

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
1 December 2005 (01.12.2005)

PCT

(10) International Publication Number
WO 2005/114718 A1

(51) International Patent Classification⁷: **H01L 21/44**,
21/48, 21/50

2913 Bernardino Cove, Austin, TX 78728 (US). **WHITE, Bruce, E.** [US/US]; 3204 Bluebell Bend Cove, Round Rock, TX 78664 (US).

(21) International Application Number:
PCT/US2005/013076

(74) Agents: **KING, Robert, L.** et al.; 7700 W. Parmer Lane, MD: TX32/PL02, Austin, TX 78729 (US).

(22) International Filing Date: 18 April 2005 (18.04.2005)

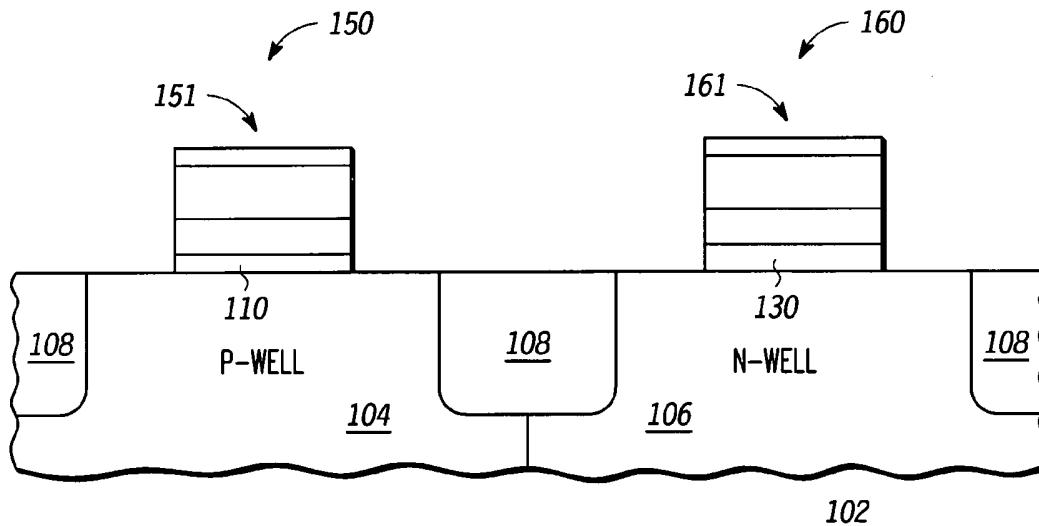
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
10/843,850 12 May 2004 (12.05.2004) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,


(71) Applicant (for all designated States except US):
FREESCALE SEMICONDUCTOR, INC. [US/US];
7700 W. Parmer Lane, Austin, TX 78729 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **ADETUTU, Olubunmi, O.** [US/US]; 12919 Partridge Bend Drive, Austin, TX 78729 (US). **SAMAVEDAM, Srikanth, B.** [IN/US];

[Continued on next page]

(54) Title: SEMICONDUCTOR PROCESS AND INTEGRATED CIRCUIT HAVING DUAL METAL OXIDE GATE DIELECTRIC WITH SINGLE METAL GATE ELECTRODE

(57) **Abstract:** A semiconductor fabrication process includes forming first and second transistors over first and second well regions, respectively where the first transistor has a first gate dielectric and the second transistor has a second gate dielectric different from the first gate dielectric. The first transistor has a first gate electrode and the second transistor has a second gate electrode. The first and second gate electrodes are the same in composition. The first gate dielectric and the second gate dielectric may both include high-K dielectrics such as Hafnium oxide and Aluminum oxide. The first and second gate electrodes both include a gate electrode layer overlying the respective gate dielectrics. The gate electrode layer is preferably either TaSiN and TaC. The first and second gate electrodes may both include a conductive layer overlying the gate electrode layer. In one such embodiment, the conductive layer may include polysilicon and tungsten.

WO 2005/114718 A1

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

— *with international search report*

SEMICONDUCTOR PROCESS AND INTEGRATED CIRCUIT HAVING DUAL METAL OXIDE GATE DIELECTRIC WITH SINGLE METAL GATE ELECTRODE

Field of the Invention

5 The invention is in the field of semiconductor fabrication processes and, more particularly, in the field of complementary metal oxide semiconductor (CMOS) semiconductor processes.

Related Art

10 Conventional CMOS fabrication processes have traditionally used a single gate dielectric for both PMOS and NMOS transistors. The traditional gate dielectrics include SiO_2 , SiON , and Si_3N_4 . As the thickness of these dielectrics (t_{ox}) has been progressively scaled down to accommodate smaller devices, gate leakage has increased due to direct tunneling. In addition, gate capacitance due to polysilicon depletion effects in thin oxide
15 transistors has become undesirably significant.

Material having high dielectric constants (high K materials) have been used to address some of the problems associated with thin gate dielectrics. A high K dielectric transistor can be fabricated with a relatively thick gate dielectric and still achieve the same capacitive effect as a conventional transistor having a relatively thin gate dielectric. The high K materials that
20 have been most widely implemented include metal-oxide compounds such as hafnium oxide (e.g., HfO_2), aluminum oxide (e.g., Al_2O_3), and their derivatives

While high K materials beneficially alleviate the dielectric thickness problem, it has been observed that the high K materials have an unintended and asymmetrical effect on the threshold voltages of NMOS and PMOS transistors. It is theorized that an Hafnium oxide
25 metal-oxide gate dielectric tends to pin the work function of the gate electrode towards midband, which has a negative impact on device parameters including threshold voltage and drive current. Moreover, this Fermi pinning for metal-oxide gate compounds such as Hafnium oxide is more prominent in PMOS transistors than NMOS transistors, (i.e., the device parameters of PMOS transistors are affected more than those of NMOS transistors)
30 especially when using doped polysilicon as the gate electrode. It would be desirable, to implement a process that incorporated high K materials to address problems associated with very thin gate dielectrics while also addressing the asymmetrical shifts in device properties

observable when a single, high-K gate dielectric is used. It would be further desirable if the implemented process used a single gate electrode material to simplify the process flow.

Brief Description of the Drawings

5 The present invention is illustrated by way of example and not limited by the accompanying figures, in which like references indicate similar elements, and in which:

FIG 1 is a partial cross-sectional view of a semiconductor wafer in which a first gate dielectric layer is formed over the wafer;

10 FIG 2 illustrates processing subsequent to FIG 1 in which a gate electrode layer is formed over the first gate dielectric layer;

FIG 3 illustrates processing subsequent to FIG 2 in which a conductive layer and an antireflective coating are formed over the gate electrode layer;

FIG 4 illustrates processing subsequent to FIG 3 in which a hard mask is formed over a first portion of the antireflective coating;

15 FIG 5 illustrates processing subsequent to FIG 4 in which exposed portions of the antireflective coating, conductive layer, and gate electrode layer are removed;

FIG 6 illustrates processing subsequent to FIG 5 in which a second gate dielectric is formed over a second portion of the wafer;

20 FIG 7 illustrates processing subsequent to FIG 6 in which a second gate electrode layer, conductive layer, and antireflective coating are formed over the second gate dielectric;

FIG 8 illustrates processing subsequent to FIG 7 in which a photoresist mask is formed over the second portion of the wafer;

FIG 9 illustrates processing subsequent to FIG 8 in which exposed portions of the second antireflective coating, conductive layer, and gate electrode layer are removed;

25 FIG 10 illustrates processing subsequent to FIG 9 in which first and second gate electrodes are formed over the first and second portions of the wafer;

FIG 11 illustrates processing subsequent to FIG 3, according to a second embodiment of the invention, in which a first gate electrode is formed over a first portion of the wafer;

30 FIG 12 illustrates processing subsequent to FIG 11 in which a hard mask is formed over the first gate electrode;

FIG 13 illustrates processing subsequent to FIG 12 in which a second gate dielectric is formed over the second portion of the wafer;

FIG 14 illustrates processing subsequent to FIG 13 in which a second gate electrode layer, conductive layer, and antireflective coating are formed over the wafer;

FIG 15 illustrates processing subsequent to FIG 14 in which a second gate electrode is formed overlying the second portion of the wafer;

5 FIG 16 is a partial cross-sectional view of a semiconductor wafer in which a first gate dielectric layer is formed over the wafer;

FIG 17 illustrates processing subsequent to FIG 16 in which a second gate dielectric layer is formed over a first portion of the wafer;

10 FIG 18 illustrates processing subsequent to FIG 17 in which a third gate dielectric layer is formed over a second portion of the wafer;

FIG 19 illustrates processing subsequent to FIG 18 in which first and second gate electrodes are formed over the first and second portions of the wafer;

15 FIG 20 illustrates processing subsequent to FIG 16, according to an alternative embodiment, in which a second gate dielectric layer is formed over the first portion of the wafer; and

FIG 21 illustrates processing subsequent to FIG 20 in which first and second gate electrodes are formed over the first and second portions of the wafer.

Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of
20 some of the elements in the figures may be exaggerated relative to other elements to help improve the understanding of the embodiments of the present invention.

Detailed Description of the Drawings

Generally speaking, the invention is a CMOS fabrication process that integrates the use of two different gate dielectrics with a single gate electrode. The different gate dielectrics compensate for differences in gate electrode material while use of a single gate electrode 5 simplifies the process flow and reduces the cost of the process. Two different specific process flows or integration techniques are described explicitly.

Referring now to FIG 1, a partial cross sectional view of a semiconductor wafer 102 shown at an intermediate step in the process flow is shown. In the depicted embodiment, wafer 102 includes a first well region 104 (also referred to as first well 104) and a second 10 well region 106 (second well 106) that are laterally displaced with respect to one another. First well 104 and second well 106 contain impurities of opposing polarities such that one of the wells is a p-doped well and one of the wells is an n-doped well. In the described embodiment, first well 104 is a p-doped well (p-well) in which NMOS transistors are formed and second well 106 is an n-doped well (n-well) in which PMOS transistors are formed.

15 Isolation dielectric trenches 108 have been fabricated within wafer 102. As their names imply, isolation dielectric trenches 108 serve to provide electrical and physical isolation between adjacent devices (transistors). Isolation dielectric trenches 108 are preferably comprised of a silicon-oxide (or other dielectric) compound formed by etching trenches into wafer 102, filling the trenches with a deposited dielectric, and polishing or 20 etching the wafer to remove the excess dielectric. Alternatively, isolation dielectric trenches may be formed using conventional LOCOS processing in which silicon nitride is deposited and patterned to define the isolation regions and, thereafter, the exposed silicon of wafer 102 is thermally oxidized to form the isolation dielectric.

Following the formation of wells 104 and 106 and isolation trenches 108, a first gate 25 dielectric 110 is blanket deposited across the entire wafer 102. First dielectric will serve as the gate dielectric for a first type of transistors. In the described embodiment, first dielectric 110 will serve as the gate dielectric for the transistors formed overlying first well 104. In an embodiment in which first well 104 is a p-well, first gate dielectric 110 is the gate dielectric 30 used in the NMOS transistors. In one such implementation, first dielectric 110 is a metal-oxide compound formed by chemical vapor deposition. A metal oxide compound desirable for use as first dielectric 110 is lanthanum oxide (preferably La₂O₃). A typical thickness of first gate dielectric is in the range of 0.5 – 10 nanometers.

Referring now to FIG 2 and FIG 3, after forming first dielectric 110, a first gate stack 111 is formed by depositing, sequentially, a gate electrode layer 112, a conductive layer 114, and an antireflective coating (ARC) 116 over first dielectric 110. In one embodiment, gate electrode layer 112 is a TaSiN layer preferably having a thickness in the range of 1-20 nanometers. In another embodiment, gate electrode layer 112 is a TaC layer having a thickness in the range of 1-20 nanometers.

The conductive layer 114 is an optional layer that may be used, for example, to simplify integration issues. Conductive layer 114 is preferably heavily doped polysilicon, tungsten, or another suitable electrically conductive material having a thickness in the range of approximately 10 – 100 nanometers. Antireflective coating (ARC) 116 is a relatively thin layer used to facilitate a subsequent photolithography step as is well known in the field of semiconductor fabrication. ARC 116 may be comprised of Si_xN_y or a polymer that is highly absorbing at the photolithography exposure wavelength.

Turning now to FIG 4, following formation of ARC 116, a hard mask 120 is selectively formed over ARC 116 above first well region 104. Hard mask 120 is preferably an silicon oxide layer formed by CVD. Hard mask 120 serves to protect first gate stack 111 over first well region 104 during formation of a comparable gate stack over second well region 106.

Turning now to FIG 5, following the patterning of hard mask 120, the exposed portions of first gate stack 111 are removed. The exposed portions of gate stack 111 include the portions of the gate stack above second well region 106. The removal of the portions of gate stack above second well region 106 exposes an upper surface of wafer 106 above the second well region 106 while maintaining a protective coating over the portions of gate stack 111 above first well region 104.

Turning to FIG 6, a second gate dielectric 130 is deposited non-selectively over wafer 102. Second gate dielectric 130 is a different material than first gate dielectric 110 and the thickness of second gate dielectric 130 over second well region 106 may be different than the thickness of first gate dielectric 110 over first well region 104. In one embodiment of the invention, it is significant that first gate dielectric 110 and second gate dielectric 130 are both high-K dielectrics. For purposes of this disclosure a high-K dielectric is a dielectric have a dielectric constant that is at least 1.5 times the dielectric constant of SiO_2 . In one such embodiment suitable for its use in conjunction with PMOS transistors having a tantalum-

based gate electrode, second gate dielectric **130** comprises a deposited Aluminum oxide film having a thickness in the range of 0.5 – 10 nanometers.

In FIG 7, a second gate stack **131** is formed by depositing, sequentially, a second gate dielectric film **132** over second gate dielectric **130**, a second conductive film **134** over second gate electrode **132**, and a second ARC film **136** over second conductive film **136**. In one embodiment, second gate stack **131** parallels first gate stack **111** in that second gate electrode **132** has the same composition and thickness as first gate electrode film **112**, second conductive film **134** has the same composition and thickness as first conductive film **114**, and second ARC **136** has the same composition and thickness as first ARC **116**. In embodiments that omit the optional first conductive layer **114**, second conductive layer **134** would be omitted from second gate stack **131** and so forth such that first and second gate stacks **111** and **131** are substantially similar in composition and dimension (thickness).

In FIG 8 and FIG 9, a photoresist mask **140** is patterned above second gate stack **131** over second well region **106**. The exposed portions of second gate stack **131** (those portions not above second well region **106**) are then removed using an etch sequence substantially similar to the etch sequence used to remove portions of first gate stack **111**. Following the removal of the exposed portions of second gate stack **131**, the remaining portions of photoresist layer **140** shown in FIG 9, as well as the remaining portions of hard mask **120** shown in FIG 9 are stripped before continuing with additional processing.

In FIG 10, a conventional gate electrode etch sequence has been performed to produce first and second transistors **150** and **160** above first and second well regions **104** and **106** respectively. First and second transistors **150** and **160** are preferably opposite in polarity such that, for example, first transistor **150** is an NMOS transistor and second transistor **160** is a PMOS transistor. The gate dielectrics of first and second transistors **150** and **160** differ in composition. As described above, for example, first gate dielectric **110** may be comprised of a first material such as Lanthanum oxide while second gate dielectric **130** may be comprised of a second material such as Aluminum oxide. Moreover, whereas first and second transistors **150** and **160** are of different polarity and have different gate dielectrics, the gate electrode of both transistors is substantially equal in both composition and thickness.

Those skilled in semiconductor fabrication will appreciate that additional, conventional processing steps (not depicted) are performed to complete the fabrication of first and second transistors **150** and **160**. As examples, one or more extension implant, halo

implant, spacer formation, and source/drain implant steps may be performed to complete the transistors. In addition, conventional backend processing (not depicted) typically including multiple levels of interconnect is then required to connect the transistors in a desired manner to achieve the desired functionality.

5 In FIGs 11 through 15, relevant portions of a second embodiment of a fabrication process according to the present invention is depicted. Prior to FIG 11 in this second embodiment, the processing sequence shown in and described with respect to FIGs 1 through 3 is performed. Thereafter, however, the processing sequence differs from the sequence depicted in FIGs 4 through 10.

10 Referring to FIG 11, following the formation of first gate stack 111 over first gate dielectric 110 as shown in FIG 3, a gate electrode 151 above first well region 104 is formed from first gate stack 111 using a conventional gate electrode formation sequence. Specifically, gate electrode 151 is formed by patterning a photoresist layer over first gate stack 111 that exposes gate stack 111 except where the desired gate electrode 151 will be formed. Thereafter, first gate stack 111 is etched using a conventional gate electrode etch 15 processing sequence.

20 In FIG 12, a hard mask 202, preferably comprised of silicon nitride, is deposited over wafer 102 and selectively etched to remove portions of the hard mask above second well region 106 to expose an upper surface of the second well region 106. The second gate dielectric 130 is then deposited, as shown in FIG 13.

25 In FIG 14, a second gate stack 131 is formed over wafer 102, where second gate stack 131 has a composition and thickness that is equivalent to the composition and thickness of the first gate stack 111 from which first gate electrode 151 was formed. In FIG 15, a second gate electrode 161 has been formed by patterning a photoresist layer with a PMOS gate mask and thereafter etching the exposed portions of second gate stack 131. In addition, the hard mask 202 has been removed from the wafer with an appropriate etch process.

30 One embodiment of the invention includes the use of a two-layer gate dielectric. Two variations of this embodiment include a first variation in which the gate dielectric over both the first and second wells are two-layered and a second variation in which the gate dielectric over one of the wells is a single-layered dielectric while the gate dielectric over the second well is a two-layered dielectric. A first dielectric layer, preferably 5 to 100 angstroms thick, could be the same on both the NMOS and PMOS sides. A second layer, preferably 5 to 20

angstroms thick, has a first composition overlying the first well and a second composition overlying the second well, to produce different gate electrode work-functions. This second layer is essentially a work-function setting dielectric layer.

Referring now to FIG 16 through FIG 19, an embodiment of the invention is depicted 5 in which the first gate dielectric (i.e., the gate dielectric formed overlying first well **104**) includes a second dielectric film **220** overlying a first dielectric film **210**, which overlies first well **104**. The second gate dielectric (i.e., the gate dielectric formed over second well **106**) includes a third dielectric film **230** overlying the first dielectric film **210**. While this embodiment encompasses the concept of having different gate dielectrics for NMOS and 10 PMOS transistors where the NMOS and PMOS transistors use gate electrodes that are substantially of the same composition, the different gate dielectrics include a common dielectric film. Specifically, referring to FIG 16, first dielectric film **210** is formed overlying first well **104** and second well **106**. In one implementation, first dielectric film **210** is SiO₂, Hafnium oxide, or another high-K dielectric having a thickness in the range of approximately 15 5 to 100 angstroms. First dielectric film **210** may be deposited by atomic layer deposition (ALD), CVD, or PVD. Second dielectric film **220** is then deposited and patterned as seen in FIG 17 so that second dielectric film **220** remains overlying first well **104** but is removed overlying second well **106**. Third dielectric film **230** is then deposited and patterned, as seen in FIG 18, so that third dielectric film **230** remains overlying second well **106** but is removed 20 overlying first well **104**. Second dielectric film **220** is preferably 5 to 20 angstroms of Lanthanum oxide or LaAlO₃ while third dielectric film **230** is 5 to 20 angstroms of Aluminum oxide. Like first dielectric film **210**, second and third dielectric films **220** and **230** may be formed by ALD, CVD, or PVD. In FIG 19, first and second gate stacks **151** and **161** are formed overlying first and second wells **104** and **106** respectively.

25 Referring to FIG 20 and FIG 21, a variation of the sequence described in the preceding paragraph is depicted in which the gate dielectric formed over first well **104** includes second dielectric film **220** overlying first dielectric film **210** while the gate dielectric formed over second well **106** includes first dielectric film **210** overlying the substrate (i.e., second well region **106**). This implementation is achieved by depositing first dielectric film **210** and thereafter depositing and patterning second dielectric film **220** to remove portions of 30 second dielectric film **220** overlying second well region **106**. In FIG 21, gate stacks **151** and **161** are formed overlying the first and second gate dielectrics respectively. In one

implementation, first dielectric film **210** may be comprised of SiO₂, Hafnium oxide, or Aluminum oxide while second dielectric film **220** is Lanthanum oxide.

In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various 5 modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. For example, an alternative to the device structure shown in FIG 1 is for first well **104** to be an n-doped well and the second well **106** to be p-doped. Also the first and second gate electrode layers (**112**, **132**) and the first and second 10 conductive layers (**114**, **134**) may be different materials than those disclosed. Moreover, the thickness of the described layers may deviate from the disclosed thickness values. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.

Benefits, other advantages, and solutions to problems have been described above with 15 regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, 20 method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

CLAIMS

1. A semiconductor fabrication process, comprising:

5

forming a first gate dielectric over and in contact with a first well region and a second gate dielectric over and in contact with a second well region wherein the compositions of the first and second gate dielectrics are different; and

10

forming a first gate electrode over and in contact with the first gate dielectric and a second gate electrode over and in contact with the second gate dielectric wherein the first and second gate electrodes are equivalent in composition and thickness.

15

2. The process of claim 1, wherein the first and second gate dielectrics are both high-K dielectrics.

20

3. The process of claim 2, wherein the first gate dielectric is Lanthanum oxide and the second gate dielectric is Aluminum oxide.

25

4. The process of claim 3, wherein the first and second gate electrodes include a tantalum-bearing layer over and in contact with the first and second dielectrics respectively.

30

5. The process of claim 4, wherein the tantalum bearing layer consists substantially of TaC.

25

6. The process of claim 4, wherein the tantalum bearing layer consists substantially of TaSiN.

30

7. The process of claim 4, wherein the first and second gate electrodes include a conductive layer over and in contact with the tantalum bearing layer, wherein the conductive layer is selected from the group consisting of polysilicon and tungsten.

8. The process of claim 1, wherein the first gate dielectric includes a second dielectric film overlying a first dielectric film on an upper surface of the first well region and wherein the second gate dielectric includes a third dielectric film overlying the first dielectric film on the upper surface of the second well region.

5

9. The process of claim 1, wherein the first gate electrode includes a second dielectric film overlying a first dielectric film and wherein the second gate electrode includes the second dielectric film on an upper surface of the second well.

10 10. A semiconductor fabrication process, comprising:

forming a first transistor over a first well region and a second transistor over a second well region;

15 the first transistor having a first gate dielectric and the second transistor having a second gate dielectric different in composition from the first gate dielectric;

20 the first transistor having a first gate electrode and the second transistor having a second gate electrode, wherein the first and second gate electrodes are the same in composition.

11. The process of claim 10, wherein the first gate dielectric and the second gate dielectric are both high-K dielectrics.

25 12. The process of claim 11, wherein the first gate dielectric is Hafnium oxide and the second gate dielectric is Aluminum oxide.

30 13. The process of claim 12, wherein the first and second gate electrodes both include a gate electrode layer above and in contact with the respective gate dielectrics, wherein the gate electrode layer is selected from a group consisting of TaSiN and TaC.

14. The process of claim 13, wherein the first and second gate electrodes both include a conductive layer over the corresponding gate electrode layer, wherein the conductive layer is selected from the group consisting of polysilicon and tungsten.

5 15. An integrated circuit, comprising:

a first transistor formed overlying a first well region of a semiconductor substrate, wherein the first transistor includes a first gate electrode overlying a first gate dielectric;

10

a second transistor formed overlying a second well region of the semiconductor substrate, wherein the second transistor includes a second gate electrode overlying a second gate dielectric;

15

wherein the first and second gate dielectrics differ in composition and further wherein the first and second gate electrodes are substantially equivalent in composition and thickness.

20

16. The integrated circuit of claim 15, wherein the first and second gate dielectric are high-K dielectrics.

25

17. The integrated circuit of claim 16, wherein the first and second gate electrodes include a conductive layer of a material selected from polysilicon and tungsten overlying a gate electrode layer comprised of a material selected from TaSiN and TaC.

18. The integrated circuit of claim 17, wherein the first gate dielectric is comprised of Lanthanum oxide and the second gate dielectric is comprised of Aluminum oxide.

30

19. The integrated circuit of claim 15, wherein the first gate dielectric includes a second gate dielectric film overlying a first dielectric film.

20. The integrated circuit of claim 19, wherein the second gate dielectric includes a third gate dielectric film overlying the first dielectric film.

21. The integrated circuit of claim 20, wherein the first dielectric film is comprised of a material selected from SiO_2 and Hafnium oxide, the second dielectric film is comprised of Lanthanum oxide, and the third dielectric film is comprised of Aluminum oxide.

22. The integrated circuit of claim 19, wherein the second gate dielectric consists of the second dielectric film overlying the second well region.

10

23. The integrated circuit of claim 21, wherein the first dielectric film a material selected from Hafnium oxide, Aluminum oxide, and SiO_2 and the second dielectric film is Lanthanum oxide.

15

24. A method for forming over a semiconductor substrate a first gate stack in a first gate location for a transistor of a first conductivity type and a second gate stack in a second gate location for a transistor of the second conductivity, comprising:

20

forming a first gate dielectric layer over the first gate location and the second gate location, wherein the first gate dielectric layer comprises a first high-k dielectric;

removing the first gate dielectric layer in an area over the second gate location;

25

forming a second gate dielectric over the first gate location and the second gate location, wherein the second gate dielectric layer comprises a second high-k dielectric different from the first high-k dielectric;

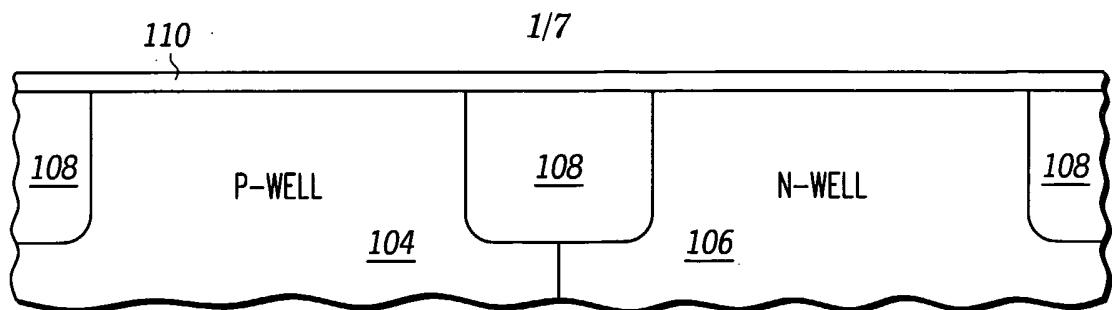
removing the second gate dielectric in an area over the first gate location;

30

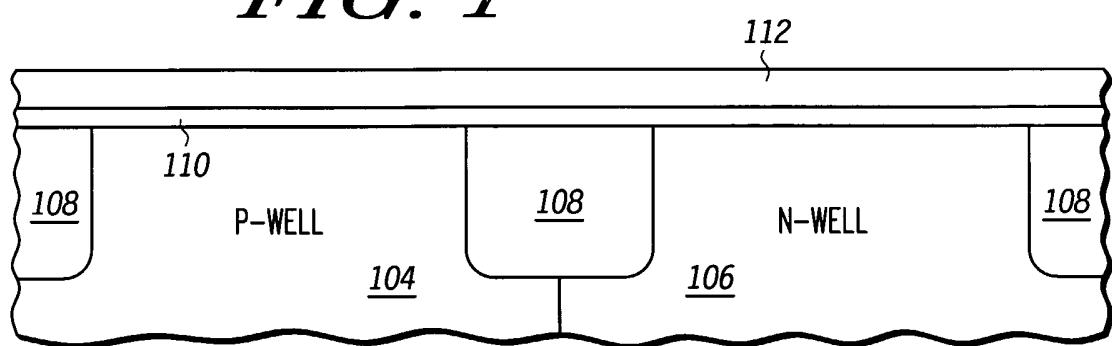
forming a first gate layer over the first gate location and the second gate location;

removing a first portion of the first gate layer to leave a second portion of the first gate layer over the first gate location; and

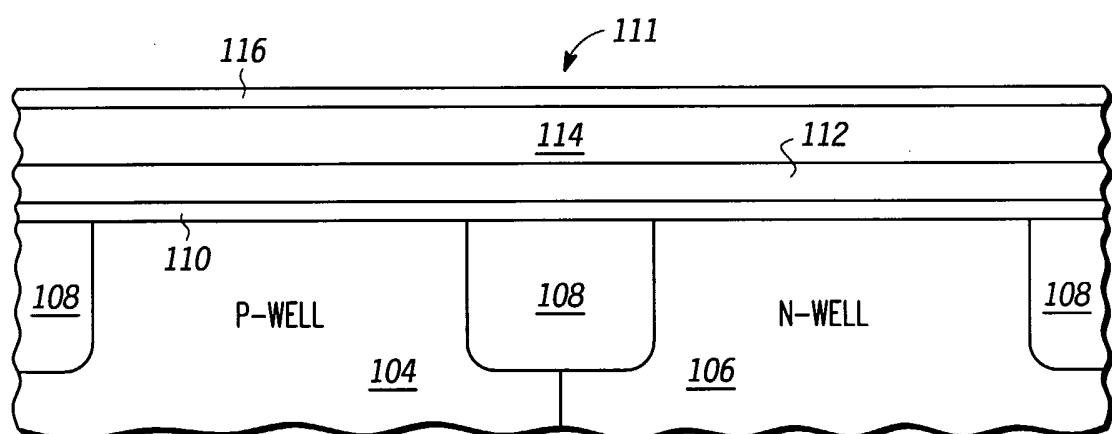
forming a second gate layer over the first gate location and the second gate location.


5

25. The method of claim 24, wherein the first conductivity type is N type, the first high-k dielectric comprises lanthanum oxide, the second conductivity type is P-type, and the second high-k dielectric comprises aluminum oxide.


10 26. The method of claim 24, wherein the removing the first gate dielectric layer occurs after the forming the first gate electrode layer.

27. The method of claim 24, wherein the removing the first gate dielectric layer occurs before the forming the first gate electrode layer.


15

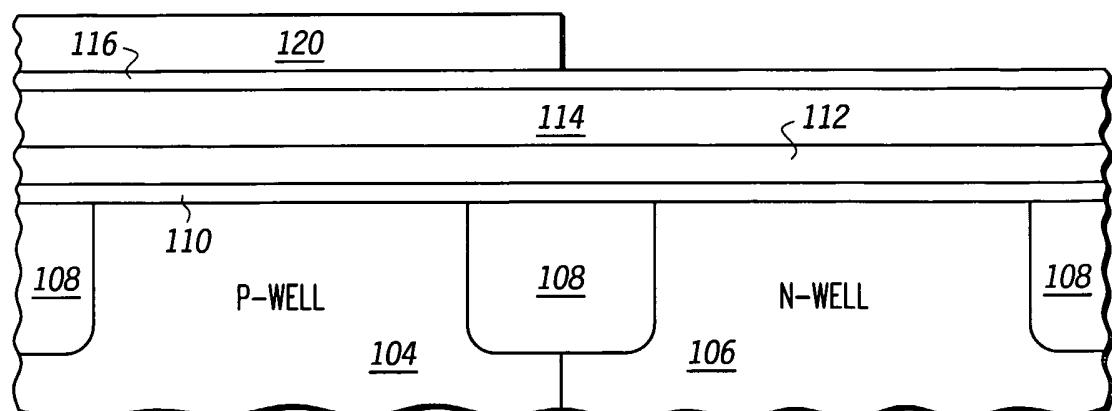

FIG. 1

FIG. 2

FIG. 3

FIG. 4

2/7

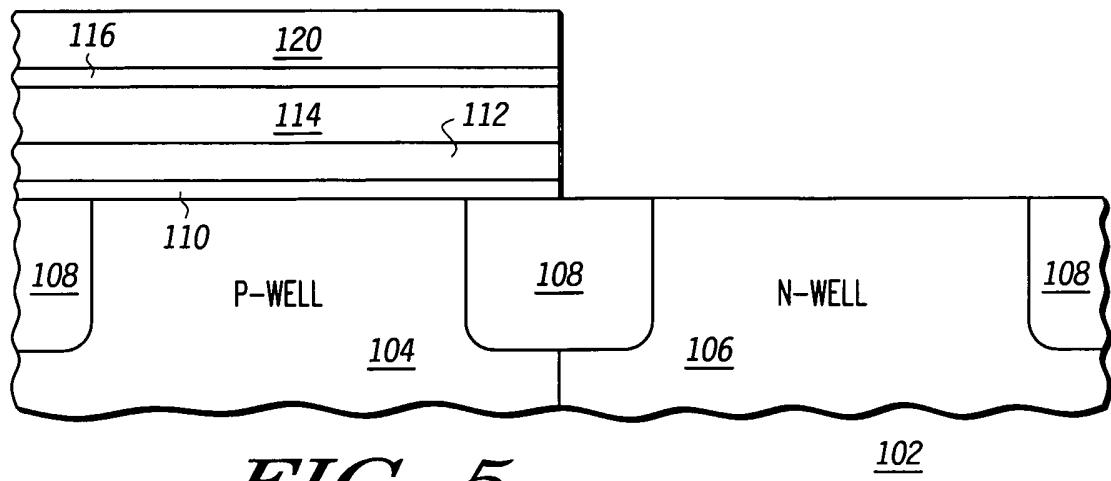


FIG. 5

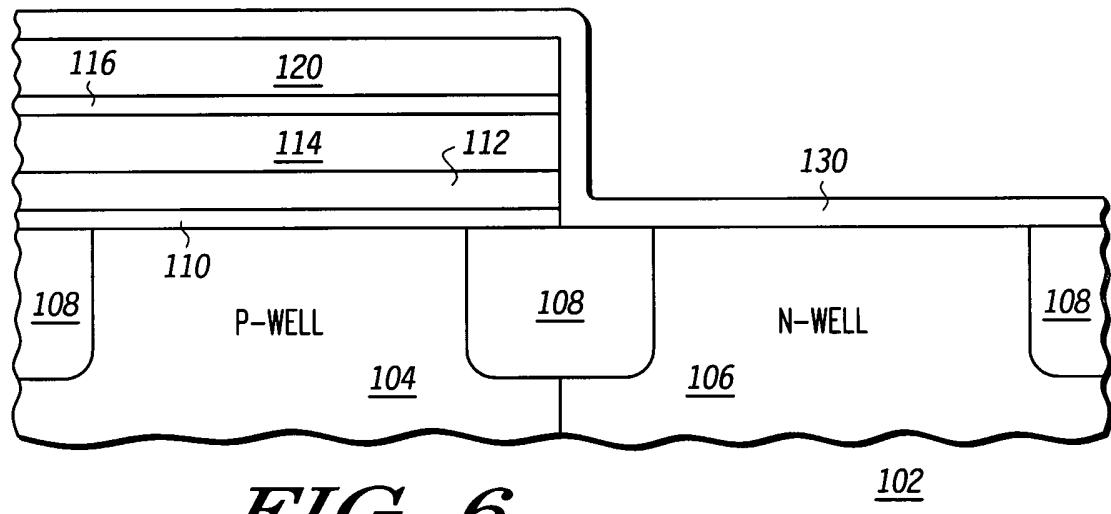


FIG. 6

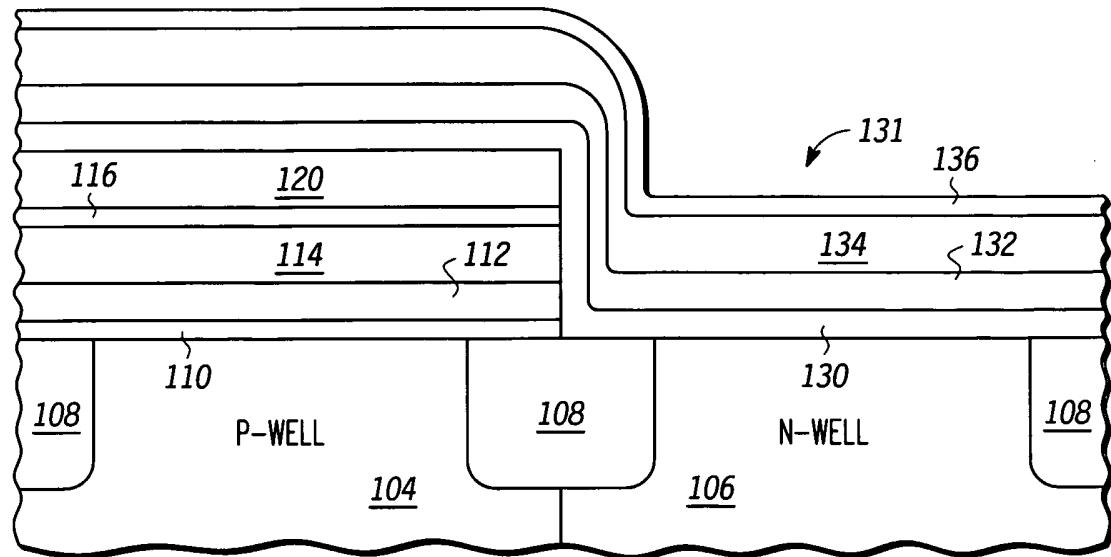


FIG. 7

3/7

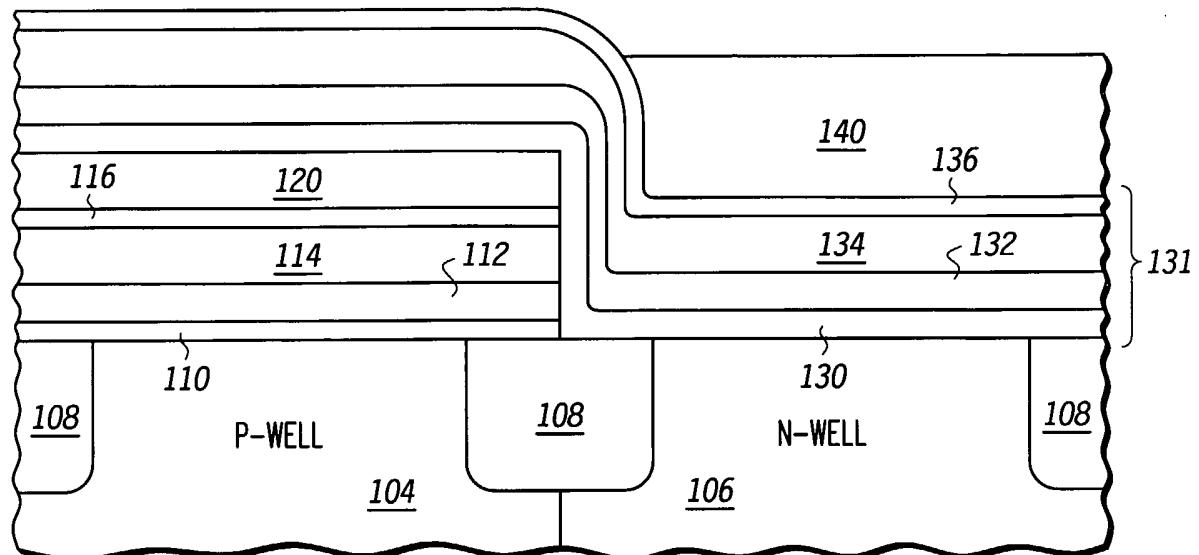


FIG. 8

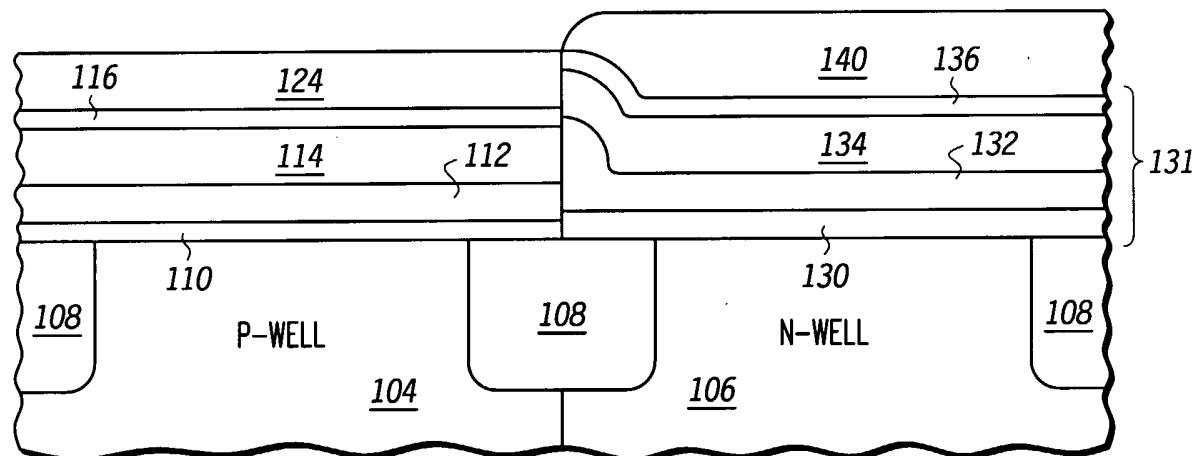


FIG. 9

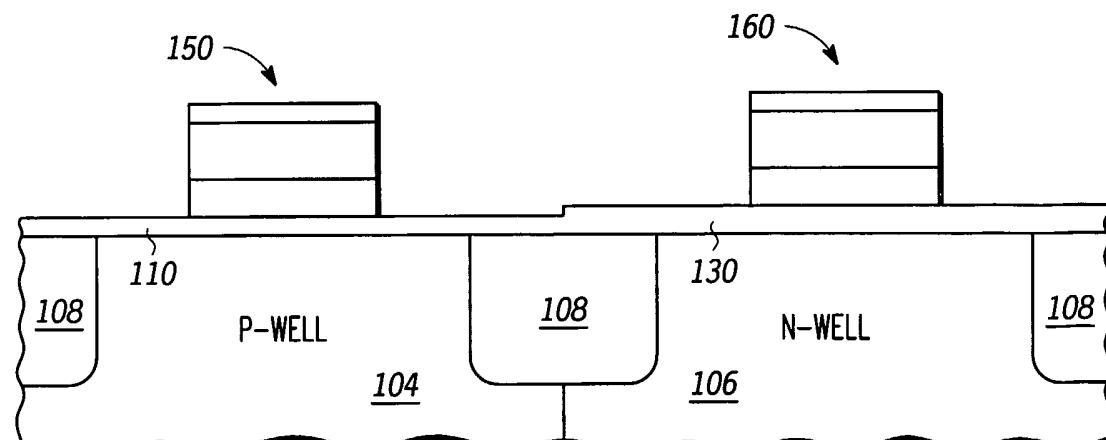
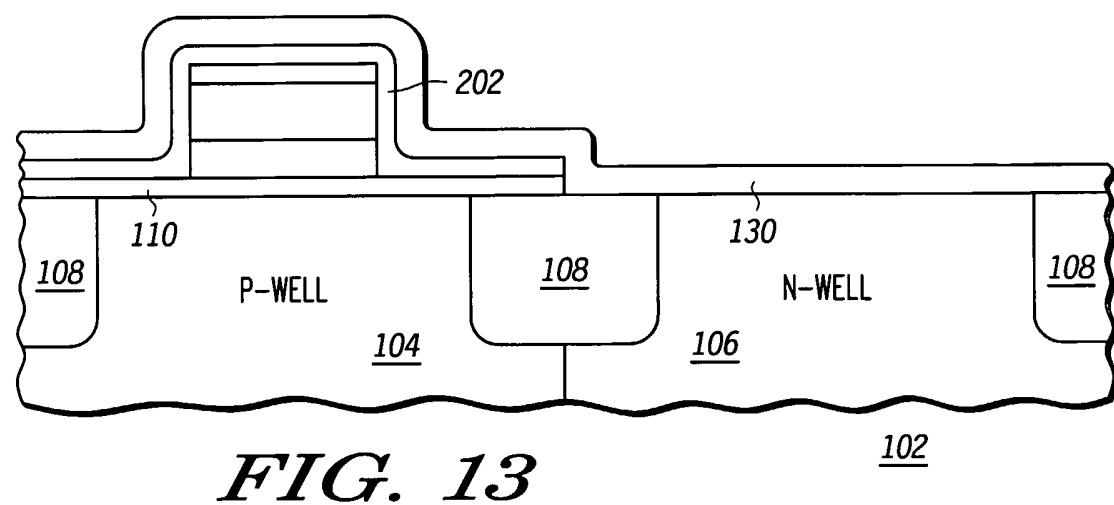
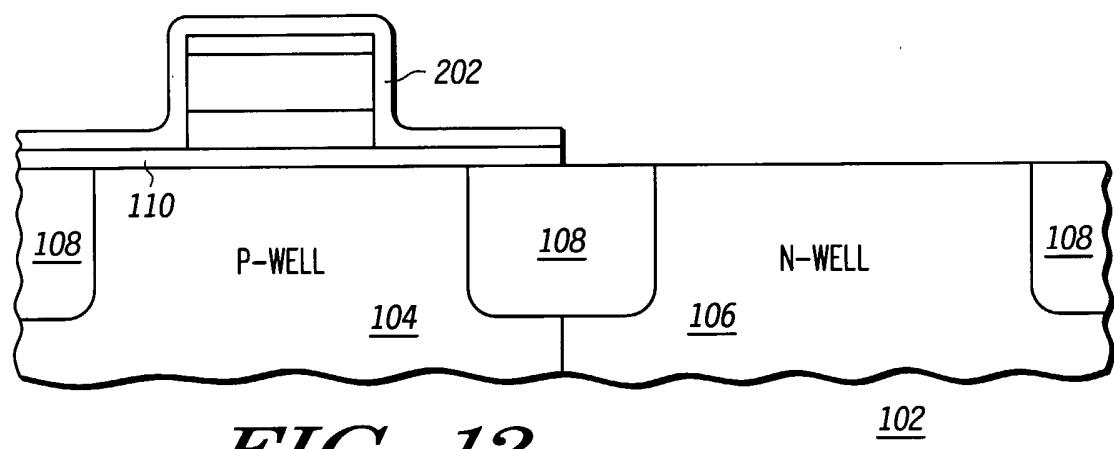
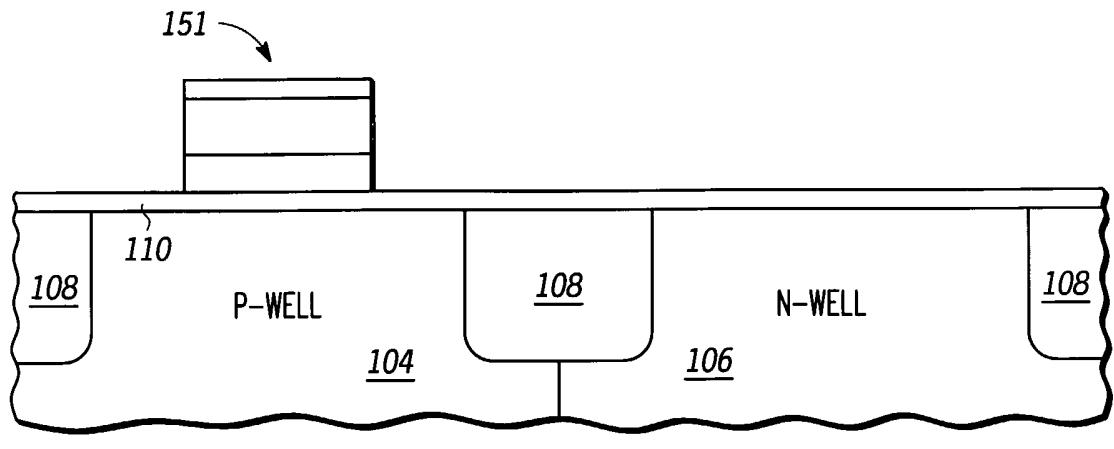
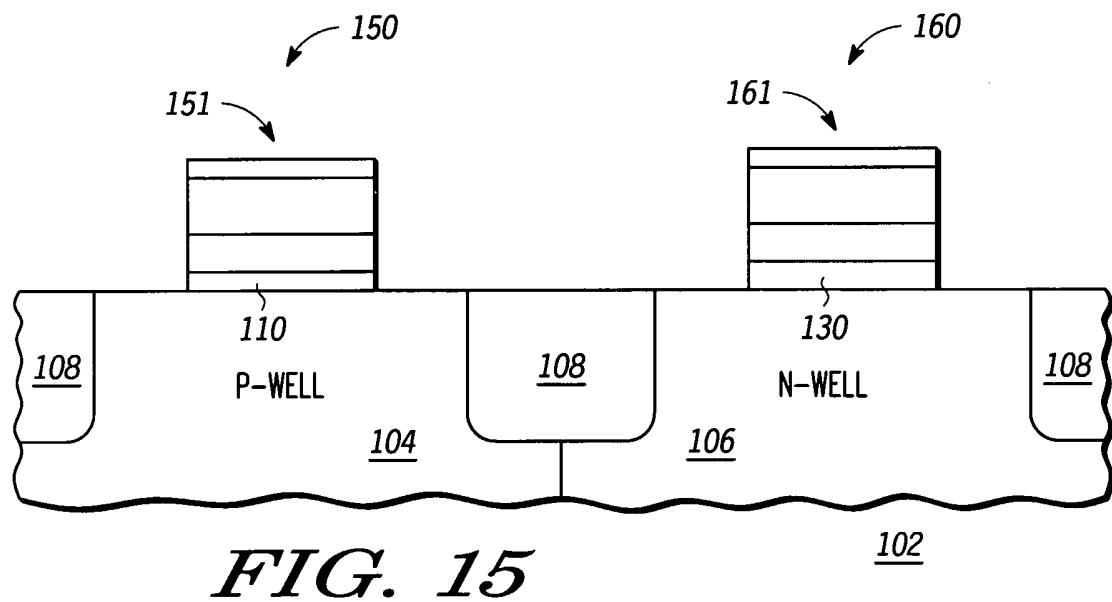
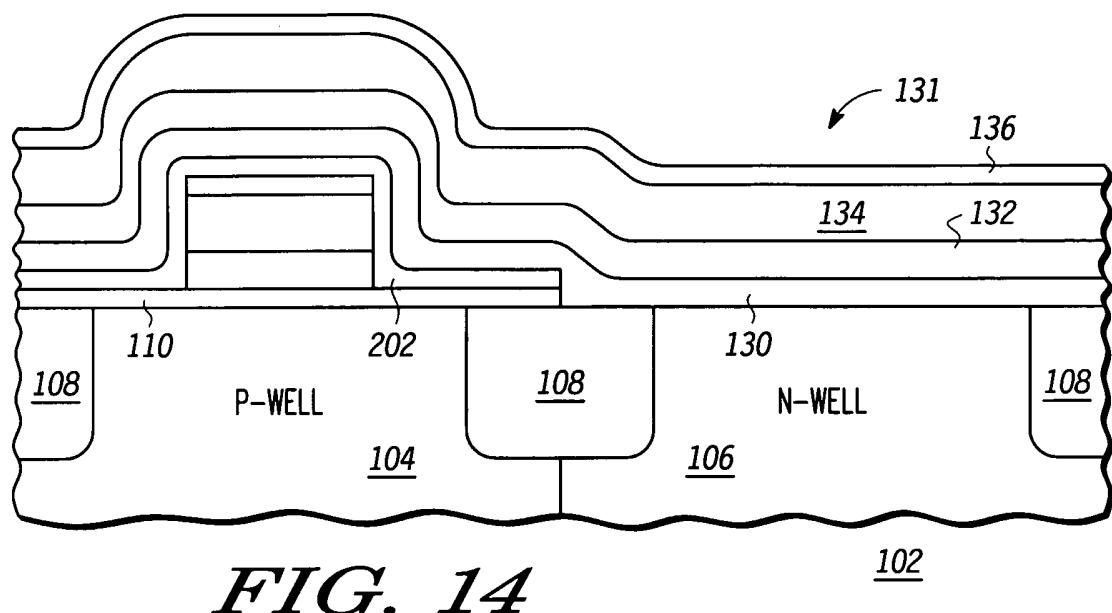
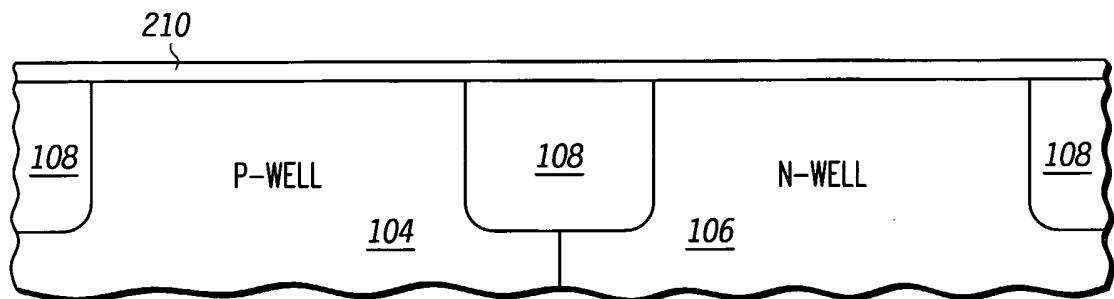
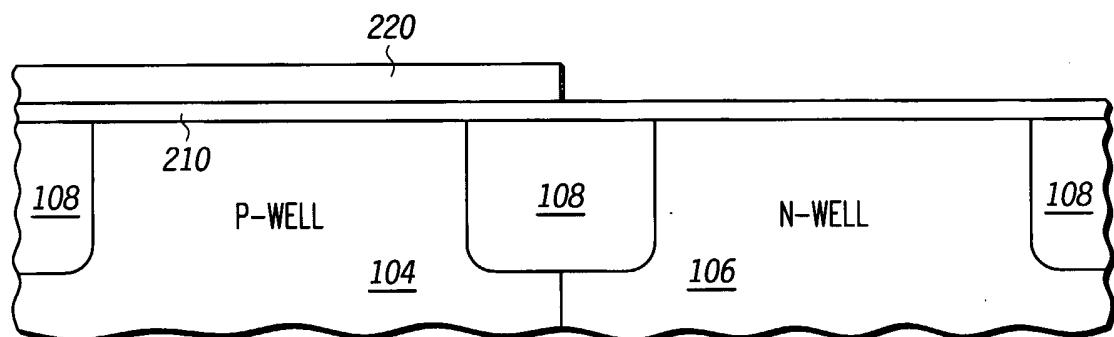
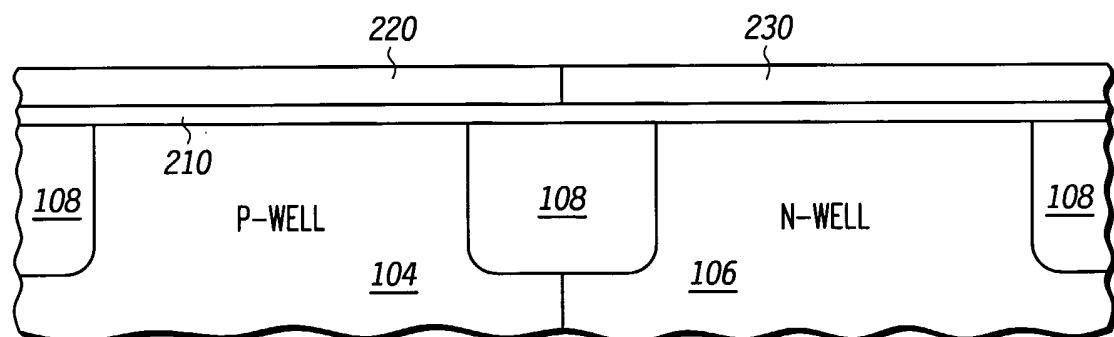
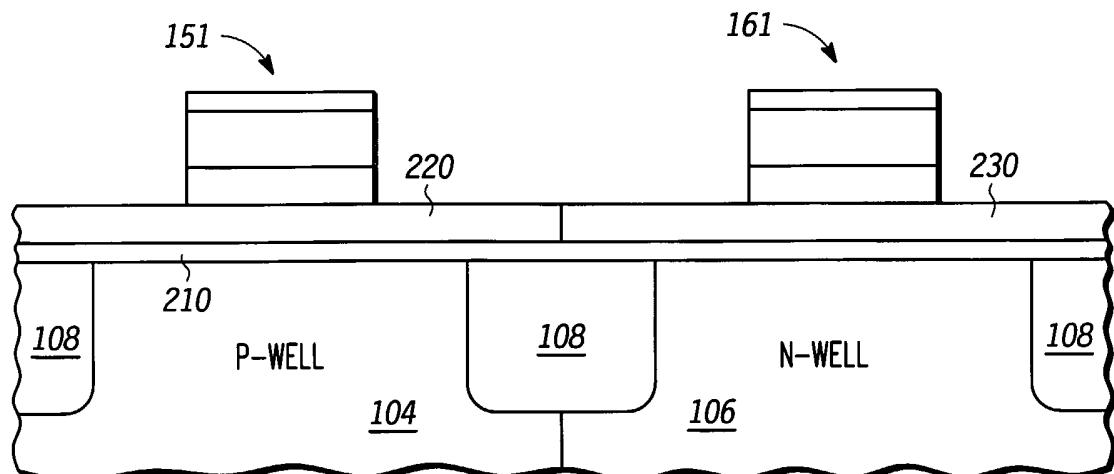







FIG. 10




4/7


5/7

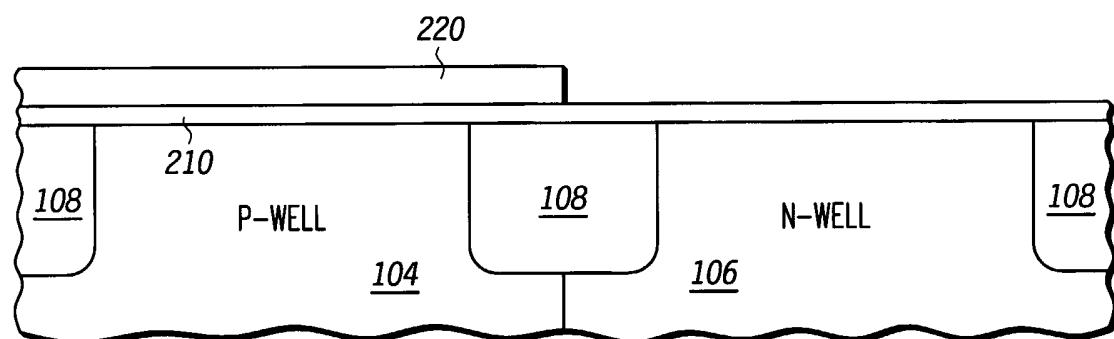

6/7

FIG. 16***FIG. 17******FIG. 18***

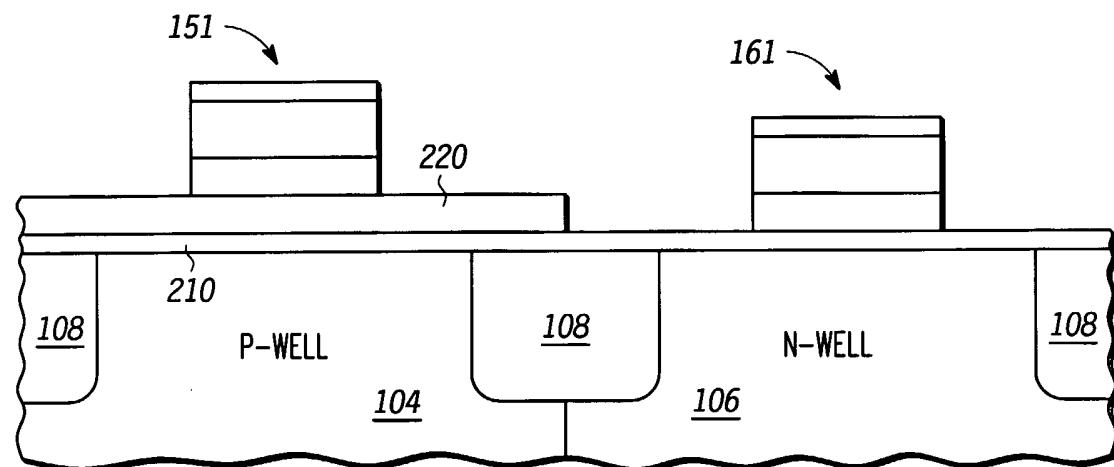

7/7

FIG. 19

FIG. 20

FIG. 21

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US05/13076

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : H01L 21/44, 21/48, 21/50

US CL : 438/119

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 438/119

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6,528,858 B1 (YU et al.) 04 March 2003 (04.03.2003), see entire document.	24-26
---		-----
Y		1-4,7,9-12,15,16,19-23
---		-----
Y	US 5,827,747 A (WANG et al.) 27 October 1998 (27.10.1998), see entire document.	1-4,7,9-12,15,16,19-23
---		-----
A		5,6,8,13,14,17,18,27

Further documents are listed in the continuation of Box C.

See patent family annex.

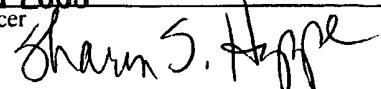
* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search

04 August 2005 (04.08.2005)

Date of mailing of the international search report

15 AUG 2005


Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer

JOSE DEES

Telephone No. 571-272-1569