus includes a parity progression module
for calculating one or more parity data segments.

The apparatus is further configured, in one embodiment, to include an update module that
updates a data segment by receiving an updated data segment. The updated data segment
corresponds to an existing data segment of the N data segments stored on the N storage devices.
The update module copies the updated data segment to the storage device of the stripe where the
existing data segment is stored and to the one or more parity-mirror storage devices of the stripe.
The update module replaces the existing data segment stored on the storage device of the N
storage devices with the updated data segment. The update module replaces the corresponding
existing data segment stored on the one or more parity-mirror storage devices with the updated
data segment in response to the parity progression module not having generated the one or more
parity data segments on the one or more parity-mirror storage devices.

In one embodiment of the apparatus, the set of first storage devices is a first storage
device set and the apparatus includes a mirror restoration module that recovers a data segment
stored on a storage device of the first storage device set. The storage device of the first storage
device set being unavailable. The data segment is recovered from a mirror storage device
containing a copy of the data segment. The mirror storage device includes one of a set of one or
more storage devices storing a copy of the N data segments. In a further embodiment, the mirror
restoration module recovers the data segment in response to a read request from a client to read
the data segment. In yet a further embodiment, the mirror restoration module also includes a
direct client response module that sends the requested data segment to the client from the mirror
storage device.

In one embodiment, the apparatus includes a pre-consolidation restoration module that
recovers a data segment stored on a storage device of the storage set in response to a request to
read the data segment, where the storage device is unavailable, and the data segment is recovered
from the a parity-mirror storage device prior to the parity progression module generating the one

or more parity data segments on the one or more parity-mirror storage devices.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

5

In another embodiment, a post-consolidation restoration module recovers a data segment
stored on a storage device of the storage set, where the storage device is unavailable, and the data
segment is recovered using one or more parity data segments stored on one or more of the parity-
mirror storage devices after the parity progression module generates the one or more parity data
segments in response to a storage consolidation operation.

In one embodiment of the apparatus, a data rebuild module stores a recovered data
segment on a replacement storage device in a rebuild operation, where the recovered data
segment matches an unavailable data segment stored on an unavailable storage device. The
unavailable storage device is one of the N storage devices. The rebuild operation is to restore
data segments onto the replacement storage device to match data segments stored previously on
the unavailable storage device. The recovered data segment may be recovered for the rebuild
operation from a matching data segment stored on a parity-mirror storage device if the matching
data segment resides on the parity-mirror storage device.

The recovered data segment may be recovered from a mirror storage device containing a
copy of the unavailable data segment if the recovered data segment does not reside on the one or
more parity-mirror storage devices. The mirror storage device is one of a set of one or more
storage devices storing a copy of the N data segments. The recovered data segment may be
recovered from a regenerated data segment that is regenerated from one or more parity data
segments and available data segments of the N data segments if the recovered data segment does
not reside on the one or more parity-mirror storage devices or the mirror storage device.

In one embodiment, a parity rebuild module rebuilds a recovered parity data segment on
a replacement storage device in a parity rebuild operation. The recovered parity data segment
matches an unavailable parity data segment stored on an unavailable parity-mirror storage
device. The unavailable parity-mirror storage device includes one of the one or more parity-
mirror storage devices. The parity rebuild operation is to restore parity data segments onto the
replacement storage device to match parity data segments stored previously on the unavailable
parity-mirror storage device.

The recovered parity data segment may be regenerated for the rebuild operation using a
parity data segment stored on a parity-mirror storage device in a second set of storage devices
storing a mirror copy of the stripe. The recovered parity data segment may be regenerated using
the N data segments stored on one of the N storage devices if the N data segments are available
on the N storage devices. The recovered parity data segment may be regenerated using one or
more storage devices of the second set of storage devices storing copies of the N data segments if

one or more of the N data segments are unavailable from the N storage devices and a matching

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

6

parity data segment is not available on the second set of storage devices. The recovered parity
data segment may be regenerated using the available data segments and non-matching parity data
segments regardless of their location within the one or more sets of storage devices.

In a further embodiment, the N storage devices include N solid-state storage devices,
each with a solid-state controller. In yet a further embodiment, at least one of receiving a request
to store data, calculating a stripe pattern and writing N data segments to the N storage devices,
writing a set of N data segments to a parity-mirror storage device, and calculating the parity data
segment occur on one of a storage device of the set of storage devices, a client, and a third party
RAID management device.

Another apparatus may be provided for updating data in a progressive RAID group. The
apparatus may include an update receiver module, an update copy module, and a parity update
module. The update receiver module receives an updated data segment, where the updated data
segment corresponds to an existing data segment of an existing stripe. A stripe includes data
from a file or object divided into one or more stripes, where each stripe includes N data segments
and one or more parity data segments. The N data segments are stored on storage devices of a
set of storage devices assigned to the stripe, and each of the parity data segments is generated
from the N data segments of the stripe and stored on one or more parity-mirror storage devices
assigned to the stripe.

The set of storage devices includes the one or more parity-mirror storage devices, and the
existing stripe includes N existing data segments and one or more existing parity data segments.
The update copy module copies the updated data segment to the storage device where the
corresponding existing data segment is stored and to the one or more parity-mirror storage
devices corresponding to the existing stripe. The parity update module calculates one or more
updated parity data segments for the one or more parity-mirror storage devices of the existing
stripe in response to a storage consolidation operation. The storage consolidation operation is
conducted to recover at least one of storage space and data on one or more parity-mirror storage
devices with the updated one or more parity data segments.

In one embodiment of the apparatus, the updated parity data segment is calculated from
the existing parity data segment, the updated data segment, and the existing data segment. In a
further embodiment, the existing data segment is maintained in place prior to reading the
existing data segment for generation of the updated parity data segment, copied to the data-
mirror storage device in response to the storage device of the N storage devices where the

existing data segment is stored receiving a copy of the updated data segment, and/or copied to

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

7

the data-mirror storage device in response to a storage consolidation operation on the storage
device of the N storage devices where the existing data segment is stored.

In a further embodiment, the updated parity data segment is calculated from the existing
parity data segment, the updated data segment, and a delta data segment, where the delta data
segment is generated as a difference between the updated data segment and the existing data
segment. In yet a further embodiment, the delta data segment is stored on the storage device
storing the existing data segment prior to reading the delta data segment for generation of the
updated parity data segment, copied to the data-mirror storage device in response to the storage
device where the existing data segment is stored receiving a copy of the updated data segment,
and/or copied to the data-mirror storage device in response to a storage consolidation operation
on the storage device where the existing data segment is stored. In one embodiment of the
apparatus, the storage consolidation operation is conducted autonomously from the operations of
the update receiver module and the update copy module.

A system of the present invention is also presented for reliable, high performance storage
of data. The system includes a set of storage devises assigned to a stripe. The set of storage
devices comprising N storage devices and one or more parity-mirror storage devices in addition
to the N storage devices. The system also includes a storage request receiver module, a striping
module, a parity-mirror module, and a parity progression module.

The storage request receiver module receives a request to store data. The data includes
data of a file or an object. The striping module calculates a stripe pattern for the data. The stripe
pattern includes one or more stripes, and each stripe includes a set of N data segments and writes
the N data segments of a stripe to the N storage devices, where each of the N data segments is
written to a separate storage device within the set of storage devices. The parity-mirror module
writes a set of N data segments of the stripe to each of the one or more parity-mirror storage
devices.

The parity progression module calculates one or more parity data segments for the stripe
in response to a storage consolidation operation. The one or more parity data segments are
calculated from the N data segments stored on the one or more parity-mirror storage devices.
The parity progression module also stores a parity data segment on each of the one or more
parity-mirror storage devices, where the storage consolidation operation is conducted
autonomously from the storage operations of the storage receiver module, the striping module,
and the parity mirror module. The storage consolidation operation is conducted to recover at

least one of storage space and data on the one or more parity-mirror storage devices.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

8

The system may further substantially include the modules and embodiments described
above with regard to the apparatus. In one embodiment, the system includes one or more servers
that include the N storage devices and the one or more parity-mirror storage devices. In another
embodiment, the system includes one or more clients in the one or more servers, where the
storage receiver module receives the request from at least one of the one or more clients.

A method of the present invention is also presented for reliable, high performance storage
of data. The method in the disclosed embodiments substantially includes the steps necessary to
carry out the functions presented above with respect to the operation of the described apparatus
and system. In one embodiment, the method includes receiving a request to store data. The data
includes data of a file or of an object. The method includes calculating a stripe pattern for the
data, where the stripe pattern includes one or more stripes and each stripe includes a set of N data
segments. The method includes writing the N data segments to N storage devices, where each of
the N data segments is written to a separate storage device within a set of storage devices
assigned to the stripe.

The method includes writing a set of N data segments of the stripe to one or more parity-
mirror storage devices within the set of storage devices. The one or more parity-mirror storage
devices are in addition to the N storage devices. The method includes calculating a parity data
segment for the stripe in response to a storage consolidation operation and storing the parity data
segment on the parity-mirror storage device. The parity data segment is calculated from the N
data segments stored on a parity-mirror storage device. The storage consolidation operation is
conducted autonomously from receiving a request to store N data segments. The method
includes writing the N data segments to the N storage devices or writing the N data segments to
one or more parity-mirror storage devices. The storage consolidation operation is conducted to
recover at least one of storage space and data on the parity-mirror storage device.

Another method of the present invention is also presented for reliable, high performance
storage of data. The method includes receiving an updated data segment. The updated data
segment corresponds to an existing data segment of an existing stripe. A stripe includes data
from a file or object divided into one or more stripes. Each stripe includes N data segments and
one or more parity data segments. The N data segments are stored on storage devices of a set of
storage devices assigned to the stripe. Each of the parity data segments is generated from the N
data segments of the stripe and stored on one or more parity-mirror storage devices assigned to
the stripe. The set of storage devices include the one or more parity-mirror storage devices. The

existing stripe includes N existing data segments and one or more existing parity data segments.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

9

The method includes copying the updated data segment to the storage device where the
corresponding existing data segment is stored and to the one or more parity-mirror storage
devices corresponding to the existing stripe. The method includes calculating one or more
updated parity data segments for the one or more parity-mirror storage devices of the existing
stripe in response to a storage consolidation operation. The storage consolidation operation is
conducted to recover at least one of storage space and data on one or more parity-mirror storage
devices with the updated one or more parity data segments.

Reference throughout this specification to features, advantages, or similar language does
not imply that all of the features and advantages that may be realized with the present invention
should be or are in any single embodiment of the invention. Rather, language referring to the
features and advantages is understood to mean that a specific feature, advantage, or characteristic
described in connection with an embodiment is included in at least one embodiment of the
present invention. Thus, discussion of the features and advantages, and similar language,
throughout this specification may, but do not necessarily, refer to the same embodiment.

Furthermore, the described features, advantages, and characteristics of the invention may
be combined in any suitable manner in one or more embodiments. One skilled in the relevant art
will recognize that the invention may be practiced without one or more of the specific features or
advantages of a particular embodiment. In other instances, additional features and advantages
may be recognized in certain embodiments that may not be present in all embodiments of the
invention.

These features and advantages of the present invention will become more fully apparent
from the following description and appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily understood, a more particular
description of the invention briefly described above will be rendered by reference to specific
embodiments that are illustrated in the appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not therefore to be considered to be
limiting of its scope, the invention will be described and explained with additional specificity
and detail through the use of the accompanying drawings, in which:

Figure 1A is a schematic block diagram illustrating one embodiment of a system for data
management in a solid-state storage device in accordance with the present invention;

Figure 1B is a schematic block diagram illustrating one embodiment of a system for

object management in a storage device in accordance with the present invention;

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

10

Figure 1C is a schematic block diagram illustrating one embodiment of a system for an
in-server storage area network in accordance with the present invention;

Figure 2A is a schematic block diagram illustrating one embodiment of an apparatus for
object management in a storage device in accordance with the present invention;

Figure 2B is a schematic block diagram illustrating one embodiment of a solid-state
storage device controller in a solid-state storage device in accordance with the present invention;

Figure 3 is a schematic block diagram illustrating one embodiment of a solid-state
storage controller with a write data pipeline and a read data pipeline in a solid-state storage
device in accordance with the present invention;

Figure 4A is a schematic block diagram illustrating one embodiment of a bank interleave
controller in the solid-state storage controller in accordance with the present invention;

Figure 4B is a schematic block diagram illustrating an alternate embodiment of a bank
interleave controller in the solid-state storage controller in accordance with the present invention;

Figure 5A is a schematic flow chart diagram illustrating one embodiment of a method for
managing data in a solid-state storage device using a data pipeline in accordance with the present
invention;

Figure 5B is a schematic flow chart diagram illustrating one embodiment of a method for
in-Server SAN in accordance with the present invention;

Figure 6 is a schematic flow chart diagram illustrating another embodiment of a method
for managing data in a solid-state storage device using a data pipeline in accordance with the
present invention;

Figure 7 is a schematic flow chart diagram illustrating an embodiment of a method for
managing data in a solid-state storage device using a bank interleave in accordance with the
present invention;

Figure 8 is a schematic block diagram illustrating one embodiment of an apparatus for
garbage collection in a solid-state storage device in accordance with the present invention;

Figure 9 is a schematic flow chart diagram illustrating one embodiment of a method for
garbage collection in a solid state storage device in accordance with the present invention;

Figure 10 is a schematic block diagram illustrating one embodiment of a system for
progressive RAID in accordance with the present inventions;

Figure 11 is a schematic block diagram illustrating one embodiment of an apparatus for
progressive RAID in accordance with the present invention;

Figure 12 is a schematic block diagram illustrating one embodiment of an apparatus for

updating a data segment using progressive RAID in accordance with the present invention;

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

11

Figure 13 is a schematic flow chart diagram illustrating an embodiment of a method for
managing data using progressive RAIDing in accordance with the present invention; and

Figure 14 is a schematic flow chart diagram illustrating an embodiment of a method for
updating a data segment using progressive RAIDing in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Many of the functional units described in this specification have been labeled as modules,
in order to more particularly emphasize their implementation independence. For example, a
module may be implemented as a hardware circuit comprising custom VLSI circuits or gate
arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in programmable hardware devices such as
field programmable gate arrays, programmable array logic, programmable logic devices or the
like.

Modules may also be implemented in software for execution by various types of
processors. An identified module of executable code may, for instance, include one or more
physical or logical blocks of computer instructions which may, for instance, be organized as an
object, procedure, or function. Nevertheless, the executables of an identified module need not be
physically located together, but may include disparate instructions stored in different locations
which, when joined logically together, comprise the module and achieve the stated purpose for
the module.

Indeed, a module of executable code may be a single instruction, or many instructions,
and may even be distributed over several different code segments, among different programs,
and across several memory devices. Similarly, operational data may be identified and illustrated
herein within modules, and may be embodied in any suitable form and organized within any
suitable type of data structure. The operational data may be collected as a single data set, or may
be distributed over different locations including over different storage devices, and may exist, at
least partially, merely as electronic signals on a system or network. Where a module or portions
of a module are implemented in software, the software portions are stored on one or more
computer readable media.

kA1

Reference throughout this specification to “one embodiment,” “an embodiment,” or
similar language means that a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one embodiment of the present invention.
Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar
language throughout this specification may, but do not necessarily, all refer to the same

embodiment.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

12

Reference to a signal bearing medium may take any form capable of generating a signal,
causing a signal to be generated, or causing execution of a program of machine-readable
instructions on a digital processing apparatus. A signal bearing medium may be embodied by a
transmission line, a compact disk, digital-video disk, a magnetic tape, a Bernoulli drive, a
magnetic disk, a punch card, flash memory, integrated circuits, or other digital processing
apparatus memory device.

Furthermore, the described features, structures, or characteristics of the invention may be
combined in any suitable manner in one or more embodiments. In the following description,
numerous specific details are provided, such as examples of programming, software modules,
user selections, network transactions, database queries, database structures, hardware modules,
hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize, however, that the invention may be
practiced without one or more of the specific details, or with other methods, components,
materials, and so forth. In other instances, well-known structures, materials, or operations are
not shown or described in detail to avoid obscuring aspects of the invention.

The schematic flow chart diagrams included herein are generally set forth as logical flow
chart diagrams. As such, the depicted order and labeled steps are indicative of one embodiment
of the presented method. Other steps and methods may be conceived that are equivalent in
function, logic, or effect to one or more steps, or portions thereof, of the illustrated method.
Additionally, the format and symbols employed are provided to explain the logical steps of the
method and are understood not to limit the scope of the method. Although various arrow types
and line types may be employed in the flow chart diagrams, they are understood not to limit the
scope of the corresponding method. Indeed, some arrows or other connectors may be used to
indicate only the logical flow of the method. For instance, an arrow may indicate a waiting or
monitoring period of unspecified duration between enumerated steps of the depicted method.
Additionally, the order in which a particular method occurs may or may not strictly adhere to the

order of the corresponding steps shown.

SOLID-STATE STORAGE SYSTEM

Figure 1A is a schematic block diagram illustrating one embodiment of a system 100 for
data management in a solid-state storage device in accordance with the present invention. The
system 100 includes a solid-state storage device 102, a solid-state storage controller 104, a write
data pipeline 106, a read data pipeline 108, a solid-state storage 110, a computer 112, a client

114, and a computer network 116, which are described below.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

13

The system 100 includes at least one solid-state storage device 102. In another
embodiment, the system 100 includes two or more solid-state storage devices 102. Each solid-
state storage device 102 may include non-volatile, solid-state storage 110, such as flash memory,
nano random access memory (“‘nano RAM or NRAM”), magneto-resistive RAM (“MRAM”),
dynamic RAM (“DRAM?”), phase change RAM (“PRAM?”), etc. The solid-state storage device
102 is described in more detail with respect to Figures 2 and 3. The solid-state storage device
102 is depicted in a computer 112 connected to a client 114 through a computer network 116. In
one embodiment, the solid-state storage device 102 is internal to the computer 112 and is
connected using a system bus, such as a peripheral component interconnect express (“PCl-e”)
bus, a Serial Advanced Technology Attachment (“serial ATA”) bus, or the like. In another
embodiment, the solid-state storage device 102 is external to the computer 112 and is connected,
a universal serial bus (“USB”) connection, an Institute of Electrical and Electronics Engineers
(“IEEE”) 1394 bus (“FireWire”), or the like. In other embodiments, the solid-state storage
device 102 is connected to the computer 112 using a peripheral component interconnect (“PCI”)
express bus using external electrical or optical bus extension or bus networking solution such as
Infiniband or PCI Express Advanced Switching (“PCle-AS”), or the like.

In various embodiments, the solid-state storage device 102 may be in the form of a dual-
inline memory module (“DIMM”), a daughter card, or a micro-module. In another embodiment,
the solid-state storage device 102 is an element within a rack-mounted blade. In another
embodiment, the solid state storage device 102 is contained within a package that is integrated
directly onto a higher level assembly (e.g. mother board, lap top, graphics processor). In another
embodiment, individual components comprising the solid-state storage device 102 are integrated
directly onto a higher level assembly without intermediate packaging.

The solid-state storage device 102 includes one or more solid-state storage controllers
104, each may include a write data pipeline 106 and a read data pipeline 108 and each includes a
solid-state storage 110, which are described in more detail below with respect to Figures 2 and 3.

The system 100 includes one or more computers 112 connected to the solid-state storage
device 102. A computer 112 may be a host, a server, a storage controller of a storage area
network (“SAN”), a workstation, a personal computer, a laptop computer, a handheld computer,
a supercomputer, a computer cluster, a network switch, router, or appliance, a database or
storage appliance, a data acquisition or data capture system, a diagnostic system, a test system, a
robot, a portable electronic device, a wireless device, or the like. In another embodiment, a
computer 112 may be a client and the solid-state storage device 102 operates autonomously to

service data requests sent from the computer 112. In this embodiment, the computer 112 and

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

14

solid-state storage device 102 may be connected using a computer network, system bus, or other
communication means suitable for connection between a computer 112 and an autonomous
solid-state storage device 102.

In one embodiment, the system 100 includes one or more clients 114 connected to one or
more computer 112 through one or more computer networks 116. A client 114 may be a host, a
server, a storage controller of a SAN, a workstation, a personal computer, a laptop computer, a
handheld computer, a supercomputer, a computer cluster, a network switch, router, or appliance,
a database or storage appliance, a data acquisition or data capture system, a diagnostic system, a
test system, a robot, a portable electronic device, a wireless device, or the like. The computer
network 116 may include the Internet, a wide area network (“WAN”), a metropolitan area
network (“MAN”), a local area network (“LAN”), a token ring, a wireless network, a fiber
channel network, a SAN, network attached storage (“NAS”), ESCON, or the like, or any
combination of networks. The computer network 116 may also include a network from the IEEE
802 family of network technologies, such Ethernet, token ring, WiFi, WiMax, and the like.

The computer network 116 may include servers, switches, routers, cabling, radios, and
other equipment used to facilitate networking computers 112 and clients 114. In one
embodiment, the system 100 includes multiple computers 112 that communicate as peers over a
computer network 116. In another embodiment, the system 100 includes multiple solid-state
storage devices 102 that communicate as peers over a computer network 116. One of skill in the
art will recognize other computer networks 116 comprising one or more computer networks 116
and related equipment with single or redundant connection between one or more clients 114 or
other computer with one or more solid-state storage devices 102 or one or more solid-state
storage devices 102 connected to one or more computers 112. In one embodiment, the system
100 includes two or more solid-state storage devices 102 connected through the computer

network 118 to a client 116 without a computer 112.

STORAGE CONTROLLER-MANAGED OBJECTS

Figure 1B is a schematic block diagram illustrating one embodiment of a system 101 for
object management in a storage device in accordance with the present invention. The system
101 includes one or more storage device 150, each with a storage controller 152 and one or more
data storage devices 154, and one or more requesting devices 155. The storage devices 152 are
networked together and coupled to one or more requesting devices 155. The requesting device
155 sends object requests to a storage device 150a. An object request may be a request to create

an object, a request to write data to an object, a request to read data from an object, a request to

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

15

delete an object, a request to checkpoint an object, a request to copy an object, and the like. One
of skill in the art will recognize other object requests.

In one embodiment, the storage controller 152 and data storage device 154 are separate
devices. In another embodiment, the storage controller 152 and data storage device 154 are
integrated into one storage device 150. In another embodiment, a data storage device 154 is a
solid-state storage 110 and the storage controller is a solid-state storage device controller 202. In
other embodiments, a data storage device 154 may be a hard disk drive, an optical drive, tape
storage, or the like. In another embodiment, a storage device 150 may include two or more data
storage devices 154 of different types.

In one embodiment, the data storage device 154 is a solid-state storage 110 and is
arranged as an array of solid-state storage elements 216, 218, 220. In another embodiment, the
solid-state storage 110 is arranged in two or more banks 214a-n. Solid-state storage 110 is
described in more detail below with respect to Figure 2B.

The storage devices 150a-n may be networked together and act as a distributed storage
device. The storage device 150a coupled to the requesting device 155 controls object requests to
the distributed storage device. In one embodiment, the storage devices 150 and associated
storage controllers 152 manage objects and appear to the requesting device(s) 155 as a
distributed object file system. In this context, a parallel object file system is an example of a type
of distributed object file system. In another embodiment, the storage devices 150 and associated
storage controllers 152 manage objects and appear to the requesting device 155(s) as distributed
object file servers. In this context, a parallel object file server is an example of a type of
distributed object file server. In these and other embodiments the requesting device 155 may
exclusively manage objects or participate in managing objects in conjunction with storage
devices 150; this typically does not limit the ability of storage devices 150 to fully manage
objects for other clients 114. In the degenerate case, each distributed storage device, distributed
object file system and distributed object file server can operate independently as a single device.
The networked storage devices 150a-n may operate as distributed storage devices, distributed
object file systems, distributed object file servers, and any combination thereof having images of
one or more of these capabilities configured for one or more requesting devices 155. Fore
example, the storage devices 150 may be configured to operate as distributed storage devices for
a first requesting device 155a, while operating as distributed storage devices and distributed
object file systems for requesting devices 155b. Where the system 101 includes one storage
device 150a, the storage controller 152a of the storage device 150a manages objects may appear

to the requesting device(s) 155 as an object file system or an object file server.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

16

In one embodiment where the storage devices 150 are networked together as a distributed
storage device, the storage devices 150 serve as a redundant array of independent drives
(“RAID”) managed by one or more distributed storage controllers 152. For example, a request
to write a data segment of an object results in the data segment being stripped across the data
storage devices 154a-n with a parity stripe, depending upon the RAID level. One benefit of such
an arrangement is that such an object management system may continue to be available when a
single storage device 150 has a failure, whether of the storage controller 152, the data storage
device 154, or other components of storage device 150.

When redundant networks are used to interconnect the storage devices 150 and
requesting devices 155, the object management system may continue to be available in the
presence of network failures as long as one of the networks remains operational. A system 101
with a single storage device 150a may also include multiple data storage devices 154a and the
storage controller 152a of the storage device 150a may act as a RAID controller and stripe the
data segment across the data storage devices 154a of the storage device 150a and may include a
parity stripe, depending upon the RAID level.

In one embodiment, where the one or more storage devices 150a-n are solid-state storage
devices 102 with a solid-state storage device controller 202 and solid-state storage 110, the solid-
state storage device(s) 102 may be configured in a DIMM configuration, daughter card, micro-
module, etc. and reside in a computer 112. The computer 112 may be a server or similar device
with the solid-state storage devices 102 networked together and acting as distributed RAID
controllers. Beneficially, the storage devices 102 may be connected using PCl-e, PCle-AS,
Infiniband or other high-performance bus, switched bus, networked bus, or network and may
provide a very compact, high performance RAID storage system with single or distributed solid-
state storage controllers 202 autonomously striping a data segment across solid-state storage
110a-n.

In one embodiment, the same network used by the requesting device 155 to communicate
with storage devices 150 may be used by the peer storage device 150a to communicate with peer
storage devices 150b-n to accomplish RAID functionality. In another embodiment, a separate
network may be used between the storage devices 150 for the purpose of RAIDing. In another
embodiment, the requesting devices 155 may participate in the RAIDing process by sending
redundant requests to the storage devices 150. For example, requesting device 155 may send a
first object write request to a first storage device 150a and a second object write request with the

same data segment to a second storage device 150b to achieve simple mirroring.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

17

With the ability for object handling within the storage device(s) 102, the storage
controller(s) 152 uniquely have the ability to store one data segment or object using one RAID
level while another data segment or object is stored using a different RAID level or without
RAID striping. These multiple RAID groupings may be associated with multiple partitions
within the storage devices 150. RAID 0, RAID 1, RAIDS, RAID6 and composite RAID types
10, 50, 60, can be supported simultaneously across a variety of RAID groups comprising data
storage devices 154a-n. One skilled in the art will recognize other RAID types and
configurations that may also be simultaneously supported.

Also, because the storage controller(s) 152 operate autonomously as RAID controllers,
the RAID controllers can perform progressive RAIDing and can transform objects or portions of
objects striped across data storage devices 154 with one RAID level to another RAID level
without the requesting device 155 being affected, participating or even detecting the change in
RAID levels. In the preferred embodiment, progressing the RAID configuration from one level
to another level may be accomplished autonomously on an object or even a packet bases and is
initiated by a distributed RAID control module operating in one of the storage devices 150 or the
storage controllers 152. Typically, RAID progression will be from a higher performance and
lower efficiency storage configuration such as RAIDI to a lower performance and higher storage
efficiency configuration such as RAIDS where the transformation is dynamically initiated based
on the frequency of access. But, one can see that progressing the configuration from RAIDS to
RAIDI1 is also possible. Other processes for initiating RAID progression may be configured or
requested from clients or external agents such a storage system management server request. One
of skill in the art will recognize other features and benefits of a storage device 102 with a storage
controller 152 that autonomously manages objects.

SOLID-STATE STORAGE DEVICE WITH IN-SERVER SAN

Figure 1C is a schematic block diagram illustrating one embodiment of a system 103 for
an in-server storage area network (“SAN”) in accordance with the present invention. The system
103 includes a computer 112 typically configured as a server (“server 112”). Each server 112
includes one or more storage devices 150 where the server 112 and storage devices 150 are each
connected to a shared network interface 156. Each storage device 150 includes a storage
controller 152 and corresponding data storage device 154. The system 103 includes clients 114,
114a, 114b that are either internal or external to the servers 112, The clients 114, 114a, 114b may
communicate with each server 112 and each storage device 150 through over one or more

computer networks 116, which are substantially similar to those described above.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

18

The storage device 150 includes a DAS module 158, a NAS module 160, a storage
communication module 162, an in-server SAN module 164, a common interface module 166, a
proxy module 170, a virtual bus module 172, a front-end RAID module 174, and back-end RAID
module 176, which are described below. While the modules 158-176 are shown in a storage
device 150, all or a portion of each module 158-176 may be in the storage device 150, server
112, storage controller 152, or other location,

A server 112, as used in conjunction with in-server SAN, is a computer functioning as a
server. The server 112 includes at least one server function, such as a file server function, but
may also include other server functions as well. The servers 112 may be part of a server farm
and may service other clients 114. In other embodiments, the server 112 may also be a personal
computer, a workstation, or other computer that houses storage devices 150. A server 112 may
access one or more storage devices 150 in the server 112 as direct attached storage (“DAS”™),
SAN attached storage or network attached storage (“NAS”). Storage controllers 150
participating in an in-server SAN or NAS may be internal or external to the server 112.

In one embodiment, the in-server SAN apparatus includes a DAS module 158 that
configures at least a portion of the at least one data storage device 154 controlled by a storage
controller 152 in a server 112 as a DAS device attached to the server 112 for servicing storage
requests from at least one client 114 to the server 112. In one embodiment, a first data storage
device 154a is configured as a DAS to the first server 112a while also being configured as an in-
server SAN storage device to the first server 112a. In another embodiment, the first data storage
device 154a is partitioned so one partition is a DAS and the other is an in-server SAN. In
another embodiment, at least a portion of storage space within the first data storage device 154a
is configured as a DAS to the first server 112a and the same portion of storage space on the first
data storage device 154a is configured as an in-server SAN to the first server 112a.

In another embodiment, the in-server SAN apparatus includes a NAS module 160 that
configures a storage controller 152 as a NAS device for at least one client 114 and services file
requests from the client 114. The storage controller 152 may be also configured as an in-server
SAN device for the first server 112a. The storage devices 150 may directly connect to the
computer network 116 through the shared network interface 156 independent from the server
112 in which the storage device 150 resides.

In one elemental form, an apparatus for in-server SAN includes a first storage controller
152a within a first server 112a where the first storage controller 152a controls at least one
storage device 154a. The first server 112a includes a network interface 156 shared by the first

server 112a and the first storage controller 152a. The in-server SAN apparatus includes a storage

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

19

communication module 162 that facilitates communication between the first storage controller
152a and at least one device external to the first server 112asuch that the communication
between the first storage controller 152a and the external device is independent from the first
server 112a. The storage communication module 162 may allow the first storage controller 152a
to independently access the network interface 156a for external communication. In one
embodiment, the storage communication module 162 accesses a switch in the network interface
156a to direct network traffic between the first storage controller 152a and external devices.

The in-server SAN apparatus also includes an in-server SAN module 164 that services a
storage request using one or both of a network protocol and a bus protocol. The in-server SAN
module 164 services the storage request independent from the first server 112a and the service
request is received from an internal or external client 114, 114a.

In one embodiment, the device external to the first server 112a is a second storage
controller 152b. The second storage controller 152b controls at least one data storage device
154b. The in-server SAN module 164 services the storage request using communication through
the network interface 156a and between the first and second storage controllers 152a, 152b
independent of the first server 112a. The second storage controller 152b may be within a second
server 112b or within some other device.

In another embodiment, the device external to the first server 112a is a client 114 and the
storage request originates with the external client 114 where the first storage controller is
configured as at least part of a SAN and the in-server SAN module 164 services the storage
request through the network interface 156a independent of the first server 112a. The external
client 114 may be in the second server 112b or may be external to the second server 112b. In
one embodiment, the in-server SAN module 164 can service storage requests from the external
client 114 even when the first server 112a is unavailable.

In another embodiment, the client 114a originating the storage request is internal to the
first server 112a where the first storage controller 152a is configured as at least part of a SAN
and the in-server SAN module 164 services the storage request through one or more of the
network interface 156a and system bus.

Traditional SAN configurations allow a storage device remote from a server 112 to be
accessed as if the storage device resides within the server 112 as direct attached storage (“DAS™)
so that the storage device appears as a block storage device. Typically, a storage device
connected as a SAN requires a SAN protocol, such as fiber channel, Internet small computer
system interface (“iSCSI”), HyperSCSI, Fiber Connectivity (“FICON”), Advanced Technology

Attachment (“ATA”) over Ethernet, etc. In-server SAN includes a storage controller 152 inside

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

20

a server 112 while still allowing network connection between the storage controller 152a and a
remote storage controller 152b or an external client 114 using a network protocol and/or a bus
protocol.

Typically, SAN protocols are a form of network protocol and more network protocols are
emerging, such as Infiniband that would allow a storage controller 150a, and associated data
storage devices 154a, to be configured as a SAN and communicate with an external client 114 or
second storage controller 152b. In another example, a first storage controller 152a may
communicate with an external client 114 or second storage controller 152b using Ethernet.

A storage controller 152 may communicate over a bus with internal storage controllers
152 or clients 114a. For example, a storage controller 152 may communicate over a bus using
PClI-e that may support PCI Express Input/Output Virtualization (“PCle-IOV”). Other emerging
bus protocols allow a system bus to extend outside a computer or server 112 and would allow a
storage controller 152a to be configured as a SAN. One such bus protocol is PCle-AS. The
present invention is not limited to simply SAN protocols, but may also take advantage of the
emerging network and bus protocols to service storage requests. An external device, either in the
form of a client 114 or external storage controller 152b, may communicate over an extended
system bus or a computer network 116. A storage request, as used herein, includes requests to
write data, read data, erase data, query data, etc. and may include object data, metadata, and
management requests as well as block data requests.

A traditional server 112 typically has a root complex that controls access to devices
within the server 112. Typically, this root complex of the server 112 owns the network interface
156 such so any communication through the network interface 156 is controlled by the server
112. However, in the preferred embodiment of the in-server SAN apparatus, the storage
controller 152 is able to access the network interface 156 independently so that clients 114 may
communicate directly with one or more of the storage controllers 152a in the first server 112a
forming a SAN or so that one or more first storage controllers 152a may be networked together
with a second storage controller 152b or other remote storage controllers 152 to form a SAN. In
the preferred embodiment, devices remote from the first server 112a may access the first server
112a or the first storage controller 152a through a single, shared network address. In one
embodiment, the in-server SAN apparatus includes a common interface module 166 that
configures the network interface 156, the storage controller 152, and the server 112 such that the
server 112 and the storage controller 152 are accessible using a shared network address.

In other embodiments, the server 112 includes two or more network interfaces 156. For

example, the server 112 may communicate over one network interface 156 while the storage

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

21

device 150 may communicate over another interface. In another example, the server 112
includes multiple storage devices 150, each with a network interface 156. One of skill in the art
will recognize other configurations of a server 112 with one or more storage devices 150 and one
or more network interfaces 156 where one or more of the storage devices 150 access a network
interface 156 independent of the server 112. One of skill in the art will also recognize how these
various configurations may be extended to support network redundancy and improve availability.

Advantageously, the in-server SAN apparatus eliminates much of the complexity and
expense of a traditional SAN. For example, a typical SAN requires servers 112 with external
storage controllers 152 and associated data storage devices 154. This takes up additional space
in a rack and requires cabling, switches, etc. The cabling, switching, another other overhead
required to configure a traditional SAN take space, degrade bandwidth, and are expensive. The
in-server SAN apparatus allows the storage controllers 152 and associated storage 154 to fit in a
server 112 form factor, thus reducing required space and costing less. In-server SAN also allows
connection using relatively fast communication over internal and external high-speed data buses.

In one embodiment, the storage device 150 is a solid-state storage device 102, the storage
controller 152 is a solid-state storage controller 104, and the data storage device 154 is a solid-
state storage 110. This embodiment is advantageous because of the speed of solid-state storage
device 102 as described herein. In addition, the solid-state storage device 102 may be configured
in a DIMM which may conveniently fit in a server 112 and require a small amount of space.

The one or more internal clients 114a in the server 112 may also connect to the computer
network 116 through the server’s network interface 156 and the client’s connection is typically
controlled by the server 112. This has several advantages. Clients 114a may locally and
remotely access the storage devices 150 directly and may initiate a local or remote direct
memory access (“DMA,” “RDMA”) data transfer between the memory of a client 114a and a
storage device 150.

In another embodiment, clients 114, 114a within or external to a server 112 may act as
file servers to clients 114 through one or more networks 116 while utilizing locally attached
storage devices 150 as DAS devices, network attached storage devices 150, network attached
solid-state storages 102 devices participating as part of in-server SANs, external SANs, and
hybrid SANs. A storage device 150 may participate in a DAS, in-server-SAN, SAN, NAS, etc,
simultaneously and in any combination. Additionally, each storage device 150 may be
partitioned in such a way that a first partition makes the storage device 150 available as a DAS, a
second partition makes the storage device 150 available as an element in an in-server-SAN, a

third partition makes the storage device 150 available as a NAS, a fourth partition makes the

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

22

storage device 150 available as an element in a SAN, etc. Similarly, the storage device 150 may
be partitioned consistent with security and access control requirements. One of skill in the art
will recognize that any number of combinations and permutations of storage devices, virtual
storage devices, storage networks, virtual storage networks, private storage, shared storage,
parallel file systems, parallel object file systems, block storage devices, object storage devices,
storage appliances, network appliances, and the like may be constructed and supported.

In addition, by directly connecting to the computer network 116, the storage devices 150
can communicate with each other and can act as an in-server SAN. Clients 114a in the servers
112 and clients 114 connected through the computer network 116 may access the storage devices
150 as a SAN. By moving the storage devices 150 into the servers 112 and having the ability to
configure the storage devices 150 as a SAN, the server 112/storage device 150 combination
eliminates the need in conventional SANs for dedicated storage controllers, fiber channel
networks, and other equipment. The in-server SAN system 103 has the advantage of enabling
the storage device 150 to share common resources such as power, cooling, management, and
physical space with the client 114 and computer 112. For example, storage devices 150 may fill
empty slots of servers 112 and provide all the performance capabilities, reliability and
availability of a SAN or NAS. One of skill in the art will recognize other features and benefits of
an in-server SAN system 103.

In another configuration, multiple in-server-SAN storage devices 150a are collocated
within a single server 112a infrastructure. In one embodiment, the server 112a is comprised of
one or more internal bladed server clients 114a interconnected using PCl-express IOV without
an external network interface 156, external client 114, 114b or external storages device 150b.

In addition, in-server SAN storage device 150 may communicate through one or more
computer networks 116 with peer storage devices 150 that are located in a computer 112 (per
Figure 1A), or are connected directly to the computer network 116 without a computer 112 to
form a hybrid SAN which has all the capabilities of both SAN and in-server SAN. This
flexibility has the benefit of simplifying extensibility and migration between a variety of possible
solid-state storage network implementations. One skilled in the art will recognize other
combinations, configurations, implementations, and architectures for locating and
interconnecting solid-state controllers 104.

Where the network interface 156a can be controlled by only one agent operating within
the server 112a, a link setup module 168 operating within that agent can set up communication
paths between internal clients 114a and storage devices 150a/first storage controllers 152a

through network interface 156a to external storage devices 150b and clients 114, 114b. In a

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

23

preferred embodiment, once the communication path is established, the individual internal
storage devices 150a and internal clients 114a are able to establish and manage their own
command queues and transfer both commands and data through network interface 156a to
external storage devices 150b and clients 114, 114b in either direction, directly and through
RDMA independent of the proxy or agent controlling the network interface 156a. In one
embodiment, the link setup module 168 establishes the communication links during an
initialization process, such as a startup or initialization of hardware.

In another embodiment, a proxy module 170 directs at least a portion of commands used
in servicing a storage request through the first server 112a while at least data, and possibly other
commands, associated with the storage request are communicated between the first storage
controller and the external storage device independent of the first server. In another
embodiment, the proxy module 170 forwards commands or data in behalf of the internal storage
devices 150a and clients 114a.

In one embodiment, the first server 112a includes one or more servers within the first
server 112a and includes a virtual bus module 172 that allows the one or more servers in the first
server 112a to independently access one or more storage controllers 152a through separate
virtual buses. The virtual buses may be established using an advanced bus protocol such as
PCIe-IOV. Network interfaces 156a supporting IOV may allow the one or more servers and the
one or more storage controllers to independently control the one or more network interfaces
156a.

In various embodiments, the in-server SAN apparatus allows two or more storage devices
150 to be configured in a RAID. In one embodiment, the in-server SAN apparatus includes a
front-end RAID module 174 that configures two or more storage controllers 152 as a RAID.
Where a storage request from a client 114, 114a includes a request to store data, the front-end
RAID module 174 services the storage request by writing the data to the RAID consistent with
the particular implemented RAID level. A second storage controller 152 may be located either in
the first server 112a or external to the first server 112a. The front-end RAID module 174 allows
RAIDing of storage controllers 152 such that the storage controllers 152 are visible to the client
114, 114a sending the storage request. This allows striping and parity information to be
managed by a storage controller 152 designated as master or by the client 114, 114a.

In another embodiment, the in-server SAN apparatus includes a back-end RAID module
176 that configures two or more data storage devices 154 controlled by a storage controller as a
RAID. Where the storage request from the client comprises a request to store data, the back-end

RAID meodule 176 services the storage request by writing the data to the RAID consistent with

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

24

an implemented RAID level such that the storage devices 154 configured as a RAID are
accessed by the client 114, 114a as a single data storage device 154 controlled by the first storage
controller 152. This RAID implementation allows RAIDing of the data storage devices 154
controlled by a storage controller 152 in a way that the RAIDing is transparent to any client 114,
114a accessing the data storage devices 154. In another embodiment, both front-end RAID and
back-end RAID are implemented to have multi-level RAID. One of skill in the art will
recognize other ways to RAID the storage devices 152 consistent with the solid-state storage

controller 104 and associated solid-state storage 110 described herein.

APPARATUS FOR STORAGE CONTROLLER-MANAGED OBJECTS

Figure 2A is a schematic block diagram illustrating one embodiment of an apparatus 200
for object management in a storage device in accordance with the present invention. The
apparatus 200 includes a storage controller 152 with an object request receiver module 260, a
parsing module 262, a command execution module 264, an object index module 266, an object
request queuing module 268, a packetizer 302 with a messages module 270, and an object index
reconstruction module 272, which are described below.

The storage controller 152 is substantially similar to the storage controller 152 described
in relation to the system 102 of Figure 1B and may be a solid-state storage device controller 202
described in relation to Figure 2. The apparatus 200 includes an object request receiver module
260 that receives an object request from one or more requesting devices 155. For example, for a
store object data request, the storage controller 152 stores the data segment as a data packet in a
data storage device 154 coupled to the storage controller 152. The object request is typically
directed at a data segment stored or to be stored in one or more object data packets for an object
managed by the storage controller. The object request may request that the storage controller
152 create an object to be later filled with data through later object request which may utilize a
local or remote direct memory access (“DMA,” “RDMA?”) transfer.

In one embodiment, the object request is a write request to write all or part of an object to
a previously created object. In one example, the write request is for a data segment of an object.
The other data segments of the object may be written to the storage device 150 or to other
storage devices 152. In another example, the write request is for an entire object. In another
example, the object request is to read data from a data segment managed by the storage
controller 152. In yet another embodiment, the object request is a delete request to delete a data

segment or object.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

25

Advantageously, the storage controller 152 can accept write requests that do more than
write a new object or append data to an existing object. For example, a write request received by
the object request receiver module 260 may include a request to add data ahead of data stored by
the storage controller 152, to insert data into the stored data, or to replace a segment of data. The
object index maintained by the storage controller 152 provides the flexibility required for these
complex write operations that is not available in other storage controllers, but is currently
available only outside of storage controllers in file systems of servers and other computers.

The apparatus 200 includes a parsing module 262 that parses the object request into one
or more commands. Typically, the parsing module 262 parses the object request into one or
more buffers. For example, one or more commands in the object request may be parsed into a
command buffer. Typically the parsing module 262 prepares an object request so that the
information in the object request can be understood and executed by the storage controller 152.
One of skill in the art will recognize other functions of a parsing module 262 that parses an
object request into one or more commands.

The apparatus 200 includes a command execution module 264 that executes the
command(s) parsed from the object request. In one embodiment, the command execution
module 264 executes one command. In another embodiment, the command execution module
264 executes multiple commands. Typically, the command execution module 264 interprets a
command parsed from the object request, such as a write command, and then creates, queues,
and executes subcommands. For example, a write command parsed from an object request may
direct the storage controller 152 to store multiple data segments. The object request may also
include required attributes such as encryption, compression, etc. The command execution
module 264 may direct the storage controller 152 to compress the data segments, encrypt the
data segments, create one or more data packets and associated headers for each data packet,
encrypt the data packets with a media encryption key, add error correcting code, and store the
data packets a specific location. Storing the data packets at a specific location and other
subcommands may also be broken down into other lower level subcommands. One of skill in
the art will recognize other ways that the command execution module 264 can execute one or
more commands parsed from an object request.

The apparatus 200 includes an object index module 266 that creates an object entry in an
object index in response to the storage controller 152 creating an object or storing the data
segment of the object. Typically, the storage controller 152 creates a data packet from the data

segment and the location of where the data packet is stored is assigned at the time the data

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

26

segment is stored. Object metadata received with a data segment or as part of an object request
may be stored in a similar way.

The object index module 266 creates an object entry into an object index at the time the
data packet is stored and the physical address of the data packet is assigned. The object entry
includes a mapping between a logical identifier of the object and one or more physical addresses
corresponding to where the storage controller 152 stored one or more data packets and any object
metadata packets. In another embodiment, the entry in the object index is created before the data
packets of the object are stored. For example, if the storage controller 152 determines a physical
address of where the data packets are to be stored earlier, the object index module 266 may
create the entry in the object index earlier.

Typically, when an object request or group of object requests results in an object or data
segment being modified, possibly during a read-modify-write operation, the object index module
266 updates an entry in the object index corresponding the modified object. In one embodiment,
the object index creates a new object and a new entry in the object index for the modified object.
Typically, where only a portion of an object is modified, the object includes modified data
packets and some data packets that remain unchanged. In this case, the new entry includes a
mapping to the unchanged data packets as where they were originally written and to the modified
objects written to a new location.

In another embodiment, where the object request receiver module 260 receives an object
request that includes a command that erases a data block or other object elements, the storage
controller 152 may store at least one packet such as an erase packet that includes information
including a reference to the object, relationship to the object, and the size of the data block
erased. Additionally, it may further indicate that the erased object elements are filled with zeros.
Thus, the erase object request can be used to emulate actual memory or storage that is erased and
actually has a portion of the appropriate memory/storage actually stored with zeros in the cells of
the memory/storage.

Beneficially, creating an object index with entries indicating mapping between data
segments and metadata of an object allows the storage controller 152 to autonomously handle
and manage objects. This capability allows a great amount of flexibility for storing data in the
storage device 150. Once the index entry for the object is created, subsequent object requests
regarding the object can be serviced efficiently by the storage controller 152.

In one embodiment, the storage controller 152 includes an object request queuing module

that queues one or more object requests received by the object request receiver module 260 prior

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

27

to parsing by the parsing module 262. The object request queuing module 268 allows flexibility
between when an object request is received and when it is executed.

In another embodiment, the storage controller 152 includes a packetizer 302 that creates
one or more data packets from the one or more data segments where the data packets are sized
for storage in the data storage device 154. The packetizer 302 is described below in more detail
with respect to Figure 3. The packetizer 302 includes, in one embodiment, a messages module
270 that creates a header for each packet. The header includes a packet identifier and a packet
length. The packet identifier relates the packet to the object for which the packet was formed.

In one embodiment, each packet includes a packet identifier that is self-contained in that
the packet identifier contains adequate information to identify the object and relationship within
the object of the object elements contained within the packet. However, a more efficient
preferred embodiment is to store packets in containers.

A container is a data construct that facilitates more efficient storage of packets and helps
establish relationships between an object and data packets, metadata packets, and other packets
related to the object that are stored within the container. Note that the storage controller 152
typically treats object metadata received as part of an object and data segments in a similar
manner. Typically “packet” may refer to a data packet comprising data, a metadata packet
comprising metadata, or another packet of another packet type. An object may be stored in one
or more containers and a container typically includes packets for no more than one unique object.
An object may be distributed between multiple containers. Typically a container is stored within
a single logical erase block (storage division) and is typically never split between logical erase
blocks.

A container, in one example, may be split between two or more logical/virtual pages. A
container is identified by a container label that associates that container with an object. A
container may contain zero to many packets and the packets within a container are typically from
one object. A packet may be of many object element types, including object attribute elements,
object data elements, object index elements, and the like. Hybrid packets may be created that
include more than one object element type. Each packet may contain zero to many elements of
the same element type. Each packet within a container typically contains a unique identifier that
identifies the relationship to the object.

Each packet is associated with one container. In a preferred embodiment, containers are
limited to an erase block so that at or near the beginning of each erase block a container packet
can be found. This helps limit data loss to an erase block with a corrupted packet header. In

this embodiment, if the object index is unavailable and a packet header within the erase block is

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

28

corrupted, the contents from the corrupted packet header to the end of the erase block may be
lost because there is possibly no reliable mechanism to determine the location of subsequent
packets. In another embodiment, a more reliable approach is to have a container limited to a
page boundary. This embodiment requires more header overhead. In another embodiment,
containers can flow across page and erase block boundaries. This requires less header overhead
but a larger portion of data may be lost if a packet header is corrupted. For these several
embodiments it is expected that some type of RAID is used to further ensure data integrity.

In one embodiment, the apparatus 200 includes an object index reconstruction module
272 that that reconstructs the entries in the object index using information from packet headers
stored in the data storage device 154. In one embodiment, the object index reconstruction
module 272 reconstructs the entries of the object index by reading headers to determine the
object to which each packet belongs and sequence information to determine where in the object
the data or metadata belongs. The object index reconstruction module 272 uses physical address
information for each packet and timestamp or sequence information to create a mapping between
the physical locations of the packets and the object identifier and data segment sequence.
Timestamp or sequence information is used by the object index reconstruction module 272 to
replay the sequence of changes made to the index and thereby typically reestablish the most
recent state.

In another embodiment, the object index reconstruction module 272 locates packets using
packet header information along with container packet information to identify physical locations
of the packets, object identifier, and sequence number of each packet to reconstruct entries in the
object index. In one embodiment, erase blocks are time stamped or given a sequence number as
packets are written and the timestamp or sequence information of an erase block is used along
with information gathered from container headers and packet headers to reconstruct the object
index. In another embodiment, timestamp or sequence information is written to an erase block
when the erase block is recovered.

Where the object index is stored in volatile memory, an error, loss of power, or other
problem causing the storage controller 152 to shut down without saving the object index could
be a problem if the object index cannot be reconstructed. The object index reconstruction
module 272 allows the object index to be stored in volatile memory allowing the advantages of
volatile memory, such as fast access. The object index reconstruction module 272 allows quick
reconstruction of the object index autonomously without dependence on a device external to the

storage device 150.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

29

In one embodiment, the object index in volatile memory is stored periodically in a data
storage device 154. In a particular example, the object index, or “index metadata,” is stored
periodically in a solid-state storage 110. In another embodiment, the index metadata is stored in
a solid-state storage 110n separate from solid-state storage 110a-110n-1 storing packets. The
index metadata is managed independently from data and object metadata transmitted from a
requesting device 155 and managed by the storage controller 152/solid-state storage device
controller 202. Managing and storing index metadata separate from other data and metadata
from an object allows efficient data flow without the storage controller 152/solid-state storage
device controller 202 unnecessarily processing object metadata.

In one embodiment, where an object request received by the object request receiver
module 260 includes a write request, the storage controller 152 receives one or more data
segments of an object from memory of a requesting device 155 as a local or remote direct
memory access (“DMA,” “RDMA”) operation. In a preferred example, the storage controller
152 pulls data from the memory of the requesting device 155 in one or more DMA or RDMA
operations. In another example, the requesting device 155 pushes the data segment(s) to the
storage controller 152 in one or more DMA or RDMA operations. In another embodiment,
where the object request includes a read request, the storage controller 152 transmits one or more
data segments of an object to the memory of the requesting device 155 in one or more DMA or
RDMA operations. In a preferred example, the storage controller 152 pushes data to the memory
of the requesting device 155 in one or more DMA or RDMA operations. In another example, the
requesting device 155 pulls data from the storage controller 152 in one or more DMA or RDMA
operations. In another example, the storage controller 152 pulls object command request sets
from the memory of the requesting device 155 in one or more DMA or RDMA operations. In
another example, the requesting device 155 pushes object command request sets to the storage
controller 152 in one or more DMA or RDMA operations.

In one embodiment, the storage controller 152 emulates block storage and an object
communicated between the requesting device 155 and the storage controller 152 comprises one
or more data blocks. In one embodiment, the requesting device 155 includes a driver so that the
storage device 150 appears as a block storage device. For example, the requesting device 152
may send a block of data of a certain size along with a physical address of where the requesting
device 155 wants the data block stored. The storage controller 152 receives the data block and
uses the physical block address transmitted with the data block or a transformation of the
physical block address as an object identifier. The storage controller 152 then stores the data

block as an object or data segment of an object by packetizing the data block and storing the data

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

30

block at will. The object index module 266 then creates an entry in the object index using the
physical block-based object identifier and the actual physical location where the storage
controller 152 stored the data packets comprising the data from the data block.

In another embodiment, the storage controller 152 emulates block storage by accepting
block objects. A block object may include one or more data blocks in a block structure. In one
embodiment, the storage controller 152 treats the block object as any other object. In another
embodiment, an object may represent an entire block device, partition of a block device, or some
other logical or physical sub-element of a block device including a track, sector, channel, and the
like. Of particular note is the ability to remap a block device RAID group to an object supporting
a different RAID construction such as progressive RAID. One skilled in the art will recognize

other mappings of traditional or future block devices to objects.

SOLID-STATE STORAGE DEVICE

Figure 2B is a schematic block diagram illustrating one embodiment 201 of a solid-state
storage device controller 202 that includes a write data pipeline 106 and a read data pipeline 108
in a solid-state storage device 102 in accordance with the present invention. The solid-state
storage device controller 202 may include a number of solid-state storage controllers 0-N 104a-n,
each controlling solid-state storage 110. In the depicted embodiment, two solid-state controllers
are shown: solid-state controller 0 104a and solid-state storage controller N 104n, and each
controls solid-state storage 110a-n. In the depicted embodiment, solid-state storage controller O
104a controls a data channel so that the attached solid-state storage 110a stores data. Solid-state
storage controller N 104n controls an index metadata channel associated with the stored data and
the associated solid-state storage 110n stores index metadata. In an alternate embodiment, the
solid-state storage device controller 202 includes a single solid-state controller 104a with a single
solid-state storage 110a. In another embodiment, there are a plurality of solid-state storage
controllers 104a-n and associated solid-state storage 110a-n. In one embodiment, one or more
solid state controllers 104a-104n-1, coupled to their associated solid-state storage 110a-110n-1,
control data while at least one solid-state storage controller 104n, coupled to its associated solid-
state storage 110n, controls index metadata.

In one embodiment, at least one solid-state controller 104 is field-programmable gate
array (“FPGA”) and controller functions are programmed into the FPGA. In a particular
embodiment, the FPGA is a Xilinx® FPGA. In another embodiment, the solid-state storage
controller 104 comprises components specifically designed as a solid-state storage controller

104, such as an application-specific integrated circuit (“ASIC”) or custom logic solution. Each

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

31

solid-state storage controller 104 typically includes a write data pipeline 106 and a read data
pipeline 108, which are describe further in relation to Figure 3. In another embodiment, at least
one solid-state storage controller 104 is made up of a combination FPGA, ASIC, and custom

logic components.

Solid-State Storage

The solid state storage 110 is an array of non-volatile solid-state storage elements 216,
218, 220, arranged in banks 214, and accessed in parallel through a bi-directional storage
input/output (“I/O”) bus 210. The storage I/O bus 210, in one embodiment, is capable of
unidirectional communication at any one time. For example, when data is being written to the
solid-state storage 110, data cannot be read from the solid-state storage 110. In another
embodiment, data can flow both directions simultaneously. However bi-directional, as used
herein with respect to a data bus, refers to a data pathway that can have data flowing in only one
direction at a time, but when data flowing one direction on the bi-directional data bus is stopped,
data can flow in the opposite direction on the bi-directional data bus.

A solid-state storage element (e.g. SSS 0.0 216a) is typically configured as a chip (a
package of one or more dies) or a die on a circuit board. As depicted, a solid-state storage
element (e.g. 216a) operates independently or semi-independently of other solid-state storage
elements (e.g. 218a) even if these several elements are packaged together in a chip package, a
stack of chip packages, or some other package element. As depicted, a column of solid-state
storage elements 216, 218, 220 is designated as a bank 214. As depicted, there may be “n” banks
214a-n and “m” solid-state storage elements 216a-m, 218a-m, 220a-m per bank in an array of
nx m solid-state storage elements 216, 218, 220 in a solid-state storage 110. In one
embodiment, a solid-state storage 110a includes twenty solid-state storage elements 216, 218,
220 per bank 214 with eight banks 214 and a solid-state storage 110n includes 2 solid-state
storage elements 216, 218 per bank 214 with one bank 214. In one embodiment, each solid-state
storage element 216, 218, 220 is comprised of a single-level cell (“SLC”) devices. In another
embodiment, each solid-state storage element 216, 218, 220 is comprised of multi-level cell
(“MLC”) devices.

In one embodiment, solid-state storage elements for multiple banks that share a common
storage I/O bus 210a row (e.g. 216b, 218b, 220b) are packaged together. In one embodiment, a
solid-state storage element 216, 218, 220 may have one or more dies per chip with one or more
chips stacked vertically and each die may be accessed independently. In another embodiment, a
solid-state storage element (e.g. SSS 0.0 216a) may have one or more virtual dies per die and one

or more dies per chip and one or more chips stacked vertically and each virtual die may be

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

32

accessed independently. In another embodiment, a solid-state storage element SSS 0.0 216a may
have one or more virtual dies per die and one or more dies per chip with some or all of the one or
more dies stacked vertically and each virtual die may be accessed independently.

In one embodiment, two dies are stacked vertically with four stacks per group to form
eight storage elements (e.g. SSS 0.0-SSS 0.8) 216a-220a, each in a separate bank 214a-n. In
another embodiment, 20 storage elements (e.g. SSS 0.0-SSS 20.0) 216 form a virtual bank 214a
so that each of the eight virtual banks has 20 storage elements (e.g. SSS0.0-SSS 20.8) 216, 218,
220. Data is sent to the solid-state storage 110 over the storage I/O bus 210 to all storage
elements of a particular group of storage elements (SSS 0.0-SSS 0.8) 216a, 218a, 220a. The
storage control bus 212a is used to select a particular bank (e.g. Bank-0 214a) so that the data
received over the storage I/O bus 210 connected to all banks 214 is written just to the selected
bank 214a.

In a preferred embodiment, the storage I/O bus 210 is comprised of one or more
independent I/O buses (“IIOBa-m” comprising 210a.a-m, 210n.a-m) wherein the solid-state
storage elements within each row share one of the independent I/O buses accesses each solid-
state storage element 216, 218, 220 in parallel so that all banks 214 are accessed simultaneously.
For example, one channel of the storage I/O bus 210 may access a first solid-state storage
element 216a, 218a, 220a of each bank 214a-n simultaneously. A second channel of the storage
I/O bus 210 may access a second solid-state storage element 216b, 218b, 220b of each bank
214a-n simultaneously. Each row of solid-state storage element 216, 218, 220 is accessed
simultaneously. In one embodiment, where solid-state storage elements 216, 218, 220 are multi-
level (physically stacked), all physical levels of the solid-state storage elements 216, 218, 220 are
accessed simultaneously. As used herein, “simultaneously” also includes near simultaneous
access where devices are accessed at slightly different intervals to avoid switching noise.
Simultaneously is used in this context to be distinguished from a sequential or serial access
wherein commands and/or data are sent individually one after the other.

Typically, banks 214a-n are independently selected using the storage control bus 212. In
one embodiment, a bank 214 is selected using a chip enable or chip select. Where both chip
select and chip enable are available, the storage control bus 212 may select one level of a multi-
level solid-state storage element 216, 218, 220. In other embodiments, other commands are used
by the storage control bus 212 to individually select one level of a multi-level solid-state storage
element 216, 218, 220. Solid-state storage elements 216, 218, 220 may also be selected through a
combination of control and of address information transmitted on storage I/O bus 210 and the

storage control bus 212.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

33

In one embodiment, each solid-state storage element 216, 218, 220 is partitioned into
erase blocks and each erase block is partitioned into pages. A typical page is 2000 bytes
(“2kB”). In one example, a solid-state storage element (e.g. SSS0.0) includes two registers and
can program two pages so that a two-register solid-state storage element 216, 218, 220 has a
capacity of 4kB. A bank 214 of 20 solid-state storage elements 216, 218, 220 would then have
an 80kB capacity of pages accessed with the same address going out the channels of the storage
I/O bus 210.

This group of pages in a bank 214 of solid-state storage elements 216, 218, 220 of 80kB
may be called a virtual page. Similarly, an erase block of each storage element 216a-m of a bank
214a may be grouped to form a virtual erase block. In a preferred embodiment, an erase block of
pages within a solid-state storage element 216, 218, 220 is erased when an erase command is
received within a solid-state storage element 216, 218, 220. Whereas the size and number of
erase blocks, pages, planes, or other logical and physical divisions within a solid-state storage
element 216, 218, 220 are expected to change over time with advancements in technology, it is
to be expected that many embodiments consistent with new configurations are possible and are
consistent with the general description herein.

Typically, when a packet is written to a particular location within a solid-state storage
element 216, 218, 220, wherein the packet is intended to be written to a location within a
particular page which is specific to a of a particular erase block of a particular element of a
particular bank, a physical address is sent on the storage I/O bus 210 and followed by the packet.
The physical address contains enough information for the solid-state storage element 216, 218,
220 to direct the packet to the designated location within the page. Since all storage elements in
a row of storage elements (e.g. SSS 0.0-SSS 0.N 216a, 218a, 220a) are accessed simultaneously
by the appropriate bus within the storage I/O bus 210a.a, to reach the proper page and to avoid
writing the data packet to similarly addressed pages in the row of storage elements (SSS 0.0-SSS
0.N 2164, 218a, 220a), the bank 214a that includes the solid-state storage element SSS 0.0 216a
with the correct page where the data packet is to be written is simultaneously selected by the
storage control bus 212.

Similarly, a read command traveling on the storage I/O bus 212 requires a simultaneous
command on the storage control bus 212 to select a single bank 214a and the appropriate page
within that bank 214a. In a preferred embodiment, a read command reads an entire page, and
because there are multiple solid-state storage elements 216, 218, 220 in parallel in a bank 214, an

entire virtual page is read with a read command. However, the read command may be broken

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

34

into subcommands, as will be explained below with respect to bank interleave. A virtual page
may also be accessed in a write operation.

An erase block erase command may be sent out to erase an erase block over the storage
I/O bus 210 with a particular erase block address to erase a particular erase block. Typically, an
erase block erase command may be sent over the parallel paths of the storage I/O bus 210 to
erase a virtual erase block, each with a particular erase block address to erase a particular erase
block. Simultaneously a particular bank (e.g. bank-0 214a) is selected over the storage control
bus 212 to prevent erasure of similarly addressed erase blocks in all of the banks (banks 1-N
214b-n). Other commands may also be sent to a particular location using a combination of the
storage I/O bus 210 and the storage control bus 212. One of skill in the art will recognize other
ways to select a particular storage location using the bi-directional storage I/O bus 210 and the
storage control bus 212.

In one embodiment, packets are written sequentially to the solid-state storage 110. For
example, packets are streamed to the storage write buffers of a bank 214a of storage elements
216 and when the buffers are full, the packets are programmed to a designated virtual page.
Packets then refill the storage write buffers and, when full, the packets are written to the next
virtual page. The next virtual page may be in the same bank 214a or another bank (e.g. 214b).
This process continues, virtual page after virtual page, typically until a virtual erase block is
filled. In another embodiment, the streaming may continue across virtual erase block boundaries
with the process continuing, virtual erase block after virtual erase block.

In a read, modify, write operation, data packets associated with the object are located and
read in a read operation. Data segments of the modified object that have been modified are not
written to the location from which they are read. Instead, the modified data segments are again
converted to data packets and then written to the next available location in the virtual page
currently being written. The object index entries for the respective data packets are modified to
point to the packets that contain the modified data segments. The entry or entries in the object
index for data packets associated with the same object that have not been modified will include
pointers to original location of the unmodified data packets. Thus, if the original object is
maintained, for example to maintain a previous version of the object, the original object will
have pointers in the object index to all data packets as originally written. The new object will
have pointers in the object index to some of the original data packets and pointers to the
modified data packets in the virtual page that is currently being written.

In a copy operation, the object index includes an entry for the original object mapped to a

number of packets stored in the solid-state storage 110. When a copy is made, a new object is

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

35

created and a new entry is created in the object index mapping the new object to the original
packets. The new object is also written to the solid-state storage 110 with its location mapped to
the new entry in the object index. The new object packets may be used to identify the packets
within the original object that are referenced in case changes have been made in the original
object that have not been propagated to the copy and the object index is lost or corrupted.
Beneficially, sequentially writing packets facilitates a more even use of the solid-state
storage 110 and allows the solid-storage device controller 202 to monitor storage hot spots and
level usage of the various virtual pages in the solid-state storage 110. Sequentially writing
packets also facilitates a powerful, efficient garbage collection system, which is described in
detail below. One of skill in the art will recognize other benefits of sequential storage of data

packets.

Solid-State Storage Device Controller

In various embodiments, the solid-state storage device controller 202 also includes a data
bus 204, a local bus 206, a buffer controller 208, buffers 0-N 222a-n, a master controller 224, a
direct memory access (“DMA?”) controller 226, a memory controller 228, a dynamic memory
array 230, a static random memory array 232, a management controller 234, a management bus
236, a bridge 238 to a system bus 240, and miscellaneous logic 242, which are described below.
In other embodiments, the system bus 240 is coupled to one or more network interface cards
(“NICs”) 244, some of which may include remote DMA (“RDMA”) controllers 246, one or more
central processing unit (“CPU”) 248, one or more external memory controllers 250 and
associated external memory arrays 252, one or more storage controllers 254, peer controllers
256, and application specific processors 258, which are described below. The components 244-
258 connected to the system bus 240 may be located in the computer 112 or may be other
devices.

Typically the solid-state storage controller(s) 104 communicate data to the solid-state
storage 110 over a storage I/O bus 210. In a typical embodiment where the solid-state storage is
arranged in banks 214 and each bank 214 includes multiple storage elements 216, 218, 220
accessed in parallel, the storage I/0O bus 210 is an array of busses, one for each row of storage
elements 216, 218, 220 spanning the banks 214. As used herein, the term “storage I/O bus” may
refer to one storage I/O bus 210 or an array of data independent busses 204. In a preferred
embodiment, each storage I/O bus 210 accessing a row of storage elements (e.g. 216a, 218a,
220a) may include a logical-to-physical mapping for storage divisions (e.g. erase blocks)
accessed in a row of storage elements 216a, 218a, 220a. This mapping allows a logical address

mapped to a physical address of a storage division to be remapped to a different storage division

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

36

if the first storage division fails, partially fails, is inaccessible, or has some other problem.
Remapping is explained further in relation to the remapping module 314 of Figure 3.

Data may also be communicated to the solid-state storage controller(s) 104 from a
requesting device 155 through the system bus 240, bridge 238, local bus 206, buffer(s) 22, and
finally over a data bus 204. The data bus 204 typically is connected to one or more buffers 222a-
n controlled with a buffer controller 208. The buffer controller 208 typically controls transfer of
data from the local bus 206 to the buffers 222 and through the data bus 204 to the pipeline input
buffer 306 and output buffer 330 . The buffer controller 222 typically controls how data arriving
from a requesting device can be temporarily stored in a buffer 222 and then transferred onto a
data bus 204, or vice versa, to account for different clock domains, to prevent data collisions, etc.
The buffer controller 208 typically works in conjunction with the master controller 224 to
coordinate data flow. As data arrives, the data will arrive on the system bus 240, be transferred
to the local bus 206 through a bridge 238.

Typically the data is transferred from the local bus 206 to one or more data buffers 222 as
directed by the master controller 224 and the buffer controller 208. The data then flows out of
the buffer(s) 222 to the data bus 204, through a solid-state controller 104, and on to the solid-
state storage 110 such as NAND flash or other storage media. In a preferred embodiment, data
and associated out-of-band metadata (“object metadata”) arriving with the data is communicated
using one or more data channels comprising one or more solid-state storage controllers 104a-
104n-1 and associated solid-state storage 110a-110n-1 while at least one channel (solid-state
storage controller 104n, solid-state storage 110n) is dedicated to in-band metadata, such as index
information and other metadata generated internally to the solid-state storage device 102.

The local bus 206 is typically a bidirectional bus or set of busses that allows for
communication of data and commands between devices internal to the solid-state storage device
controller 202 and between devices internal to the solid-state storage device 102 and devices
244-258 connected to the system bus 240. The bridge 238 facilitates communication between
the local bus 206 and system bus 240. One of skill in the art will recognize other embodiments
such as ring structures or switched star configurations and functions of buses 240, 206, 204, 210
and bridges 238.

The system bus 240 is typically a bus of a computer 112 or other device in which the
solid-state storage device 102 is installed or connected. In one embodiment, the system bus 240
may be a PCl-e bus, a Serial Advanced Technology Attachment (“serial ATA”) bus, parallel
ATA, or the like. In another embodiment, the system bus 240 is an external bus such as small

computer system interface (“SCSI”), FireWire, Fiber Channel, USB, PCle-AS, or the like. The

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

37

solid-state storage device 102 may be packaged to fit internally to a device or as an externally
connected device.

The solid-state storage device controller 202 includes a master controller 224 that
controls higher-level functions within the solid-state storage device 102. The master controller
224, in various embodiments, controls data flow by interpreting object requests and other
requests, directs creation of indexes to map object identifiers associated with data to physical
locations of associated data, coordinating DMA requests, etc. Many of the functions described
herein are controlled wholly or in part by the master controller 224.

In one embodiment, the master controller 224 uses embedded controller(s). In another
embodiment, the master controller 224 uses local memory such as a dynamic memory array 230
(dynamic random access memory “DRAM?”), a static memory array 323 (static random access
memory “SRAM”), etc. In one embodiment, the local memory is controlled using the master
controller 224, In another embodiment, the master controller accesses the local memory via a
memory controller 228, In another embodiment, the master controller runs a Linux server and
may support various common server interfaces, such as the World Wide Web, hyper-text markup
language (“HTML”), etc. In another embodiment, the master controller 224 uses a nano-
processor. The master controller 224 may be constructed using programmable or standard logic,
or any combination of controller types listed above. One skilled in the art will recognize many
embodiments for the master controller.

In one embodiment, where the storage device 152/solid-state storage device controller
202 manages multiple data storage devices/solid-state storage 110a-n, the master controller 224
divides the work load among internal controllers, such as the solid-state storage controllers 104a-
n. For example, the master controller 224 may divide an object to be written to the data storage
devices (e.g. solid-state storage 110a-n) so that a portion of the object is stored on each of the
attached data storage devices. This feature is a performance enhancement allowing quicker
storage and access to an object. In one embodiment, the master controller 224 is implemented
using an FPGA. In another embodiment, the firmware within the master controller 224 may be
updated through the management bus 236, the system bus 240 over a network connected to a
NIC 244 or other device connected to the system bus 240.

In one embodiment, the master controller 224, which manages objects, emulates block
storage such that a computer 102 or other device connected to the storage device 152/solid-state
storage device 102 views the storage device 152/solid-state storage device 102 as a block storage
device and sends data to specific physical addresses in the storage device 152/solid-state storage

device 102. The master controller 224 then divides up the blocks and stores the data blocks as it

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

38

would objects. The master controller 224 then maps the blocks and physical address sent with
the block to the actual locations determined by the master controller 224. The mapping is stored
in the object index. Typically, for block emulation, a block device application program interface
(“API”) is provided in a driver in the computer 112, client 114, or other device wishing to use the
storage device 152/solid-state storage device 102 as a block storage device.

In another embodiment, the master controller 224 coordinates with NIC controllers 244
and embedded RDMA controllers 246 to deliver just-in-time RDMA transfers of data and
command sets. NIC controller 244 may be hidden behind a non-transparent port to enable the
use of custom drivers. Also, a driver on a client 114 may have access to the computer network
118 through an I/O memory driver using a standard stack API and operating in conjunction with
NICs 244.

In one embodiment, the master controller 224 is also a redundant array of independent
drive (“RAID”) controller. Where the data storage device/solid-state storage device 102 is
networked with one or more other data storage devices/solid-state storage devices 102, the
master controller 224 may be a RAID controller for single tier RAID, multi-tier RAID,
progressive RAID, etc. The master controller 224 also allows some objects to be stored in a
RAID array and other objects to be stored without RAID. In another embodiment, the master
controller 224 may be a distributed RAID controller element. In another embodiment, the master
controller 224 may comprise many RAID, distributed RAID, and other functions as described
elsewhere.

In one embodiment, the master controller 224 coordinates with single or redundant
network managers (e.g. switches) to establish routing, to balance bandwidth utilization, failover,
etc. In another embodiment, the master controller 224 coordinates with integrated application
specific logic (via local bus 206) and associated driver software. In another embodiment, the
master controller 224 coordinates with attached application specific processors 258 or logic (via
the external system bus 240) and associated driver software. In another embodiment, the master
controller 224 coordinates with remote application specific logic (via the computer network 118)
and associated driver software. In another embodiment, the master controller 224 coordinates
with the local bus 206 or external bus attached hard disk drive (““HDD”) storage controller.

In one embodiment, the master controller 224 communicates with one or more storage
controllers 254 where the storage device/solid-state storage device 102 may appear as a storage
device connected through a SCSI bus, Internet SCSI (“iSCSI”), fiber channel, etc. Meanwhile

the storage device/solid-state storage device 102 may autonomously manage objects and may

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

39

appear as an object file system or distributed object file system. The master controller 224 may
also be accessed by peer controllers 256 and/or application specific processors 258.

In another embodiment, the master controller 224 coordinates with an autonomous
integrated management controller to periodically validate FPGA code and/or controller software,
validate FPGA code while running (reset) and/or validate controller software during power on
(reset), support external reset requests, support reset requests due to watchdog timeouts, and
support voltage, current, power, temperature, and other environmental measurements and setting
of threshold interrupts. In another embodiment, the master controller 224 manages garbage
collection to free erase blocks for reuse. In another embodiment, the master controller 224
manages wear leveling. In another embodiment, the master controller 224 allows the data
storage device/solid-state storage device 102 to be partitioned into multiple virtual devices and
allows partition-based media encryption. In yet another embodiment, the master controller 224
supports a solid-state storage controller 104 with advanced, multi-bit ECC correction. One of
skill in the art will recognize other features and functions of a master controller 224 in a storage
controller 152, or more specifically in a solid-state storage device 102.

In one embodiment, the solid-state storage device controller 202 includes a memory
controller 228 which controls a dynamic random memory array 230 and/or a static random
memory array 232. As stated above, the memory controller 228 may be independent or
integrated with the master controller 224. The memory controller 228 typically controls volatile
memory of some type, such as DRAM (dynamic random memory array 230) and SRAM (static
random memory array 232). In other examples, the memory controller 228 also controls other
memory types such as electrically erasable programmable read only memory (“EEPROM”™), etc.
In other embodiments, the memory controller 228 controls two or more memory types and the
memory controller 228 may include more than one controller. Typically, the memory controller
228 controls as much SRAM 232 as is feasible and by DRAM 230 to supplement the SRAM
232.

In one embodiment, the object index is stored in memory 230, 232 and then periodically
off-loaded to a channel of the solid-state storage 110n or other non-volatile memory. One of
skill in the art will recognize other uses and configurations of the memory controller 228,
dynamic memory array 230, and static memory array 232.

In one embodiment, the solid-state storage device controller 202 includes a DMA
controller 226 that controls DMA operations between the storage device/solid-state storage
device 102 and one or more external memory controllers 250 and associated external memory

arrays 252 and CPUs 248. Note that the external memory controllers 250 and external memory

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

40

arrays 252 are called external because they are external to the storage device/solid-state storage
device 102. In addition the DMA controller 226 may also control RDMA operations with
requesting devices through a NIC 244 and associated RDMA controller 246. DMA and RDMA
are explained in more detail below.

In one embodiment, the solid-state storage device controller 202 includes a management
controller 234 connected to a management bus 236. Typically the management controller 234
manages environmental metrics and status of the storage device/solid-state storage device 102.
The management controller 234 may monitor device temperature, fan speed, power supply
settings, etc. over the management bus 236. The management controller may support the reading
and programming of erasable programmable read only memory (“EEPROM?”) for storage of
FPGA code and controller software. Typically the management bus 236 is connected to the
various components within the storage device/solid-state storage device 102. The management
controller 234 may communicate alerts, interrupts, etc. over the local bus 206 or may include a
separate connection to a system bus 240 or other bus. In one embodiment the management bus
236 is an Inter-Integrated Circuit (“I°C”) bus. One of skill in the art will recognize other related
functions and uses of a management controller 234 connected to components of the storage
device/solid-state storage device 102 by a management bus 236.

In one embodiment, the solid-state storage device controller 202 includes miscellaneous
logic 242 that may be customized for a specific application. Typically where the solid-state
device controller 202 or master controller 224 is/are configured using a FPGA or other
configurable controller, custom logic may be included based on a particular application,
customer requirement, storage requirement, etc.

DATA PIPELINE

Figure 3 is a schematic block diagram illustrating one embodiment 300 of a solid-state
storage controller 104 with a write data pipeline 106 and a read data pipeline 108 in a solid-state
storage device 102 in accordance with the present invention. The embodiment 300 includes a
data bus 204, a local bus 206, and buffer control 208, which are substantially similar to those
described in relation to the solid-state storage device controller 202 of Figure 2. The write data
pipeline includes a packetizer 302 and an error-correcting code (“ECC”) generator 304. In other
embodiments, the write data pipeline includes an input buffer 306, a write synchronization buffer
308, a write program module 310, a compression module 312, an encryption module 314, a
garbage collector bypass 316 (with a portion within the read data pipeline), a media encryption
module 318, and a write buffer 320. The read data pipeline 108 includes a read synchronization

buffer 328, an ECC correction module 322, a depacketizer 324, an alignment module 326, and an

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

41

output buffer 330. In other embodiments, the read data pipeline 108 may include a media
decryption module 332, a portion of the garbage collector bypass 316, a decryption module 334,
a decompression module 336, and a read program module 338. The solid-state storage controller
104 may also include control and status registers 340 and control queues 342, a bank interleave
controller 344, a synchronization buffer 346, a storage bus controller 348, and a multiplexer
(“MUX”) 350. The components of the solid-state controller 104 and associated write data
pipeline 106 and read data pipeline 108 are described below. In other embodiments,
synchronous solid-state storage 110 may be used and synchronization buffers 308 328 may be
eliminated.

Write Data Pipeline

The write data pipeline 106 includes a packetizer 302 that receives a data or metadata
segment to be written to the solid-state storage, either directly or indirectly through another write
data pipeline 106 stage, and creates one or more packets sized for the solid-state storage 110.
The data or metadata segment is typically part of an object, but may also include an entire object.
In another embodiment, the data segment is part of a block of data, but may also include an
entire block of data. Typically, an object is received from a computer 112, client 114, or other
computer or device and is transmitted to the solid-state storage device 102 in data segments
streamed to the solid-state storage device 102 or computer 112. A data segment may also be
known by another name, such as data parcel, but as referenced herein includes all or a portion of
an object or data block.

Each object is stored as one or more packets. Each object may have one or more
container packets. Each packet contains a header. The header may include a header type field.
Type fields may include data, object attribute, metadata, data segment delimiters (multi-packet),
object structures, object linkages, and the like. The header may also include information
regarding the size of the packet, such as the number of bytes of data included in the packet. The
length of the packet may be established by the packet type. The header may include information
that establishes the relationship of the packet to the object. An example might be the use of an
offset in a data packet header to identify the location of the data segment within the object. One
of skill in the art will recognize other information that may be included in a header added to data
by a packetizer 302 and other information that may be added to a data packet.

Each packet includes a header and possibly data from the data or metadata segment. The
header of each packet includes pertinent information to relate the packet to the object to which
the packet belongs. For example, the header may include an object identifier and offset that

indicates the data segment, object, or data block from which the data packet was formed. The

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

42

header may also include a logical address used by the storage bus controller 348 to store the
packet. The header may also include information regarding the size of the packet, such as the
number of bytes included in the packet. The header may also include a sequence number that
identifies where the data segment belongs with respect to other packets within the object when
reconstructing the data segment or object. The header may include a header type field. Type
fields may include data, object attributes, metadata, data segment delimiters (multi-packet),
object structures, object linkages, and the like. One of skill in the art will recognize other
information that may be included in a header added to data or metadata by a packetizer 302 and
other information that may be added to a packet.

The write data pipeline 106 includes an ECC generator 304 that generates one or more
error-correcting codes (“ECC”) for the one or more packets received from the packetizer 302.
The ECC generator 304 typically uses an error correcting algorithm to generate ECC which is
stored with the packet. The ECC stored with the packet is typically used to detect and correct
errors introduced into the data through transmission and storage. In one embodiment, packets
are streamed into the ECC generator 304 as un-encoded blocks of length N. A syndrome of
length S is calculated, appended and output as an encoded block of length N+S. The value of N
and S are dependent upon the characteristics of the algorithm which is selected to achieve
specific performance, efficiency, and robustness metrics. In the preferred embodiment, there is
no fixed relationship between the ECC blocks and the packets; the packet may comprise more
than one ECC block; the ECC block may comprise more than one packet; and a first packet may
end anywhere within the ECC block and a second packet may begin after the end of the first
packet within the same ECC block. In the preferred embodiment, ECC algorithms are not
dynamically modified. In a preferred embodiment, the ECC stored with the data packets is
robust enough to correct errors in more than two bits.

Beneficially, using a robust ECC algorithm allowing more than single bit correction or
even double bit correction allows the life of the solid-state storage 110 to be extended. For
example, if flash memory is used as the storage medium in the solid-state storage 110, the flash
memory may be written approximately 100,000 times without error per erase cycle. This usage
limit may be extended using a robust ECC algorithm. Having the ECC generator 304 and
corresponding ECC correction module 322 onboard the solid-state storage device 102, the solid-
state storage device 102 can internally correct errors and has a longer useful life than if a less
robust ECC algorithm is used, such as single bit correction. However, in other embodiments the
ECC generator 304 may use a less robust algorithm and may correct single-bit or double-bit

errors. In another embodiment, the solid-state storage device 110 may comprise less reliable

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

43

storage such as multi-level cell (“MLC”) flash in order to increase capacity, which storage may
not be sufficiently reliable without more robust ECC algorithms.

In one embodiment, the write pipeline 106 includes an input buffer 306 that receives a
data segment to be written to the solid-state storage 110 and stores the incoming data segments
until the next stage of the write data pipeline 106, such as the packetizer 302 (or other stage for a
more complex write data pipeline 106) is ready to process the next data segment. The input
buffer 306 typically allows for discrepancies between the rate data segments are received and
processed by the write data pipeline 106 using an appropriately sized data buffer. The input
buffer 306 also allows the data bus 204 to transfer data to the write data pipeline 106 at rates
greater than can be sustained by the write data pipeline 106 in order to improve efficiency of
operation of the data bus 204. Typically when the write data pipeline 106 does not include an
input buffer 306, a buffering function is performed elsewhere, such as in the solid-state storage
device 102 but outside the write data pipeline 106, in the computer 112, such as within a network
interface card (“NIC”), or at another device, for example when using remote direct memory
access (“RDMA™).

In another embodiment, the write data pipeline 106 also includes a write synchronization
buffer 308 that buffers packets received from the ECC generator 304 prior to writing the packets
to the solid-state storage 110. The write synch buffer 308 is located at a boundary between a
local clock domain and a solid-state storage clock domain and provides buffering to account for
the clock domain differences. In other embodiments, synchronous solid-state storage 110 may
be used and synchronization buffers 308 328 may be eliminated.

In one embodiment, the write data pipeline 106 also includes a media encryption module
318 that receives the one or more packets from the packetizer 302, either directly or indirectly,
and encrypts the one or more packets using an encryption key unique to the solid-state storage
device 102 prior to sending the packets to the ECC generator 304. Typically, the entire packet is
encrypted, including the headers. In another embodiment, headers are not encrypted. In this
document, encryption key is understood to mean a secret encryption key that is managed
externally from an embodiment that integrates the solid-state storage 110 and where the
embodiment requires encryption protection. The media encryption module 318 and
corresponding media decryption module 332 provide a level of security for data stored in the
solid-state storage 110. For example, where data is encrypted with the media encryption module
318, if the solid-state storage 110 is connected to a different solid-state storage controller 104,

solid-state storage device 102, or computer 112, the contents of the solid-state storage 110

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

44

typically could not be read without use of the same encryption key used during the write of the
data to the solid-state storage 110 without significant effort.

In a typical embodiment, the solid-state storage device 102 does not store the encryption
key in non-volatile storage and allows no external access to the encryption key. The encryption
key is provided to the solid-state storage controller 104 during initialization. The solid-sate
storage device 102 may use and store a non-secret cryptographic nonce that is used in
conjunction with an encryption key. A different nonce may be stored with every packet. Data
segments may be split between multiple packets with unique nonces for the purpose of
improving protection by the encryption algorithm. The encryption key may be received from a
client 114, a computer 112, key manager, or other device that manages the encryption key to be
used by the solid-state storage controller 104. In another embodiment, the solid-state storage 110
may have two or more partitions and the solid-state storage controller 104 behaves as though it
were two or more solid-state storage controllers 104, each operating on a single partition within
the solid-state storage 110. In this embodiment, a unique media encryption key may be used
with each partition.

In another embodiment, the write data pipeline 106 also includes an encryption module
314 that encrypts a data or metadata segment received from the input buffer 306, either directly
or indirectly, prior sending the data segment to the packetizer 302, the data segment encrypted
using an encryption key received in conjunction with the data segment. The encryption module
314 differs from the media encryption module 318 in that the encryption keys used by the
encryption module 318 to encrypt data may not be common to all data stored within the solid-
state storage device 102 but may vary on an object basis and received in conjunction with
receiving data segments as described below. For example, an encryption key for a data segment
to be encrypted by the encryption module 318 may be received with the data segment or may be
received as part of a command to write an object to which the data segment belongs. The solid-
sate storage device 102 may use and store a non-secret cryptographic nonce in each object packet
that is used in conjunction with the encryption key. A different nonce may be stored with every
packet. Data segments may be split between multiple packets with unique nonces for the purpose
of improving protection by the encryption algorithm. In one embodiment, the nonce used by the
media encryption module 318 is the same as that used by the encryption module 314.

The encryption key may be received from a client 114, a computer 112, key manager, or
other device that holds the encryption key to be used to encrypt the data segment. In one
embodiment, encryption keys are transferred to the solid-state storage controller 104 from one of

a solid-state storage device 102, computer 112, client 114, or other external agent which has the

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

45

ability to execute industry standard methods to securely transfer and protect private and public
keys.

In one embodiment, the encryption module 318 encrypts a first packet with a first
encryption key received in conjunction with the packet and encrypts a second packet with a
second encryption key received in conjunction with the second packet. In another embodiment,
the encryption module 318 encrypts a first packet with a first encryption key received in
conjunction with the packet and passes a second data packet on to the next stage without
encryption. Beneficially, the encryption module 318 included in the write data pipeline 106 of
the solid-state storage device 102 allows object-by-object or segment-by-segment data
encryption without a single file system or other external system to keep track of the different
encryption keys used to store corresponding objects or data segments. Each requesting device
155 or related key manager independently manages encryption keys used to encrypt only the
objects or data segments sent by the requesting device 155.

In another embodiment, the write data pipeline 106 includes a compression module 312
that compresses the data for metadata segment prior to sending the data segment to the
packetizer 302. The compression module 312 typically compresses a data or metadata segment
using a compression routine known to those of skill in the art to reduce the storage size of the
segment. For example, if a data segment includes a string of 512 zeros, the compression module
312 may replace the 512 zeros with code or token indicating the 512 zeros where the code is
much more compact than the space taken by the 512 zeros.

In one embodiment, the compression module 312 compresses a first segment with a first
compression routine and passes along a second segment without compression. In another
embodiment, the compression module 312 compresses a first segment with a first compression
routine and compresses the second segment with a second compression routine. Having this
flexibility within the solid-state storage device 102 is beneficial so that clients 114 or other
devices writing data to the solid-state storage device 102 may each specify a compression routine
or so that one can specify a compression routine while another specifies no compression.
Selection of compression routines may also be selected according to default settings on a per
object type or object class basis. For example, a first object of a specific object may be able to
override default compression routine settings and a second object of the same object class and
object type may use the default compression routine and a third object of the same object class
and object type may use no compression.

In one embodiment, the write data pipeline 106 includes a garbage collector bypass 316

that receives data segments from the read data pipeline 108 as part of a data bypass in a garbage

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

46

collection system. A garbage collection system typically marks packets that are no longer valid,
typically because the packet is marked for deletion or has been modified and the modified data is
stored in a different location. At some point, the garbage collection system determines that a
particular section of storage may be recovered. This determination may be due to a lack of
available storage capacity, the percentage of data marked as invalid reaching a threshold, a
consolidation of valid data, an error detection rate for that section of storage reaching a
threshold, or improving performance based on data distribution, etc. Numerous factors may be
considered by a garbage collection algorithm to determine when a section of storage is to be
recovered.

Once a section of storage has been marked for recovery, valid packets in the section
typically must be relocated. The garbage collector bypass 316 allows packets to be read into the
read data pipeline 108 and then transferred directly to the write data pipeline 106 without being
routed out of the solid-state storage controller 104. In a preferred embodiment, the garbage
collector bypass 316 is part of an autonomous garbage collector system that operates within the
solid-state storage device 102. This allows the solid-state storage device 102 to manage data so
that data is systematically spread throughout the solid-state storage 110 to improve performance,
data reliability and to avoid overuse and underuse of any one location or area of the solid-state
storage 110 and to lengthen the useful life of the solid-state storage 110.

The garbage collector bypass 316 coordinates insertion of segments into the write data
pipeline106 with other segments being written by clients 116 or other devices. In the depicted
embodiment, the garbage collector bypass 316 is before the packetizer 302 in the write data
pipeline 106 and after the depacketizer 324 in the read data pipeline 108, but may also be located
elsewhere in the read and write data pipelines 106, 108. The garbage collector bypass 316 may
be used during a flush of the write pipeline 106 to fill the remainder of the virtual page in order
to improve the efficiency of storage within the Solid-State Storage 110 and thereby reduce the
frequency of garbage collection.

In one embodiment, the write data pipeline 106 includes a write buffer 320 that buffers
data for efficient write operations. Typically, the write buffer 320 includes enough capacity for
packets to fill at least one virtual page in the solid-state storage 110. This allows a write
operation to send an entire page of data to the solid-state storage 110 without interruption. By
sizing the write buffer 320 of the write data pipeline 106 and buffers within the read data
pipeline 108 to be the same capacity or larger than a storage write buffer within the solid-state

storage 110, writing and reading data is more efficient since a single write command may be

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

47

crafted to send a full virtual page of data to the solid-state storage 110 instead of multiple
commands.

While the write buffer 320 is being filled, the solid-state storage 110 may be used for
other read operations. This is advantageous because other solid-state devices with a smaller
write buffer or no write buffer may tie up the solid-state storage when data is written to a storage
write buffer and data flowing into the storage write buffer stalls. Read operations will be
blocked until the entire storage write buffer is filled and programmed. Another approach for
systems without a write buffer or a small write buffer is to flush the storage write buffer that is
not full in order to enable reads. Again this is inefficient because multiple write/program cycles
are required to fill a page.

For depicted embodiment with a write buffer 320 sized larger than a virtual page, a single
write command, which includes numerous subcommands, can then be followed by a single
program command to transfer the page of data from the storage write buffer in each solid-state
storage element 216, 218, 220 to the designated page within each solid-state storage element
216, 218, 220. This technique has the benefits of eliminating partial page programming, which
is known to reduce data reliability and durability and freeing up the destination bank for reads
and other commands while the buffer fills.

In one embodiment, the write buffer 320 is a ping-pong buffer where one side of the
buffer is filled and then designated for transfer at an appropriate time while the other side of the
ping-pong buffer is being filled. In another embodiment, the write buffer 320 includes a first-in
first-out (“FIFO”) register with a capacity of more than a virtual page of data segments. One of
skill in the art will recognize other write buffer 320 configurations that allow a virtual page of
data to be stored prior to writing the data to the solid-state storage 110.

In another embodiment, the write buffer 320 is sized smaller than a virtual page so that
less than a page of information could be written to a storage write buffer in the solid-state storage
110. In the embodiment, to prevent a stall in the write data pipeline 106 from holding up read
operations, data is queued using the garbage collection system that needs to be moved from one
location to another as part of the garbage collection process. In case of a data stall in the write
data pipeline 106, the data can be fed through the garbage collector bypass 316 to the write
buffer 320 and then on to the storage write buffer in the solid-state storage 110 to fill the pages
of a virtual page prior to programming the data. In this way a data stall in the write data pipeline
106 would not stall reading from the solid-state storage device 106.

In another embodiment, the write data pipeline 106 includes a write program module 310

with one or more user-definable functions within the write data pipeline 106. The write program

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

48

module 310 allows a user to customize the write data pipeline 106. A user may customize the
write data pipeline 106 based on a particular data requirement or application. Where the solid-
state storage controller 104 is an FPGA, the user may program the write data pipeline 106 with
custom commands and functions relatively easily. A user may also use the write program
module 310 to include custom functions with an ASIC, however, customizing an ASIC may be
more difficult than with an FPGA. The write program module 310 may include buffers and
bypass mechanisms to allow a first data segment to execute in the write program module 310
while a second data segment may continue through the write data pipeline 106. In another
embodiment, the write program module 310 may include a processor core that can be
programmed through software.

Note that the write program module 310 is shown between the input buffer 306 and the
compression module 312, however, the write program module 310 could be anywhere in the
write data pipeline 106 and may be distributed among the various stages 302-320. In addition,
there may be multiple write program modules 310 distributed among the various states 302-320
that are programmed and operate independently. In addition, the order of the stages 302-320
may be altered. One of skill in the art will recognize workable alterations to the order of the
stages 302-320 based on particular user requirements.

Read Data Pipeline

The read data pipeline 108 includes an ECC correction module 322 that determines if a
data error exists in ECC blocks a requested packet received from the solid-state storage 110 by
using ECC stored with each ECC block of the requested packet. The ECC correction module
322 then corrects any errors in the requested packet if any error exists and the errors are
correctable using the ECC. For example, if the ECC can detect an error in six bits but can only
correct three bit errors, the ECC correction module 322 corrects ECC blocks of the requested
packet with up to three bits in error. The ECC correction module 322 corrects the bits in error by
changing the bits in error to the correct one or zero state so that the requested data packet is
identical to when it was written to the solid-state storage 110 and the ECC was generated for the
packet.

If the ECC correction module 322 determines that the requested packets contains more
bits in error than the ECC can correct, the ECC correction module 322 cannot correct the errors
in the corrupted ECC blocks of the requested packet and sends an interrupt. In one embodiment,
the ECC correction module 322 sends an interrupt with a message indicating that the requested
packet is in error. The message may include information that the ECC correction module 322

cannot correct the errors or the inability of the ECC correction module 322 to correct the errors

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

49

may be implied. In another embodiment, the ECC correction module 322 sends the corrupted
ECC blocks of the requested packet with the interrupt and/or the message.

In the preferred embodiment, a corrupted ECC block or portion of a corrupted ECC block
of the requested packet that cannot be corrected by the ECC correction module 322 is read by the
master controller 224, corrected, and returned to the ECC correction module 322 for further
processing by the read data pipeline 108. In one embodiment, a corrupted ECC block or portion
of a corrupted ECC block of the requested packet is sent to the device requesting the data. The
requesting device 155 may correct the ECC block or replace the data using another copy, such as
a backup or mirror copy, and then may use the replacement data of the requested data packet or
return it to the read data pipeline 108. The requesting device 155 may use header information in
the requested packet in error to identify data required to replace the corrupted requested packet
or to replace the object to which the packet belongs. In another preferred embodiment, the solid-
state storage controller 104 stores data using some type of RAID and is able to recover the
corrupted data. In another embodiment, the ECC correction module 322 sends and interrupt
and/or message and the receiving device fails the read operation associated with the requested
data packet. One of skill in the art will recognize other options and actions to be taken as a result
of the ECC correction module 322 determining that one or more ECC blocks of the requested
packet are corrupted and that the ECC correction module 322 cannot correct the errors.

The read data pipeline 108 includes a depacketizer 324 that receives ECC blocks of the
requested packet from the ECC correction module 322, directly or indirectly, and checks and
removes one or more packet headers. The depacketizer 324 may validate the packet headers by
checking packet identifiers, data length, data location, etc. within the headers. In one
embodiment, the header includes a hash code that can be used to validate that the packet
delivered to the read data pipeline 108 is the requested packet. The depacketizer 324 also
removes the headers from the requested packet added by the packetizer 302. The depacketizer
324 may directed to not operate on certain packets but pass these forward without modification.
An example might be a container label that is requested during the course of a rebuild process
where the header information is required by the object index reconstruction module 272. Further
examples include the transfer of packets of various types destined for use within the solid-state
storage device 102. In another embodiment, the depacketizer 324 operation may be packet type
dependent.

The read data pipeline 108 includes an alignment module 326 that receives data from the
depacketizer 324 and removes unwanted data. In one embodiment, a read command sent to the

solid-state storage 110 retrieves a packet of data. A device requesting the data may not require

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

50

all data within the retrieved packet and the alignment module 326 removes the unwanted data. If
all data within a retrieved page is requested data, the alignment module 326 does not remove any
data.

The alignment module 326 re-formats the data as data segments of an object in a form
compatible with a device requesting the data segment prior to forwarding the data segment to the
next stage. Typically, as data is processed by the read data pipeline 108, the size of data
segments or packets changes at various stages. The alignment module 326 uses received data to
format the data into data segments suitable to be sent to the requesting device 155 and joined to
form a response. For example, data from a portion of a first data packet may be combined with
data from a portion of a second data packet. If a data segment is larger than a data requested by
the requesting device, the alignment module 326 may discard the unwanted data.

In one embodiment, the read data pipeline 108 includes a read synchronization buffer 328
that buffers one or more requested packets read from the solid-state storage 110 prior to
processing by the read data pipeline 108. The read synchronization buffer 328 is at the boundary
between the solid-state storage clock domain and the local bus clock domain and provides
buffering to account for the clock domain differences.

In another embodiment, the read data pipeline 108 includes an output buffer 330 that
receives requested packets from the alignment module 326 and stores the packets prior to
transmission to the requesting device. The output buffer 330 accounts for differences between
when data segments are received from stages of the read data pipeline 108 and when the data
segments are transmitted to other parts of the solid-state storage controller 104 or to the
requesting device. The output buffer 330 also allows the data bus 204 to receive data from the
read data pipeline 108 at rates greater than can be sustained by the read data pipeline 108 in order
to improve efficiency of operation of the data bus 204.

In one embodiment, the read data pipeline 108 includes a media decryption module 332
that receives one or more encrypted requested packets from the ECC correction module 322 and
decrypts the one or more requested packets using the encryption key unique to the solid-state
storage device 102 prior to sending the one or more requested packets to the depacketizer 324.
Typically the encryption key used to decrypt data by the media decryption module 332 is
identical to the encryption key used by the media encryption module 318. In another
embodiment, the solid-state storage 110 may have two or more partitions and the solid-state
storage controller 104 behaves as though it were two or more solid-state storage controllers 104
each operating on a single partition within the solid-state storage 110. In this embodiment, a

unique media encryption key may be used with each partition.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

51

In another embodiment, the read data pipeline 108 includes a decryption module 334 that
decrypts a data segment formatted by the depacketizer 324 prior to sending the data segment to
the output buffer 330. The data segment decrypted using an encryption key received in
conjunction with the read request that initiates retrieval of the requested packet received by the
read synchronization buffer 328. The decryption module 334 may decrypt a first packet with an
encryption key received in conjunction with the read request for the first packet and then may
decrypt a second packet with a different encryption key or may pass the second packet on to the
next stage of the read data pipeline 108 without decryption. Typically, the decryption module
334 uses a different encryption key to decrypt a data segment than the media decryption module
332 uses to decrypt requested packets. When the packet was stored with a non-secret
cryptographic nonce, the nonce is used in conjunction with an encryption key to decrypt the data
packet. The encryption key may be received from a client 114, a computer 112, key manager, or
other device that manages the encryption key to be used by the solid-state storage controller 104.

In another embodiment, the read data pipeline 108 includes a decompression module 336
that decompresses a data segment formatted by the depacketizer 324. 1In the preferred
embodiment, the decompression module 336 uses compression information stored in one or both
of the packet header and the container label to select a complementary routine to that used to
compress the data by the compression module 312. In another embodiment, the decompression
routine used by the decompression module 336 is dictated by the device requesting the data
segment being decompressed. In another embodiment, the decompression module 336 selects a
decompression routine according to default settings on a per object type or object class basis. A
first packet of a first object may be able to override a default decompression routine and a second
packet of a second object of the same object class and object type may use the default
decompression routine and a third packet of a third object of the same object class and object
type may use no decompression.

In another embodiment, the read data pipeline 108 includes a read program module 338
that includes one or more user-definable functions within the read data pipeline 108. The read
program module 338 has similar characteristics to the write program module 310 and allows a
user to provide custom functions to the read data pipeline 108. The read program module 338
may be located as shown in Figure 3, may be located in another position within the read data
pipeline 108, or may include multiple parts in multiple locations within the read data pipeline
108. Additionally, there may be multiple read program modules 338 within multiple locations
within the read data pipeline 108 that operate independently. One of skill in the art will

recognize other forms of a read program module 338 within a read data pipeline 108. As with

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

52

the write data pipeline 106, the stages of the read data pipeline 108 may be rearranged and one of
skill in the art will recognize other orders of stages within the read data pipeline 108.

The solid-state storage controller 104 includes control and status registers 340 and
corresponding control queues 342. The control and status registers 340 and control queues 342
facilitate control and sequencing commands and subcommands associated with data processed in
the write and read data pipelines 106, 108. For example, a data segment in the packetizer 302
may have one or more corresponding control commands or instructions in a control queue 342
associated with the ECC generator. As the data segment is packetized, some of the instructions
or commands may be executed within the packetizer 302. Other commands or instructions may
be passed to the next control queue 342 through the control and status registers 340 as the newly
formed data packet created from the data segment is passed to the next stage.

Commands or instructions may be simultaneously loaded into the control queues 342 for
a packet being forwarded to the write data pipeline 106 with each pipeline stage pulling the
appropriate command or instruction as the respective packet is executed by that stage. Similarly,
commands or instructions may be simultaneously loaded into the control queues 342 for a packet
being requested from the read data pipeline 108 with each pipeline stage pulling the appropriate
command or instruction as the respective packet is executed by that stage. One of skill in the art
will recognize other features and functions of control and status registers 340 and control queues
342,

The solid-state storage controller 104 and or solid-state storage device 102 may also
include a bank interleave controller 344, a synchronization buffer 346, a storage bus controller
348, and a multiplexer (“MUX"") 350, which are described in relation to Figures 4A and 4B.

BANK INTERLEAVE

Figure 4A is a schematic block diagram illustrating one embodiment 400 of a bank
interleave controller 344 in the solid-state storage controller 104 in accordance with the present
invention. The bank interleave controller 344 is connected to the control and status registers 340
and to the storage I/O bus 210 and storage control bus 212 through the MUX 350, storage bus
controller 348, and synchronous buffer 346, which are described below. The bank interleave
controller includes a read agent 402, a write agent 404, an erase agent 406, a management agent
408, read queues 410a-n, write queues 412a-n, erase queues 414a-n, and management queues
416a-n for the banks 214 in the solid-state storage 110, bank controllers 418a-n, a bus arbiter
420, and a status MUX 422, which are described below. The storage bus controller 348 includes
a mapping module 424 with a remapping module 430, a status capture module 426, and a NAND

bus controller 428, which are described below.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

53

The bank interleave controller 344 directs one or more commands to two or more queues
in the bank interleave controller 344 and coordinates among the banks 214 of the solid-state
storage 110 execution of the commands stored in the queues, such that a command of a first type
executes on one bank 214a while a command of a second type executes on a second bank 214b.
The one or more commands are separated by command type into the queues. Each bank 214 of
the solid-state storage 110 has a corresponding set of queues within the bank interleave controller
344 and each set of queues includes a queue for each command type.

The bank interleave controller 344 coordinates among the banks 214 of the solid-state
storage 110 execution of the commands stored in the queues. For example, a command of a first
type executes on one bank 214a while a command of a second type executes on a second bank
214b. Typically the command types and queue types include read and write commands and
queues 410, 412, but may also include other commands and queues that are storage media
specific. For example, in the embodiment depicted in Figure 4A, erase and management queues
414, 416 are included and would be appropriate for flash memory, NRAM, MRAM, DRAM,
PRAM, etc.

For other types of solid-state storage 110, other types of commands and corresponding
queues may be included without straying from the scope of the invention. The flexible nature of
an FPGA solid-state storage controller 104 allows flexibility in storage media. If flash memory
were changed to another solid-state storage type, the bank interleave controller 344, storage bus
controller 348, and MUX 350 could be altered to accommodate the media type without
significantly affecting the data pipelines 106, 108 and other solid-state storage controller 104
functions.

In the embodiment depicted in Figure 4A, the bank interleave controller 344 includes, for
each bank 214, a read queue 410 for reading data from the solid-state storage 110, a write queue
412 for write commands to the solid-state storage 110, an erase queue 414 for erasing an erase
block in the solid-state storage, an a management queue 416 for management commands. The
bank interleave controller 344 also includes corresponding read, write, erase, and management
agents 402, 404, 406, 408. In another embodiment, the control and status registers 340 and
control queues 342 or similar components queue commands for data sent to the banks 214 of the
solid-state storage 110 without a bank interleave controller 344.

The agents 402, 404, 406, 408, in one embodiment, direct commands of the appropriate
type destined for a particular bank 214a to the correct queue for the bank 214a. For example, the
read agent 402 may receive a read command for bank-1 214b and directs the read command to

the bank-1 read queue 410b. The write agent 404 may receive a write command to write data to

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

54

a location in bank-0 214a of the solid-state storage 110 and will then send the write command to
the bank-0 write queue 412a. Similarly, the erase agent 406 may receive an erase command to
erase an erase block in bank-1 214b and will then pass the erase command to the bank-1 erase
queue 414b. The management agent 408 typically receives management commands, status
requests, and the like, such as a reset command or a request to read a configuration register of a
bank 214, such as bank-0 214a. The management agent 408 sends the management command to
the bank-0 management queue 416a.

The agents 402, 404, 406, 408 typically also monitor status of the queues 410, 412, 414,
416 and send status, interrupt, or other messages when the queues 410, 412, 414, 416 are full,
nearly full, non-functional, etc. In one embodiment, the agents 402, 404, 406, 408 receive
commands and generate corresponding sub-commands. In one embodiment, the agents 402, 404,
406, 408 receive commands through the control & status registers 340 and generate
corresponding sub-commands which are forwarded to the queues 410, 412, 414, 416. One of
skill in the art will recognize other functions of the agents 402, 404, 406, 408.

The queues 410, 412, 414, 416 typically receive commands and store the commands until
required to be sent to the solid-state storage banks 214. In a typical embodiment, the queues 410,
412, 414, 416 are first-in, first-out (“FIFO”) registers or a similar component that operates as a
FIFO. In another embodiment, the queues 410, 412, 414, 416 store commands in an order that
matches data, order of importance, or other criteria.

The bank controllers 418 typically receive commands from the queues 410, 412, 414, 416
and generate appropriate subcommands. For example, the bank-0 write queue 412a may receive
a command to write a page of data packets to bank-O 214a. The bank-0 controller 418a may
receive the write command at an appropriate time and may generate one or more write
subcommands for each data packet stored in the write buffer 320 to be written to the page in
bank-0 214a. For example, bank-0 controller 418a may generate commands to validate the status
of bank 0 214a and the solid-state storage array 216, select the appropriate location for writing
one or more data packets, clear the input buffers within the solid-state storage memory array 216,
transfer the one or more data packets to the input buffers, program the input buffers into the
selected location, verify that the data was correctly programmed, and if program failures occur
do one or more of interrupting the master controller, retrying the write to the same physical
location, and retrying the write to a different physical location. Additionally, in conjunction with
example write command, the storage bus controller 348 will cause the one or more commands to

multiplied to each of the each of the storage I/O buses 210a-n with the logical address of the

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

55

command mapped to a first physical addresses for storage I/O bus 210a, and mapped to a second
physical address for storage I/O bus 210b, and so forth as further described below.

Typically, bus arbiter 420 selects from among the bank controllers 418 and pulls
subcommands from output queues within the bank controllers 418 and forwards these to the
Storage Bus Controller 348 in a sequence that optimizes the performance of the banks 214. In
another embodiment, the bus arbiter 420 may respond to a high level interrupt and modify the
normal selection criteria. In another embodiment, the master controller 224 can control the bus
arbiter 420 through the control and status registers 340. One of skill in the art will recognize
other means by which the bus arbiter 420 may control and interleave the sequence of commands
from the bank controllers 418 to the solid-state storage 110.

The bus arbiter 420 typically coordinates selection of appropriate commands, and
corresponding data when required for the command type, from the bank controllers 418 and
sends the commands and data to the storage bus controller 348. The bus arbiter 420 typically
also sends commands to the storage control bus 212 to select the appropriate bank 214. For the
case of flash memory or other solid-state storage 110 with an asynchronous, bi-directional serial
storage I/O bus 210, only one command (control information) or set of data can be transmitted at
a time. For example, when write commands or data are being transmitted to the solid-state
storage 110 on the storage I/O bus 210, read commands, data being read, erase commands,
management commands, or other status commands cannot be transmitted on the storage I/O bus
210. For example, when data is being read from the storage I/O bus 210, data cannot be written
to the solid-state storage 110.

For example, during a write operation on bank-0 the bus arbiter 420 selects the bank-0
controller 418a which may have a write command or a series of write sub-commands on the top
of its queue which cause the storage bus controller 348 to execute the following sequence. The
bus arbiter 420 forwards the write command to the storage bus controller 348, which sets up a
write command by selecting bank-O 214a through the storage control bus 212, sending a
command to clear the input buffers of the solid-state storage elements 110 associated with the
bank-0 214a, and sending a command to validate the status of the solid-state storage elements
216, 218, 220 associated with the bank-0 214a. The storage bus controller 348 then transmits a
write subcommand on the storage I/O bus 210, which contains the physical addresses including
the address of the logical erase block for each individual physical erase solid-stage storage
element 216a-m as mapped from the logical erase block address. The storage bus controller 348
then muxes the write buffer 320 through the write sync buffer 308 to the storage I/O bus 210

through the MUX 350 and streams write data to the appropriate page. When the page is full, then

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

56

storage bus controller 348 causes the solid-state storage elements 216a-m associated with the
bank-0 214a to program the input buffer to the memory cells within the solid-state storage
elements 216a-m. Finally, the storage bus controller 348 validates the status to ensure that page
was correctly programmed.

A read operation is similar to the write example above. During a read operation, typically
the bus arbiter 420, or other component of the bank interleave controller 344, receives data and
corresponding status information and sends the data to the read data pipeline 108 while sending
the status information on to the control and status registers 340. Typically, a read data command
forwarded from bus arbiter 420 to the storage bus controller 348 will cause the MUX 350 to gate
the read data on storage I/O bus 210 to the read data pipeline 108 and send status information to
the appropriate control and status registers 340 through the status MUX 422,

The bus arbiter 420 coordinates the various command types and data access modes so
that only an appropriate command type or corresponding data is on the bus at any given time. If
the bus arbiter 420 has selected a write command, and write subcommands and corresponding
data are being written to the solid-state storage 110, the bus arbiter 420 will not allow other
command types on the storage /O bus 210. Beneficially, the bus arbiter 420 uses timing
information, such as predicted command execution times, along with status information received
concerning bank 214 status to coordinate execution of the various commands on the bus with the
goal of minimizing or eliminating idle time of the busses.

The master controller 224 through the bus arbiter 420 typically uses expected completion
times of the commands stored in the queues 410, 412, 414, 416, along with status information, so
that when the subcommands associated with a command are executing on one bank 214a, other
subcommands of other commands are executing on other banks 214b-n. When one command is
fully executed on a bank 214a, the bus arbiter 420 directs another command to the bank 214a.
The bus arbiter 420 may also coordinate commands stored in the queues 410, 412, 414, 416 with
other commands that are not stored in the queues 410, 412, 414, 416.

For example, an erase command may be sent out to erase a group of erase blocks within
the solid-state storage 110. An erase command may take 10 to 1000 times more time to execute
than a write or a read command or 10 to 100 times more time to execute than a program
command. For N banks 214, the bank interleave controller 344 may split the erase command
into N commands, each to erase a virtual erase block of a bank 214a. While bank-0 214a is
executing an erase command, the bus arbiter 420 may select other commands for execution on
the other banks 214b-n. The bus arbiter 420 may also work with other components, such as the

storage bus controller 348, the master controller 224, etc., to coordinate command execution

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

57

among the buses. Coordinating execution of commands using the bus arbiter 420, bank
controllers 418, queues 410, 412, 414, 416, and agents 402, 404, 406, 408 of the bank interleave
controller 344 can dramatically increase performance over other solid-state storage systems
without a bank interleave function.

In one embodiment, the solid-state controller 104 includes one bank interleave controller
344 that serves all of the storage elements 216, 218, 220 of the solid-state storage 110. In
another embodiment, the solid-state controller 104 includes a bank interleave controller 344 for
each row of storage elements 216a-m, 218a-m, 220a-m. For example, one bank interleave
controller 344 serves one row of storage elements SSS 0.0-SSS 0.N 216a, 218a, 220a, a second
bank interleave controller 344 serves a second row of storage elements SSS 1.0-SSS 1.N 216b,
218b, 220b, etc.

Figure 4B is a schematic block diagram illustrating an alternate embodiment 401 of a
bank interleave controller in the solid-state storage controller in accordance with the present
invention, The components 210, 212, 340, 346, 348, 350, 402-430 depicted in the embodiment
shown in Figure 4B are substantially similar to the bank interleave apparatus 400 described in
relation to Figure 4A except that each bank 214 includes a single queue 432a-n and the read
commands, write commands, erase commands, management commands, etc. for a bank (e.g.
Bank-0 214a) are directed to a single queue 432a for the bank 214a. The queues 432, in one
embodiment, are FIFO. In another embodiment, the queues 432 can have commands pulled
from the queues 432 in an order other than the order they were stored. In another alternate
embodiment (not shown), the read agent 402, write agent 404, erase agent 406, and management
agent 408 may be combined into a single agent assigning commands to the appropriate queues
432a-n.

In another alternate embodiment (not shown), commands are stored in a single queue
where the commands may be pulled from the queue in an order other than how they are stored so
that the bank interleave controller 344 can execute a command on one bank 214a while other
commands are executing on the remaining banks 214b-n. One of skill in the art will easily
recognize other queue configurations and types to enable execution of a command on one bank
214a while other commands are executing on other banks 214b-n.

STORAGE-SPECIFIC COMPONENTS

The solid-state storage controller 104 includes a synchronization buffer 346 that buffers
commands and status messages sent and received from the solid-state storage 110. The
synchronization buffer 346 is located at the boundary between the solid-state storage clock

domain and the local bus clock domain and provides buffering to account for the clock domain

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

58

differences. The synchronization buffer 346, write synchronization buffer 308, and read
synchronization buffer 328 may be independent or may act together to buffer data, commands,
status messages, etc. In the preferred embodiment, the synchronization buffer 346 is located
where there are the fewest number of signals crossing the clock domains. One skilled in the art
will recognize that synchronization between clock domains may be arbitrarily moved to other
locations within the solid-state storage device 102 in order to optimize some aspect of design
implementation.

The solid-state storage controller 104 includes a storage bus controller 348 that interprets
and translates commands for data sent to and read from the solid-state storage 110 and status
messages received from the solid-state storage 110 based on the type of solid-state storage 110.
For example, the storage bus controller 348 may have different timing requirements for different
types of storage, storage with different performance characteristics, storage from different
manufacturers, etc. The storage bus controller 348 also sends control commands to the storage
control bus 212.

In the preferred embodiment, the solid-state storage controller 104 includes a MUX 350
that comprises an array of multiplexers 350a-n where each multiplexer is dedicated to a row in
the solid-state storage array 110. For example, multiplexer 350a is associated with solid-state
storage elements 216a, 218a, 220a. MUX 350 routes the data from the write data pipeline 106
and commands from the storage bus controller 348 to the solid-state storage 110 via the storage
I/O bus 210 and routes data and status messages from the solid-state storage 110 via the storage
I/O bus 210 to the read data pipeline 106 and the control and status registers 340 through the
storage bus controller 348, synchronization buffer 346, and bank interleave controller 344,

In the preferred embodiment, the solid-state storage controller 104 includes a MUX 350
for each row of solid-state storage elements (e.g. SSS 0.1 216a, SSS 0.2 218a, SSS 0.N 220a). A
MUX 350 combines data from the write data pipeline 106 and commands sent to the solid-state
storage 110 via the storage I/O bus 210 and separates data to be processed by the read data
pipeline 108 from commands. Packets stored in the write buffer 320 are directed on busses out
of the write buffer 320 through a write synchronization buffer 308 for each row of solid-state
storage elements (SSS x.0 to SSS x.N 216, 218, 220) to the MUX 350 for each row of solid-state
storage elements (SSS x.0 to SSS x.N 216, 218, 220). The commands and read data are received
by the MUXes 350 from the storage I/O bus 210. The MUXes 350 also direct status messages to
the storage bus controller 348.

The storage bus controller 348 includes a mapping module 424. The mapping module

424 maps a logical address of an erase block to one or more physical addresses of an erase block.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

59

For example, a solid-state storage 110 with an array of twenty storage elements (e.g. SSS 0.0 to
SSS M.0 216) per block 214a may have a logical address for a particular erase block mapped to
twenty physical addresses of the erase block, one physical address per storage element. Because
the storage elements are accessed in parallel, erase blocks at the same position in each storage
element in a row of storage elements 216a, 218a, 220a will share a physical address. To select
one erase block (e.g. in storage element SSS 0.0 216a) instead of all erase blocks in the row (e.g.
in storage elements SSS 0.0, 0.1, ... 0.N 216a, 218a, 220a), one bank (in this case bank-0 214a)
is selected.

This logical-to-physical mapping for erase blocks is beneficial because if one erase block
becomes damaged or inaccessible, the mapping can be changed to map to another erase block.
This mitigates the loss of losing an entire virtual erase block when one element’s erase block is
faulty. The remapping module 430 changes a mapping of a logical address of an erase block to
one or more physical addresses of a virtual erase block (spread over the array of storage
elements). For example, virtual erase block 1 may be mapped to erase block 1 of storage
element SSS 0.0 216a, to erase block 1 of storage element SSS 1.0 216b, ..., and to storage
element M.0O 216m, virtual erase block 2 may be mapped to erase block 2 of storage element SSS
0.1 218a, to erase block 2 of storage element SSS 1.1 218b, ..., and to storage element M.1
218m, etc.

If erase block 1 of a storage element SSS0.0 216a is damaged, experiencing errors due to
wear, etc., or cannot be used for some reason, the remapping module could change the logical-to-
physical mapping for the logical address that pointed to erase block 1 of virtual erase block 1. If
a spare erase block (call it erase block 221) of storage element SSS 0.0 216a is available and
currently not mapped, the remapping module could change the mapping of virtual erase block 1
to point to erase block 221 of storage element SSS 0.0 216a, while continuing to point to erase
block 1 of storage element SSS 1.0 216b, erase block 1 of storage element SSS 2.0 (not shown)
..., and to storage element M.0 216m. The mapping module 424 or remapping module 430
could map erase blocks in a prescribed order (virtual erase block 1 to erase block 1 of the storage
elements, virtual erase block 2 to erase block 2 of the storage elements, etc.) or may map erase
blocks of the storage elements 216, 218, 220 in another order based on some other criteria.

In one embodiment, the erase blocks could be grouped by access time. Grouping by
access time, meaning time to execute a command, such as programming (writing) data into pages
of specific erase blocks, can level command completion so that a command executed across the

erase blocks of a virtual erase block is not limited by the slowest erase block. In other

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

60

embodiments, the erase blocks may be grouped by wear level, health, etc. One of skill in the art
will recognize other factors to consider when mapping or remapping erase blocks.

In one embodiment, the storage bus controller 348 includes a status capture module 426
that receives status messages from the solid-state storage 110 and sends the status messages to
the status MUX 422, In another embodiment, when the solid-state storage 110 is flash memory,
the storage bus controller 348 includes a NAND bus controller 428. The NAND bus controller
428 directs commands from the read and write data pipelines 106, 108 to the correct location in
the solid-state storage 110, coordinates timing of command execution based on characteristics of
the flash memory, etc. If the solid-state storage 110 is another solid-state storage type, the
NAND bus controller 428 would be replaced by a bus controller specific to the storage type.

One of skill in the art will recognize other functions of a NAND bus controller 428.

FLOW CHARTS

Figure 5A is a schematic flow chart diagram illustrating one embodiment of a method
500 for managing data in a solid-state storage device 102 using a data pipeline in accordance
with the present invention. The method 500 begins 502 and the input buffer 306 receives 504
one or more data segments to be written to the solid-state storage 110. The one or more data
segments typically include at least a portion of an object but may be an entire object. The
packetizer 302 may create one or more object specific packets in conjunction with an object. The
packetizer 302 adds a header to each packet which typically includes the length of the packet and
a sequence number for the packet within the object. The packetizer 302 receives 504 the one or
more data or metadata segments that were stored in the input buffer 306 and packetizes 506 the
one or more data or metadata segments by creating one or more packets sized for the solid-state
storage 110 where each packet includes one header and data from the one or more segments.

Typically, a first packet includes an object identifier that identifies the object for which
the packet was created. A second packet may include a header with information used by the
solid-state storage device 102 to associate the second packet to the object identified in the first
packet and offset information locating the second packet within the object, and data. The solid-
state storage device controller 202 manages the bank 214 and physical area to which the packets
are streamed.

The ECC generator 304 receives a packet from the packetizer 302 and generates 508
ECC for the data packets. Typically, there is no fixed relationship between packets and ECC

blocks. An ECC block may comprise one or more packets. A packet may comprise one or more

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

61

ECC blocks. A packet may start and end anywhere within an ECC block. A packet may start
anywhere in a first ECC block and end anywhere in a subsequent ECC block.

The write synchronization buffer 308 buffers 510 the packets as distributed within the
corresponding ECC blocks prior to writing ECC blocks to the solid-state storage 110 and then
the solid-state storage controller 104 writes 512 the data at an appropriate time considering clock
domain differences, and the method 500 ends 514. The write synch buffer 308 is located at the
boundary between a local clock domain and a solid-state storage 110 clock domain. Note that
the method 500 describes receiving one or more data segments and writing one or more data
packets for convenience, but typically a stream of data segments is received and a group.
Typically a number of ECC blocks comprising a complete virtual page of solid-state storage 110
are written to the solid-state storage 110. Typically the packetizer 302 receives data segments of
one size and generates packets of another size. This necessarily requires data or metadata
segments or parts of data or metadata segments to be combined to form data packets to capture
all of the data of the segments into packets.

Figure 5B is a schematic flow chart diagram illustrating one embodiment of a method for
in-server SAN in accordance with the present invention. The method 500 begins 552 and the
storage communication module 162 facilitates 554 communication between a first storage
controller 152a and at least one device external to the first server 112a. The communication
between the first storage controller 152a and the external device is independent from the first
server 112a. The first storage controller 112a is within the first server 112a and the first storage
controller 152a controls at least one storage device 154a. The first server 112a includes a
network interface 156a collocated with the first server 112a and the first storage controller 152a.
The in-server SAN module 164 services 556 a storage request and the method 501 ends 558.
The in-server SAN module services 556 the storage request using a network protocol and/or a
bus protocol. The in-server SAN module 164 services 556 the storage request independent from
the first server 112a and the service request is received from a client 114, 114a.

Figure 6 is a schematic flow chart diagram illustrating another embodiment of a method
600 for managing data in a solid-state storage device 102 using a data pipeline in accordance
with the present invention. The method 600 begins 602 and the input buffer 306 receives 604
one or more data or metadata segments to be written to the solid-state storage 110. The
packetizer 302 adds a header to each packet which typically includes the length of the packet
within the object. The packetizer 302 receives 604 the one or more segments that were stored in

the input buffer 306 and packetizes 606 the one or more segments by creating one or more

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

62

packets sized for the solid-state storage 110 where each packet includes a header and data from
the one or more segments.

The ECC generator 304 receives a packet from the packetizer 302 and generates 608 one
or more ECC blocks for the packets. The write synchronization buffer 308 buffers 610 the
packets as distributed within the corresponding ECC blocks prior to writing ECC blocks to the
solid-state storage 110 and then the solid-state storage controller 104 writes 612 the data at an
appropriate time considering clock domain differences. When data is requested from the solid-
state storage 110, ECC blocks comprising one or more data packets are read into the read
synchronization buffer 328 and buffered 614. The ECC blocks of the packet are received over
the storage I/O bus 210. Since the storage I/O bus 210 is bi-directional, when data is read, write
operations, command operations, etc. are halted.

The ECC correction module 322 receives the ECC blocks of the requested packets held in
the read synchronization buffer 328 and corrects 616 errors within each ECC block as necessary.
If the ECC correction module 322 determines that one or more errors exist in an ECC block and
the errors are correctable using the ECC syndrom, the ECC correction module 322 corrects 616
the error in the ECC block. If the ECC correction module 322 determines that a detected error is
not correctable using the ECC, the ECC correction module 322 sends an interrupt.

The depacketizer 324 receives 618 the requested packet after the ECC correction module
322 corrects any errors and depacketizes 618 the packets by checking and removing the packet
header of each packet. The alignment module 326 receives packets after depacketizing, removes
unwanted data, and re-formats 620 the data packets as data or metadata segments of an object in
a form compatible with the device requesting the segment or object. The output buffer 330
receives requested packets after depacketizing and buffers 622 the packets prior to transmission
to the requesting device, and the method 600 ends 624.

Figure 7 is a schematic flow chart diagram illustrating an embodiment of a method 700
for managing data in a solid-state storage device 102 using a bank interleave in accordance with
the present invention. The method 600 begins 602 and the bank interleave controller 344 directs
604 one or more commands to two or more queues 410, 412, 414, 416. Typically the agents 402,
404, 406, 408 direct 604 the commands to the queues 410, 412, 414, 416 by command type.
Each set of queues 410, 412, 414, 416 includes a queue for each command type. The bank
interleave controller 344 coordinates 606 among the banks 214 execution of the commands
stored in the queues 410, 412, 414, 416 so that a command of a first type executes on one bank
214a while a command of a second type executes on a second bank 214b, and the method 600

ends 608.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

63

STORAGE SPACE RECOVERY

Figure 8 is a schematic block diagram illustrating one embodiment of an apparatus 800
for garbage collection in a solid-state storage device 102 in accordance with the present
invention. The apparatus 800 includes a sequential storage module 802, a storage division
selection module 804, a data recovery module 806, and a storage division recovery module 808,
which are described below. In other embodiments, the apparatus 800 includes a garbage
marking module 810 and an erase module 812.

The apparatus 800 includes a sequential storage module 802 that sequentially writes data
packets in a page within a storage division. The packets are sequentially stored whether they are
new packets or modified packets. Modified packets are in this embodiment are typically not
written back to a location where they were previously stored. In one embodiment, the sequential
storage module 802 writes a packet to a first location in a page of a storage division, then to the
next location in the page, and to the next, and the next, until the page is filled. The sequential
storage module 802 then starts to fill the next page in the storage division. This continues until
the storage division is filled.

In a preferred embodiment, the sequential storage module 802 starts writing packets to
storage write buffers in the storage elements (e.g. SSS 0.0 to SSS M.0 216) of a bank (bank-0
214a). When the storage write buffers are full, the solid-state storage controller 104 causes the
data in the storage write buffers to be programmed into designated pages within the storage
elements 216 of the bank 214a. Then another bank (e.g. bank-1 214b) is selected and the
sequential storage module 802 starts writing packets to storage write buffers of the storage
elements 218 of the bank 214b while the first bank-0 is programming the designated pages.
When the storage write buffers of this bank 214b are full, the contents of the storage write
buffers are programmed into another designated page in each storage element 218. This process
is efficient because while one bank 214a is programming a page, storage write buffers of another
bank 214b can be filling.

The storage division includes a portion of a solid-state storage 110 in a solid-state storage
device 102. Typically the storage division is an erase block. For flash memory, an erase
operation on an erase block writes ones to every bit in the erase block by charging each cell.
This is a lengthy process compared to a program operation which starts with a location being all
ones, and as data is written, some bits are changed to zero by discharging the cells written with a
zero. However, where the solid-state storage 110 is not flash memory or has flash memory
where an erase cycle takes a similar amount of time as other operations, such as a read or a

program, the storage division may not be required to be erased.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

64

As used herein, a storage division is equivalent in area to an erase block but may or may
not be erased. Where erase block is used herein, an erase block may refer to a particular area of
a designated size within a storage element (e.g. SSS 0.0 216a) and typically includes a certain
quantity of pages. Where “erase block™ is used in conjunction with flash memory, it is typically
a storage division that is erased prior to being written. Where “erase block™ is used with “solid-
state storage,” it may or may not be erased. As used herein, an erase block may include one
erase block or a group of erase blocks with one erase block in each of a row of storage elements
(e.g. SSS 0.0 to SSS M.0 216a-n), which may also be referred to herein as a virtual erase block.
When referring to the logical construct associated with the virtual erase block, the erase blocks
may be referred to herein as a logical erase block (“LEB”).

Typically, the packets are sequentially stored by order of processing. In one
embodiment, where a write data pipeline 106 is used, the sequential storage module 802 stores
packets in the order that they come out of the write data pipeline 106. This order may be a result
of data segments arriving from a requesting device 155 mixed with packets of valid data that are
being read from another storage division as valid data is being recovered from a storage division
during a recovery operation as explained below. Re-routing recovered, valid data packets to the
write data pipeline 106 may include the garbage collector bypass 316 as described above in
relation to the solid-state storage controller 104 of Figure 3.

The apparatus 800 includes a storage division selection module 804 that selects a storage
division for recovery. Selecting a storage division for recovery may be to reuse the storage
division by the sequential storage module 802 for writing data, thus adding the recovered storage
division to the storage pool, or to recover valid data from the storage division after determining
that the storage division is failing, unreliable, should be refreshed, or other reason to take the
storage division temporarily or permanently out of the storage pool. In another embodiment, the
storage division selection module 804 selects a storage division for recovery by identifying a
storage division or erase block with a high amount of invalid data.

In another embodiment, the storage division selection module 804 selects a storage
division for recovery by identifying a storage division or erase block with a low amount of wear.
For example, identifying a storage division or erase block with a low amount of wear may
include identifying a storage division with a low amount of invalid data, a low number of erase
cycles, low bit error rate, or low program count (low number of times a page of data in a buffer is
written to a page in the storage division; program count may be measured from when the device
was manufactured, from when the storage division was last erased, from other arbitrary events,

and from combinations of these). The storage division selection module 804 may also use any

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

65

combination of the above or other parameters to determine a storage division with a low amount
of wear. Selecting a storage division for recovery by determining a storage division with a low
amount of wear may be desirable to find storage divisions that are under used, may be recovered
for wear leveling, etc.

In another embodiment, the storage division selection module 804 selects a storage
division for recovery by identifying a storage division or erase block with a high amount of wear.
For example, identifying a storage division or erase block with a high amount of wear may
include identifying a storage division with a high number of erase cycles, high bit error rate, a
storage division with a non-recoverable ECC block, or high program count. The storage division
selection module 804 may also use any combination of the above or other parameters to
determine a storage division with a high amount of wear. Selecting a storage division for
recovery by determining a storage division with a high amount of wear may be desirable to find
storage divisions that are over used, may be recovered by refreshing the storage division using an
erase cycle, etc. or to retire the storage division from service as being unusable.

The apparatus 800 includes a data recovery module 806 that reads valid data packets
from the storage division selected for recovery, queues the valid data packets with other data
packets to be written sequentially by the sequential storage module 802, and updates an index
with a new physical address of the valid data written by the sequential storage module 802.
Typically, the index is the object index mapping data object identifiers of objects to physical
addresses of where packets derived from the data object are stored in the solid-state storage 110.

In one embodiment the apparatus 800 includes a storage division recovery module 808
that prepares the storage division for use or reuse and marks the storage division as available to
the sequential storage module 802 for sequentially writing data packets after the data recovery
module 806 has completed copying valid data from the storage division, . In another
embodiment, the apparatus 800 includes a storage division recovery module 808 that marks the
storage division selected for recovery as unavailable for storing data. Typically this is due to the
storage division selection module 804 identifying a storage division or erase block with a high
amount of wear such that the storage division or erase block is not in condition to be used for
reliable data storage.

In one embodiment, the apparatus 800 is in a solid-state storage device controller 202 of a
solid-state storage device 102. In another embodiment, the apparatus 800 controls a solid-state
storage device controller 202. In another embodiment, a portion of the apparatus 800 is in a
solid-state storage device controller 202. In another embodiment, the object index updated by

the data recovery module 806 is also located in the solid-state storage device controller 202

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

66

In one embodiment, the storage division is an erase block and the apparatus 800 includes
an erase module 810 that erases an erase block selected for recovery after the data recovery
module 806 has copied valid data packets from the selected erase block and before the storage
division recovery module 808 marks the erase block as available. For flash memory and other
solid-state storage with an erase operation taking much longer than read or write operations,
erasing a data block prior to making it available for writing new data is desirable for efficient
operation. Where the solid-state storage 110 is arranged in banks 214, the erase operation by the
erase module 8§10 may be executed on one bank while other banks are executing reads, writes, or
other operations.

In one embodiment, the apparatus 800 includes a garbage marking module 812 that
identifies a data packet in a storage division as invalid in response to an operation indicating that
the data packet is no longer valid. For example, if a data packet is deleted, the garbage marking
module 812 may identify the data packet as invalid. A read-modify-write operation is another
way for a data packet to be identified as invalid. In one embodiment, the garbage marking
module 812 may identify the data packet as invalid by updating an index. In another
embodiment, the garbage marking module 812 may identify the data packet as invalid by storing
another data packet that indicates that the invalid data packet has been deleted. This is
advantageous because storing, in the solid-state storage 110, information that the data packet has
been deleted allows the object index reconstruction module 262 or similar module to reconstruct
the object index with an entry indicating that the invalid data packet has been deleted.

In one embodiment, the apparatus 800 may be utilized to fill the remainder of a virtual
page of data following a flush command in order to improve overall performance, where the
flush command halts data flowing into the write pipeline 106 until the write pipeline 106 empties
and all packets have been permanently written into non-volatile solid-state storage 110. This has
the benefit of reducing the amount of garbage collection required, the amount of time used to
erase storage divisions, and the amount of time required to program virtual pages. For example, a
flush command may be received when only one small packet is prepared for writing into the
virtual page of the solid-state storage 100. Programming this nearly empty virtual page might
result in a need to immediately recover the wasted space, causing the valid data within the
storage division to be unnecessarily garbage collected and the storage division erased, recovered
and returned to the pool of available space for writing by the sequential storage module 802.

Marking the data packet as invalid rather than actually erasing an invalid data packet is
efficient because, as mentioned above, for flash memory and other similar storage an erase

operation takes a significant amount of time. Allowing a garbage collection system, as described

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

67

in the apparatus 800, to operate autonomously within the solid-state storage 110 provides a way
to separate erase operations from reads, writes, and other faster operations so that the solid-state
storage device 102 can operate much faster than many other solid-state storage systems or data
storage devices.

Figure 9 is a schematic flow chart diagram illustrating an embodiment of a method 900
for storage recovery in accordance with the present invention. The method 900 begins 902 and
the sequential storage module 802 sequentially writes 904 data packets in a storage division. The
storage division is a portion of a solid-state storage 110 in a solid-state storage device 102.
Typically a storage division is an erase block. The data packets are derived from an object and
the data packets are sequentially stored by order of processing.

The storage division selection module 804 selects 906 a storage division for recovery and
the data recovery module 806 reads 908 valid data packets from the storage division selected for
recovery. Typically valid data packets are data packets that have not been marked for erasure or
deletion or some other invalid data marking and are considered valid or “good” data. The data
recovery module 806 queues 910 the valid data packets with other data packets scheduled to be
written sequentially by the sequential storage module 802. The data recovery module 806
updates 912 an index with a new physical address of the valid data written by the sequential
storage module 802. The index includes a mapping of physical addresses of data packets to
object identifiers. The data packets are those stored in stored in the solid-state storage 110 and
the object identifiers correspond to the data packets.

After the data recovery module 806 completes copying valid data from the storage
division, the storage division recovery module 808 marks 914 the storage division selected for
recovery as available to the sequential storage module 802 for sequentially writing data packets
and the method 900 ends 916.

PROGRESSIVE RAID

Figure 10 is a schematic block diagram illustrating one embodiment of a system 1600 for
progressive RAID in accordance with the present inventions. The system 1600 includes N
storage devices 150 and M parity-mirror storage devices 1602 accessible through a computer
network 116 by one or more clients 114. The N storage devices 150 and parity-mirror storage
devices 1602 may be located in one or more servers 112. The storage devices 150, servers 112,
computer network 116, and clients 114 are substantially similar to those described above. The
parity-mirror devices 1602 are typically similar or identical to the N storage devices 150 and are

typically designated as a parity-mirror storage device 1602 for a stripe.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

68

In one embodiment, the N storage devices 150 and M parity-mirror storage devices 1602
are included in or accessible through one server 112 and may be networked together using a
system bus, SAN, or other computer network 116, In another embodiment, the N storage
devices 150 and M parity-mirror storage devices 1602 are located in or accessible through
multiple servers 112a-n+m. For example, the storage devices 150 and parity-mirror storage
devices 1602 may be part of an in-server SAN as described above in relation to the system 103
of Figure 1C and the method 105 of Figure 5B.

In one embodiment, a parity-mirror storage device 1602 stores all parity data segments of
the stripes stored in the progressive RAID. In another preferred embodiment, a storage device
150 of the storage device set 1604 assigned to the progressive RAID is assigned to be a parity-
mirror storage device 1602 for a particular stripe and the assignment is rotated so that the parity
data segments are rotated, for each stripe, among the N+M storage devices 150. This
embodiment, offers a performance advantage over assigning a single storage device 150 to be a
parity-mirror storage device 1602 for each stripe. By rotating the parity-mirror storage device
1602, the overhead associated with calculating and storing parity data segments can be
distributed.

In one embodiment, the storage devices 150 are solid-state storage devices 102, each with
associated solid-state storage 110 and a solid-state storage controller 104. In another
embodiment, each storage device 150 includes a solid-state storage controller 104 and associated
solid-state storage 110 acts as cache for other less expensive, lower performance storage, such as
tape storage or hard disk drives. In another embodiment, one or more of the servers 112 include
one or more clients 114 that send storage requests to the progressive RAID. One of skill in the
art will recognize other system configurations with N storage devices 150 and one or more
parity-mirror storage devices 1602 that may be configured for progressive RAID.

Figure 11 is a schematic block diagram illustrating one embodiment of an apparatus 1700
for progressive RAID in accordance with the present invention. The apparatus 1700 includes, in
various embodiments, a storage request receiver module 1702, a striping module 1704, a parity-
mirror module 1706, and a parity progression modulel1708, a parity alteration module 1710, a
mirrored set module 1712, an update module 1714, a mirror restoration module 1716 with a
direct client response module 1718, a pre-consolidation module 1720, a post-consolidation
module 1722, a data rebuild module 1724, and a parity rebuild module 1726, which are described
below. The modules 1702-1726 are depicted in a server 112, but some or all of the functions of
the modules 1702-1726 may also be distributed in multiple servers 112, storage controllers 152,

storage devices 150, clients 114, etc.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

69

The apparatus 1700 includes a storage request receiver module 1702 that receives a
request to store data, where the data is data of a file or of an object. In one embodiment, the
storage request is an object request. In another embodiment, the storage request is a block
storage request. The storage request in one embodiment, does not include data, but includes
commands that can be used by the storage devices 150 and parity-mirror storage devices 1602 to
DMA or RDMA data from a client 114 or other source. In another embodiment, the storage
request includes data to be stored as a result of the storage request. In another embodiment, the
storage request includes one command capable of having the data stored in the storage device set
1604. In another embodiment, the storage request includes multiple commands. One of skill in
the art will recognize other storage requests to store data appropriate for progressive RAID.

The data is stored in a location accessible to the apparatus 1700. In one embodiment, the
data is available in a random access memory (“RAM?”), such as a RAM used by the client 114 or
server. In another embodiment, the data is stored in a hard disk drive, tape storage, or other mass
storage device. In one embodiment, the data is configured as an object or as a file. In another
embodiment, the data is configured as a data block which is part of an object or a file. One of
skill in the art will recognize other forms and locations for the data that is the subject of the
storage request.

The apparatus 1700 includes a striping module 1704 that calculates a stripe pattern for the
data. The stripe pattern includes one or more stripes, where each stripe includes a set of N data
segments. Typically the number of data segments in a stripe depends on how many storage
devices 150 are assigned to the RAID group. For example, if RAID 5 is used, one storage device
150 is assigned as a parity-mirror storage device 1602a to store parity data for a particular stripe.
If four other storage devices 150a, 150b, 150c, 150d are assigned to the RAID group, a stripe
will have four data segments in addition to the parity data segment. The striping module 1704
writes N data segments to N of a stripe to N storage devices 150a-n so that each of the N data
segments is written to a separate storage device 150a, 150b, ... 150n within a set 1604 of storage
devices 150 assigned to the stripe. One of skill in the art will appreciate various combinations of
storage devices 150 that may be assigned to a RAID group for a particular RAID level and how
to create a striping pattern and divide data into N data segments per stripe.

The apparatus 1700 includes a parity-mirror module 1706 that writes a set of N data
segments of the stripe to one or more parity-mirror storage devices 1602 within the storage
device set 1604, where the parity-mirror storage devices 1602 are in addition to the N storage
devices 150. The N data segments are then available for future calculation of a parity data

segment. Rather than immediately calculating the parity data segment, the parity-mirror module

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

70

1706 copies the set of N data segments to the parity-mirror storage devices 1602, which typically
requires less time than storing the N data segments. Once the N data segments are stored on the
parity-mirror storage device 1602, the N data segments are available to be read or used to restore
data if one of the N storage devices 150 becomes unavailable. Reading data also has the
advantages of a RAID 0 configuration because all of the N data segments are available together
from one storage device (e.g. 1602a). For more than one parity-mirror storage device (e.g.
1602a, 1602b), the parity-mirror module 1706 copies the N data segments to each parity-mirror
storage device 1602a, 1602b.

The apparatus 1700 includes a parity progression module 1708 that calculates one or
more parity data segments for the stripe in response to a storage consolidation operation. The
one or more parity data segments calculated from the N data segments are stored on the parity-
mirror storage devices 1602. The parity progression module 1708 stores a parity data segment on
each of the one or more parity-mirror storage devices 1602. The storage consolidation operation
is conducted to recover at least storage space or data or both on at least one of the one or more
parity-mirror storage devices 1602. For example, a storage consolidation operation may be a
data garbage collection on a solid-state storage device 102 as described above in relation to the
apparatus 800 and method 900 of Figures 8 and 9. The storage consolidation operation may also
include a defragmentation operation for a hard disk drive, or other similar operation that
consolidates data to increase storage space. The storage consolidation operation, as used herein,
may also include an operation to recover data, for example, if a storage device 150 is
unavailable, to recover from an error, or other reason for reading data from the parity-mirror
storage device 1602. In another embodiment, the parity generation module 1708 simply
calculates the parity data segment when the parity-mirror storage device 1602 is less busy.

Advantageously, by delaying calculation and storage of the parity data segment of a
stripe, the N data segments on the parity-mirror storage device 1602 are available for reading the
data segments, recovering data, rebuilding data on a storage device 150 until more storage space
is needed on the parity-mirror storage device 1602 or other reason for a storage consolidation
operation. The parity progression module 1708 may then run as a background operation,
autonomously from the storage request receiver module 1702, the striping module 1704, or the
parity-mirror module 1706. One of skill in the art will easily recognize other reasons to delay
calculation of a parity data segment as part of a progressive RAID operation.

In one embodiment, some or all of the functions of the modules 1702-1708, receiving an
request to store data, calculating a stripe pattern and writing N data segments to the N storage

devices, writing a set of N data segments to a parity-mirror storage device, and calculating the

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

71

parity data segment, occur on a storage device 150 of the storage device set 1604, a client 114,
and a third-party RAID management device. The third-party RAID management device may be
a server 114 or other computer.

In one embodiment, the apparatus 1700 includes a parity alternation module 1710 that
alternates, for each stripe, which of the storage devices 150 within the storage device set 1604
are assigned to be the one or more parity-mirror storage devices 1602 for the stripe. As
discussed above in relation to the system 1600 of Figure 10, by rotating which storage device
150 is used for the parity-mirror storage device for a stripe, the work calculation of the various
parity data segments is spread among the storage devices 150 of a storage device set 1604.

In another embodiment, the storage device set 1604 is a first storage device set and the
apparatus 1700 includes a mirrored set module 1712 that creates one or more storage device sets
in addition to the first storage set 1604 so that each of the one or more additional storage device
sets include at least an associated striping module 1704 that writes the N data segments to N
storage devices 150 of each of the one or more additional storage sets. In a related embodiment,
each of the one or more additional storage device sets includes an associated a parity-mirror
module 1706 for storing a set of the N data segments and a parity progression module 1708 for
calculating one or more parity data segments. Where the mirrored set module 1712 creates one
or more mirrored storage device sets, the RAID may be a nested RAID such as RAID 50. In this
embodiment, the RAID level may be progressed from a RAID 10 where data is striped and
mirrored, to a RAID 50 or RAID 60, where a parity data segment is calculated and stored for
each storage device set 1604.

In one embodiment, the apparatus 1700 includes and update module 1714. The update
module 1714 is typically used where the N data segments on a parity-mirror storage device 1602
have not been progressed to a parity data segment. The update module 1714 receives an updated
data segment, where the updated data segment corresponds to an existing data segment of the N
data segments stored on the N storage devices 150. The update module 1714 copies the updated
data segment to the storage device 150 of the stripe where the existing data segment is stored and
to the one or more parity-mirror storage devices 1602 of the stripe. The update module 1714
replaces the existing data segment stored on the storage device 150 of the N storage devices
150a-n with the updated data segment and replaces the corresponding existing data segment
stored on the one or more parity-mirror storage devices 1602 with the updated data segment.

In one embodiment replacing a data segment includes writing the data segment to a
storage device 150 and then marking a corresponding data segment as invalid for subsequent

garbage collection. An example of this embodiment is described for solid-state storage 110 and

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

72

the garbage collection apparatus described above in relation to Figures § and 9. In another
embodiment, replacing a data segment includes overwriting an existing data segment with an
updated data segment.

In one embodiment, the set of storage devices 1604 is a first storage device set and the
apparatus 1700 includes a mirror restoration module 1716 that recovers a data segment stored on
a storage device 150 of the first storage set 1604 where the storage device 150 of the first storage
set 1604 is unavailable. The data segment is recovered from a mirror storage device containing a
copy of the data segment. The mirror storage device includes one of a set of one or more storage
devices 150 that stores a copy of the N data segments.

In a further embodiment, the mirror restoration module 1716 recovers the data segment in
response to a read request from a client 114 to read the data segment. In another related
embodiment, the mirror restoration module 1716 also includes a direct client response module
1718 that sends the requested data segment to the client 114 from the mirror storage device. In
this embodiment, the requested data segment is copied to the client 114 so that the client 114
does not have to wait until the data segment is recovered before transmitting the data segment on
to the client 114.

In one embodiment, the apparatus 1700 includes a pre-consolidation restoration module
1720 that recovers a data segment stored on a storage device 150 of the storage set 1604 in
response to a request to read the data segment. In the embodiment the storage device 150 is
unavailable and the data segment is recovered from the a parity-mirror storage device 1602 prior
to the parity progression module 1708 generating the one or more parity data segments on the
one or more parity-mirror storage devices 1602.

In another embodiment, the apparatus 1700 includes a post-consolidation restoration
module 1724 that recovers a data segment stored on a storage device 150 of the storage set. In
the embodiment, the storage device 150is unavailable and the data segment is recovered using
one or more parity data segments stored on one or more of the parity-mirror storage devices 150
after the parity progression module 1708 generates the one or more parity data segments. For
example, the post-consolidation restoration module 1724 uses a parity data segment and
available data segments on the available N storage devices 150 to recreate the missing data
segment.

In one embodiment, the apparatus 1700 includes a data rebuild module 1724 that stores a
recovered data segment on a replacement storage device in a rebuild operation, where the
recovered data segment matches an unavailable data segment stored on an unavailable storage

device 150. The unavailable storage device 150 is one of the N storage devices 150 of the storage

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

73

device set 1602. Typically, the rebuild operation occurs after a failure of the storage device 150
that stores the unavailable data segment. The rebuild operation is to restore data segments onto
the replacement storage device to match data segments stored previously on the unavailable
storage device 150.

The data segment may be recovered for the rebuild operation from several sources. For
example, the data segment may be recovered from a parity-mirror storage device 1602 prior to
progression if the matching data segment resides on the parity-mirror storage device 1602. In
another example, the data segment may be recovered from a mirror storage device containing a
copy of the unavailable data segment. Typically the data segment is recovered from the mirror
storage device if the recovered data segment does not reside on the one or more parity-mirror
storage devices 1602, but may be recovered from the mirror storage device even if the matching
data segment is available on the mirror storage device.

In another example, a regenerated data segment is regenerated from one or more parity
data segments and available data segments of the N data segments if the recovered data segment
does not reside on a parity-mirror storage device 1604 or the mirror storage device. Typically
the missing data segment is regenerated only if it does not exist on another storage device 150 in
some form.

In another embodiment, the apparatus 1700 includes a parity rebuild module 1726 that
rebuilds a recovered parity data segment on a replacement storage device in a parity rebuild
operation where the recovered parity data segment matches an unavailable parity data segment
stored on an unavailable parity-mirror storage device. The unavailable parity-mirror storage
device is one of the one or more parity-mirror storage devices 1602. The parity rebuild operation
restores parity data segments onto the replacement storage device to match parity data segments
stored previously on the unavailable parity-mirror storage device.

To regenerate the recovered parity data segment in the rebuild operation, data used for
the rebuild may be from various sources. In one example, the recovered parity data segment is
recovered using a parity data segment stored on a parity-mirror storage device 1602 in a second
set of storage devices 150 storing a mirror copy of the stripe. Where a mirror copy is available,
using the mirrored parity data segment is desirable because the recovered parity data segment
does not have to be recalculated. In another example, the recovered parity data segment is
regenerated from the N data segments stored on one of the N storage devices 150 if the N data
segments are available on the N storage devices. Typically, the N data segments would be
available on the N storage devices 150 where a single failure occurs on the parity-mirror storage

device 1602 being rebuilt.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

74

In another example, the recovered parity data segment is regenerated from one or more
storage devices 150 of the second set of storage devices 150 storing copies of the N data
segments if one or more of the N data segments are unavailable from the N storage devices 150
of the first storage device set 1604 and a matching parity data segment is not available on the
second set of storage devices 150. In yet another example, the recovered parity data segment is
regenerated from the available data segments and non-matching parity data segments regardless
of their location within the one or more sets of storage devices 150.

Where the parity-mirror storage device is alternated among the storage devices 150 of the
storage device set 1604, typically the data rebuild module 1724 and the parity rebuild module
1726 act in conjunction to rebuild data segments and parity data segments on a rebuilt storage
device 150. Where a second parity-mirror storage device 1602b is available, the data rebuild
module 1724 and the parity rebuild module 1726 can rebuild two storage devices after a failure
of two storage devices 150, 1602 of the storage device set 1604. Where a parity-mirror storage
device 1602 is not progressed to create a parity-mirror data segment, recovery of a data segment
or a storage device 150 is quicker than if the parity-mirror storage device 1602 is progressed and
the parity data segment for a stripe has been calculated and stored and the N data segments on
the parity-mirror storage device 1602 used to calculate the parity data segment have been
deleted.

Figure 12 is a schematic block diagram illustrating one embodiment of an apparatus 1800
for updating a data segment using progressive RAID in accordance with the present invention.
Typically, the apparatus 1800 pertains to a RAID group where one or more of the parity-mirror
storage devices 1602 have been progressed and include a parity daa segment and not the N data
segments used to create the parity data segment. The apparatus 1800 includes an update receiver
module 1802, an update copy module 1804, a parity update module 1806, which are described
below. The modules 1802-1806 of the apparatus 1800 are depicted in a server 112, but may be
in a storage device 150, a client 114, or any combination of devices, or may be distributed among
several devices.

A stripe, data segments, storage devices 150, a storage device set 1604, parity data
segments, and the one or more parity-mirror storage device 1602 are substantially similar to a
stripe as describe above in relation to the apparatus 1700 of Figure 11. The apparatus 1800
includes an update receiver module 1802 that receives an updated data segment where the
updated data segment corresponds to an existing data segment of an existing stripe. In another
embodiment, the update receiver module 1802 may also receive multiple updates and may

handle the updates together or separately.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

75

The apparatus 1800 includes an update copy module 1804 that copies the updated data
segment to the storage device 150 where the corresponding existing data segment is stored and to
the one or more parity-mirror storage devices 1602 corresponding to the existing stripe. In
another embodiment, the update copy module 1804 copies the updated data segment to either the
parity-mirror storage device 1602 or to the storage device 150 storing the existing data segment
and then verifies that a copy of the updated data segment is forwarded to the other device 1602,
150.

The apparatus 1800 includes a parity update module 1806 that calculates one or more
updated parity data segments for the one or more parity-mirror storage devices of the existing
stripe in response to a storage consolidation operation. The storage consolidation operation is
similar to the storage consolidation operation described above in relation to the apparatus 1700 in
Figure 11. The storage consolidation operation is conducted to recover at least storage space
and/or data on one or more parity-mirror storage devices 1602 with the one or more updated
parity data segments. By waiting to update the one or more parity data segments, the update can
be postponed until it is more convenient or until necessary to consolidate storage space.

In one embodiment, the updated parity data segment is calculated from the existing parity
data segment, the updated data segment, and the existing data segment. In one embodiment, the
existing data segment is maintained in place prior to reading the existing data segment for
generation of the updated parity data segment. An advantage to this embodiment, is the
overhead associated from copying the existing data segment to the parity-mirror storage device
1602 or other location where the updated parity data segment is generated can be postponed until
necessary. A disadvantage of this embodiment is that if the storage device 150 that maintains the
existing data segment fails, the existing data segment must be recovered before the updated
parity data segment can be generated.

In another embodiment, the existing data segment is copied to the data-mirror storage
device 1602 when the storage device 150 of the N storage devices 150a-n where the existing data
segment is stored receives a copy of the updated data segment. The existing data segment is then
stored until the storage consolidation operation. In another embodiment, the existing data
segment is copied to the data-mirror storage device 1602 in response to a storage consolidation
operation on the storage device 150 of the N storage devices 150a-n where the existing data
segment is stored if the storage consolidation operation occurs before the storage consolidation
operation that triggers calculation of the updated parity data segment. The latter embodiment is

advantageous because the existing data segment is not copied until required by a storage

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

76

consolidation operation on either the storage device 150 where the existing data segment is
stored or on the parity-mirror storage device 1602.

In one embodiment, the updated parity data segment is calculated from the existing parity
data segment, the updated data segment, and a delta data segment, where the delta data segment
is generated as a difference between the updated data segment and the existing data segment.
Typically, generating a delta data segment is a partial solution or intermediate step in updating
the parity data segment. Generating a delta data segment is advantageous because it may be
highly compressible and may be compressed before transmission.

In one embodiment, the delta data segment is stored on the storage device storing the
existing data segment prior to reading the delta data segment for generation of the updated parity
data segment. In another embodiment, the delta data segment is copied to the data-mirror
storage device 1602 when the storage device 150 where the existing data segment is stored
receives a copy of the updated data segment. In another embodiment, the delta data segment is
copied to the data-mirror storage device 1602 in response to a storage consolidation operation on
the storage device 150 where the existing data segment is stored. As with copying the existing
data segment, the latter embodiment is advantageous because the delta data file is not moved
until the earlier of a storage consolidation operation on the storage device 150 storing the
existing data segment or another storage consolidation operation triggering calculation of the
updated parity data segment.

In various embodiments, all of a portion of the actions of the modules 1802, 1804, 1806,
namely receiving an updated data segment, copying the updated data segment, and calculating
the updated parity data segment, occurs on a storage device 150 of the storage device set 1604, a
client 114, or a third-party RAID management device. In another embodiment, the storage
consolidation operation is conducted autonomously from the operations of the update receiver
module 1802 and the update copy module 1804.

Figure 13 is a schematic flow chart diagram illustrating an embodiment of a method 1900
for managing data using progressive RAIDing in accordance with the present invention. The
method 1900 begins 1902 and the storage request receiver module 1702 receives 1904 a request
to store data, where the data is data of a file or of an object. The striping module 1704 calculates
a stripe pattern for the data and writes 1906 the N data segments to N storage devices 150. The
stripe pattern includes one or more stripes. Each stripe includes a set of N data segments where
each of the N data segments is written to a separate storage device 150 within a set of storage

devices 1604 assigned to the stripe.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

77

The parity-mirror module 1706 writes 1908 a set of N data segments of the stripe to one
or more parity-mirror storage devices 1602 within the set of storage devices 1604. The one or
more parity-mirror storage devices are in addition to the N storage devices 150a-n. The parity
generation module 1708 determines 1910 if there is a pending storage consolidation operation.
If the parity generation module 1708 determines 1910 that there is no pending storage
consolidation operation, the method 1900 returns and again determines 1910 if there is a pending
storage consolidation operation. In other embodiments, the storage request receiver module
1702, the striping module 1704, and the parity-mirror module 1706, continue to receive storage
requests, calculate striping patterns, and storing data segments.

If the parity generation module 1708 determines 1910 that there is no pending storage
consolidation operation, the parity generation module 1708 calculates 1914 a parity data segment
for the stripe. The parity data segment is calculated from the N data segments stored on a
parity-mirror storage device 1602. The parity generation module 1708 stores 1912 the parity
data segment on the parity-mirror storage devicel602 and the method 1900 ends 1916. The
storage consolidation operation is conducted autonomously from receiving 1904 a request to
store N data segments, writing 1906 the N data segments to the N storage devices, or writing
1908 the N data segments to one or more parity-mirror storage devices. The storage
consolidation operation is conducted to recover at least storage space or data on the parity-mirror
storage device 1602.

Figure 14 is a schematic flow chart diagram illustrating an embodiment of a method 2000
for updating a data segment using progressive RAIDing in accordance with the present
invention. The method 2000 begins 2002 and the update receiver module 1802 receives 2004 an
updated data segment where the updated data segment corresponds to an existing data segment
of an existing stripe. The update copy module 1804 copies 2006 the updated data segment to the
storage device 150 where the corresponding existing data segment is stored and to the one or
more parity-mirror storage devices 1602 corresponding to the existing stripe.

The parity update module 1806 determines 2008 if a storage consolidation operation is
pending. If the parity update module 1806 determines 2008 that there is no pending storage
consolidation operation, the parity update module 1806 waits for a storage consolidation
operation. In one embodiment, the method 2000 returns and receives 2004 other updated data
segments and copies 2006 the updated data segments. If the parity update module 1806
determines 2008 that there is no pending storage consolidation operation, the parity update
module 1806 calculates 2010 one or more updated parity data segments for the one or more

parity-mirror storage devices of the existing stripe and the method 2000 ends 2012.

WO 2008/070812 PCT/US2007/086702

78

The present invention may be embodied in other specific forms without departing from
its spirit or essential characteristics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated
by the appended claims rather than by the foregoing description. All changes which come within

the meaning and range of equivalency of the claims are to be embraced within their scope.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

79

CLAIMS

An apparatus for reliable, high performance storage of data, the apparatus comprising:

a storage request receiver module that receives a request to store data, the data
comprising data of a file or of an object;

a striping module that calculates a stripe pattern for the data, the stripe pattern comprising
one or more stripes, each stripe comprising a set of N data segments, and writes
the N data segments of a stripe to N storage devices, wherein each of the N data
segments is written to a separate storage device within a set of storage devices
assigned to the stripe;

a parity-mirror module that writes a set of N data segments of the stripe to one or more
parity-mirror storage devices within the set of storage devices, the parity-mirror
storage devices being in addition to the N storage devices; and

a parity progression module that calculates one or more parity data segments for the
stripe in response to a storage consolidation operation, the one or more parity data
segments calculated from the N data segments stored on the one or more parity-
mirror storage devices, and stores a parity data segment on each of the one or
more parity-mirror storage devices, the storage consolidation operation conducted
to recover at least one of storage space and data on at least one of the one or more

parity-mirror storage devices.

The apparatus of claim 1, further comprising a parity alternation module that alternates,
for each stripe, which of the storage devices within the storage device set are assigned to

be the one or more parity-mirror storage devices for the stripe.

The apparatus of claim 1, wherein the storage consolidation operation is conducted
autonomously from the storage operations of the storage receiver module, the striping

module, and the parity-mirror module

The apparatus of claim 1, wherein the storage device set comprises a first storage device

set and further comprising a mirrored set module that creates one or more storage device

sets in addition to the first storage set, wherein each of the one or more additional storage
device sets comprise at least an associated striping module that writes the N data

segments to N storage devices of each of the one or more additional storage sets.

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

10.

80

The apparatus of claim 4, wherein each of the one or more additional storage device sets
comprise an associated parity-mirror module for storing a set of the N data segments and

a parity progression module for calculating one or more parity data segments.

The apparatus of claim 1, further comprising an update module that updates a data

segment by:

receiving an updated data segment, the updated data segment corresponding to an
existing data segment of the N data segments stored on the N storage devices;

copying the updated data segment to the storage device of the stripe where the existing
data segment is stored and to the one or more parity-mirror storage devices of the
stripe;

replacing the existing data segment stored on the storage device of the N storage devices
with the updated data segment;

replacing the corresponding existing data segment stored on the one or more parity-
mirror storage devices with the updated data segment in response to the parity
progression module not having generated the one or more parity data segments on

the one or more parity-mirror storage devices.

The apparatus of claim 1, wherein the set of first storage devices comprises a first storage
device set and further comprising a mirror restoration module that recovers a data
segment stored on a storage device of the first storage device set, the storage device of
the first storage device set being unavailable, the data segment recovered from a mirror
storage device containing a copy of the data segment, the mirror storage device
comprising one of a set of one or more storage devices storing a copy of the N data

segments.

The apparatus of claim 7, wherein the mirror restoration module recovers the data

segment in response to a read request from a client to read the data segment.

The apparatus of claim 8, wherein the mirror restoration module further comprises a
direct client response module that sends the requested data segment to the client from the

mirror storage device.

The apparatus of claim 1, further comprising a pre-consolidation restoration module that
recovers a data segment stored on a storage device of the storage set in response to a
request to read the data segment, the storage device being unavailable, the data segment

recovered from the a parity-mirror storage device prior to the parity progression module

10

15

20

25

WO 2008/070812 PCT/US2007/086702

81

generating the one or more parity data segments on the one or more parity-mirror storage

devices.

11. The apparatus of claim 1, further comprising a post-consolidation restoration module that
recovers a data segment stored on a storage device of the storage set, the storage device
being unavailable, the data segment recovered using one or more parity data segments
stored on one or more of the parity-mirror storage devices after the parity progression
module generates the one or more parity data segments in response to a storage

consolidation operation.

12. The apparatus of claim 1, further comprising

a data rebuild module that stores a recovered data segment on a replacement storage
device in a rebuild operation, the recovered data segment matching an unavailable
data segment stored on an unavailable storage device, the unavailable storage
device comprising one of the N storage devices, the rebuild operation to restore
data segments onto the replacement storage device to match data segments stored
previously on the unavailable storage device, the recovered data segment
recovered for the rebuild operation from one of

a matching data segment stored on a parity-mirror storage device if
the matching data segment resides on the parity-mirror
storage device;

a mirror storage device containing a copy of the unavailable data
segment if the recovered data segment does not reside on
the one or more parity-mirror storage devices, the mirror
storage device comprising one of a set of one or more
storage devices storing a copy of the N data segments; and

a regenerated data segment that is regenerated from one or more
parity data segments and available data segments of the N
data segments if the recovered data segment does not reside
on the one or more parity-mirror storage devices or the

mirror storage device.

13. The apparatus of claim 1, further comprising:
a parity rebuild module that rebuilds a recovered parity data segment on a replacement
storage device in a parity rebuild operation, the recovered parity data segment

matching an unavailable parity data segment stored on an unavailable parity-

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

14.

15.

16.

82

mirror storage device, the unavailable parity-mirror storage device comprising
one of the one or more parity-mirror storage devices, the parity rebuild operation
to restore parity data segments onto the replacement storage device to match
parity data segments stored previously on the unavailable parity-mirror storage
device, the recovered parity data segment regenerated for the rebuild operation
using one of
a parity data segment stored on a parity-mirror storage device in a
second set of storage devices storing a mirror copy of the
stripe;
the N data segments stored on one of the N storage devices if the N
data segments are available on the N storage devices;
one or more storage devices of the second set of storage devices
storing copies of the N data segments if one or more of the
N data segments are unavailable from the N storage devices
and a matching parity data segment is not available on the
second set of storage devices; and
the available data segments and non-matching parity data segments
regardless of their location within the one or more sets of

storage devices.

The apparatus of claim 1, wherein the N storage devices comprise N solid-state storage

devices, each with a solid-state controller.

The apparatus of claim 1, wherein at least one of receiving an request to store data,
calculating a stripe pattern and writing N data segments to the N storage devices, writing
a set of N data segments to a parity-mirror storage device, and calculating the parity data
segment occur on one of

a storage device of the set of storage devices;

a client; and

a third party RAID management device.

An apparatus for updating data in a progressive redundant array of independent drives

(“RAID”) group, the apparatus comprising:

an update receiver module that receives an updated data segment, the updated data
segment corresponding to an existing data segment of an existing stripe, a stripe

comprising data from a file or object divided into one or more stripes, each stripe

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

17.

18.

19.

20.

83

comprising N data segments and one or more parity data segments, the N data
segments stored on storage devices of a set of storage devices assigned to the
stripe, each of the parity data segments generated from the N data segments of the
stripe and stored on one or more parity-mirror storage devices assigned to the
stripe, the set of storage devices comprising the one or more parity-mirror storage
devices, the existing stripe comprising N existing data segments and one or more
existing parity data segments;

an update copy module that copies the updated data segment to the storage device where
the corresponding existing data segment is stored and to the one or more parity-
mirror storage devices corresponding to the existing stripe; and

a parity update module that calculates one or more updated parity data segments for the
one or more parity-mirror storage devices of the existing stripe in response to a
storage consolidation operation, the storage consolidation operation conducted to
recover at least one of storage space and data on one or more parity-mirror storage

devices with the updated one or more parity data segments.

The apparatus of claim 16, wherein the updated parity data segment is calculated from

the existing parity data segment, the updated data segment, and the existing data segment.

The apparatus of claim 17, wherein the existing data segment is one or more of

maintained in place prior to reading the existing data segment for generation of the
updated parity data segment;

copied to the data-mirror storage device in response to the storage device of the N storage
devices where the existing data segment is stored receiving a copy of the updated
data segment; and

copied to the data-mirror storage device in response to a storage consolidation operation
on the storage device of the N storage devices where the existing data segment is

stored.

The apparatus of claim 16, wherein the updated parity data segment is calculated from
the existing parity data segment, the updated data segment, and a delta data segment, the
delta data segment generated as a difference between the updated data segment and the

existing data segment.

The apparatus of claim 19, wherein the delta data segment is one or more of
stored on the storage device storing the existing data segment prior to reading the delta

data segment for generation of the updated parity data segment;

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

21.

22,

23.

84

copied to the data-mirror storage device in response to the storage device where the
existing data segment is stored receiving a copy of the updated data segment; and
copied to the data-mirror storage device in response to a storage consolidation operation

on the storage device where the existing data segment is stored.

The apparatus of claim 16, wherein at least one of receiving an updated data segment,
copying the updated data segment, and calculating the updated parity data segment occur
on one of

a storage device of the set of storage devices;

a client, and

a third-party RAID management device.

The apparatus of claim 16, wherein the storage consolidation operation is conducted
autonomously from the operations of the update receiver module and the update copy

module.

A system for reliable, high performance storage of data, the system comprising:

a set of storage devises assigned to a stripe, the set of storage devices comprising N
storage devices and one or more parity-mirror storage devices in addition to the N
storage devices;

a storage request receiver module that receives a request to store data, the data
comprising data of a file or an object;

a striping module that calculates a stripe pattern for the data, the stripe pattern comprising
one or more stripes, each stripe comprising a set of N data segments, and writes
the N data segments of a stripe to the N storage devices, wherein each of the N
data segments is written to a separate storage device within the set of storage
devices;

a parity-mirror module that writes a set of N data segments of the stripe to each of the one
or more parity-mirror storage devices; and

a parity progression module that calculates one or more parity data segments for the
stripe in response to a storage consolidation operation, the one or more parity data
segments calculated from the N data segments stored on the one or more parity-
mirror storage devices, and stores a parity data segment on each of the one or
more parity-mirror storage devices, the storage consolidation operation conducted
autonomously from the storage operations of the storage receiver module, the

striping module, and the parity mirror module, the storage consolidation operation

10

15

20

25

30

WO 2008/070812 PCT/US2007/086702

24,

25.

26.

27.

85

conducted to recover at least one of storage space and data on the one or more

parity-mirror storage devices.

The system of claim 23, further comprising one or more servers that include the N

storage devices and the one or more parity-mirror storage devices.

The system of claim 24, further comprising one or more clients in the one or more
servers, wherein the storage receiver module receives the request from at least one of the

one or more clients.

A computer program product comprising a computer readable medium having computer

usable program code executable to perform operations for reliable, high performance

storage of data, the operations of the computer program product comprising:

receiving a request to store data, the data comprising data of a file or of an object;

calculating a stripe pattern for the data, the stripe pattern comprising one or more stripes,
each stripe comprising a set of N data segments, and writing the N data segments
to N storage devices, wherein each of the N data segments is written to a separate
storage device within a set of storage devices assigned to the stripe;

writing a set of N data segments of the stripe to one or more parity-mirror storage devices
within the set of storage devices, the one or more parity-mirror storage devices
being in addition to the N storage devices; and

calculating a parity data segment for the stripe in response to a storage consolidation
operation, the parity data segment calculated from the N data segments stored on
a parity-mirror storage device and storing the parity data segment on the parity-
mirror storage device, the storage consolidation operation conducted
autonomously from receiving a request to store N data segments, writing the N
data segments to the N storage devices, or writing the N data segments to one or
more parity-mirror storage devices, the storage consolidation operation conducted
to recover at least one of storage space and data on the parity-mirror storage

device.

A computer program product comprising a computer readable medium having computer
usable program code executable to perform operations for reliable, high performance
storage of updated data, the operations of the computer program product comprising:
receiving an updated data segment, the updated data segment corresponding to an
existing data segment of an existing stripe, a stripe comprising data from a file or

object divided into one or more stripes, each stripe comprising N data segments

10

15

WO 2008/070812 PCT/US2007/086702

86

and one or more parity data segments, the N data segments stored on storage
devices of a set of storage devices assigned to the stripe, each of the parity data
segments generated from the N data segments of the stripe and stored on one or
more parity-mirror storage devices assigned to the stripe, the set of storage
devices comprising the one or more parity-mirror storage devices, the existing
stripe comprising N existing data segments and one or more existing parity data
segments;

copying the updated data segment to the storage device where the corresponding existing
data segment is stored and to the one or more parity-mirror storage devices
corresponding to the existing stripe; and

calculating one or more updated parity data segments for the one or more parity-mirror
storage devices of the existing stripe in response to a storage consolidation
operation, the storage consolidation operation conducted to recover at least one of
storage space and data on one or more parity-mirror storage devices with the

updated one or more parity data segments.

WO 2008/070812 PCT/US2007/086702
1/19
100\‘
Client
114
Client Client
114 Computer 114
T Network T
116
Computer
112
Solid-State Storage Device
102
Solid-State Storage
Controller
104
Write Data
Pipeline Solid-State St
106 olid-State Storage
106 (—) 10
Read Data
Pipeline
108

FIG. 1A

WO 2008/070812

PCT/US2007/086702
2/19

Requesting
Device
155

Storage Device

150a

Storage Controller
152a

Data Storage Device
154a

—

Storage Device

150b

Storage Controller
152b

Data Storage Device
154b

Device
n

Storage Controller
152n

Data Storage Device
154n

FIG. 1B

WO 2008/070812 PCT/US2007/086702
3/19
103 \
Client Client Client
114 _| 114 |_ 114
Computer
Network
116
Server 112a Server 112b
Client Ith‘ljf"O"k I';‘]te;‘r’}’:g'; Client
nterface
114a 1568 1560 114b
[I
Storage Device 150a Storage Device 150b
Storage Data Storage Storage Data Storage
Controller Device Controller Device
152a 154a 152b 154b
DAS Module NAS Module DAS Module NAS Module
158 160 158 160
Storage In-Server Storage In-Server
Comm. SAN Module Comm. SAN Module
Module 162 164 Module 162 164
Common Link Setup Common Link Setup
Interface Module Interface Module
Module 166 168 Module 166 168
Proxy Virtual Bus Proxy Virtual Bus
Module Module Module Module
170 172 170 172
Front-End Back-End Front-End Back-End
RAID Module RAID Module RAID Module RAID Module
174 176 174 176

FIG. 1C

WO 2008/070812 PCT/US2007/086702
4/19
200 \
Storage Controller
152
Object Request . Command
Receiver Module ParS|n296l\2/IoduIe Execution Module
260 = 264
Packetizer i
Object Index 302 Object Index
R Reconstruction
Module
266 Module
T 272
Messages
Maodule
Object Request 210
Queuing Module
268

FIG. 2A

WO 2008/070812 PCT/US2007/086702
5/19
201
\ [] © g~ Storage Control Bus 212a
k) 'l(—‘U E + __]
S ol 35 §| ag= Bank 0 Bank1 | BankN
§ ?E= >3 214a 214b 214n
a8 S =°| ,[ssso0][[ssso.1]|[sssoN
c %g = x i 216a 218a 220a
= QN T : © ¢ ¢ ’
© O O | Lt e
oT o £ C\l| € by
o 2| Sll.[sss1.0]|[sss11][[SSSTN
< 7 o @17 282 ([2180 [2200
> y =l |le x) § | =%
5= £ 2 9l 3| |8l [sssmo]| [sssm1]| [sSSMN
3e LO|<-> 15 £ Qe 210 : . :
o N 0G le |S |5 216m 218m 220m
@] V| ®© b=
o I i@) ¥ - ¥
° g pd - Solid-State Storage 110a
25 3o of £ v
55 > N :
(‘% é « 8| @ H -f Storage Control Bus 212n
A ° 1 2 =H—| Banko | Bankt | BankN
= S ENE 2| |8 93 214a 214b 214n
3|2 = I N EEE O|8 s 555 0.0|[[ssso.1]|[sssoN
(| & Dl 0 8] |P € 1= [« = =N
N 0$|<+e‘ | 5112 3 2 216a 218a 220a
O N R (& S))
e . . ~
2 | @|||= | le Misc Logic | |G| [sSST0]|[SS5 11| [SSS TN
242 a 216b 218b 2200
B oo Master g 9 iy A
B §| g 5 @{ Controller | &1 [SSSM.0][SSSM.1][,[SSSM.N
i 5 224 £171 216m 218m 220m
S DMA Cntrller] |[®) ¥)
g2 O °l 226
o2 o 8 Solid-State Storage 110n
=2 Lo|<-> > Memory
£ 5 o 2 ©| Controller |e 5 .
W Q ° 8 % yhamic
DN Random
i o : ¥ Memory Array
i 2 Static Mem. 230
ﬁ Array 232 (DRAM)
£ = (SRAM)
O > -
=S89 |2 o] Mamt Mgmt Bus Solid-State
N © g
£ < = — Controller |d—> 236 Storage Device
- B 234 (°C) 102

FIG. 2B

WO 2008/070812

300~

Local Bus Clock Domain

PCT/US2007/086702
6/19
| Butfer Control 208 || Data Bus 204
/\ 5
N\ 7N\ 1\
Output Buffer J Cntl Q
y
% 342 N CntlQ | N Input Buffer
Read Program e 342 %
Module < < :
342 Write Program
338 Q|| CntlQ
= > = Module
0 g <=4 310
Alignment L =
cntlQl |5 v
Module ‘Il 342 [l CntiQ]|| Compression
326 27 342 Module 312
8 A : 0 L 7
Y Decompression |]| Cntl Q 3 Jentafl | Encryption
o Module 336 342 | 1=/ 342 Module 314
@ E 2 ;
g Decryption L}l Cntl Q | [Garb. Collector |||
9 l\/lodul*e 334 342 £ Bypass 316
0 v
Garb. Collector || © Jcntial Packetizer
Bypais 316 342 302
- v
Depacketlzer n Cntl Q ¢ . Cntl Q i Media Encrypt
% 342 342 Module 318
: v
Media Decrypt. < Cntl Q < ECC Generator
Mod u‘IFe 332 342 3 304
. ¥
ECC Correction Bank Interleave Write Buffer
» Module Controller 320
T 322 344 T
L) A 2 |
Read Sync. L 2 L Write Sync
_____ | L Buffer | | Sync. Buffer | Buffer | [
328 346 308
3
Read Data Y ¥ Write Data
108 106
— 348 —

SSS Controller

A Py
MUX
‘ 350

104

égnrage Clock Dom%

h
\ 4 \ 4

Storage I/O Bus 210

FIG. 3

Storage Control Bus 212

WO 2008/070812

PCT/US2007/086702
7/19
400 \
§ Control & Status Register(s) 340 [/\
¥ y ¥ v -
Read Write Erase Mgmt
Agent Agent Agent Agent
402 404 406 408
v \ 4 i
Ty e, | WSS, W, | W, | —
]
3 ho] g Y i M 1\ 1 O|§§ <.. (S) | M
589 2o - £ ST
o GT T oC 3
oY X <
A i ©
C(S E ~ g
v h 4 I~ 2
—o y Y W Y W WY W > gl 8
% -o ' g | S— Y I‘_’\ I\ L\ I\ »E ~— “" f Y :q:a z 22 6
T O) dq y c <H—vh—pi s @
oy e _.0:,3 g o t_t_r_r_>£ = 2 3
f-? E = Z ol Y h—> © (2] ©
c = — o 3 Q
© O i (na} o
o~ Az = —
o c £ 9| :
4] (@)% .
v : . m= \ 4
fuu\ 7\ ’H“ LT\ I\ b
E o o \ 4 prd 0%
T O f\—l\—l\—l\—l\—f_’ [Pt ‘-
© O <t 1 C \ 4 H [y P
oy X O\ i S\ P T =
CE =zJ 4 oA
g ; <t S‘ o C (®]
% %g Z c] g K
@0 < €Y9|Bank Interleave
© D= Controller
c= 344
Y V VvV V¥V ¥V V¥ Y Yy V V¥ \ 2 N
-1 Sync. Buffer 346 -—-
A N
Mapping Module : T
I u ; Status NAND Bus £
Remapping Module 430
424 PPINg W€ 22X 11 capture f] Controller &
1 | | |] |
Address & Command 1/O 426 428 8
$ X
Data —l 1J Stgrasge Cg)
u
Ji4y ¥ VIJ preseneanenesd Controller o
1] (U
\ Mux @ /(E Qﬂ ‘§
| ' n
E Y
Storage I/O Bus 210 Storage Control Bus ﬂv

FIG. 4A

WO 2008/070812
8/19

401
N

PCT/US2007/086702

§ Control & Status Register(s) 340 [/\
Read Write Erase Mgmt
Agent Agent Agent Agent
402 404 406 408
__ | e
_f_f_l
NI\ N
|| T
P F, -, N 7\ %
| — Y, U, -, - e
\ 4 o
A 4 I W’ N o
Bank-0 S| b g g
Read Q _ru_ru_fuuu»ég TP O O
432a © = aQ -}72?2/
IJed m > [
(@] E’ g:j’
\ 4 e I
vVYVY < 3
%] —
Bank-1 T e i1
Queue _n_n_r_r_>—é <t et
432b S5
©)
\ 4
YYV VY
Bank-N z 5| ”
Bank Interleave Queue p < <Hip
Controller 432n o™
et [y
344 &
TA
' v 2 7 v 1 £\
- Sync. Buffer 346 -
N\
Mapping Module Remapping Moduls 430 || [S&ws | [NAND Bus| | |5
424 = ||| Capture l¢| Controller £
T T T T T T
Address & Command I/O 4—36 428 2
;) X
Data _l IJ StgLaSge S
H ﬁ : o
vy y v \ 4 v vV ; :--------------: Controller g
\ Mux @ /(E w 2
: w
h 4 V
Storage I/O Bus 210 Storage Control Bus 212

FIG. 4B

WO 2008/070812

500

9/19

504 N

Receive a Data Segment in an
Input Buffer

506 N

Packetize the Data Segments

l

508 N

Generate ECC for the Data
Packets

l

510 N

Buffer the Data Packets in a
Write Sync Buffer

l

512 N

Write Packets to Solid-State
Storage Over Storage /O Bus

514 End

FIG. 5A

PCT/US2007/086702

WO 2008/070812 PCT/US2007/086702
10/19

501

Facilitate Communication
Between a First Storage
554 N Controller & At Least One
External Device

l

Service Storage Request
Independent of First Server

556 N

558 End

FIG. 5B

WO 2008/070812

600

11/19

604 N

Receive a Data Segment in an
Input Buffer

v

606 N

Packetize the Data Segments

v

608 N

Generate ECC for the Data
Packets

v

610 N

Buffer the Data Packets in a
Write Sync Buffer

!

612N

Write Packets to Solid-State
Storage Over Storage /O Bus

v

614 N

Correcting Errors in the Read
Data Packet if Necessary

v

616 N

Correcting Errors in the Read
Data Packet if Necessary

v

618 N

Depacketizing the Data Packet

v

620 N

Reformatting the Read Data
Packet into Data Segment

!

622 N

Buffering the Data Segment in
an Output Buffer

624 End

FIG. 6

PCT/US2007/086702

WO 2008/070812 PCT/US2007/086702
12/19

700

Directing Commands to Two or
704 More Queues By Command
Type

Y

Coordinating Execution of the
706 /Y Commands Among Banks of a
Solid-State Storage Device

708 End

FIG. 7

WO 2008/070812

13/19

PCT/US2007/086702

800 \
Solid-State Storage Device Controller
202
Sequential Storage Division Data Recovery
Storage Module Selection Module Module
802 804 806

Storage Division
Recovery Module
808

Erase Module
810

Garbage Marking
Module
812

FIG. 8

WO 2008/070812 PCT/US2007/086702
14/19

900

Sequentially Write Storage
904/ Packets in Storage Division

v

906/ Select Division for Recovery

v

Read Valid Data from Selected

908\ Division
910 N Queue Valid Data
912 N Update Index

v

Mark Storage Division Available
for Storage

914 N

916 End

FIG. 9

WO 2008/070812

1600

Client
114

Client
114

15/19

PCT/US2007/086702

Server 1
112a

Storage Device 1
150a

Server 2
112b

Storage Device 2
150b

Server N
112n

Storage Device N
150n

Server N+1
112n+1

Parity-Mirror
Device 1
1602a

Server N+M
112n+m

Parity-Mirror
Device N+m
1602n+m

FIG. 10

1604

WO 2008/070812

1700

16/19

PCT/US2007/086702

Server
112

Storage Request

Striping Module

Parity-Mirror

Receiver Module Module
1702 1704 1706
Parity Progression Parity Alternation Mirrored Set
Module Module Module
1708 1710 1712

Update Module
1714

Post-Consolidation
Restoration
Module
1722

Mirror Restoration
Module
1716

Direct Client
Response
Module
1718

Pre-Consolidation
Restoration
Module
1720

Data Rebuild
Module
1724

Parity Rebuild
Module
1726

FIG. 11

WO 2008/070812 PCT/US2007/086702
17/19
1800
Server
112
Update Receiver Update Copy Parity Update
Module Module Module
1802 1804 1806

FIG. 12

WO 2008/070812

1900

18/19

1904 N

Receive Request to Store N
Data Segments

Y

1906 N

Write N Data Segments to N
Storage Devices

l

1908 N

Write N Data Segments to Each
Parity-Mirror Device

1910

A

Storage
Consolidation
Operation?

1912 N

Calculate and Store Parity Data
Segment

1914 End

FIG. 13

PCT/US2007/086702

WO 2008/070812
19/19

2000

2004 N Receive Updated Data Segment

l

Copy Updated Data Segment to
2006 «/ Storage Device with Existing
Segment And Data-Mirror

Storage
Consolidation
Operation?

2008

Calculate Updated Parity Data

20101 Segment

2012 End

FIG. 14

PCT/US2007/086702

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings

