A polymeric container assembly comprises first and second polymeric containers. The first polymeric container includes a first continuous body portion and a first rim having a first surface. The first rim encompasses and projects laterally outwardly from the first body portion. The first surface of the first rim includes a first cohesive. The second polymeric container includes a second continuous body portion and a second rim having a second surface. The second rim encompasses and projects laterally outwardly from the second body portion. The second surface of the second rim includes a second cohesive. The first container and the second container are adapted to be releasably attachable to each other by pressing the first and second rims together such that the first cohesive and the second cohesive contact and releasably attach to each other.
Fig. 5c
Fig. 12b

Fig. 12c

Fig. 12d
Fig. 13a

Fig. 13b

Fig. 13c
POLYMERIC CONTAINERS AND CONTAINER ASSEMBLIES WITH COHESIVE

FIELD OF INVENTION

[0001] The present invention relates generally to polymeric containers. More particularly, the present invention relates to releasably attaching container assemblies and containers therein with cohesive.

BACKGROUND OF THE INVENTION

[0002] The use of inexpensive polymeric packaging containers has become popular, especially for preparing and serving various food products. Polymeric containers have been used for heating the food product(s) disposed therein.

[0003] It would be desirable to have a polymeric container that would be easy for the customer to close and open. It would also be desirable to provide a container that is releasably attachable and prevents or inhibits material, such as liquid, from leaving the container. It would be desirable for a customer to function without necessarily having a lid, but if a lid is desired to form a container assembly, a customer would be able to form such an assembly easily.

SUMMARY OF THE INVENTION

[0004] According to one embodiment, a polymeric container assembly comprises first and second polymeric containers. The first polymeric container includes a first continuous body portion and a first rim having a first surface. The first rim encompasses and projects laterally outwardly from the first body portion. The first surface of the first rim includes a first cohesive. The second polymeric container includes a second continuous body portion and a second rim having a second surface. The second rim encompasses and projects laterally outwardly from the second body portion. The second surface of the second rim includes a second cohesive. The first container and the second container are adapted to be releasably attachable to each other by pressing the first and second rims together such that the first cohesive and the second cohesive contact and releasably attach to each other.

[0005] According to one method, a polymeric container assembly is formed by providing a first polymeric container that includes a first continuous body portion and a first rim having a first surface. The first rim encompasses and projects laterally outwardly from the first body portion. The first surface of the first rim includes a first cohesive. A second polymeric container is provided that includes a second continuous body portion and a second rim having a second surface. The second rim encompasses and projects laterally outwardly from the second body portion. The second surface of the second rim includes a second cohesive. One of the first container and the second container is flipped such that the first container and second container are generally aligned and the first rim and the second rim are adjacent to each other. The first and second rims are pressed together such that the first cohesive and the second cohesive contact and releasably attach to each other.

[0006] According to one embodiment, a polymeric container to be used in a polymeric container assembly comprises a continuous body portion and a rim having a first surface. The rim encompasses and projects laterally outwardly from the first body portion. The first surface of the rim includes a first cohesive. The rim is adapted to be releasably attachable by pressing the rim together with a rim having a second cohesive of a second container such that the first and second cohesive are in contact with each other.

[0007] According to another embodiment, a polymeric container assembly comprises a first polymeric container and a second polymeric container. The first polymeric container includes a first continuous body portion, a first handle and a second handle. The first and second handles encompass and project laterally outwardly from the first body portion. The first handle includes a first cohesive. The second handle includes a second cohesive. The second polymeric container includes a second continuous body portion, a third handle and a fourth handle. The third and fourth handles encompass and project laterally outwardly from the second body portion. The third handle includes a third cohesive, while the fourth handle includes a fourth cohesive. The first container and the second container are adapted to be releasably attachable to each other by pressing the first handle and the third handle together such that the first cohesive and the second cohesive contact and releasably attach to each other and pressing the second handle and the fourth handle together such that the second cohesive and the fourth cohesive contact and releasably attach to each other.

[0008] According to another method, a polymeric container assembly is formed using first and second polymeric containers. The first polymeric container is provided that includes a first continuous body portion, a first handle, and a second handle. The first and second handles encompass and project laterally outwardly from the first body portion. The first handle includes a first cohesive, while the second handle includes a second cohesive. The second polymeric container is provided that includes a second continuous body portion, a third handle and a fourth handle. The third and fourth handles encompass and project laterally outwardly from the second body portion. The third handle includes a third cohesive, while the fourth handle includes a fourth cohesive. One of the first container and the second container is flipped such that the first and second handles of the first container are generally aligned with respective third and fourth handles of the second container. The first and third handles are pressed together such that the first cohesive and the third cohesive contact and releasably attach to each other. The second and fourth handles are pressed together such that the second cohesive and the fourth cohesive contact and releasably attach to each other.

[0009] According to another embodiment, a polymeric container to be used in a container assembly comprises a continuous body portion, a first handle and a second handle. The first and second handles encompass and project laterally outwardly from the body portion. The first and second handles include a first cohesive. The first and second handles are adapted to be releasably attachable to another container by pressing the first and second handles with respective third and fourth handles having a second cohesive of a second container.

[0010] According to one embodiment, a hinged polymeric container comprises a polymeric base and a polymeric lid. The polymeric base includes a first continuous body portion and a first rim having a first surface. The first rim encompasses and projects laterally outwardly from the first body
portion. The first surface of the first rim includes a first cohesive. The polymeric lid includes a second continuous body portion and a second rim having a second surface. The second rim encompasses and projects laterally outwardly from the second body portion. The second surface of the second rim includes a second cohesive. The lid is hingedly attached to the base. The first rim and the second rim are adapted to be releasably attachable to each other by pressing the first and second rims together such that the first cohesive and the second cohesive contact and releasably attach to each other.

According to one method, a hinged polymeric container is formed by providing a polymeric base including a first continuous body portion and a first rim having a first surface. The first rim encompasses and projects laterally outwardly from the first body portion. The first surface of the first rim includes a first cohesive. A polymeric lid is provided that body portion and a second rim portion connected to rim having a second surface. The second rim encompasses and projects laterally outwardly from the second body portion. The second surface of the second rim includes a second cohesive. The lid is hingedly attached to the base. The first and second rims are pressed together such that the first cohesive and the second cohesive contact and releasably attach to each other.

According to a further embodiment, a polymeric container comprises a polymeric base and a polymeric lid. The polymeric base includes a first continuous body portion and a first rim. The first rim encompasses and projects laterally outwardly from the first body portion. The polymeric lid includes a second continuous body portion and a second rim. The second rim encompasses and projects laterally outwardly from the second body portion. Either the base or the lid forms a tab and the other of the base and the lid forms a slot. The tab has a surface that includes a second cohesive. The other of the base and the lid has a surface including a second cohesive. The base and lid are releasably attachable to each other by extending the tab into the slot such that the first cohesive and the second cohesive contact and releasably attach to each other.

According to yet another embodiment, a polymeric container assembly comprises a first polymeric container and a second polymeric container. The first polymeric container includes a first continuous body portion and a first flap integrally connected to and extending therefrom. The first continuous body portion has a first surface located opposite of the first flap. The first surface has a first cohesive. The first flap has a first inner surface including a second cohesive. The second polymeric container includes a second continuous body portion and a second flap integrally connected to and extending therefrom. The second body portion has a second surface located opposite of the second flap. The second surface has a third cohesive. The second flap has a second inner surface including a fourth cohesive. The first polymeric container and the second polymeric container are adapted to be releasably attachable to each other by contacting the first and fourth cohesives and contacting the second and third cohesives.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is an exploded view of a container assembly according to one embodiment of the invention.

FIG. 1b is a view of the container assembly of FIG. 1a in a closed position.

FIG. 1c is an enlarged partial view of the container assembly of FIG. 1b.

FIG. 2 in an enlarged partial view of a container assembly generally showing a rim region according to another embodiment in a closed position.

FIG. 3 is an enlarged partial view of a container assembly generally showing a rim region according to a further embodiment in a closed position.

FIG. 4 is an enlarged partial view of a container assembly generally showing a rim region according to a yet another embodiment in a closed position.

FIG. 5a is a side view of a container to be used in a container assembly according to one embodiment.

FIG. 5b is a top view of the container of FIG. 5a.

FIG. 5c is an enlarged cross-sectional view taken generally along lines 5c-5c in FIG. 5b.

FIG. 6a is a side view of a container assembly in a releasably lockable position using the container of FIG. 5a and a second identical container of FIG. 5a according to one embodiment of the present invention.

FIG. 6b is a top view of the container assembly of FIG. 6a.

FIG. 6c is an enlarged cross-sectional view taken generally along lines 6c-6c in FIG. 6b.

FIG. 7a is a top view of a container with a plurality of handles to be used in a container assembly according to one embodiment.

FIG. 7b is a side view of a container assembly in a releasably lockable position using the container of FIG. 7a and a second identical container of FIG. 7a according to one embodiment of the present invention.

FIG. 7c is an enlarged partial view of the container assembly generally showing a handle region of FIG. 7b.

FIG. 8 is an enlarged partial view of a container assembly generally showing a handle region according to another embodiment in a closed position.

FIG. 9 is an enlarged partial view of a container assembly generally showing a handle region according to a further embodiment in a closed position.

FIG. 10 is an enlarged partial view of a container assembly generally showing a handle region according to a yet another embodiment in a closed position.

FIG. 11a is a perspective view of a hinged container according to one embodiment of the invention in an open position.

FIG. 11b is a perspective view of the container of FIG. 11a in the closed position.

FIG. 11c is an enlarged partial view of the hinged container of FIG. 11b.

FIG. 12a is a perspective view of a hinged container according to another embodiment of the invention in an open position.
FIG. 12a-d are enlarged partial views of the hinged container of FIG. 12a generally directed to the rims in open and closed positions according to one embodiment.

FIG. 13a is a front view of a container with a flap to be used in a container assembly according to one embodiment.

FIG. 13b is a side view of the container of FIG. 13a.

FIG. 13c is a side view of a container assembly in a releasably lockable position using the container of FIG. 13a and a second identical container of FIG. 13a according to one embodiment of the present invention.

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed herein but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Referring to FIGS. 1a-c, a polymeric container assembly 100 according to one embodiment of the present invention is shown. The container assembly includes a container 10 and a second container 110. The containers 10, 110 may be substantially the same or, alternatively, identical to the container 10 to form a container assembly that is releasably lockable.

It is contemplated that other container assemblies may be formed besides those in FIGS. 1a-c. For example, container assemblies may be formed, but are not limited to, using plates, bowls, platters, tubs, single-serve and family-size containers, single-serve and family-size ovenware, and combinations thereof. One such combination is a bowl and a plate that forms a container assembly. The remainder of the application generally discusses container and container assemblies with respect to plates although it is recognized by one of ordinary skill in the art that other container assemblies, such as those discussed above, may be formed.

The height and shape of the container assemblies may vary from that shown without departing from the scope of the invention. For example, the container assembly of FIGS. 1a-c, as will be discussed, is depicted as being generally circular. It is contemplated that the container assemblies and containers used herein may be other shapes such as rectangular, square, hexagonal, octagonal, other polygonal shapes, or non-polygonal shapes such as ovals.

The container assemblies and containers of the present invention are typically used with respect to food, but may be used in other applications such as to store household goods, medical supplies, cosmetics or other items. Food container assemblies and containers may be used for serving, storing, preparing and/or re-heating the food.

Referring still to FIGS. 1a-c, the polymeric container 10 includes a continuous body portion 12 and a continuous rim 14 encompassing and projecting laterally outwardly from the body portion 12. The body portion 12 includes a bottom 16 and a continuous sidewall 18 encompassing and projecting upwardly and outwardly from the bottom 16. It is contemplated that the sidewall may project only upwardly from the bottom 16 or even project upwardly and inwardly from the bottom 16. It is also contemplated that the rim may not be continuous, although it is desirably continuous.

As shown in FIGS. 1a-c, the rim 14 includes a surface 14a (upper surface of container 10 in FIG. 1a). The rim 14 includes a cohesive 20. Cohesive is defined herein as a material that will adhere to itself. One example of a type of cohesive that may be used is a water-soluble cohesive. One specific example of a cohesive that may be used is Product No. C-2159P85, which is a cohesive available from Ellsworth Adhesives. This particular cohesive will stick to itself at temperatures of from about 20 to about 400° F.

The use of a cohesive negates the need for an external latching mechanism. This is shown, for example, in the container assembly 100 of FIGS. 1a-c. As will be discussed below in connection with FIGS. 5a-c, 6a-c, the use of a cohesive may, however, assist a mechanical locking feature created from the container itself.

It is contemplated that other cohesives may be used. For example, it is contemplated that a non-water soluble cohesive may be used. Non-water soluble cohesives, however, may have disadvantages such as (a) gaining FDA approval in applications involving food, and (b) possible reactions with the polymeric containers themselves.

The cohesives of the present invention generally have a pull strength of greater than about 0.5 lb. and, typically, have a pull strength of greater than 1.0 lb.

The cohesive 20 is shown in FIG. 1a as being continuously applied around and in the general shape of the rim surface 14a. It is contemplated that the cohesive may be applied to the entire surface of the rim rather than a portion shown in, for example, FIG. 1a. According to another embodiment, the cohesive is applied to substantial portions of the rim surface. The cohesive may also be applied intermittently around the rim such as in a pattern.

The cohesive 20 may be applied to the rim 14 by a variety of methods. For example, the cohesive may be sprayed onto the rim. The spraying may be performed in patterns to efficiently use the cohesive, while still providing a desired holding strength. According to another method, the cohesive may be printed onto the rim. Non-limiting printing techniques that may be used include ink screening, flexo printing, and electrostatic screen printing. Any application method may be used for applying the cohesive 20 to the rim 14 provided that it enables a sufficient amount of cohesive 20 to be applied to achieve the desired holding strength.

Referring still to FIGS. 1a-c, the polymeric container 110 includes a continuous body portion 112 and a continuous rim 114 encompassing and projecting laterally outwardly from the body portion 118. The body portion 112 includes a bottom 116 and a continuous sidewall 118 encompassing and projecting upwardly and outwardly from the bottom 116. It is contemplated that the sidewall may project only upwardly from the bottom 116 or even project upwardly and inwardly from the bottom 116. It is also contemplated that the rim may not be continuous, although it is desirably continuous.
The rim 114 includes a surface 114a (bottom-most surface of container 110 in FIG. 1a). The rim 114 includes a cohesive 120 (see FIG. 1c). The cohesive may be the same as described above in connection with cohesive 20. The cohesives 20, 120 are typically the same. It is contemplated that the cohesives may be different as long as the cohesives 20, 120 can releasably attach to each other.

The polymeric containers 10, 110 are adapted to be releasably attachable to each other by pressing the rims 14, 114 together such that the cohesives 20, 120 contact and releasably attach to each other.

As shown best in FIG. 1c, the rim 14 forms at least one recess 30 therein. Similarly, the rim 114 forms at least one recess 130 therein. The recess 30 includes the cohesive 20, while the recess 130 includes the cohesive 120. By using recesses 30, 130, the polymeric containers 10, 110 are releasably attached only after the rims 14, 114 are pressed together because the cohesives 20, 120 are initially located only below a remaining surface of the rims 14, 114. FIG. 1c shows the attached polymeric containers 10, 110 after the rims 14, 114 have been pressed together.

According to another embodiment, a container assembly may include rims in which each rim forms a plurality of recesses. For example, referring to FIG. 2, a rim 44 encompasses and projects laterally outwardly from a body portion (e.g., body portion 12). The rim 44 forms a plurality of recesses 46a,b in which each of the recesses contains a respective one of cohesives 50a, b. The rim 44 is pressed together with a rim 144, which includes a plurality of recesses 146a,b in which each of the recesses contains a respective one of cohesives 150a,b. The rims 44, 144 function in a similar manner as rims 14, 114 described above. It is contemplated that the number of recesses and the dimensions of the recesses may vary from that shown in FIG. 2.

According to a further embodiment, a container assembly may include rims in which each rim forms a plurality of ripples. For example, referring to FIG. 3, a rim 64 encompasses and projects laterally outwardly from a body portion (e.g., body portion 12). The rim 64 forms a plurality of ripples 66a-c projecting generally upwardly therefrom with respective spaces 68a,b being formed between adjacent ones of the plurality of ripples 66a-c. Each of the spaces 68a,b contains a respective cohesive 70a,b. The rim 64 is pressed together with a rim 164, which forms a plurality of ripples 166a-c projecting generally upwardly therefrom with respective spaces 168a,b being formed between adjacent ones of the plurality of ripples 166a-c. Each of the spaces 168a,b contains a respective cohesive 170a,b.

The containers that contain the rims 64, 164 are releasably attachable to each other by pressing the rims 64, 164 together such that the cohesives 70a,b contact and releasably attach to the respective cohesives 170a,b. It is contemplated that the number of ripples may vary from that shown in FIG. 3.

According to a further embodiment, a container assembly may include rims in which each rim has a surface that is generally planar. For example, referring to FIG. 4, a rim 74 encompasses and projects laterally outwardly from a body portion (e.g., body portion 12). A cohesive 80 contacts a surface 74a of the rim 74 (upper surface of rim 74 as viewed in FIG. 4). The rim 74 is pressed together with a rim 174, in which a cohesive 180 contacts a surface 174a of the rim 174 (lower surface of rim as viewed in FIG. 4).

According to another embodiment and referring specifically to FIGS. 5a-c, a polymeric container 210 includes a continuous body portion 212 and a continuous rim 214 encompassing and projecting laterally outwardly from the body portion 212. The body portion 212 includes a bottom 216 and a continuous sidewall 218 encompassing and projecting upwardly and outwardly from the bottom 216. It is contemplated that the sidewall may project only upwardly from the bottom 216 or even project upwardly and inwardly from the bottom 216. It is also contemplated that the rim may not be continuous, although it is desirably continuous.

The continuous rim 214 includes a plurality of ribs 220 that projects generally upwardly therefrom. The plurality of ribs 220 is spaced around the general periphery of the polymeric container 210 and assists in forming a releasably lockable container assembly. The orientation of the plurality of ribs 220 creates a pattern that is generally normal to the direction of the rim 214. More specifically, the orientation of the plurality of ribs 220 may create a pattern that is normal to the direction of the rim 14. In a radial configuration with a pattern that is normal to the direction of the rim, each of the plurality of ribs 220, if extended inwardly, would pass through the general center of the plate. It is contemplated that other features besides the plurality of ribs may project upwardly from the continuous rim.

The plurality of ribs 220, however, may be formed in different patterns than shown in FIG. 5b with respect to the rim 214 (e.g., diagonally). It may be desirable to form the plurality of ribs 220 in a decorative pattern for aesthetic reasons. Such a decorative feature may assist in "hiding" or disguising the releasable lockable feature in the container 210. The container 210 of FIG. 5b has exactly 60 ribs formed in the continuous rim 214. It is contemplated that the number of ribs may vary from that shown in FIG. 5b. For example, a container may have from about 3 to about 10 ribs. A container may have greater than about 20 or about 40 ribs, and may even have up to or greater than about 120 ribs. The number of ribs is generally from about 20 to about 60 ribs.

Turning to FIG. 5c, the plurality of ribs 220 is shown in greater detail. Specifically, a cross-sectional view of FIG. 5c shows two adjacent ribs that project upwardly from the continuous rim 214. FIG. 5c depicts a first rib 220a and a second rib 220b with a space 222 being formed therebetween. The first rib 220a of FIG. 5c comprises a generally flat surface 224 that bridges two sidewalls 226, 228. The first rib 220a is shown as being generally perpendicular to the plane of the remainder of the continuous rim 14. Specifically, the first rib 220a is shown as being generally perpendicular to plane CC' formed along the remainder of the rim 214 in FIG. 5c. More specifically, the rib may be perpendicular to the plane of the remainder of the rim. The sidewalls 226, 228 are spaced apart from each other and are shown as being generally perpendicular to the plane CC' of the remainder of the rim 214. The sidewalls 226, 228, however, do not necessarily have to be generally perpendicular or perpendicular to the remainder of the rim 214.
Similarly, second rib 220b of FIG. 5c comprises a generally flat surface 230 that bridges two sidewalks 232, 234. The second rib 220b is also shown as being generally perpendicular to the plane CC of the remainder of the rim 214. The sidewalks 232, 234 are spaced apart from each other and are shown as being generally perpendicular to the plane CC of the remainder of the rim 14. The sidewalks 232, 234, however, do not necessarily have to be generally perpendicular or perpendicular to the remainder of the rim 214.

To provide an improved locked container assembly, in one embodiment, the cohesive is added in the spaces formed between the ribs and added to a generally flat surface of the ribs themselves. For example, in FIG. 5c, cohesives 240a,b are added to the spaces formed between adjacent ribs. Additionally, as shown in FIG. 5c, cohesives 242a,b are added to respective surfaces 224, 230. The cohesives may be the same as described above in connection with cohesive 20.

Additionally, to further provide an improved locked container assembly, at least one of the rib sidewalks may have an undercut. Such an optional undercut formed in the rib sidewalk engages a similar undercut in a corresponding space formed between adjacent ribs of a second container when the container assembly is formed. For example, in FIG. 5c, optional undercuts 226a, 226b are formed in respective sidewalks 226, 228. It is contemplated that the shape and size of the plurality of ribs 220 may vary from that shown in FIGS. 5a-c.

A polymeric container assembly 300 according to one embodiment of the present invention is depicted in FIGS. 6a-c. The polymeric container assembly 300 includes the first container 210 and a second container 310. In one embodiment, the second container 310 is shaped substantially the same as the first container 210. Alternatively, the second container 310 may be identical to the first container 210.

The polymeric container assembly 300 of FIGS. 6a,b may be formed according to one method by providing the first container 210 and the second container 310. The second container 310 includes a continuous body portion 312 and a continuous rim 314 that encompasses and projects laterally outwardly from the body portion 312.

The second container 310 is flipped 180 degrees relative to the first container 210 such that the containers 210, 310 are generally aligned and the rims 214, 314 are adjacent to each other. This flipped position of container 310 relative to the container 210 is shown in FIG. 6a. To fit the ribs into respective spaces, the container 310 may have to be rotated slightly such that the ribs are offset (i.e., the ribs and spaces are aligned). It is desirable that the consumer can assemble the containers so as to form a container assembly of the present invention.

Referred to FIG. 6c, adjacent ribs 320a, 320b of the container 310 are fit into respective second spaces 222a, 222b of the container 210 and ribs 220a, 220b of the container 210 are fit into respective spaces 322a, 322b such that the container assembly 300 is releasably lockable. To fit the ribs into respective spaces, the container 310 may have to be rotated slightly such that the ribs are offset (i.e., the ribs and spaces are aligned). The cohesives 240a,b releasably attach with respective cohesives 250a,b, while cohesives 242a,b releasably attach with respective cohesives 252a,b. As discussed above, the cohesives 240, 250 are desirably the same, but may be different as long as they releasably attach to each other. FIG. 6c also depicts interference areas 324a, 324b formed between the first rib 220a and the space 322a created between ribs 320a, 320b of the container 310.

Referring to FIG. 7a, a polymeric container 410 includes a continuous body portion 412 and a plurality of handles 424, 426 encompassing and projecting laterally outwardly from the body portion 412. The body portion 412 includes a bottom 416 and a continuous sidewalk 418 encompassing and projecting upwardly and outwardly from the bottom 416. It is contemplated that the sidewall may project only upwardly from the bottom 416 or even project upwardly and inwardly from the bottom 416. Each of the plurality of handles 424, 426 includes a respective surface 424a, 426a (upper surface in FIG. 7a). The surfaces 424a, 426a form respective recesses that include a respective cohesive 420, 422 (see, e.g., recesses 430 of FIG. 7c). The cohesives 420, 422 may be the same as described above in connection with cohesive 20. The cohesives 420, 422 are typically the same. It is contemplated that the cohesives may be different as long as the cohesives can releasably attach to each other.

Referring to FIGS. 7b,c, a polymeric container assembly 400 includes the polymeric container 410 and a polymeric container 460. The polymeric container 460 includes a continuous body portion 462 and a plurality of handles 474, 476 encompassing and projecting laterally outwardly from the body portion 462. The body portion 462 includes a bottom 466 and a continuous sidewalk 468 encompassing and projecting upwardly and outwardly from the bottom 466. The orientation of the container 460 in FIG. 7b is opposite from that described above since the container 460 has been flipped 180 degrees. It is contemplated that the sidewall may project only upwardly from the bottom 466 or even project upwardly and inwardly from the bottom 466.

Each of the plurality of handles 474, 476 includes a respective surface that forms a recess. Each of the recesses contains a respective cohesive. For example, in FIG. 7c, the handle 476 includes a surface 476a (bottom surface of container 460 in FIG. 7c) that forms a recess 480. The recess 480 contains cohesive 472. The cohesives used in the plurality of handles 424, 426, 474, and 476 may be the same as described above in connection with cohesive 20.

The polymeric container 410 and the polymeric container 460 are adapted to be releasably attachable to each other by pressing the plurality of handles 424, 426, 474, and 476 together such that respective cohesives contact and releasably attach to each other (see FIG. 7c with cohesives 422 and 472).

As discussed above, each of the plurality of handles forms at least one recess therein. For example, in FIG. 7c, the handle 426 forms a recess 430 that includes the cohesive 422 and the handle 476 forms a recess 480 that includes the cohesive 472. By using recesses 430, 480, the polymeric containers 410, 460 are releasably attached only after the handles are pressed together because the cohesives 422, 472 are initially located only below the remaining surface of the handles 426, 476. FIG. 7c shows the polymeric containers 410, 460 after the handles have been...
pressed together. The other handles 424, 474 function in the same manner as the handles 426, 476 shown in FIG. 7c.

According to another embodiment, a container assembly may include a plurality of handles that forms a plurality of recesses. For example, referring to FIG. 8, a container assembly 510 includes a plurality of handles (handles 514, 524 are shown in FIG. 8). The handle 514 encompasses and projects laterally outwardly from a body portion (e.g., body portion 12). The handle 514 forms a plurality of recesses 516a,b in which each of the recesses contains a respective one of the cohesive 520a,b. The handle 514 is pressed together with the handle 524, which includes a plurality of recesses 526a,b in which each of the recesses contains a respective one of the cohesive 530a,b. The handles 514, 524 function in a similar manner as handles 426, 476 described above. It is contemplated that the number of recesses may vary from that shown in FIG. 8.

According to a further embodiment, a container assembly may include a plurality of handles in which each handle forms a plurality of ripples. For example, referring to FIG. 9, a container assembly 540 includes a plurality of handles (handles 544, 554 are shown in FIG. 9). The handle 544 encompasses and projects laterally outwardly from a body portion (e.g., body portion 12). The handle 544 forms a plurality of ripples 546a-c projecting generally upward therefrom with respective spaces 548a,b being formed between adjacent ones of the plurality of ripples 546a-c. Each of the spaces 548a,b contains a respective cohesive 550a,b. The handle 544 is pressed together with the handle 554 of a second container. The handle 554 forms a plurality of ripples 556a-c projecting generally upward therefrom with respective spaces 558a,b being formed between adjacent ones of the plurality of ripples 556a-c. Each of the spaces 558a,b contains a respective cohesive 560a,b.

The containers that contain the handles are adapted to be releasably attachable to each other by pressing the handles together such that the cohesive 550a,b contact and releasably attach to respective cohesive 560a,b. It is contemplated that the number of ripples may vary from that shown in FIG. 9.

According to a further embodiment, a container assembly may include a plurality of handles with surfaces that are generally planar. For example, referring to FIG. 10, a container assembly 570 includes a plurality of handles (handles 574, 584 are shown in FIG. 10). The handle 574 encompasses and projects laterally outwardly from a body portion (e.g., body portion 12). A cohesive 580 contacts a surface 574a of the handle 574. The handle 574 is pressed together with the handle 584 of another container 580. The handle 584 includes a surface 584a that includes a cohesive 590. The cohesive 580, 590 contact each other and releasably attach to form the container assembly 570.

According to another embodiment shown in FIGS. 11a,b, a hinged polymeric container 600 comprises a polymeric base 610 and a polymeric lid 630 in which the lid 630 is hingedly attached to the polymeric base 610 via hinge 650. The polymeric base 610 includes a continuous body portion 612 and a continuous rim 614 having a surface 614a. The rim 614 encompasses and projects laterally outwardly from the body portion 612. The surface 614a of the rim 614 includes a cohesive 640.

The polymeric lid 630 includes a continuous body portion 632 and a continuous rim 634 having a surface 634a. The rim 634 encompasses and projects laterally outwardly from the body portion 632. The surface 634a of the rim 634 includes a cohesive 640. The cohesive 620, 640 may be the same as described above in connection with cohesive 20. The cohesive 620, 640 are typically the same, but it is contemplated that the cohesives may be different as long as the cohesive can releasably attach to each other. The rims 614, 634 are adapted to be releasably attachable to each other by pressing the rims 614, 634 together such that the cohesives 620, 640 contact and releasably attach to each other.

According to one embodiment, the rims 614, 634 form a respective recess therein in which each of the recesses contains a cohesive. Specifically, as shown in FIG. 11c, rims 614, 634 form respective recesses 628, 648 therein. The recesses 628, 648 include respective cohesives 620, 640. By using the recesses 628, 648, the hinged polymeric container is placed in a closed position only after the rims 614, 634 are pressed together because the cohesives 620, 640 are initially located below the remaining surfaces of the rims 614, 634. FIG. 11c shows the rims 614, 634 after they have been pressed together.

The height and shape of the hinged polymeric container may vary from that shown in FIGS. 11a,b without departing from the scope of the invention. For example, the hinged polymeric container of FIGS. 11a,b is depicted as being generally square. It is contemplated that the hinged polymeric container may be other shapes such as circular, rectangular, hexagonal, octagonal, other polygonal shapes, or non-polygonal shapes such as ovals.

The hinged polymeric container may contain the cohesives on rims that are shaped differently than depicted in FIGS. 11a-c. For example, in one embodiment, the hinged polymeric container includes rims that form a plurality of recesses that contain cohesives such as rims 44, 144 of FIG. 2. According to one embodiment, the hinged polymeric container includes rims that form a plurality of ripples that contains cohesives such as rims 64, 164 in FIG. 3. According to a further embodiment, the hinged polymeric container includes rims that has generally planar surfaces with cohesives such as rims 74, 174 in FIG. 4.

According to another embodiment shown in FIGS. 12a-d, a hinged polymeric container 700 comprises a polymeric base 710 and a polymeric lid 730 in which the lid 730 is hingedly attached to the polymeric base 710 via hinge 750. The polymeric base 710 includes a continuous body portion 712 and a continuous rim 714. The rim 714 encompasses and projects laterally outwardly from the body portion 712. The polymeric lid 730 includes a continuous body portion 732 and a continuous rim 734. The rim 734 encompasses and projects laterally outwardly from the body portion 732.

According to one embodiment, the polymeric lid 730 forms a tab 760 and the polymeric base 710 forms a slot or opening 770 (see FIG. 12b). The tab 760 has a surface 760a that includes a cohesive 762. The base 710 includes the rim 714 with a surface 714a that includes a cohesive 772. The base 710 and lid 730 are releasably attachable to each other by extending the tab 760 into the slot 770 such that the cohesives 762, 772 contact and releasably attach to each other. As shown in FIGS. 12b-d, the tab 760 extends through the slot 770 and is adapted to bend (in the counterclockwise
direction of arrow A) such that the cohesives 762, 772 contact and releasably attach to each other.

[0087] The cohesives 762, 772 may be the same as described above in connection with cohesive 20. The cohesives 762, 772 are typically the same, but it is contemplated that the cohesives may be different as long as the cohesives can releasably attach to each other.

[0088] It is contemplated that the tab 760 may extend through the slot 770 and be pushed upwardly in a clockwise direction (the direction opposite of arrow A in FIG. 12c) such that the cohesives contact and releasably attach to each other. In such an embodiment, a cohesive would be located on surface 760b as opposed to surface 760a (see FIG. 12b). The location of the cohesive on the polymeric base would be located to the left of slot 770 as viewed in FIG. 12b. In such an embodiment, the slot or opening may be relocated further to the right as viewed in FIG. 12b to provide a greater surface area for the cohesives to attach to each other.

[0089] The height and shape of the hinged polymeric container may vary from that shown in FIGS. 12a-d without departing from the scope of the invention. For example, the hinged polymeric container of FIGS. 12a-d is depicted as being generally square. It is contemplated that the hinged polymeric container may be other shapes such as circular, rectangular, hexagonal, octagonal, other polygonal shapes, or non-polygonal shapes such as ovals. It is contemplated that the cohesive may be included on the rims as shown in FIGS. 11a-c.

[0090] According to another embodiment shown in FIG. 13c, a polymeric container assembly 800 comprises a polymeric container 810 (FIGS. 13a-c) and a polymeric container 850 (FIG. 13c). The polymeric container 810 includes a continuous body portion 812 and a flap 814 integrally connected to and extending therefrom. The body portion 812 has a surface 812a located opposite of the flap 814. The surface 812a includes a cohesive 820. The flap 814 has a surface 814a that includes a cohesive 830.

[0091] The polymeric container 850 (FIG. 13c) includes a continuous body portion 852 and a flap 854 integrally connected to and extending therefrom. The body portion 852 has a surface 852a located opposite of the flap 854. The surface 852a includes a cohesive 870. The flap 854 has a surface 854a that includes a cohesive 880. The containers 810, 850 are adapted to be releasably attachable to each other by contacting the cohesives 820, 880 and contacting the cohesives 830, 870 to each other.

[0092] The cohesives 820, 830, 870, and 880 may be the same as described above in connection with cohesive 20. The cohesives 820, 830, 870, and 880 are typically the same, but it is contemplated that the cohesives may be different as long as the cohesives can releasably attach to each other.

[0093] It is contemplated that the container assembly may include a plurality of flaps. For example, each of the polymeric containers forming the container assembly may include two flaps with cohesives. Each of these flaps is adapted to be releasably attachable to the other container by contacting the cohesives to each other.

[0094] The container and container assemblies of the present invention (e.g., the containers discussed above in FIGS. 1-13) are formed from polymeric materials. The polymeric containers and container assemblies may be formed from polyolefins. The polymeric containers and container assemblies are typically formed from oriented polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene and combinations thereof. The container and container assemblies may be made from a mineral-filled polymeric material such as, for example, talc or calcium carbonate-filled polyolefin. It is contemplated that one of ordinary skill in the art will recognize that other polymers or combination of polymers may be used to form the containers and container assemblies.

[0095] The containers and container assemblies may be formed by a polymeric foam. For example, the containers and container assemblies may be formed from a polystyrene foam. One example of a polystyrene foam is a high-impact polystyrene (HIPS). It is contemplated that one of ordinary skill in the art will recognize that other polymeric foams or combination of polymeric foams may be used to form the containers and container assemblies.

[0096] The containers and container assemblies of the present invention are typically disposable, but it is contemplated that they may be reused at a future time. The containers used in forming the container assemblies (e.g., container 10) are shown as including one compartment. It is contemplated that the containers may be shown of multiple compartments. Such containers are desirable for placing items (e.g., food items) in different compartments to prevent or inhibit commingling of items. For example, undesirable mixing of food items can corrupt the flavor and the consistency of the food items.

[0097] The container assemblies and containers of the present invention are typically used with respect to food, but may be used in other applications such as to store household goods, medical supplies, cosmetics or other items. Food container assemblies and containers may be used for serving, storing, preparing and/or re-heating the food.

[0098] A method of using such container assemblies includes placing the food and locking the containers to form a container assembly with food therein. The container assembly is then placed in a heating apparatus and heated. Typical heating apparatuses include microwaves and conventional ovens. The container assemblies may contain solid food products. The container assemblies may be used for storage in the refrigerator and/or the freezer.

[0099] The containers to be used in forming the container assemblies of the present invention may be formed using conventional thermoforming (e.g., by pressure, vacuum or the combination thereof), injection-molding processes, or rotational molding. According to one method of thermoforming, pellets of a polymeric resin and additives, if any, are added into an extruder. The pellets of the polymeric resin and additives, if any, are melted to form a blend. The blend is extruded through a die to form an extruded sheet. The extruded sheet is thermoformed to a desired shape of a container to be used in forming the container assembly.

[0100] The thickness of the container to be used in forming the container assemblies generally ranges from about 0.002 to about 0.15 inch, but is typically from about 0.005 to about 0.04 inch. The container assemblies may be opaque or a variety of colors or color combinations. The container
assemblies typically have at least one transparent container if it is desired for the customer to ascertain the nature of the accommodated product and the condition thereof without having to open the container assembly.

[0101] While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

What is claimed is:

1. A polymeric container assembly comprising:
 a first polymeric container including a first continuous body portion and a first rim having a first surface, the first rim encompassing and projecting laterally outwardly from the first body portion, the first surface of the first rim including a first cohesive; and
 a second polymeric container including a second continuous body portion and a second rim having a second surface, the second rim encompassing and projecting laterally outwardly from the second body portion, the second surface of the second rim including a second cohesive,
 wherein the first container and the second container are adapted to be releasably attachable to each other by pressing the first and second rims together such that the first cohesive and the second cohesive contact and releasably attach to each other.

2. The container assembly of claim 1 wherein at least one of the first and second containers comprises polymeric foam.

3. The container assembly of claim 2 wherein at least one of the first and second containers comprises high-impact polystyrene.

4. The container assembly of claim 1 wherein at least one of the first and second containers comprises orientated polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene or combinations thereof.

5. The container assembly of claim 4 wherein at least one of the first and second containers comprises mineral-filled polypropylene.

6. The container assembly of claim 1 wherein the first and second cohesives are the same.

7. The container assembly of claim 1 wherein the first and second cohesives are water-based cohesives.

8. The container assembly of claim 1 wherein the first rim forms at least one recess therein, the at least one recess including the first cohesive and wherein the second rim forms at least one recess therein, the at least one recess including the second cohesive.

9. The container assembly of claim 8 wherein the first rim forms a plurality of recesses and wherein the second rim forms a plurality of recesses.

10. The container assembly of claim 1 wherein the first and second containers are bowls.

11. The container assembly of claim 1 wherein the first and second containers are plates.

12. The container assembly of claim 1 wherein the first container is a bowl and the second container is a plate.

13. The container assembly of claim 1 wherein the first container is shaped substantially the same as the second container.

14. The container assembly of claim 13 wherein the first container is identical to the second container.

15. The container assembly of claim 1 wherein the first rim forms a first plurality of ripples projecting generally upwardly therefrom with a respective first space being formed between adjacent ones of the first plurality of ripples, the respective first space containing the first cohesive, wherein the second rim forms a plurality of ripples projecting generally upwardly therefrom with a respective second space being formed between adjacent ones of the second plurality of ripples, the respective second space containing the second cohesive, and wherein the first container and the second container are adapted to be releasably attachable to each other by pressing the first and second rims together such that the first cohesive and the second cohesive contact and releasably attach to each other.

16. The container assembly of claim 1 wherein the first rim has a first plurality of upwardly-projecting features with first spaces being formed between adjacent upwardly-projecting features, the first spaces containing the first cohesive, wherein the second rim has a second plurality of upwardly-projecting features with second spaces being formed between adjacent upwardly-projecting features, the second spaces containing the second cohesive, the second rim and the first rim being shaped substantially the same, and wherein the first container and the second container are adapted to be releasably attachable to each other by pressing the first plurality of upwardly-projecting features and the second plurality of upwardly-projecting features together such that the first cohesive and the second cohesive contact and releasably attach to each other.

17. The container assembly of claim 1 wherein the first rim has a first plurality of ribs projecting generally upwardly therefrom such that first spaces are formed between adjacent ribs, the first spaces containing the first cohesive, wherein the second rim has a second plurality of ribs projecting generally upwardly therefrom such that second spaces are formed between adjacent ribs, the second spaces containing the second cohesive, and wherein the first container and the second container are adapted to be releasably attachable to each other by pressing the first plurality of upwardly-projecting ribs and the second plurality of upwardly-projecting ribs together such that the first cohesive and the second cohesive contact and releasably attach to each other.

18. The container assembly of claim 17 wherein each of the first plurality of upwardly-projecting ribs and the second plurality of upwardly-projecting ribs includes at least about 3 ribs.

19. The container assembly of claim 17 wherein each of the first plurality of upwardly-projecting ribs and the second plurality of upwardly-projecting ribs includes at least about 40 ribs.

20. A method of forming a polymeric container assembly, the method of comprising the acts of:

providing a first polymeric container that includes a first continuous body portion and a first rim having a first surface, the first rim encompassing and projecting laterally outwardly from the first body portion, the first surface of the first rim including a first cohesive;

providing a second polymeric container that includes a second continuous body portion and a second rim
having a second surface, the second rim encompassing and projecting laterally outwardly from the second body portion, the second surface of the second rim including a second cohesive;

flipping one of the first container and the second container such that the first container and second container are generally aligned and the first rim and the second rim are adjacent to each other; and

pressing the first and second rims together such that the first cohesive and the second cohesive contact and releasably attach to each other.

21. The method of claim 20 further including placing a food article on at least one of the first container and the second container before pressing the first and second rims together.

22. The method of claim 20 wherein at least one of the first and second containers comprises polymeric foam.

23. The method of claim 22 wherein at least one of the first and second containers comprises high-impact polystyrene.

24. The method of claim 20 wherein at least one of the first and second containers comprises oriented polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene or combinations thereof.

25. The method of claim 24 wherein at least one of the first and second containers comprises mineral-filled polypropylene.

26. The method of claim 20 wherein the first and second cohesives are the same.

27. The method of claim 20 wherein the first and second cohesives are water-based cohesives.

28. The method of claim 20 wherein the first rim forms at least one recess therein, the at least one recess including the first cohesive and wherein the second rim forms at least one recess therein, the at least one recess including the second cohesive.

29. The method of claim 20 wherein the first rim has a first plurality of upwardly-projecting features with first spaces being formed between adjacent upwardly-projecting features, the first spaces containing the first cohesive, wherein the second rim has a second plurality of upwardly-projecting features with second spaces being formed between adjacent upwardly-projecting features, the second spaces containing the second cohesive, the second rim and the first rim being shaped substantially the same, and wherein the first container and the second container are adapted to be releasably attachable to each other by pressing the first plurality of upwardly-projecting features and the second plurality of upwardly-projecting features together such that the first cohesive and the second cohesive contact and releasably attach to each other.

30. A polymeric container assembly comprising:

a first polymeric container including a first continuous body portion, a first handle and a second handle, the first and second handles encompassing and projecting laterally outwardly from the first body portion, the first handle including a first cohesive, the second handle including a second cohesive; and

a second polymeric container including a second continuous body portion, a third handle and a fourth handle, the third and fourth handles encompassing and projecting laterally outwardly from the second body portion, the third handle including a third cohesive, the fourth handle including a fourth cohesive,

wherein the first container and the second container are adapted to be releasably attachable to each other by pressing the first handle and the third handle together such that the first cohesive and the third cohesive contact and releasably attach to each other and pressing the second handle and the fourth handle together such that the second cohesive and the fourth cohesive contact and releasably attach to each other.

31. The container assembly of claim 30 wherein at least one of the first and second containers comprises a polymeric foam.

32. The container assembly of claim 31 wherein at least one of the first and second containers comprises high-impact polystyrene.

33. The container assembly of claim 30 wherein at least one of the first and second containers comprises orientated polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene or combinations thereof.

34. The container assembly of claim 33 wherein at least one of the first and second containers comprises mineral-filled polypropylene.

35. The container assembly of claim 30 wherein the first, second, third and fourth cohesives are the same.

36. The container assembly of claim 30 wherein the first, second, third and fourth cohesives are water-based cohesives.

37. The container assembly of claim 30 wherein the first container has exactly a first handle and a second handle, the first and second handles being located on opposite sides from each other and wherein the second container has exactly a third handle and a fourth handle, the third and fourth handles being located on opposite sides from each other.

38. The container assembly of claim 30 wherein the first handle forms a first recess therein and the second handle forms a second recess therein, the first and second recesses including respective first and second cohesives, and wherein the third handle forms a third recess therein and the fourth handle forms a fourth recess therein, the third and fourth recesses including respective third and fourth cohesives.

39. The container assembly of claim 30 wherein the first handle forms a plurality of first recesses therein and the second handle forms a plurality of second recesses therein, the first and second plurality of recesses including respective first and second cohesives, and wherein the third handle forms a plurality of third recesses therein and the fourth handle forms a plurality of fourth recesses therein, the third and fourth plurality of recesses including respective third and fourth cohesives.

40. The container assembly of claim 30 wherein the first container and the second container are bowls.

41. The container assembly of claim 30 wherein the first and second containers are plates.

42. The container assembly of claim 30 wherein the first container is a bowl and the second container is a plate.

43. The container assembly of claim 30 wherein the first container is shaped substantially the same as the second container.

44. The container assembly of claim 43 wherein the first container is identical to the second container.
45. A method of forming a polymeric container assembly, the method comprising the acts of:

providing a first polymeric container including a first continuous body portion, a first handle, and a second handle, the first and second handles encompassing and projecting laterally outwardly from the first body portion, the first handle including a first cohesive, the second handle including a second cohesive;

providing a second polymeric container including a second continuous body portion, a third handle and a fourth handle, the third and fourth handles encompassing and projecting laterally outwardly from the second body portion, the third handle including a third cohesive, the fourth handle including a fourth cohesive;

flipping one of the first container and the second container such that the first and second handles of the first container are generally aligned with respective third and fourth handles of the second container;

pressing the first and third handles together such that the first cohesive and the third cohesive contact and releasably attach to each other, and

pressing the second and fourth handles together such that the second cohesive and the fourth cohesive contact and releasably attach to each other.

46. The method of claim 45 further including placing a food article on at least one of the first container and the second container before pressing the first and third handles together and before pressing the second and fourth handles together.

47. The method of claim 45 wherein at least one of the first and second containers comprises a polymeric foam.

48. The method of claim 47 wherein at least one of the first and second containers comprises high-impact polystyrene.

49. The method of claim 45 wherein at least one of the first and second containers comprises oriented polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene or combinations thereof.

50. The method of claim 49 wherein at least one of the first and second containers comprises mineral-filled polypropylene.

51. The method of claim 45 wherein the first, second, third and fourth cohesives are the same.

52. The method of claim 45 wherein the first, second, third and fourth cohesives are water-based cohesives.

53. The method of claim 45 wherein the first container has exactly a first handle and a second handle, the first and second handles being located on opposite sides from each other and wherein the second container has exactly a third handle and a fourth handle, the third and fourth handles being located on opposite sides from each other.

54. The method of claim 45 wherein the first handle forms a first recess therein and the second handle forms a second recess therein, the first and second recesses including respective first and second cohesives, and wherein the third handle forms a third recess therein and the fourth handle forms a fourth recess therein, the third and fourth recesses including respective third and fourth cohesives.

55. A hinged polymeric container comprising:

a polymeric base including a first continuous body portion and a first rim having a first surface, the first rim encompassing and projecting laterally outwardly from the first body portion, the first surface of the first rim including a first cohesive; and

a polymeric lid including a second continuous body portion and a second rim having a second surface, the second rim encompassing and projecting laterally outwardly from the second body portion, the second surface of the second rim including a second cohesive, the lid being hingedly attached to the base,

wherein the first rim and the second rim are adapted to be releasably attachable to each other by pressing the first and second rims together such that the first cohesive and the second cohesive contact and releasably attach to each other.

56. The container of claim 55 wherein at least one of the base and the lid comprises polymeric foam.

57. The container of claim 56 wherein at least one of the base and the lid comprises high-impact polystyrene.

58. The container of claim 55 wherein at least one of the base and the lid comprises oriented polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene or combinations thereof.

59. The container of claim 58 wherein the at least one of the base and the lid comprises mineral-filled polypropylene.

60. The container of claim 55 wherein the first and second cohesives are the same.

61. The container of claim 55 wherein the first and second cohesives are water-based cohesives.

62. The container of claim 55 wherein the first rim forms at least one recess therein, the at least one recess including a first cohesive and wherein the second rim forms at least one recess therein, the at least one recess including a second cohesive.

63. The container of claim 62 wherein the first rim forms a plurality of recesses and wherein the second rim forms a plurality of recesses.

64. The container of claim 55 wherein the first rim forms a plurality of ripples projecting generally upward therefrom with a respective first space being formed between adjacent ones of the first plurality of ripples, the respective first space containing the first cohesive, wherein the second rim forms a plurality of ripples projecting generally upward therefrom with a respective second space being formed between adjacent ones of the second plurality of ripples, the respective second space containing the second cohesive, and wherein the base and the lid are adapted to be releasably attachable to each other by pressing the first rim and the second rim together such that the first cohesive and the second cohesive contact and releasably attach to each other.

65. A method of using a hinged polymeric container, the method comprising the acts of:

providing a polymeric base including a first continuous body portion and a first rim having a first surface, the first rim encompassing and projecting laterally outwardly from the first body portion, the first surface of the first rim including a first cohesive;

providing a polymeric lid including a second continuous body portion and a second rim having a second surface, the second rim encompassing and projecting laterally outwardly from the second body portion, the second surface of the second rim including a second cohesive,
The method of claim 65 wherein the first and second cohesives are water-based cohesives.

85. A polymeric container comprising:

a first polymeric base including a first continuous body portion and a first rim, the first rim encompassing and projecting laterally outwardly from the first body portion; and
a polymeric lid including a second continuous body portion and a second rim, the second rim encompassing and projecting laterally outwardly from the second body portion,

wherein either the base or the lid forms a tab and the other of the base and the lid forms a slot, the tab having a surface that includes a second cohesive, the other of the base and the lid having a surface including a second cohesive, the base and lid being releasably attachable to each other by extending the tab into the slot such that the first cohesive and the second cohesive contact and releasably attach to each other.

75. The container of claim 74 wherein the lid forms a tab and the base forms a slot.

76. The container of claim 75 wherein the first rim of the base forms a slot.

77. The container of claim 74 wherein the tab is adapted to bend such that the first cohesive and the second cohesive contact and releasably attach to each other.

78. The container of claim 74 wherein the tab is adapted to bend in a clockwise direction such the first cohesive and the second cohesive contact and releasably attach to each other.

79. The container of claim 74 wherein the tab is adapted to bend in a counterclockwise direction such the first cohesive and the second cohesive contact and releasably attach to each other.

80. The container of claim 74 wherein at least one of the base and the lid comprises high-impact polystyrene.

81. The container of claim 74 wherein at least one of the base and the lid comprises oriented polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene or combinations thereof.

82. The container of claim 81 wherein at least one of the base and the lid comprises mineral-filled polypropylene.

83. The container of claim 74 wherein the first and second cohesives are the same.

84. The container of claim 74 wherein the first and second cohesives are water-based cohesives.

a first polymeric container including a first continuous body portion and a first flap integrally connected to and extending therefrom, the first continuous body portion having a first surface located opposite of the first flap, the first surface having a first cohesive, the first flap having a first inner surface including a second cohesive;

a second polymeric container including a second continuous body portion and a second flap integrally connected to and extending therefrom, the second body portion having a second surface located opposite of the second flap, the second surface having a third cohesive, the second flap having a second inner surface including a fourth cohesive;

wherein the first polymeric container and the second polymeric container are adapted to be releasably attachable to each other by contacting the first and fourth cohesives and contacting the second and third cohesives.

86. The container assembly of claim 85 wherein at least one of the first and second containers comprises polymeric foam.

87. The container assembly of claim 86 wherein at least one of the first and second containers comprises high-impact polystyrene.

88. The container assembly of claim 85 wherein at least one of the first and second containers comprises oriented polystyrene (OPS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene or combinations thereof.

89. The container assembly of claim 88 wherein at least one of the first and second containers comprises mineral-filled polypropylene.

90. The container assembly of claim 85 wherein the first, second, third and fourth cohesives are the same.

91. The container assembly of claim 85 wherein the first, second, third and fourth cohesives are water-based cohesives.

92. The container assembly of claim 85 wherein the first container is shaped substantially the same as the second container.

93. The container assembly of claim 92 wherein the first container is identical to the second container.