发明名称
低压差线性稳压器结构

摘要
本发明公开了一种低压差线性稳压器结构，其中所加入的补偿电阻与所述低差线性稳压器的输出端的电流成反比，从而使得所述频率补偿结构产生的零点能够自动跟随所述低压差线性稳压器的输出极点变化，提高了所述低差线性稳压器的稳定性。
1. 一种低压差线性稳压器结构，其特征在于，包括：
压差放大器，具有正相端、反相端及输出端；所述反相端作为所述低压差线性稳压器的输入端，其与一电压参考信号相连；
电压缓冲器，其输入端与所述压差放大器的输出端相连；
PMOS 电压调整管，其栅极与所述电压缓冲器的输出端相连，其源极接高电平，其漏极为所述低压差线性稳压器的输出端；
负反馈网络，接在所述 PMOS 电压调整管的漏极与地之间，包括依次串联的第一电阻及第二电阻，所述第一电阻与所述 PMOS 电压调整管的漏极相连，所述第二电阻接地，所述第一电阻与所述第二电阻的连接点与所述压差放大器的正相端相连；
输出电容，接在所述 PMOS 电压调整管的漏极与地之间；以及
频率补偿结构，接在所述电压缓冲器的输出端与输入端之间，在所述压差放大器的输出端提供频率补偿零点，包括依次串联的补偿电阻及补偿电容；且所述补偿电阻的阻值与所述低压差线性稳压器的输出端的电流成反比。
2. 如权利要求 1 所述的低压差线性稳压器结构，其特征在于，所述 PMOS 电压调整管工作在饱和区。
3. 如权利要求 1 所述的低压差线性稳压器结构，其特征在于，所述输出电容为陶瓷电容。
4. 如权利要求 1 所述的低压差线性稳压器结构，其特征在于，所述频率补偿结构为
PMOS 镜像晶体管，所述 PMOS 镜像晶体管工作在深线性区，其栅极与所述电压缓冲器的输出端相连，其源极接高电平，其漏极接所述电压缓冲器的输入端，补偿电阻为所述 PMOS 镜像晶体管的等效电阻，所述补偿电容为 MIM 电容或者 MOS 管形成的电容，且与所述输出电容成一定比例。
5. 如权利要求 3 所述的低压差线性稳压器结构，其特征在于，所述 PMOS 电压调整管包括多个并联的第一 PMOS 管，所述 PMOS 镜像晶体管包括多个并联的第二晶体管。
低压差线性稳压器结构

技术领域
[0001] 本发明涉及一种电压调节器电路，尤其涉及一种低压差线性稳压器结构。

背景技术
[0002] 低压差线性稳压器（LDO，Low Dropout Regulator）具有结构简单、低噪声、低功耗以及小封装和较少的外围应用器件等突出优点，在便携式电子产品中得到广泛的应用。LDO属于DC/DC变换器中的降压变压器，在负载一定的情况下，其输出电压在一定范围内，因此，LDO电路系统能够保证输出电压稳定，提高电池寿命。目前，对LDO的研究热点主要集中在如何提高系统稳定性的问题上。而LDO的频率补偿设计，不仅直接决定了频率稳定性，而且对LDO的性能参数，尤其是瞬态响应速度，有很大的影响。

[0003] 请参考图1，图1为现有的LDO结构示意图，如图1所示，现有的LDO包括压差放大器101、电压缓冲器102、电压调整管103、负反馈网络104以及输出电容C1；其中，所述电压调整管103为PMOS管，所述负反馈网络104包括依次串联的第一电阻R1与第二电阻R2，所述输出电容C1具有等效串联电阻Rss；所述压差放大器101的反相端（－）与一电压参考信号VREF相连，其输出端与所述电压缓冲器102的输入端相连，所述电压缓冲器102的输出端与所述电压调整管103的栅极相连，所述电压调整管103的源极接高电平Vdd，其漏极与所述第一电阻R1及所述输出电容C1的一端相连，所述第二电阻R2的另一端及所述等效串联电阻Rss的另一端接地，所述压差放大器101的正相端（＋）接在所述第一电阻R1与第二电阻R2之间；其中，所述电压参考信号VREF作为LDO的输入信号，所述电压调整管103的漏极作为LDO的输出端Vout。

[0004] 上述现有的LDO存在三个极点，分别为输出极点PLOAD，第一极点P1以及第二极点P2，其中所述输出极点PLOAD为LDO输出端Vout端（即第三节点3）的极点，所述第一极点P1为所述压差放大器101输出端（即第一节点1）的极点，所述第二极点P2为所述电压缓冲器102的输出端（即第二节点2）的极点，上述三个极点的计算公式为：

\[
P_{LOAD} = \frac{1}{2\pi \cdot (r_0 + R_{ESR}) \cdot C_L} \approx \frac{1}{2\pi \cdot r_0 \cdot C_L}
\]

\[
P_1 = \frac{1}{2\pi \cdot r_1 \cdot C_1}
\]

\[
P_2 = \frac{1}{2\pi \cdot r_2 \cdot C_2}
\]

[0005] 其中，r0为LDO的输出端的等效电阻，r1为所述压差放大器101输出端的等效电阻，c1为所述压差放大器101输出端的等效电容，r2为所述电压缓冲器102输出端的等效电阻，c2为所述电压缓冲器102输出端的等效电容。

[0006] 由于所述LDO的输出端的等效电阻r0会随着负载的变化而发生改变，当所述LDO的输出端接不同的负载时，其等效电阻r0的值会发生很大改变，从而导致系统的主极点（即输出极点PLOAD）随之发生很大的变化。如果不进行频率补偿，会造成负的或较低的相位
裕度，前者使反馈成为正反馈，使系统不稳定，后者会使系统的瞬态相位变差。

[0010] 现有的 LDO 的频率补偿原理为：利用所述输出电容 C_L 的等效串联电阻 R_{ESR} 产生一零点 Z_{ESR} 进行频率补偿，以抵消负载变化对主极点的影响，提高系统的相位裕度，改善所述 LDO 系统的稳定性，并且，为了使补偿效果较好，通常要求所述等效串联电阻 R_{ESR} 的值较大（一般为 1 Ω ~ 10 Ω），因而所述输出电容 C_L 通常为钽电容。所述零点 Z_{ESR} 的计算公式为：

\[Z_{ESR} = \frac{1}{2\pi \cdot R_{ESR} \cdot C_L} \]

[0012] 但是，上述现有的 LDO 存在如下问题：

[0013] （1）当所述等效串联电阻 R_{ESR} 的值较大时，所述零点 Z_{ESR} 会移动到过低的频率上，导致所述主极点 P_{LOAD} 的位置与所述零点 Z_{ESR} 的位置相距较远，使得所述零点 Z_{ESR} 不能对所述主极点 P_{LOAD} 进行补偿；

[0014] （2）当所述等效串联电阻 R_{ESR} 的值较大时，系统电流的变化将会引起系统输出端 V_{out} 的电压发生较大变化，从而使得系统的输出电压的过冲和下冲电压过大；

[0015] （3）所述等效串联电阻 R_{ESR} 的值还受到环境温度、电压、频率和材料的影响，所以系统的频率稳定性不能得到可靠的保障；

[0016] （4）电容价格较高，从而导致成本较高。

[0017] 因此，有必要对现有的 LDO 结构进行改进。

发明内容

[0018] 本发明的目的在于提供一种低压差线性稳压器结构，以提高 LDO 的稳定性。

[0019] 为解决上述问题，本发明提出一种低压差线性稳压器结构，包括：

[0020] 压差放大器，具有正相端、反相端及输出端；所述反相端作为所述低压差线性稳压器的输入端，其与一电压参考信号相连；

[0021] 电压缓冲器，其输入端与所述压差放大器的输出端相连；

[0022] PMOS 电压调整管，其栅极与所述电压缓冲器的输出端相连，其源极接高电平，其漏极作为所述低压差线性稳压器的输出端；

[0023] 负反馈网络，接在所述 PMOS 电压调整管的漏极与地之间，包括依次串联的第一电阻及第二电阻，所述第一电阻与所述 PMOS 电压调整管的漏极相连，所述第二电阻接地，所述第一电阻与所述第二电阻的连接点与所述压差放大器的正相端相连；

[0024] 输出电容，接在所述 PMOS 电压调整管的漏极与地之间；以及

[0025] 频率补偿结构，接在所述电压缓冲器的输出端与输入端之间，在所述压差放大器的输出端提供频率补偿零点，包括依次串联的补偿电阻及补偿电容；且所述补偿电阻的阻值与所述低压差线性稳压器的输出端的电流成反比。

[0026] 可选的，所述 PMOS 电压调整管工作在饱和区。

[0027] 可选的，所述输出电容为陶瓷电容。

[0028] 可选的，所述频率补偿结构为 PMOS 镜像晶体管，所述 PMOS 镜像晶体管工作在深线性区，其栅极与所述电压缓冲器的输出端相连，其源极接高电平，其漏极接所述电压缓冲器的输入端，所述补偿电阻为所述 PMOS 镜像晶体管的等效电阻，所述补偿电容为 MIM 电容或者 MOS 管形成的电容，且与所述输出电容成一定比例。
【0029】可选的，所述 PMOS 电压调整管包括多个并联的第一 PMOS 管，所述 PMOS 镜像晶体管包括多个并联的第二晶体管。

【0030】与现有技术相比，本发明提供的低压差线性稳压器结构，其频率补偿结构的补偿电阻与所述低压差线性稳压器的输出端的电流成反比，从而使得所述频率补偿结构产生的零点能自动跟踪所述低压差线性稳压器的输出极点变化，提高了所述低压差线性稳压器的稳定性。

附图说明
【0031】图 1 为现有的 LDO 结构示意图；
【0032】图 2 为本发明实施例提供的 LDO 结构示意图；
【0033】图 3 为现有的 LDO 的相位裕度仿真曲线；
【0034】图 4 为本发明实施例提供的 LDO 的相位裕度仿真曲线。

具体实施方式
【0035】以下结合附图和具体实施例对本发明提出的低压差线性稳压器结构作进一步详细说明。根据下面说明和权利要求书，本发明的优点和特征将更清楚。需说明的是，附图均采用非常简化的形式且均使用非精准的比率，仅用以方便、明晰地辅助说明本发明实施例的目的。
【0036】本发明的核心思想在于，提供一种低压差线性稳压器结构，其频率补偿结构的补偿电阻与所述低压差线性稳压器的输出端的电流成反比，从而使得所述频率补偿结构产生的零点能自动跟踪所述低压差线性稳压器的输出极点变化，提高了所述低压差线性稳压器的稳定性。
【0037】请参考图 2，图 2 为本发明实施例提供的低压差线性稳压器结构的示意图，如图 2 所示，本发明实施例提供的低压差线性稳压器结构，包括：
【0038】压差放大器 201，具有正相端 (+)、反相端 (−) 及输出端；所述反相端 (−) 作为所述低压差线性稳压器的输入端，其与一电压参考信号 VREF 相连；
【0039】电压缓冲器 202，其输入端与所述压差放大器 201 的输出端相连；
【0040】PMOS 电压调整管 203，其栅极与所述电压缓冲器 202 的输出端相连，其源极接高电平 VDD，其漏极作为所述低压差线性稳压器的输出端 VOUT；
【0041】负反馈网络 204，接在所述 PMOS 电压调整管 203 的漏极与地之间，包括依次串联的第一电阻 R1 及第二电阻 R2，所述第一电阻 R1 与所述 PMOS 电压调整管 203 的漏极相连，所述第二电阻 R2 接地，所述第一电阻 R1 与所述第二电阻 R2 的连接点与所述压差放大器 201 的正相端 (+) 相连；
【0042】输出电容 Cc，接在所述 PMOS 电压调整管 203 的漏极与地之间；以及
【0043】频率补偿结构，接在所述电压缓冲器 202 的输出端与输入端之间，在所述压差放大器 201 的输出端提供频率补偿零点，包括依次串联的补偿电阻及补偿电容 Cc；且所述补偿电阻的阻值与所述低压差线性稳压器的输出端的电流成反比。
【0044】其中，所述频率补偿结构为 PMOS 镜像晶体管，所述 PMOS 镜像晶体管工作在深线性区，其栅极与所述电压缓冲器的输出端相连，其源极接高电平，其漏极接所述电压缓冲器的
输入端，所述补偿电阻为所述 PMOS 镜像晶体管的等效电阻，所述补偿电容 C_c 为 MIM 电容或者 MOS 管形成的电容，且与所述输出电容 C_l 成一定比例。

[0045] 进一步地，所述 PMOS 电压调整管工作在饱和区。
[0046] 进一步地，所述输出电容 C_l 为陶瓷电容，这是因为本发明实施例提供的低压差线性稳压器结构已经很稳定了，不需要所述输出电容 C_l 产生很大的寄生电容，因而可以采用价格比较便宜的陶瓷电容，从而节约了成本。
[0047] 进一步地，所述 PMOS 电压调整管包括多个并联的第一 PMOS 管 M_c，所述 PMOS 镜像晶体管包括多个并联的第二晶体管 M_c。
[0048] 本发明实施例提供的低压差线性稳压器结构的输出极点及零点为：

$$P_{LOAD} = \frac{1}{2\pi \times r_c \times C_L}$$

[0049] $$Z_C = \frac{1}{2\pi \times r_c \times C_C}$$

[0050] $$r_c = r_c \times M_c$$

[0051] $$C_c = C_c / M_c$$

[0052] 其中，P_{LOAD} 为所述低压差线性稳压器结构的输出端（第三节点 3）的极点，r_c 为 LDO 的输出端的等效电阻，Z_C 为所述电压放大器 101 输出端（即第一节点 1）的零点，r_c 为所述 PMOS 镜像晶体管的等效电阻，M_c 为所述并联的第一 PMOS 管 M_c 的数量与所述并联的第二晶体管 M_c 的数量之比。

[0053] 由上述方程可知，产生零点 Z_C 的等效电阻 r_c 与 LDO 的输出端的等效电阻 r_0 成正比，因此，当输出端的等效电阻 r_0 变化时，等效电阻 r_c 也跟随变化，使得零点 Z_C 的变化与所述输出极点 P_{LOAD} 的变化保持一致，从而使所述输出零点 Z_C 能较好地对所述输出极点 P_{LOAD} 起补偿作用，使所述低压差线性稳压器结构保持较好的稳定性。

[0054] 请继续参考图 3 及图 4，其中，图 3 为现有的低压差线性稳压器的相位裕度仿真曲线，图 4 为本发明实施例提供的低压差线性稳压器结构的相位裕度仿真曲线，通常相位裕度大于 45° 时，系统的稳定性较好，其中，图 3 中所用的低压差线性稳压器的输出电容为钽电容，其等效串联电阻的阻值通常为 1 Ω ～ 10 Ω，图 4 中所用的低压差线性稳压器的输出电容为陶瓷电容，其等效串联电阻的阻值通常为 0.01 Ω ～ 0.5 Ω，由图 3 及图 4 可知，现有的低压差线性稳压器与本发明实施例提供的低压差线性稳压器的稳定性都比较好，但是本发明实施例提供的低压差线性稳压器只需使用具有较小的等效串联电阻的陶瓷电容即可达到与现有的使用具有较大的等效串联电阻的钽电容的低压差线性稳压器具有同样的稳定性。

[0055] 综上所述，本发明提供了一种低压差线性稳压器结构，其频率补偿结构的补偿电阻与所述低压差线性稳压器的输出端的电流成反比，从而使得所述频率补偿结构产生的零点能自动跟随所述低压差线性稳压器的输出极点变化，提高了所述低压差线性稳压器的稳定性。

[0056] 显然，本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样，倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内，则本发明也意图包含这些改动和变型在内。