04/077221 A2 IR 0 YO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

A Y

(10) International Publication Number

10 September 2004 (10.09.2004) PCT WO 2004/077221 A2
(51) International Patent Classification’: GO6F PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
(21) International Application Number: 7W.
PCT/IN2004/000032
(84) Designated States (unless otherwise indicated, for every

(22) International Filing Date: 29 January 2004 (29.01.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

127/ MUM/2003 30 January 2003 (30.01.2003) IN

(71) Applicant (for all designated States except US): VAMAN
TECHNOLOGIES (R & D) LIMITED [IN/IN]; Pawani
Plot, Near Vipul Apartment, Bhakti Marg, Mulund (West),
Mumbai 400 080 (IN).

(72) Inventor; and

(75) Inventor/Applicant (for US only): RAO, Vinayak, K.
[IN/IN]; A/4 Vishwakarma Jyoti, Subhash Lane, Malad
(East), Mumbai 400 097, Maharashtra (IN).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,
TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD,
SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG,
CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT,
LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ,
CFE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
7G)

[Continued on next page]

(54) Title: SYSTEM AND METHOD OF CONCURRENT COMMUNICATION BETWEEN A CLIENT AND SERVER IRRE-

SPECTIVE OF INDIVIDUAL FUNCTIONALITIES

100

Client
«———Response

Query———»

120
Server
110 130
Network agent Scheduler

& (57) Abstract: The present invention relates generally to a system and method for receiving and transmitting a plurality of concurrent
requests and responses, irrespective of their functionality, protocol, with optimal utilization of available resources. More particularly
the present invention relates to a system and method of reading incoming data from one or a plurality of Clients, such as a web-based
client or a mail client or an ODBC-compliant client, irrespective of their protocol and protocol functionality, reading and writing
data and establishing a connection with a Server irrespective of its functionality.

WO 2004/077221 A2 [0 08000 00000 A

— as 1o the applicant’s entitlement to claim the priority of the ~ For two-letter codes and other abbreviations, refer to the "Guid-
earlier application (Rule 4.17(iii)) for all designations ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

TITLE OF INVENTION
System and Method of concurrent communication between a client and server irrespective of individual

functionalities

BACKGROUND OF THE INVENTION
A ‘Client-Server’ computer architecture consists of a class of software, where processing is distributed

among one or more information requesters (Clients) and one or more information providers (Servers),
as well as in the interfaces (network, protocols, middieware) between them. This approach was
developed with a view to overcome the limitations of the mainframe architecture and the file sharing
architecture, which were exposed due to the drastic increase in traffic and connectivity. Almost all
popular applications on the Internet follow the Client-Server design like the e-mail clients, File Transfer

Protocol (FTP) clients and Web servers.

In order for Clients to interact with Servers, they have to communicate in the same protocol. A protocol
defines how computers identify one another on a-network, the form that the data should take in transit,
and how this information is processed once it reaches its final destination. However, there exist
problems with regards to communication between Clients and Servers largely due to the existence of
numerous vendor specific protocols and types of functionality expected from them. These protocols
include TCR/IP (for UNIX, Windows NT, Windows 95 and other platforms), IPX (for Novell NetWare),
DECnet (for networking Digital Equipment Corp. computers), AppleTalk (for Macintosh computers), and
NetBIOS/NetBEUI! (for LAN Manager and Windows NT networks). In addition, FTP, HTTP, HTTPS,
FINGER, SMTP, SOCKS and TELNET are some of the prominent protocols included in the popular

TCP/IP Suite.

An attempted solution to this problem can be seen in the HTTP Tunneling method, implemented by
Microsoft. In this technique, if a Remote Method.Invocation (RMI) fails to make a normal (or SOCKS)
connection to the intended server, and it notices that an HTTP proxy server is configured, it will attempt
to tunnel RMI requests through that proxy server, one at a time. However, the drawbacks of this
technique are that it can only be implemented on an HTTP configured proxy server and hence, does not
provide complete compatibility across all protocols used in Client-Server communication. Additionally,
using this technique can expose a fairly large security loophole on the Server machine and reduces the
bandwidth utilization because of tunneling overheads. Another major disadvantage of HTTP tunneling is

that it does not permit multiplexed connections.

The two main types of Client-Server architecture are the two-tier architecture model and the three-tier
architecture model. In a ‘two-tier architecture”, the Client and the Server communicate with each other

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

directly, while in the case of a “three-tier architecture’, the business logic is separated from the user

interface. This is the core concept used in developing a multi-tier application.

In order to accomplish this separation, the Server is placed in the middle tier, and the added third tier
typically represents data repositories of information that may be accessed by the Server as part of the
task of processing the Client's request. A data server normally stores and manages the data that is used
by an application, and includes the software products that are used in storing, accessing, and retrieving

the data.

In the case of any Client-Server environment, response to requests, which are received from a Client
must be returned very quickly. A particular Server may receive thousands of Client requests at any
given instant. Receipt of such a number of requests creates a significant amount of overhead to the
processing of a Client's request, which may greatly outweigh the time actually spent in completing the
transaction that answers the Client's request. This gives rise to the need for a method to manage
requests and responses in a more efficient manner because apart from standard database Client
requirements one is required to efficiently handle requests and responses between Web Servers, Mail

Servers, FTP Servers, Database Server and their Clients.

Generally for any database Server the nature of network Clients is concurrent Open Database
Connectivity (ODBC) sessions. As per ODBC standards and default network protocols adapted for
database connectivity each session has a default timeout and retry count and each session has a
continuous connectivity with the database Server (though they may be pooled by the Server).

In some of the existing database management systems (DBMS) it is possible to provide concurrent
connections 1o a database by using demultiplexed connection environments (See US Patent Application
Number 20020042850). In such DBMS, worker agents carry out processes in response to requests
made by applications (or Clients). Often agents are associated with applications by an application
scheduler or manager for the life of a transaction. To handle the potentially large number of inbound
connections being distributed across a smaller number of worker agents, DBMS use schedulers and
wait queues. However, this system does not solve the task of processing the concurrent requests in an
efficient manner, without overheads and delays and within the protocol timeout.

In another technique, the networking task is carried out with the help of a different listener process for
each type of Server, which then communicates to the main Server of any database requests. However,
this resulted in a lot of overheads of inter process communication (IPC) and is largely dependent on the
operating system (OS) kernel to schedule the IPC mechanism. When there is a burst of requests, which

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

is often the case in connections between Clients and Web Servers or in the case of unexpecied
database activity, the listener is unable to handle these high frequency calls and results in a timeout.

In the case of Web Servers, there also currently exist mechanisms to maintain connectioris, even after
completion of processing of the Client request. (See USPTO Patent No. 6,105,067) Existing
connections are maintained in a connection pool. When a Client request is received, a connection from
the pool is used if a suitable connection is available--thus avoiding the overhead of establishing the
connection. (When no connection from the pool can be used, a new connection may be established.)
This pool may contain many connections to a single data server, many connections fo multiple data
servers of a single type (such as multiple DB2 databases), and/or many connections to data servers of
different types (for example, DB2 databases, MQSeries message services, efc.). A common interface is
used for requesting a connection from the pool, reducing the number of APls (Application Programming
Interfaces) that programmers and support personnel are required to understand and use. Although pool
management for backend servers considerably improves performance in a Web environment it does not
improve the overall communication efficiency between the Client and the Server while receiving
requests and transmitting responses. Pooling might be a disadvantage also bécause of leaks (that is
programming bugs in drivers/bindings/custom code) that are getting eliminated currently because of

connections getting recycled constantly.

Accordingly, a need exists for a system and method by which a number of concurrent requests can be
received, irrespective of their protocol, from the Client and transmitted to the Server and any number of
concurrent responses is transmitted back from the Server to the Client, without the use of significant
resources and without compromising in efficiency. In addition, there exists the need for a technique
whereby concurrent connections can be established with the server without any limitations and wherein-
a muliitude of requests can all be managed in an efficient manner, with optimum utilization of current

hardware

SUMMARY OF THE INVENTION
To meset the foregoing needs, the present invention provides a software-implemented process, system

and method for use in a computing environment having a connection to a network. The system typically
includes a Server, a Client configured fo connect to the Server via a computer network and a Network
Agent. The Network Agent is part of the Server and it acts as an Interface between the Client and the
Server. As a result of being part of the Server, the Network Agent saves up on Inter process
communication (IPC), which is an expensive overhead, without compromising on the functionality of a

networking device.

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

The Network Agent is configured to receive requests from the Client and transfer the said requests to
the Server. It is further configured to receive responses from the Server and transmit the same to the
Client. The Network Agent functions in a manner, which gives flexibility to the user to control and
balance the computer resources and achieves efficient response to requests. The Network agent
consists of a Socket, which received requests from the Client. Any activity on the Socket triggers an
event to the network agent, thus avoiding starvation and supporting concurrency. The Network agent
consists of a Master Thread Which schedules the tasks performed by the Network Agent. In addition it
contains a Sub-Thread and two queues viz., the “Transmit Queue” and the “Receive Queue”. The
Master Thread uses the Sub Thread to carry out the tasks of receiving requests and transmitting
responses between the Client and the Server. The Master Thread polls the Transmit Queue, the receive
Queue and the Socket and depending on the largest count, it dynamically allocates resources o

manage the requests or responses.

The entire design is based on state machines and modules comprising of various events communication
via messages that is it is event driven using Finite State Machine (FSM) concept, the functionality is

broken down into a series of events scheduled by kernel.

BRIEF DESCRIPTION OF THE DRAWINGS
The various objects and advantages of the present invention will become apparent to those of ordinary

skill in the relevant art after reviewing the following detailed description and accompanying drawings,

wherein:

Fig. 1 is a block diagram of a computer system including a Client, a Network Agent and a Server.

Fig 2 is a diagram illustrating typical servers like a Database Server or Web Server or Mail Server
having their own network agent capable of making communication between a functional specific server

and functional server specific client.

Fig. 3 is a block diagram depicting the internal components of the Network Agent.

Fig. 4 illustrates the manner in which the Network Agent processes requests and responses on the

occurrence of any Socket Activity.

Fig 5 is a flow diagram illustrating the process that results from the Master Thread receiving a response

from the Server -

DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

While the present invention is susceptible to embodiment in various forms, there is shown in the
drawings and will hereinafter be described a presently preferred embodiment with the understanding
that the present disclosure is to be considered an exemplification of the invention and is not intended to

limit the invention to the specific embodiment illustrated.

In the present disclosure, the words “a” or “an” are to be faken to include both the singular and the
plural. Conversely, any reference to plural items shall, where appropriate, include the singular.

Referring now to the drawings, more particularly Fig. 1, there is shown a system consisting of a Client
100 and a Server 120. The Server 120 is further comprised of a Network Agent 110 and a Scheduler

130.

in the preferred embodiment of the present invention the Client 100 sends requests to the Network
Agent 110. The Network Agent 110 facilitates communication between the Client 100 and the Server
120. The Network Agent 110 is configured to receive requests from the Client 100 and transmit the said
requests to the Server 120. It is further configured to receive responses from the Server 120 and
transmit the same to the Client 100. In the preferred embodiment of the present invention, the Network
Agent 110 is a part of the Server 120 and acts as an interface between the Client 100 and the Server
120. The Scheduler 130 is responsible for the scheduling function of the Server 120. In an alternate
empodiment of the present invention, the Network Agent 110 is a separate component, and does not
form a part of the Server 120. The Server 120 is configured to perform multiple functions, which include,
receiving, retrieving, transferring and storing requests, comparing and matching information and

processing requests received by the Network Agent 110.

As illustrated in Fig 1., in the preferred embodiment, one Client 100 sends requests and receives
responses from the Network Agent 110, which acts as an interface between the Client 100 and the
Server 120. In an alternate embodiment, a plurality of Clients send requests and receive responses from
the Network Agent 110, which acts as an interface between the Client 100 and the Server 120.

Fig. 2 is a block diagram lllustratihg a plurality of typical servers, such as a Database Server 210,
a Web Server 220 and a Mail Server 230 having their own Network Agent 110 capable of making
communication between a specific functional server and server specific client. In the preferred
embodiment of the present invention the Network Agent 110 is capable of managing data
interchange across any network irrespective of hardware bounded with the protocol.

Technology evolution gave rise to various standards of networking, which were vendor specific or
application specific based on mode of communication or networking medium used. For example a

10

15

20

25

30

.35

40

WO 2004/077221 PCT/IN2004/000032

coaxial cable or UTP / STP cable the most popular transport layers used are TCPIP 7 IPX [/ SPX /
Netbieu efc. In course of usage of these technologies various application which used these protocols as
the basic communication mechanism to transport data needed to exchange data. For example, a
Database Server 210 can work on any of these protocols but web servers / mail servers require specific
protocols like htip / SMTP to propagate data. But database servers could not use these protocols as
they were stateless and non-connection oriented and managing transactional data integrity across these

transport mechanism was unreliable.

The current trend of convergence of communication protocols over gave rise to piggy packing protocols
so that data could be exchanged. For example, SOAP uses htip tunneling to manage data exchange.
But this reduced bandwidth efficiency and stripping and wrapping overheads while maintaining client
server connectivity. Also this technology did not give a seamless integration to legacy clients.

This needs some consideration for making these functionalities work. They are:

1) Each protocol has its own limitations in managing data delivery model. Mostly the evolution of
these protocols like http / ftp / smip / pop /nnip was more of functional evolution rather than
technology evolution. Hence some guarantee data delivery and connection consistency whereas

some have stateless connectivity.

2) The data delivered by these network modules is specific as per server functionality and none of
these have a standard persistent format, which can be interchanged w/o any intermediate

conversion steps.

3) Server specific functional objects (like application / session / request / response for web servers
or fables / indexes for databases) are capable of having direct communication mechanism or

data interchange.

4) The connection polling mechanism .and information managed at server side for each client
varies like — ODBC / OLEDB clients, web clients, mail clients.

5) For managing protocol interchange for server specific functionality, short comings of the protocol
have to be taken care at the server end and relevant information management overheads and

other housekeeping and conversion tasks need to be handled.

6) Sub objects of a server, which have similar functionality but different pattern of data handling

and manipulation, can be merged.

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

The basic purpose is to create a network interface capable of transporting any client request to any
server irrespective of server functionality or protocol‘ related limitations. The data exchange expected
between various functional servers can be managed at the server end if a common pattern of data
mapping is used for achieving and retrieving data. Typically a Database Server 210 has a lot of sub
objects like tables, indexes etc. Similarly in a Database Server 210 environment the ODBC/OLEDB
clients 240 have to explicitly specify the server details, the database to be connected to, user name and
password as part of the connect parameters in an ODBC specified standard DSN (Data Source Name)
parameters. The connection process between any client and server then exchanges data as per the
server functionality and server maintains information for every client connection. The Clients could be
ODBC/OLEDB clients 240 on a network using different protocols such as IPX, SPX, TCP IP, NetBeui,
Named pipes etc could be using RAS device. The Database Server 210 has its data stored on to the
Database as persistent data also the global cache is used for viﬁual data storage that can be further

transferred to the data store and stored as persistent data.

Similarly a Web Server 220 also has sub-objects like application, sessions, request, response, object
context and error object. There are various web-clients such as Cuteftp / Getright / IE/ Netscape/ Mosaic
250. The web-client for example the browser communicated using http protocol to the web-server and it
receives data mostly as html from the Web Server 220. This Web Server 220 has data stored either on
the global cache or in the persistent form from the web server. Functionality may demand persistence of
some of these object but in case of web servers most of the data is instance specific i.e. virtual or never
persisted. To maintain relations across sessional data currently cookies are used at the client end. The
common functionality for any client and server before any data interchange begins is first to establish a
communication link, which usually is CONNECT command for a specific server followed by
authentication delails. As per the functionality of these servers the approach followed for connection
establishment varies that is for a web server the server name undergoes a transfation for Internet
Protocol (IP) through a Domain Name Server (DNS) to establish a connection but does not require any
username or password unlike the ftp command on the server which requires authentication.)

The Mail clients like Microsoft Outlook Express / Eudora / Pine etc 260 connect to the Mail Server 230.
The communication between the mail clients and mail server is only through the protocols like SMTP or
POP eic and the data could be stored in the Global Cache 200, that is the virtual memory or in the

persistent format in the Mail Server 230 storage area.

The interconnection between these different server functionalities is made possible by the Network
Agent 110. The current network implementation merges this connection information for clients

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

irrespective of protocol or nature of clients and helps maintain this information, which is instance specific

like records in a virtual table.

Also the implementation of the Network Agent 110 is purely based on an event driven kernel hence any
object functional implementation can be programmed as series of state transitions and inter object data
exchange can be managed through messaging. This unique approach of finite state machine based
implementation of network related objects or sub objects irrespective of server specific functionality
considering all limitations and scope of features expected makes data and functionality exchange
seamless. Hence after successful connection parameters are verified the process of authentication,
rights, grants, roles and privileges can be centralized as except different standards of authentication
(encryption mechanism and algorithms used) the concept of the process of user validation still remains
the same. In other words the talk among these different functionality server storing data in proprietary
format and using proprietary communication protocols is made possible using the Network Agent 110.

In Fig. 3, there is shown a system consisting of the internal components of the Network Agent 110,
consisting of a Master Thread 300, a Sub-Thread 310, a Transmit Queue 320, Socket 330 and a

Receive Queue 340.

The Master Thread 300 schedules the tasks carried out by the Network Agent 110 and controls the Sub-
Thread 310, to receive requests from the Client 100 and transmit them to the Server 120 and transmit
responses from the Server 120 to the Client 100. The Master Thread 300 is activated on the occurrence
of any socket actlivity and polls the Transmit Queue 220, the Socket 230 and the Receive Queue 340 to
check which of the said entities has the highest count of requests or responses and accordingly carries
out one of the functions of receiving requests from the Client 100, transmitting requests to the Server
120 or transmitting responses from the Server 120, back to the Client 100. In the preferred embodiment
of the present invention, there exists one Sub-Thread 310, which is programmed {o receive requests
based on one or a plurality of protocols. In an alternate embodiment of the present invention, a plurality
of Sub-Threads are generated to handle multiple requests, with each Sub-Thread 310 based on a
separate protocol. The Network Agent 110 is capable of receiving requests based on different protocolvs
from the Client 100 and transmitting the same to the Server 120. The Socket 330 connects the entire
system to a network and thereby enables the Network Agent 110 fo receive requests from one or a
plurality of Clients. The Receive Queue 340 functions as a storage device and stores the requests,
which are transferred by the Sub-Thread 310 from the Socket 320, until such time that the requests are
transferred by the Sub-Thread 310 to the Master Thread 300. The Transmit Queue 340 also functions
as a storage device and stores the responses received from the Master Thread 300, until such time that
the responses are transferred by the Sub-Thread 310 to the Socket 320.

10

15

20

25

30

35

40

WO 2004/077221 PCT/IN2004/000032

Fig 4 illustrates the manner in which the Network Agent 110 processes requests and responses on the
occurrence of any Socket Activity. In the preferred embodiment of the present invention, a Client 100
sends an outgoing CONNECT or a Read or Write request to the Network Agent 110. In an alternate
embodiment of the present invention, a plurality of Clients send a plurality of outgoing CONNECT or a
Read or Write requests to the Network Agent 110. The requesting client such as browser which uses
http or ftp protocol or Microsoft Outiook Express which uses SMTP or POP protocol can connect using
either a modem or any Remote Access Device (RAS) and sends outgoing CONNECT or READ or
WRITE requests 400 to the Network Agent 110 The polling is done continuously by the Master Thread
to create READ or WRITE or CONNECT or DISCONNECT and adding the said requests 401 to the
Receive queue 340 or Transmit Queue 320. The Transmit Queue 320 is checked continuously for’
pending requests 402. In the event of a Eequest existing in the transmit queue 320 the request is taken
and processed according to priority logic and pushed in the active state 403. The priority logic is present
in the Network Agent 110 and default priority is for the Transmit Queue 320 so that balancing between
receiving and transmitting queues is possible. The priority logic in the Network Agent 110 works as per
the Network protocol and pending messages in queue and as per timeout of each protocol. In the event
of no pending request in the Transmit Queue 320, the Master Thread 300 checks 408 the Receive
Queue 340 and in the event of network activity with respect to the Receive Queue 340 the checking for
errors is done 409 and-an error is reported 410. In the event of no errars in the Receive Queue 340, the
request is set to active state 411 and sent to the Scheduler 130. The Scheduler 130 manages the
division of operating system time by process and the division of the process time by the agents.

On checking for network activity with respect to the Recsive Queue 340, if there is no network activity, it

polls for network activity 412.

On setting the request sel 1o active state 411, the Master Thread 300 proceeds o check for incoming
connect requests 413..In the event of no incoming connect request, the data is read from the network
414, Next, the reply is sent to the requesting client with data 415. It then proceeds to check for repeat
requests 416. In the event of a repeat request existing, the process from checking for requests 402 in
the Transmit Queue 320 onwards is repeated. In the case of no repeat request the request is déstroyed
417 and next, it proceeds to check for requests 402 in the Transmit Queue 320.

After checking for incoming connect requests 413, in the event of an incoming connect request, the
connection is accepted 418 and next a response is given to the requesting client in the form of a handle
419. Next the polling is done to check the request 402 in the Transmit Queue 320. If there exists a
request in the Transmit Queue 320, it gets the request according to its priority and pushes it to an active
state 403. It then proceeds to check the type of activity such as'READ or WRITE or CONNECT 404. In
the event of a Write activity the data is written to network 405 and the reply is send to the requesting

10

WO 2004/077221 PCT/IN2004/000032

client 406 and the further process is repeated. In the event of an outgoing connect the connection fo end
point is sought 407 and then the reply is given to the requesting client 406. It then proceeds to check

402 for requests in the Transmit Queue 320.

Fig. 5 illustrates the result of the Master Thread 300 receiving 500 a response from the Server 120. On
receiving the said response, the Master Thread 300 is activated 510 and the Master Thread 300 then
proceeds to transfer 520 the said response to the Transmit Queue 320, after which the Master Thread
300 goes into a state of wait 530, thereby completing the process initiated as a result of the response

received 500.

10

WO 2004/077221 PCT/IN2004/000032

5 1. A system for managing network resources irrespective of functional servers comprising

10

15

20

25

30

35

40

a pattem translator to assaciate a pattern of data and a set of functionalities of said data under a

plurality of conditions

a management means fo analyze and optimize the type of requests received on said patterns of

data

a memory map to aid the process of caching whereby said network can be mapped and utilized as

memory queues of requests received and response transmitted.

The system as recited in claim 1 wherein said network resource functionality is dictated using a set

of generic patterns including data pattern and functional pattern.

The system as recited in claim 2 wherein said functional patterns are used to manage optimum load

balancing of said data pattern requests.

The system as recited in claim 1 wherein data pattern from any functional server is communicated in
the form of one or a plurality of network packets and communication protocols.

The system as recited in claim 1 enforces industry standard compliant format for communication of
said data exchange between functionally different server objects without any layer of conversion.

. The system as recited in claim 1 exposes any functionality expected by any functional server in a

multi-user environment from said network resource for final or intermediate communication stages to
achieve simplicity, standardization, operating system portability, said data pattern and functional
event portability across vendors and versions of said functional servers.

. The method of allocating network resources irrespective of functional servers, comprising of:

associating a pattern of data and a set of functionalities of said data under a plurality of conditions
analyzing and optimizing the type of requests received on said patierns of data

caching said patterns of data whereby said network can be mapped and utilized as memory

11

5

10

15

20

25

WO 2004/077221

8.

10.

11.

12.

13.

14.

PCT/IN2004/000032

The method as recited in claim 7 wherein said network resource functionality is dictated using a set

of generic patterns including data pattern and functional pattern.

The method as recited in claim 8 wherein the process of allocating network resource using
functional pattern is done by using said functional patterns for managing optimum bandwidth
utilization of said data pattern to recover and rebuild said data pattern from any abnormal

termination.

The method as recited in claim 7 wherein data pattern from any functional server is finally

communicated in the form of one or a plurality of network packets.

The method as recited in claim 10 wherein said system is capable of performing a network burst
operations efficiently by opening multiple instances of network threads with associated protocols

The method as recited in claim 7 enforces industry standard compliant format for communication of
said data exchange between functionally different server objects without any layer of conversion.

The method as recited in claim 7 imparts atomicity, consistency, isolation and durability properties to

any sever objects irrespective of server functionality.

The method as recited in claim 11 exposes any functionality expected by any functional server in a
multi-user environment from said network resource for communication to achieve simplicity,
standardization, operating system portability, said data pattern and functional event portability

across vendors and versions of said functio

12

WO 2004/077221
PCT/IN2004/000032

Fig. 1

120
Server
100 110 130
Client Query ’ Network agent Scheduler
l«———Response

1/6

WO 2004/077221 PCT/IN2004/000032

Fig. 2
200
Global cache virtual data /l/
1 210) 220 ‘
W V4 ;7"
270
Database server Web server Mail server /‘/
Y S y Y ‘ l S
_M _ .
M M J Pef:;em
110
/V A A
Network agent Database
A A A)
IPX/SPX/ TOP IF/ NetBeui / HTTP Sjp\éP[P Meils
, oy || Webcata
Mail Clients /
Qutlook Bxpress/
Eudora/ Fine

2/6

WO 2004/077221

Fig. 3

PCT/IN2004/000032

340

300

V4

Master thread

Recieve queue

310

.

320

Sub - thread

330

V4

Transmit queue

Socket

3/6

WO 2004/077221 PCT/IN2004/000032

Fig. 4a

400
Requesting client fire outgoing connect/ /]/
Read/Write requests

r 401

Create read/write request or outgoing ﬂ/
connect and add to receive/transmit queue

(——

Check request
in transmit queue

403

Get request according to priority and /]/
push it in active state

404

Check/Write/Connect
activity type

407 405

V4

Connect to end point Write data fo
network

OutGoing connect

406
v V4

Reply to requsting client

A

4/6

WO 2004/077221 PCT/IN2004/000032

Fig. 4b

412
Poll for N Check network
network activity with respect
activity 0 receive queug
410
N
Report error
414
N
Check for incoming Read data
connect request N from network
415
y NV
. Reply to requesting
Accept connection client with data
417
419 X N
\\ Reply to requesting Check fo Request
) . r
client with handle repeat reques destroyed

5/6

WO 2004/077221 PCT/IN2004/000032

Fig. 5

500
Master thread receives response /l/
from server
3 510

Master thread gets activated

520
Master thread sends response fo ﬂ/
transmit queue
530

Master thread enters wait stage

6/6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

