
US010268563B2

(12) United States Patent
Gadi et al .

(10) Patent No . : US 10 , 268 , 563 B2
(45) Date of Patent : * Apr . 23 , 2019

(54) MONITORING OF AN AUTOMATED
END - TO - END CRASH ANALYSIS SYSTEM

(71) Applicant : VMware , Inc . , Palo Alto , CA (US)

(58) Field of Classification Search
CPC G06F 11 / 0751 ; G06F 11 / 0778 ; G06F

11 / 079 ; G06F 11 / 302 ; GO6F 11 / 321 ;
GO6F 11 / 3476 ; G06F 11 / 0769 ; G06F

11 / 0793
See application file for complete search history .

(56) References Cited
(72) Inventors : Sowgandh Sunil Gadi , San Jose , CA

(US) ; Naveen Prakash Rao ,
Sunnyvale , CA (US)

U . S . PATENT DOCUMENTS (73) Assignee : VMware , Inc . , Palo Alto , CA (US)
5 , 111 , 384 A *

(*) Notice :
6 , 951 , 011 B1
7 , 278 , 058 B1 *

Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 99 days .
This patent is subject to a terminal dis
claimer .

5 / 1992 Aslanian G06F 11 / 2257
706 / 45

9 / 2005 Sexton
10 / 2007 Narisi GO6F 11 / 3636

714 / 38 . 11

(Continued)

FOREIGN PATENT DOCUMENTS (21) Appl . No . : 15 / 415 , 178
(22) Filed : Jan . 25 , 2017

CN 103106132 B 3 / 2016

OTHER PUBLICATIONS

(57)

(65) Prior Publication Data
US 2017 / 0371734 A1 Dec . 28 , 2017

Related U . S . Application Data
(60) Provisional application No . 62 / 353 , 790 , filed on Jun .

23 , 2016 .

(51) Int . CI .
GOOF 11 / 07 (2006 . 01)
G06F 11 / 30 (2006 . 01)
G06F 11 / 32 (2006 . 01)
G06F 11 / 34 (2006 . 01)

(52) U . S . CI .
CPC GO6F 11 / 3476 (2013 . 01) ; G06F 11 / 079

(2013 . 01) ; G06F 11 / 0751 (2013 . 01) ; G06F
11 / 0769 (2013 . 01) ; G06F 11 / 0778 (2013 . 01) ;

G06F 11 / 0793 (2013 . 01) ; G06F 11 / 302
(2013 . 01) ; G06F 11 / 321 (2013 . 01)

Seo , H . , & Kim , S . (Sep . 2012) . Predicting recurring crash stacks .
In Automated Software Engineering (ASE) , 2012 Proceedings of
the 27th IEEE / ACM International Conference on (pp . 180 - 189) .
IEEE . *

(Continued)
Primary Examiner — Paul Contino

ABSTRACT
A computer - implemented method for monitoring a crash
analysis system is disclosed . Log messages are accessed
pertaining to the operation of a crash analysis system for
analyzing a core dump . The log messages are analyzed , at a
processor , in order to generate operation results data . A
graphic user interface for display on a computer is gener
ated . The graphic user interface includes a graphical repre
sentation of the operation results data .

16 Claims , 38 Drawing Sheets

START

500

Receive Core Dump
502

Analyze Core Dump
504

Identify Culprit Module
506

Generate Signature
Back Trace

508

Generate GUI
510

END

US 10 , 268 , 563 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

7 , 490 , 268 B2 *

8 , 245 , 081 B2
8 , 806 , 037 B1
9 , 021 , 312 B1
9 , 529 , 662 B1
9 , 626 , 277 B2 *

10 , 042 , 695 B1
2002 / 0112200 AL
2003 / 0070120 A1 *

2012 / 0117491 A1 * 5 / 2012 Arnold . . G06F 8 / 41
715 / 760

2013 / 0061096 A1 3 / 2013 McCoy
2014 / 0026002 AL 1 / 2014 Haines
2014 / 0181593 A1 * 6 / 2014 Smith G06F 11 / 362

714 / 38 . 11
2014 / 0188829 A1 * 7 / 2014 Ranganathan G06F 17 / 30289

707 / 705
2014 / 0304551 Al 10 / 2014 Nakai et al .
2015 / 0286519 A1 * 10 / 2015 Huang H04L 67 / 1012

714 / 47 . 3
2015 / 0317477 A1 11 / 2015 Piper
2016 / 0055262 AL 2 / 2016 Bhattacharjee et al .
2016 / 0085837 A1 * 3 / 2016 Kotagiri GO6F 17 / 30575

707 / 634
2016 / 0098325 A1 * 4 / 2016 Madou GO6F 11 / 3476

714 / 49
2016 / 0119572 A1 * 4 / 2016 Slupik H04N 19 / 156

348 / 445
2016 / 0364317 A1 * 12 / 2016 Rehman GO6F 11 / 366
2017 / 0063762 A1 * 3 / 2017 Machol H04L 51 / 18
2017 / 0235624 A1 * 8 / 2017 Farinacci GO6F 11 / 079

714 / 37

2 / 2009 Keromytis GO6F 11 / 0742
714 / 38 . 11

8 / 2012 Colbert et al .
8 / 2014 Kalra et al .
4 / 2015 Saxena

12 / 2016 Wangkhem et al .
4 / 2017 Thangamani G06F 8 / 65
8 / 2018 Karppanen
8 / 2002 Hines
4 / 2003 Michael GO6F 11 / 3664

714 / 38 . 14
6 / 2005 Hudson et al .
1 / 2006 Senda G06F 17 / 30336
7 / 2006 Altaf et al .
9 / 2006 Callender G06F 11 / 3636

714 / 38 . 11
9 / 2006 Canning et al .
5 / 2007 Lupu et al .
9 / 2007 Hwang

12 / 2007 Gupta et al .
5 / 2008 Bank . G06F 11 / 366

12 / 2008 Qadir et al .
1 / 2009 Zhang et al .
7 / 2010 Brugler GO6F 11 / 0769

714 / 57
2 / 2011 Mehta et al .

2005 / 0120273 A
2006 / 0004840 A1 *
2006 / 0156077 A1
2006 / 0200701 A1 *

2006 / 0200702 A1
2007 / 0101324 AL
2007 / 0220513 AL
2007 / 0283338 A1
2008 / 0126301 A1 *
2008 / 0320336 Al
2009 / 0006883 AL
2010 / 0185905 A1 *

OTHER PUBLICATIONS
Smith , Edward Guy . Automated Test Results Processing the Art of
Automated Crash Dump & Log Analysis . 2001 . Mangosoft . *

2011 / 0029819 AL * cited by examiner

atent Apr . 23 , 2019 Sheet 1 of 38 US 10 , 268 , 563 B2

??

XX XXX ??? 13 . 3 . 3 A

OPERATING SYSTEM ??

COEX ?????
OROKHO
* * * ??? ???

WY . W WW . KKKXXXX

* * * * APPLICATIONS ????
XXX TTTTTTTTT U UUUUUUUUUUUU ???
KEXX PERIPHERAL

COMPUTER
READABLE

???? ??? * * *

ON MODULES W

MMMMMMMWMMWW AND ?????? ?????? .

MEDIA X

????? W WWWWWWXXXXXXXXXXXXXXWWWWWWWWWWWWWWWWWWWWWWWWWWW nowwwwwwww
X

DATA ????
XXX

???? » ?????
KW WWW

2 WWWXXXXXXXXXX X XXXXXXXXXXXXXXWWWWWWWWWWWWWWW

WWW : w w w w w w w w w www

WAN WWWWWWWWWWWWWWWWWWWWWW w w wwwwwwwwwwwwwwwwwwwwwVVVVV WWWWWWWWWWW

www tt

106B
WEEK

* * * * * *

COMPUTER
USABLE NON DATA STORAGE *

K

PROCESSOR
106A LLLLLLLLLLLLL ELIZ * * MULLINLUUKKILIKUWAWCOWOLT USABLE VOLATILE

MEMORY (RAM)
108

*

OCKA MEMORY (ROM)
110 112

BUS 104
w wwwwwwwwww w wwwwwwwwww wwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

WWL

vu u UK w w wuuuu 204 2 2 4 www wv v 0 22 w ww w 24

WOWOW
?????
??? KWA ALPHA - NUMERIC

INPUT
CURSOR
CONTROL KX

* * *

XWX *
RAUTAHUI ARRATIA14

XK CWMH MKONOW MORA

??? ??? ???? ??? ??? ?????? ????

GRAPHICAL USER INTERFACE
130

FIG . 1

U . S . Patent

Annnnnnnnnnnnnn

wwwwwwwwwwwwwwww

Crash Analyzer

204

Core Dump Collector 208

Database API 212

WAKIKEKEK

Partner Portal 216

210

Report Database 214

WAAR

MARIHUAWAHANA
HINTHIANNVIRUMAANAAALALARARANNARAHAN
VIAVANINIRAHANANKORHANAAN

www

Apr . 23 , 2019

206

202

218

Sheet 2 of 38

200
FIG . 2

US 10 , 268 , 563 B2

atent Apr . 23 , 2019 Sheet 3 of 38 US 10 , 268 , 563 B2

w

CORE
SUMMARY
GENERATOR

302

wwwwwwwwww

CULPRIT
MODULE
IDENTIFIER

304

SIGNATURE
BACK TRACE
GENERATOR

306

GUI GENERATOR
308

210
www

FIG . 3

atent Apr . 23 , 2019 Sheet 4 of 38 US 10 , 268 , 563 B2

Instruction
ED KUALA Function Offset Tag

Module /
Driver
Name Address XXXXXXXXXXXXXXXXXXXXXXX OMNARARAMAMAMAMAHALAAAAAAAAAA 0x41801e7a8633 LockCheckSelf Deadlockint 0x58 V vmkernel

0x41801e7a9849 MCS _ LockWait | 0x142 V vmkernel
wwwwwwwwwwwwwwww

OPOCROXXO XXXCXXIKOOLOOKIOXIKICE
ALA . . .

JAAAAAAAAAART : 0x41801e7a9ccc vmk _ Spinlocklock Ox3d V vmkernel
w

0x418029057149 Xla . _ sli _ fp _ intr _ handler Oxaf D lpfc
9 . oo

0x41801e0322be IRQBH Ox2e7 V vmkernel TRAALAAAAAAAAAAALLE WAX04 * XXXCXCOCHKARAMANANACHORROR

K

oo
0x41801e055fa2 BH Drain AndDisablelnterrupts V vmkernel

1 . X

0x418012041134 T intrhandler Oxlar v vmkernel

0x41801e03f252 gate _ entry 0x64 V vrnkernel
WW

0x41801263882 Cpuschedidieloopint 0x391 V vmkernel KTOWANAWAWALA don
0x41801e631a0 ALAMA CpuSchedDispatch 0x1630 V vmkernel

0x41801e62870 WWW . WOW Ox245 V vmkernel XXX DOKTEKAKEXA wwwwwwwwwwwwwwwwwww

0x41801e6271b CouSched _ Vcpuhalt 0x197 vmkernel MARIA HIKKEUKUKU DOCKOK 0x41801e94ca2 VMMVMKCali _ Call 0x480 V viyikernel +

02 XXXXXXXXXXXXXXX

FIG . 4

atent Apr . 23 , 2019 Sheet 5 of 38 US 10 , 268 , 563 B2

START

* 500

WWW Receive Core Dump
502

424242 + + + + + + +

Analyze Core Dump
504

12 + + + + + + + +

Identify Culprit Module

XERREL 506 AULUKKIUCHUKUA LAULULL XXXL
Generate Signature

Back Trace
508

WALALAM

wwww

.

Generate GUI
510

. #

Wwwwwwwwwwwwwww

END

FIG . 5

U . S . Patent Apr . 23 , 2019 Sheet 6 of 38 US 10 , 268 , 563 B2

START
600

Was Crash
Caused

by Hardware ?
602 COMO Yes

+ +

Hardware
Caused
604

No

Yes I
Has pcpu lockup

occurred ?
606

??
Determine

Thread Causing
pcpu lockup

608
wwwwwwwwwwwwwwwwwwwww

Yes
is Spin Lock
occurring ?

610

WWW
Determine

Thread Causing
Spin Lock No

612
WY

.
Crashing Thread
is Culprit Thread

.

| End | End

FIG . 6

U . S . Paten atent Apr . 23 , 2019 Sheet 7 of 38 US 10 , 268 , 563 B2

START

. 700 RECEIVE BACK TRACE
702

DIVIDE BACK TRACE
INTO FRAMES

704

ASSIGN TAGS TO
FRAMES

706
NR ARKANSALAMUKA

W WWLWALALALALA WIKKAUKALAUW

UCK KAKAKUUTA IDENTIFY MOOT
FUNCTIONS

708 MMMMM
IDENTIFY CURRENT AND
BENIGN FUNCTION

MARKER
710

DEFINE ESSENTIAL STACK
712

DETERMINE TAG
SEQUENCE AND TAG

DEPTH
714

WAUKKAL USE TAG DEPTH AND
TAG SEQUENCE TO
DETERMINE THE
CULPRIT MODULE

A

XXXXXX WWW

END

FIG . 7

32

834

836

meron 400

* *

*

MAMAMAYUMAMA
wwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwww

WUUUUUUU

Instruction

atent

Function

Offset | Tag

Module / Driver Name

Address

Moot funcs

MUUOOMWAKA

802 .

braun 0x41801e7a8633

LockCheckSelf Deadlockint
0x58

vmkernel

pan

www

www

Inneren
Anne

1801e7a9849

MCS _ LockWait

OX142

vmkernel

X

ad

T

Apr . 23 , 2019

806

0x41801e7a9ccc
vmk _ Spinlocklock

Ox3d

V

DMLV stack Tag Seq : D1V2
Suspect : D (Ipfc)

vmkernel

Du90000

300

808martin
0x418029057f49

| x1a _ si _ fp j3tr handler

Draf

Ipforumover

WWWWWWWWWWWWWWWWWWWWWWWWWWOWA

??????

10 mm

0x4180120322be
IRQBH

Ox2e7

WXWWW

imkernel

Essential stack

w

AL2OULALA

ALLAXIMAALA

812

0 x41801e055fa2

BH _ DrainAndDisableInterrupts

Oxf3

vmkernel

838

w

too

SONORO MENU

Sheet 8 of 38

814 maratommary 0x418012041134

IDT IntrHandler

Oxlaf

V

vmkernel

MARWWXXC

G WWWWWWALENA SAMOCHAINSAWOW
RESACRARIOS ,

Benign Function Marker

816

y 0x41801e03f262

gate entry

0x64

V

vmkernel
? ???????????????????????????????

www

.

TW

VAL 0x4180186388a
CpuSchedldleloopint

0x391

V

vmkernel

MANUAL

NERVURU

820 MARTIN

WMMWMA
0x418012631a0
CouschedDispatch
0x1630
V

vmkernel
WWXXNXX

822 sammen

0x41801262876
CouschedWait

Ox245

V

vmkernel

???
824 membrana

Ox41801e6271b

CpuSched _ Vcpuhalt

0x197

V

vrnkernel

FIG . 8

wann

US 10 , 268 , 563 B2

0x41801094ca2

VMMVMKCall Call

0x480

V

vrnkernel

MXX

atent Apr . 23 , 2019 Sheet 9 of 38 US 10 , 268 , 563 B2

M - 900

Permutations of tag sequence , to be considered

Component WWW

RUM WWW . ARXARXARXAC

TAMAMLAMIN inity
DIEILIFICALLIE WWWWWWWWWWWWWWWWWWWWWWWWW w

1 PENERANNO
ZN HHWUNNAH WWW

D Driver
M Module
V VMkernel
LVMKLinux

206

FIG . 9

atent Apr . 23 , 2019 Sheet 10 of 38 US 10 , 268 , 563 B2

1000
START

LOCATE FUNCTIONS CORRESPONDING TO
CULPRIT MODULE

1002 HEM

LOCATE FUNCTIONS CORRESPONDING TO
MODULE BELOW CULPRIT MODULE

1004

INCLUDE BOTTOM FUNCTION FROM
MOOTS FUNCTIONS

1006

INCLUDE OFFSET FOR CULPRIT MODULE
FUNCTION

1008

Www

INCLUDE CULPRIT MODULE FUNCTION
SIZE
1010

ht .

END

FIG . 10

U . S . Patent Apr . 23 , 2019 Sheet 11 of 38 US 10 , 268 , 563 B2

1100
SELCE

LISLIEALISTELLILIHISEID

Culprit module : lpfc
PSOD Type : Panic
Signature Backtrace 1102
vmk _ Spinlocklock
x1a _ sli _ fp _ intr _ handler + Oxaf
IRQBH
BH DrainAndDisableinterrupts

? ????????????????????????

FIG . 11

m Callisto / FuncSpec - Vrrrware x y

Crash Reports - - Vmware D X

U . S . Patent

lopercenter . vmware . com / group / dp / crash - reports ? id = dashboard & module = xla - driver

Home / My Home My Reports crash Reports

Search Vmware Developer Center . . .

Driver / Module : Xla - driver

View

1202

1200

Driver / Module Version

ESXi Version Builds
1204

Driver module version

Apr . 23 , 2019

1 . 0 . 0a - 2 1 . 0 . 1a

1 . 0 . 1a

PSOD COUNT : 3

10 . 10 1 . 0 . 16 - 1

WA

Driver / Module Version

1 . 1 . 2c

VURUKERKUKURUVUMUMMUMUNUMURUERUNKUKU KUKK

Sheet 12 of 38

1 . 1 . 2 1 . 1 . 20 - 1

UMMAMMAMMAMMA

khi

1 . 14

XXXN

1

PSOD Count

FIG . 12

Top Signature Signature

US 10 , 268 , 563 B2

Similar PSODS

SESXi Version

Last Reported Dale

Number of PSODS

Wwww
vm Callisto / FuncSpec - Vmware X Y

Crash Reports - - Vmware D X

M

M

MM
. .

.

. . .

. .

.

ATEE

. . .

MAURRERA Ontent

P

ROVE
T

E

Developercenter . vmware . com / group / dp / crash - reports ? id = dashboard & module = xla - driver # esxViz

* #

W

HAAN

KU * *

W

*

W

* * *

*
A

W

*

* *

* *

*

Home My Home My Reports / Crash Reports

Search Vmware Developer Center . . .

atent

Driver / Module : xla - driver

Www

1202

Driver / Module Version

SESXI Version Bolos

=

1300

1302

ESXi Version / Builds

Apr . 23 , 2019

Www

10

wwwwwwwwwwwwww

5 . 5 . 0

Build 1746018 : 2
Total : 15

PSOD Count

MAMMARLARI

1304

AN
WY

C

www

LLLLLLLLLLLL
LLLLLLLL

Berum

m mo . . . o * * * ment
processer * * * * Avem decorososom

Sheet 13 of 38

* *

* * * * * * * * A
* * * * * * * * * * *

5 . 5 . 0 ESXi Versions

FIG . 13

Top Signature

US 10 , 268 , 563 B2

www

Sunil Gadi - Outlook Web xvm Callisto / FuncSpec - Vmware X Y

Crash Reports - Vmware D X

MITTANT + 12

oh

odule = xla - drivertesxViz

Q

At

1908 C http : / / Developercenter . vmware . com / group / dp / crash - reports ? id = dashboard & module = xla - driver # esxViz 1408

Top Signature Signature

Similar PSODS Esxi Version

Last Reported Date

Number of PSODS

atent

1400
X

L

CALMARKA

Exception in xla _ IRQHelper2 + 0x23

View

1410

5 . 5 . 0

67 7

Pcpu Lockup in Xia _ process _ qu . . .

1401 view

5 . 5 . 0

1402

Panic in xla _ IRQHelper1 + 0x12

View

5 . 5 . 0

01 / 30 / 2014 03 / 28 / 2014 04 / 01 / 2014 06 / 17 / 2014 05 / 19 / 2014

1406

Apr . 23 , 2019

Exception in xla _ transmit _ que . . .

View

5 . 5 . 0

led

Panicin xla transmit + 0x13

View

5 . 5 . 0

las

Browse All Signatures . . .

Recent PSODS * Reportede

Links

Similar PSODs

Date of PSOD

Version

Esxi Version

ESXi Build

Signature

confidence

06 / 17 / 2014

View

04 / 17 / 2014

Report Feedback

1 . 1 . 30 - 1

5 . 5 . 0

2302651

Exception in
xla transmit _ que . . .

High

Sheet 14 of 38

05 / 19 / 2014

View

05 / 19 / 2014

5 . 5 . 0

2302651

Report Feedback

Panic in
Xla transmit + 0x13

High

1404 PM

04 / 01 / 2014

View

03 / 01 / 2014

1 . 1 . 20

1892741

Report Feedback

Panic in
xia _ IRQ Helper1 + 0x12

03 / 28 / 2014

02 / 28 / 2014

1 . 0 . 12

1598313

Report Feedback

Pcpu Lockup in
xla process qu . . .

US 10 , 268 , 563 B2

FIG . 14

U . S . Patent

Developercenter . vmware . com / group / dp / crash - reports ? id = Signatures & module = xla - driver

Home My Home / My Reports crash Reports Signatures

Search Vmware Developer Center . . .

a

Driver / Module : xla - driver

(

ESXi Version : All

View

Apr . 23 , 2019

Show 10

entries

1202

1502

1500

Search :

Number of PSODS .

Signature

Similar PSODS

ESXi Version

Last Reported Date

Exception in x12 IRQ Helper2 + 0x23

5 . 5 . 0

01 / 30 / 2014

Pcpu Lockup in xla _ process _ qu . . .

5 . 5 . 0

03 / 28 / 2014

Panic in xla IRQ Helper1 + 0x12

View

5 . 5 . 0

04 / 01 / 2014

m

Sheet 15 of 38

Exception in xla transmit _ que . . .

5 . 5 . 0

06 / 17 / 2014

fundit

Panic in xia _ transmit + 0x13

View

5 . 5 . 0

05 / 19 / 2014

fined

Showing 1 to 5 of 5 entries

FIG . 15

US 10 , 268 , 563 B2

U . S . Patent

Developercenter . vmware . com / group / dp / crash - reports ? id = psods & module = x18 - driver

Home My Home My Reports / Crash Reports Signatures

Search Vmware Developer Center . . .

Driver / Module : Xla - driver

ESXi Version : All

Start Date (Reported) :

End Date (Reported) :

" ?

" se vesen an zu Starone leveren

in der Meretet

1202

1502

1602

1604

Export CSV

Apr . 23 , 2019

Show 10

+ entries

1600

Search :

Reported

Similar PSODs

Date of PSOD

Version

BSX Version

ESXi Build

Signature

Confidence

06 / 17 / 2014

Report 1606 Feedback

View

04 / 17 / 2014

11 . 30 - 1

5 . 5 . 0

2302651

Exception in
xia transmit _ que . . .

05 / 19 / 2014

View

Report - 1608 Feedback

05 / 19 / 2014

1 . 1 . 4

5 . 5 . 0

2302651

Panicin xla transmit + 0x13

High

Sheet 16 of 38

04 / 01 / 2014

03 / 01 / 2014

5 . 5 . 0

Reportm1610 views
Feedback

1892741

Panic in xla IRQHelper High
1 + 0x12

03 / 28 / 2014

Report - m1612 Feedback

View

02 / 28 / 2014

1 . 0 . 10

5 . 5 . 0

1598313

Popu Lockup in
xla process _ qu . . .

High

03 / 03 / 2014

Report

03 / 03 / 2014

11 . 3

5 . 5 . 0

1892741

Panic in xia _ iRoHelper High

1 + 0x12

Feedback

View

03 / 02 / 2014

03 / 02 / 2014

11 . 20

1892741

5 . 5 . 0

Report Feedback

Panic in xia _ IRQHeiper High

1 + 0x12

FIG . 16

US 10 , 268 , 563 B2

02 / 22 / 2014

02 / 15 / 2014

1598313

1 . 0 . 10

Report Feedback

Pcpu Lockup in
xla process qu . . .

High

Developercenter . vmware . com / group / dp / crash - reports ? id = similar & module = xia - driver & signatureHash = ca872e4144eda636d794f4bb774e208

U . S . Patent

Home / My Home My Reports / Crash Reports / similarPSODS

Search Vmware Developer Center . . .

Signature Details Exception xia (ROHelper2 + 0x13
x18 RoHelperi xia RoHandler DTD - Interrupt IDT Handleinterrupt IDT _ IntrHandler gate entry

1700

Apr . 23 , 2019

Number of PSODS : 5 Driver Module Version

ESXi Build

Driver / Module Version

vasarasemann 1702

Sheet 17 of 38

FIG . 17

Show 10

entries

Search :

Reported

Links

Date of PSOD

Version

Esxi Version

ESXi Build

confidence

US 10 , 268 , 563 B2

Developercenter . vmware . com / group / dp / crash - reports ? id = similar & module = xla - driver & signature Hash = ca872e4144eda636d794f4bb774e208

Driver Module Version

ESXi Build

atent

W

WWWWWWWWWWWWWWWWWWWWWW
ng

Driver / Module Version

1700

Apr . 23 , 2019

Show 10

1 . 0 . 0x - 2

entries

Sheet 18 of 38

Search :

Reported

Links

D

ate of PSOD

version

ESXi Version

Esxi Build

confidence

01 / 30 / 2014

Report Feedback

01 / 30 / 2014

1598313

High

01 / 22 / 2014

Report Feedback

01 / 22 / 2014

1 . 3 . 3 - 3

5 . 5 . 0

1598313

- 1802

01 / 15 / 2014

Report Feedback

01 / 15 / 2014

1 . 3 fºc - 3

5 . 5 . 0

1474526

High

01 / 07 / 2014

Report Feedback

01 / 07 / 2014

1 . 0 . 00 - 3

5 . 5 . 0

1598313

High

01 / 01 / 2014

Report Feedback

01 / 01 / 2014

4 .

32 - 3

5 . 5 . 0

1474526

Showing 1 to 5 of 5 entries

US 10 , 268 , 563 B2

FIG . 18

US 10 , 268 , 563 B2

confidence
Esxi Build

Esxi Version

Version

ate of PSOD

D

Links

Reported

Search :

entries
Show 10

FIG . 19

d + * + * + + + + * * * * *

+ + + + + + + + + + + + + + * * * * * * * * * * *

*

*

* *

+
* * * * * * * * * * * * * * * * * *

* * + + * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * + * + + + + * + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + *

+ + + + + + +

+

*

+ + + + + + + + + + + + + + + + + + + * * * * * * * * * * * * * *

*

*

T

2865

LE

* * * * * * * *

1474526

O

Sheet 19 of 38

* * * * 000 .

206Trommene

Driver / Module Version

TRIENTERTEXTERNETnninnen EhnintentenTTER Innenmannnn innnnnnnnnnnnnnnnnnnnTEYTTERT

Opnas IXS

Driver / Module Version Number of PSODS : 5

Apr . 23 , 2019

1900

gate entry IDT IntrHandler IDT Handleinterrupt IDTD Interrupt Xla iRoHandler xia iRQHelperi
Xla JrQHelper2 + 0x13 Exception : Signature Details

atent

Search Vmware Developer Center . . .

Soosadeus sijoday use . be / Suoda Nawohn WOH

saosdue Developercenter vmware . com / group / dp / crash - reports ? id = similar & module = xla - driver & signature Hash = ca872e4144eda636d794f4bb774e208

Crash Reports - - Vmware D X

E

EN

I RED REAN1 TO

1 R17 . 11

Econo

<

ko

CUDO .

MIE CU ELUJBECUECEUDULMUMEDRE ELOYEEU FEUDOU

DE GU * *

KEIU

Developercenter . vmware . com / group / dp / crash - reports ? id = dashboard & module = xla - driver

U . S . Patent

Top Signature Signature

Similar Psods

ESXi Version

Last Reported Date

Number of PSODS

Exception in xla _ IRQHelper2 + 0x23

View

5 . 5 . 0

01 / 30 / 2014

Pcpu lockup in xla process _ qu .

View

5 . 5 . 0

03 / 28 / 2014

wer

Panic in xla _ IRQHelper1 + 0x12

1 / 2014

Apr . 23 , 2019

Exception in xla transmit _ que . . .

Panic in xla transmit + 0x13

Send Crash Report Feedback

7 / 2014

In order to improve our tools and processes , b / 2014

we are interested in receiving feedback from you . Is the data for this crash report relevant
to your driver / module ?

ild

(Yes

Browse All Signatures . .

Recent PSODS Reported

Links

similar es

Signature
de
confidence

06 / 17 / 2014

Report Feedback
View

WW

Exception in
xla _ transmit _ que . . .

High

O No

Sheet 20 of 38

2000

05 / 19 / 2014

Report Feedback

Comments (Optional)

1

Panic in
x1a _ transmit + 0x13

High

04 / 01 / 2014

View

Report Feedback

Panic in
xla _ IRQHelper1 + 0x12

High

Send 3

Scances

03 / 28 / 2014

Report Feedback

Pcpu Lockup in
x1a process qu . . .

US 10 , 268 , 563 B2

FIG . 20

10 Crash Reports - - Vmware D X

RENCER

COXERON1 ECOAZ . 001R001ARRETINEREANNID # RC 1

KROZREONIA

U . S . Patent

Developercenter . vmware . com / group / dp / crash - reports ? id = dashboard & module = xia - driver

Top Signature Signature

Simil?r PSODS

ESXi Version

Last Reported Date

Number of PSODS

Exception in xla IRQHelper2 + 0x23

View

5 . 5 . 0

01 / 30 / 2014

Pcpu Lockup in xia process qu . . .

View

5 . 5 . 0

03 / 28 / 2014

Panic in xla IRQHelper1 + 0x12

1 / 2014

Apr . 23 , 2019

Exception in xla _ transmit _ que . . .

2100

1 / 2014

and

Panic in xla transmit + 0x13

Þ / 2014

elements

Exception : xia _ IRQHelper2 + 0x23
x1a _ IRQHelper1 xia _ IRQHandler IDTD - Interrupt IDT _ Handleinterrupt IDT _ IntrHandler gate _ entry

Browse All Signatures . . .

Recent PSODS Reported

ASI

la

signature

Confidence

06 / 17 / 2014

Report Feedback
View

wtv

1

Exception in
xla transmit que . . .

High

Sheet 21 of 38

05 / 19 / 2014

Report Feedback

05 / 19 / 2014

1 . 1 . 4

5 . 5 . 0

2302651

Panic in
xla transmit + 0x13

High

04 / 01 / 2014

View

03 / 01 / 2014

1 . 12c

5 . 5 . 0

1892741

Report Feedback

Panic in

xia IRQHelper1 + 0x12

03 / 28 / 2014

View

02 / 28 / 2014

1 . 0 . 1a

1598313

Feedback

Pcpu Lockup in
Xla process qu . . .

High

US 10 , 268 , 563 B2

FIG . 21

U . S . Patent Apr . 23 , 2019 Sheet 22 of 38 US 10 , 268 , 563 B2

comuna 2200

START

DISPLAY A COMPONENT ACCESS CONTROL FEATURE ON
A GRAPHIC USER INTERFACE , WHEREIN THE

COMPONENT ACCESS CONTROL FEATURE ENABLES A
USER TO SELECT A COMPONENT AND VIEW THE CRASH

RESULTS PERTAINING TO THE COMPONENT
2202

GENERATE A GRAPHICAL REPRESENTATION FOR DISPLAY
ON THE GRAPHIC USER INTERFACE , THE GRAPHICAL

REPRESENTATION INCLUDING AT LEAST A PORTION OF A
SIGNATURE BACK TRACE CORRESPONDING TO A CRASH

ASSOCIATED WITH THE COMPONENT
2204 www
END

FIG . 22

UUKAUXKKAUKKUULAUKKAKAKKAAMUAMUKKAKKARUUKKUKAKAKAKUHANKA MUKAKUKKAKAWAWAKANAKAKAHUKAALUKA MAKAMURAKAMUKKAKAKKU

U . S . Patent

K

Crash Analyzer

Core Dump Collector

Database

Partner Portal

* WX

204

208

KKKKK

212

216

OLZ

Report Database 214
LXXUXXXXX

WWWWW

WWWWWWWWWWWW

ANAN

206

Apr . 23 , 2019

202

218

Monitoring System 2302

Sheet 23 of 38

24

2301

2300

FIG . 23

@ JEMDA

US 10 , 268 , 563 B2

U . S . Patent Apr . 23 , 2019 S heet 24 of 38 US 10 , 268 , 563 B2

procena 2302

LOG PREFIX GENERATOR
2402

LOG ANALYZER
2404

OPERATION RESULTS GUI GENERATOR
2406

FIG . 24

Log msg format

U . S . Patent

* oo (RDC log prefix key - val pairs) RDC log msg 1

IRDC log prefix key - val pairs) RDC log msg 2 “ Found new core dump "

- 2500

(RDC log prefix key - val pairs) RDC log msg 3 " calling App X . . " (RDC log prefix key - val pairs) (App X prefix key - val pairs] log msg 1 (RDC log prefix key - val pairs) (App X prefix key - val pairs] log msg 2

(RDC log prefix key - val pairs) (App X prefix key - val pairs) log msg 3 " Calling App Y "

(RDC log prefix key - val pairs) (App Y prefix key - val pairs] log msg 1 (RDC log prefix key - val pairs) [App Y prefix key - val pairs) log msg 2

(RDC log prefix key - val pairs) [App Y prefix key - val pairs] log msg 3 " Calling App Z "

(RDC log prefix key - val pairs] [App Z prefix key - val pairs] log msg 1 (RDC log prefix key - val pairs] [App Z prefix key - val pairs) log msg 2

(RDC log prefix key - val pairs] [App Z prefix key - val pairs] log msg 3 " return with success "

(RDC log prefix key - val pairs) RDC log msg 4 " Success . Job Done "

Apr . 23 , 2019

t

SICASS

Sheet 25 of 38 US

FIG . 25

US 10 , 268 , 563 B2

Log msg format

U . S . Patent

mesec 2600

Apr . 23 , 2019

RDC log msg

(RDC key = value . . .) RDC verbose Msg

RDC key = value pairs
X RDC _ coreld = 5743 to 2602 RDC jobid = 7bc98 2604 RDC attempt = 1 * 2608 RDC _ jobResult = success themes 2610

RDC isErr = TRUE (Set to TRUE only if RDC caused the error . Not set for cascading errors and 2612

> An App log msg always prefix ' ed by RDC

(RDC prefix key = value , . .] [App X key = value , . . .) App X verbose msg

(RDC prefix will be present for all apps log msgs

> > [RDC _ coreld = 5743 , RDC _ jobid = 7bc98 , RDC _ attempt = 1] | 2614

bo App key = value pairs

e App X _ result = success / failure

> App X _ is Err = TRUE (set to TRUE only if App X caused the error . Not set for cascading errors)

E . g . if App X fails because of its internal issues it will put Appx is Err = TRUE , But if App Xfails while
calling appy it won ' t put ' AppX is Err ' as part of its log message , in that case Appy is expected to set

Appy isErr = TRUE in its prefix .

Sheet 26 of 38 US 10 , 268 , 563 B2

FIG . 26

MMK

A

ssadiº

1

nyx

w

w

w

g

oogooroox2929999 oggeopgoorxogoooooooooooooo2982990 onogooo9p9rxogogorooooooooooorzo999999999999999999999999999998299oooooogoogooroogooooooooooooooooooooooooooooo
My Dashboards o

Add Filter
WWWXX

WWWMMMMM
UKUVANAEKIV
MENTEhrweXXXWW

atent

Tasks by return code over time

Dashboard 1

* *

wwwwwwwwwwwwwwwwwwwwwwwww

20

Final Callisto

WY

2702

Apr . 23 , 2019

8 failures

2700 . c

jun 4

Jun 6

Jun 8

Jun 10

Jun 12

Jun 14

YYYYY

ALL

XEROXXKKKKKKKKKKK

Tasks . . . Q i

Attach . . . Q i

Cases . . . a z oo

Tasks

wwwwwww

conosco . ca

???????????????????

* * * * + + + + + + + + + + + + + +

26

NAIKKAKAKKKKKKKKKKKKKKKKKKALE

www

Sheet 27 of 38

*

wy

W *

w

mes

Success

Success by e . . .

a

23

Success : 5 . 6 . 0 . .

Success : 6 . 0 . 0

MYYYYYYYYYYYYYY

wwwwwwwwwwwwwwwwwwwwwwwwww
wowo

KOTLOOD

7 . 5

1 . 5

18

??

KAKKUKKAKAKKUKKAKAKKUKAKUWACK New Dashboard

.

L

US 10 , 268 , 563 B2

FIG . 27

What sgadiºn

U . S . Patent

Soooo

998899999999999
99999

X

XXKXARRXXXX

My Dashboards ye
WY7UVWXYZ

cal signature

O exception : heap _ f . . . Spanic : nm / check / in . . . D pcpu lockup : a . . . 3 pcpu lockup : util . .

cai _ signature

y exception : m003 . . . panic : nm / check / in . . . popu lockup : war . . .

Dashboard 1
AAAAAAAAAAAAAAAAAAAA
A

Final Callisto

AMWWWWWMWM

www . www . www
wwwwwwwwwwwwww

?????????????????????

.

Apr . 23 , 2019

Failed

Q i

v

Callist . . . ai o

cores .
Cores . . . Qi

Ps

Partial . . ai u

Partial . a i

XXXWWWXXXXXXX
CCCXXX LLC

wwwwwwwwwwwww
MDXXXWWWWWWWWWWWWWWWMMMMM

W

wwww

2704

2706
1 .

2708

KOORMAKAKKXXXXXXXXXXXXXXXXX

+

No results

* KKKKKKK W . * * * KKE *

* * *

wwwwwwwwwwwwwwwwwwwwwwwwwwww

* * * * * * * * + + + + * + + + + + + + + + +

2700

* * * * * * * * * * * * * + + + +

Sheet 28 of 38

* * * * *

YEYEYYYYYYYYYYTY

Any macro exception

No results

New Dashboard

WAR

TV

US 10 , 268 , 563 B2

FIG . 28

*

1

sgadi enem

U . S . Patent

W

W

WW

W

W

W WWW

W W

W

WWW

. 99999999999999999999ggg09000popoog 9999999999999popgapopogo9999999999999999999999999999 og oppg999pdogo99
Add Filter

2 My Dashboards Dashboard 1

both

the

Wind WINT

ER

WIK

I KWETEKTbe

Tasks by return code over time

Q ; *

wwwwwwwwwwwwwwwwwwwwwww
*

20

* *

Final _ Callisto
A AALALAMA , ARNAXA

WWW
M

parane , 2904
2016 . 01 . 07 22 00 . 00 . 000 to 2016 . 01 . 08 03 59 . 59 . 999

vmw vdeg _ task _ return _ code : 0

VW

10

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXWWWWWW

NS

2902 . 0

Apr . 23 , 2019

2700

jun 4

Jun 6

Jun 8

Jun 10

Jun 12

Az added to s

toooooooooooood . 000 dodao dadasoodaddiddoddodd

odo00ooooooooooooooooooooooooo
o oooooooooooooooo

* *

Tasks . . . a i

n

Artach . . . Q 10

Cases . . . a 70

Tasks . . . Q

i

Task

VINKY

podoodoodoo

www

SUBHHHHHHHHHHHHHHH

" ? " " TE

+

X

" "

KAWAKANAK KANAKALAKA

26

1

UCXXXXXXXXXXXX

Sheet 29 of 38

" TE " "

we

HHHHHHWww

KarMAN

HVATTIR

WUL

XOXO

XXXXXXXXXXXXXXXXXXXXXXXX

Success

i

Success by e . . . Qi

Success : 5 . 6 , 0 . . .

Success : 6 . 0 . 0 . . . Q

+

PARA
O

D

DARD

wwwwwwwwwwwwwwwwwwwwwwwwwwwww
+ + + +

7 . 5

1 . 5

+ + +

wWwWMWWWWWWW

wwwwwwwwwwwwwwwwwww

1

wwWw
AAMURA

New Dashboard

144

: : : : : :

: : : : :

FIG . 29

US 10 , 268 , 563 B2

Unique count on Wmv . vdego attachmend ideas Single value

Reset

Chart type .

Automatic

*

Custom time range Custom time range

a

E

O

www
ww

MALE

WWW

atent

Match all of the following filters :
X vmw vdeg service

XULLAH
17 :

00 contains

callisto TYYTY *

um

www

text

contains

www

276322e0 - f450 . 4070 . 8c6c - 8d6f4d358e7a
OXXXKIEKRECEKSEKOK * * * aaaaaaaaaaaaaaaa

Zdump may be partia ' , some of the memory regions may not be dumped x

.

. . . . WWWwwwww
KKKKKKKKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XXXXXXXXXXXXXKKKKKKK

Add Filter X Clear all filters

2016 - 01 - 04 00 : 00 : 00 . 000

2016 - 01 - 14 00 : 00 : 00 . 000

MYY xxxxxxxxxxxxxxxxxxxxxxxxonexxx
* * *

X

XXXXXX wwwwwwwwwwwwwwww Events
Field Table

Event Types

Event Trends

1 10 7 out of 7 events

View

Sort : Newest Find

| Fields to see

WWW

. HALAMA

LAR FITTIKE

Apr . 23 , 2019

2016 . 01 . 13
01 : 58 : 43 . 113

2015 - 11 - 12 06 : 17 : 06 , 084 : INFO / Worker - 3 service - callisto , task _ id = 05860700 - 71ad
4fcb - aa96 - 52dbeif99106 , retry attempt = 0 , user = ydiag - support , caller = ftoservice ,

case _ id - SR _ 15801127011 , attachment = { id = 56443caf159c5a7915d2f208 , path = / scripts / support new

incidents , sc9 / pending / 4 / 015 / 801 / 127 / 011 / esx - f1 vmware2 , willenpress . com - 2015 - 11 - 11 - - 19 . 36 - d19f8e
extracted / var / core / vrnkernel - zdump . 2]] (coresumimaryi (2015 - 11 - 12 06 : 16 : 13 } [log1] : Zdump may be partial .

Some of the memory regions may not be dumped .

event _ type filepath hostname event context task name Vinw _ vdiag service service name celery task _ id

task _ id ymw _ vdias activity d task _ id vmw _ vdiag celery _ task _ id vmw _ vdiag retry attempts retry attempt vinw _ vdiag . user vw vdiag , caller case id vmw vdiag case id vmw _ vdiag attachment _ id attachment _ id

2016 . 01 . 13 01 : 58 : 12 . 288

(2015 - 11 - 10 03 : 52 : 48 , 054 : INFO / Worker - 4) (service - callisto , task _ id = cf263cbl - b2ea - 47c7 - 9e08

c1445f214757 , retry attempt = 0 , user = vdiag - support , caller = ftoservice , case _ id = SR _ 15799067811 ,

attachment = { id = 5641da39159c5a2cc75748bb , path = / scripts / support new / incidents , 5c9 / pending / 4 / 015 / 799 / 067

/ 311 / esx - d1bpapwo1 , cacclocal - 2015 - 11 - 09 - - 19 . 33 - 008652 - extracted / var / core / vmkernel - zdump . 1]] (coresummaryl (2015 - 11 - 10 03 : 52 : 03] [logi : Zdump may be partial . Some of the memory regions may not be

dumped ,

event type filepath hostname event context task name vmw vdiag service service name celery task id
task id vriw vdiag activity id task _ id vmw vdiag celery task id vmw vdiag retry attempts retry attempt

vmw _ vdiag user vmw vdiag caller case id vmw vdiag case _ id vmw vdiag attachment _ id attachment _ id

attachment _ id (Callisto Dashboard)

case _ id

celery _ task _ id
Qevent _ context Devent _ type filepath hostname

Aretry attempt (Callisto Dashboard) service _ name Callisto Dashboard)

task _ id

01 task _ id (Callisto Dashboard)

task name

vmw _ vdiag _ activity _ id Evmw _ vdiag attachment _ id
vmw _ vdiag caller

vmw _ vdiag _ case _ id
vmw _ vdiag celery _ task _ id

vmw _ vdiag _ retry attempts vmw vdiag service vmw vdiag user

Sheet 30 of 38

3000

2016 . 01 . 13
01 : 58 . 42 . 248

(2015 - 11 - 10 02 : 56 : 26 , 467 : INFO / Worker - 3) (service - callisto , task _ id = 683646fe) - 2200 - 4804

a59d - e93ee84d3d99 , retry attempt = 0 , user = vdiag - support , caller = ftpservice , case id = SR _ 15799044711 ,

attachment = { id = 56410020647d0068490c5c4c , path = / scripts / support _ new / incidents , sc9 / pending / 4 / 015 / 799 / 044

1711 / esx - CV - H522 - 2 . ebix . com . au - 2015 - 11 - 09 - 20 . 46 - 59b25a - extracted / var / core / vmkernel - zdump . 1]]
(coresummaryl (2015 - 11 - 10 02 : 55 : 38] [logi : Zdump may be partial . Some of the memory regions may not be

dumped .

event _ type filepath hostname event _ context task _ name vmw _ vdiag service service _ name celery _ task _ id

task _ id Vmw volag activity _ id task _ id vmw _ vdiag celery task _ id vmw _ vdiag _ retry attempts retry attempt

US 10 , 268 , 563 B2

FIG . 30

U . S . Patent Apr . 23 , 2019 Sheet 31 of 38 US 10 , 268 , 563 B2

3100

START

ATTACHING A PREFIX TO LOG MESSAGES GENERATED BY
A CRASH ANALYSIS SYSTEM

3102
NA HUMU NA HAWA

AUTOMATICALLY ACCESSING THE LOG MESSAGES
GENERATED BY THE CRASH ANALYSIS SYSTEM

3104

ANALYZING , AT A PROCESSOR , THE LOG MESSAGES
GENERATED BY THE CRASH ANALYSIS SYSTEM IN ORDER

TO GENERATE OPERTION RESULTS DATA
3106

W

TRACTA GENERATING A GRAPHIC USER INTERFACE FOR DISPLAY
ON A COMPUTER , THE GRAPHIC USER INTERFACE
INCLUDING A GRAPHICAL REPRESENTATION OF THE

OPERATION RESULTS DATA
3108

T UT

WWWWWW wwwwwwwwwww wwwwwwwwwwww www

END

FIG . 31

Www

w

ww Crash Analyzer

atent

WA

Core Dump Collector

WWWWWW

DOT

Database

Partner Portal

204

208

+ YYYYYYYYYYYYY

216

210

212

Report Database 214

M

ANN

Apr . 23 , 2019

206

202

21

Risk Assessment System 3302

Customer Computer System Database 3204 wwwwww

Sheet 32 of 38

WY

3200

FIG . 32

US 10 , 268 , 563 B2

US 10 , 268 , 563 B2

3202

+ + + + + + +

+ + + + + + +

+ + + + +

+ +

+ +

+ + +

+ +

+ +

+ + +

+ +

+ +

+ + +

+ +

+ +

+ + +

+ +

+ +

+ + +

+ +

+ +

+ + +

+ +

+ +

+ + + + +

+ +

+ + + + +

+ +

+ + + + +

Sheet 33 of 38

* * * * * * * *

CRASH RESULTS RECEIVER
3302

CRASH RESULTS ANALYZER
3304

INFORMATION PROVIDER
3306

www

FIG . 33

Apr . 23 , 2019

i nnnnnnnnnnn v * * *

U . S . Patent

Function parameters

U . S . Patent

* * * *

*

*

A

3400

Apr . 23 , 2019

CO

> No . of incidents
No . unique customers

Date of release of the partner software version
Partner software configuration
> Hardware
? server hardware adaptor firmware

? Software

Host software version Host software configuration
Load

? Nature of relevant load

Sheet 34 of 38

FIG . 34

US 10 , 268 , 563 B2

U . S . Patent Apr . 23 , 2019 Sheet 35 of 38 US 10 , 268 , 563 B2

A 3500

START

RECEIVE CRASH RESULTS FROM A CRASH
ANALYSIS SYSTEM

3502

ANALYZE THE CRASH RESULTS AT A PROCESSOR
TO DETERMINE THE LIKELIHOOD OF THE FUTURE
CRASH OCCURRING ON THE COMPUTER SYSTEM

3504

PROVIDE INFORMATION REGARDING THE
LIKELIHOOD OF THE FUTURE CRASH OCCURRING
ON THE COMPUTER SYSTEM TO A USER OF THE

COMPUTER SYSTEM
3506

END

FIG . 35

U . S . Patent Apr . 23 , 2019 Sheet 36 of 38 US 10 , 268 , 563 B2

- 3600 XXXXXXXX identify All Locked Up Threads
3602

Yes
Is Panic

Timestamp - Preempt Disable
Timestamp > 14 Seconds

3604

Is Panic
Timestamp - Interrupt Disable markerer N

Timestamp > 5 Seconds
3606

No Threads Locked Up
3608

DWMWWWW

Threads Locked Up
3610

Is Lockup Caused by Hardware ?
3612

Yes
KWALKWALKING

Is there
a Machine Check

Exception on any thread
3614

Yes
www .

Do Any
neem of the Locked up Threads

Have a Non - Maskable Interrupt
Pending
3616

is any
Thread in a Hait - State »

5 seconds
MYYTYWWWW

3618
No

Lockup is due to
Hardware / Firmware Lockup is Caused by Software

3622 3620 WMMWMMM

FIG . 36 .

U . S . Patent Apr . 23 , 2019 Sheet 37 of 38 US 10 , 268 , 563 B2

3600
continued)

Is Single Thread
Locked Up ?

3624

Single Thread is
Culprit Thread

3626

Generate a List of All Locked Up
Threads Using Preempt Disable

Timestamp
3628

Identify Culprit Thread
3630

WWWWWWWWWWWWWWWWW

FIG . 36 (continued)

atent Apr . 23 , 2019 Sheet 38 of 38 US 10 , 268 , 563 B2

Crash Analyzer 210
wwwwwwwwwwwwwwwwwwww

Timestamp Analyzer
3702 w

Computer State Analyzer
3704 wwwwwwww

Culprit Thread Identifier
3706 wwwwwwww

FIG . 37

US 10 , 268 , 563 B2

MONITORING OF AN AUTOMATED listing of threads just prior to the crash is commonly
END - TO - END CRASH ANALYSIS SYSTEM generated . In some cases , depending upon the type operating

system or computer platform , the display of the stack trace
CROSS - REFERENCE TO RELATED may have another color or may be referred to using a

APPLICATIONS different name or acronym . Customers may provide the
PSOD to the party that developed the original software

This application claims priority to and benefit of U . S . product and expect a timely and accurate response informing
Provisional Patent Application No . 62 / 353 , 790 filed on Jun . the customer of the source of the crash . It is obvious that
23 , 2016 entitled “ MONITORING OF AN AUTOMATED there are significant business ramifications associated with
END - TO - END CRASH ANALYSIS SYSTEM ” by Sow - 10 incorrectly blaming a party for causing a crash , or for being
gandh Sunil Gadi et al . , and assigned to the assignee of the unable to accurately provide the customer with the source of
present application , which is incorporated herein by refer - the crash in a timely manner .
ence in its entirety . In conventional approaches , after a crash , the support

This application is related to U . S . patent application Ser . team for the original software product is now faced with the
No . 15 / 415 , 047 filed Jan . 25 , 2017 , entitled “ AUTOMATED 15 pressure of determining the source of the crash . In the
END - TO - END ANALYSIS OF CUSTOMER SERVICE conventional art , in order to determine the source of the
REQUESTS ” by Sowgandh Sunil Gadi et al . , and assigned crash , the support team typically takes the entire stack trace
to the assignee of the present application , which is incor received from the customer and then manually examines it
porated herein by reference in its entirety . and compares the entire stack trace to a database of previ

This application is related to U . S . patent application Ser . 20 ously received entire stack traces (often such databases are
No . 15 / 415 , 089 filed Jan . 25 , 2017 , entitled “ CULPRIT not even available) whose problems were previously deter
MODULE DETECTION AND SIGNATURE BACK mined . That is , in conventional approaches , the support team
TRACE GENERATION ” by Ayoob Khan et al . , and hopes find some similarity between the current stack trace
assigned to the assignee of the present application , which is and a prior stack trace whose problem was previously
incorporated herein by reference in its entirety . 25 determined . In so doing , the support team hopes to be able

This application is related to U . S . patent application Ser . to state , with some level of confidence , that similar stack
No . 15 / 415 , 135 filed Jan . 25 , 2017 , entitled “ GRAPHICAL traces have the same problem source . Unfortunately , such
USER INTERFACE FOR SOFTWARE CRASH ANALY conventional approaches are error prone , tedious , time
SIS DATA ” by Sowgandh Sunil Gadi et al . , and assigned to consuming , and often fail to yield accurate information
the assignee of the present application , which is incorpo - 30 about the source of the crash . More specifically , similar stack
rated herein by reference in its entirety . traces often have very different sources for their correspond

This application is related to U . S . patent application Ser . ing crashes . Thus , conventional approaches for manually
No . 15 / 415 , 235 filed Jan . 25 , 2017 , entitled “ COMPUTER comparing stack traces are not acceptable for determining
CRASH RISK ASSESSMENT ” by Sowgandh Sunil Gadi et the source of a software crash .
al . , and assigned to the assignee of the present application , 35
which is incorporated herein by reference in its entirety . BRIEF DESCRIPTION OF THE DRAWINGS

This application is related to U . S . patent application Ser .
No . 15 / 415 , 261 filed Jan . 25 , 2017 , entitled “ DETERMI - The accompanying drawings , which are incorporated in
NATION OF A CULPRIT THREAD AFTER A PHYSICAL and form a part of this specification , illustrate embodiments
CENTRAL PROCESSING UNIT LOCKUP ” by Sowgandh 40 of the present technology and , together with the description ,
Sunil Gadi et al . , and assigned to the assignee of the present serve to explain the principles of the present technology . The
application , which is incorporated herein by reference in its drawings referred to in this description should not be under
entirety . stood as being drawn to scale except if specifically noted .

FIG . 1 shows an example computer system upon which
BACKGROUND ART 45 embodiments of the present invention can be implemented .

FIG . 2 is a diagram including the various components
In the environment of computing , software products very which comprise an automated end - to - end system for analy

often include the capability to accommodate third party sis of customer service requests in accordance with embodi
“ plug - ins ” . Third party plug - ins include , for example , stor - ments of the present invention .
age drivers , networking drivers , and various other modules 50 FIG . 3 is a diagram of the various components comprising
made by a third party (i . e . , someone other than the party that crash analyzer 210 of FIG . 2 , in accordance with embodi
developed the original software product) . As a result , the end ments of the present invention .
product used by customers is frequently comprised of the FIG . 4 is a table of functions comprising a back trace in
originally provided software product , e . g . , an application , accordance with embodiments of the present invention .
and any number of third party plug - ins . Should a customer 55 FIG . 5 is a flowchart of various processes performed in an
experience a problem with the end product , the customer automated end - to - end method for analysis of customer ser
typically reports the problem to the party that developed the vice requests in accordance with embodiments of the present
original software product . The source of the problem , how invention .
ever , may be one the many third party plug - ins , not the FIG . 6 is a flowchart of various processes performed to
original software product . Thus , it is critical for software 60 determine a culprit thread in accordance with embodiments
developers to be able to accurately determine the actual of the present invention .
source of the problem . FIG . 7 is a flowchart of various processes performed to
As is known in the art , a crash or system crash refers to identify a culprit module in accordance with embodiments

a situation in which a computer program such as , for of the present invention .
example , an operating system or a software application 65 FIG . 8 is a table of functions including an essential stack
ceases to function properly . When such a crash occurs , a of functions in accordance with embodiments of the present
purple screen of death (PSOD) containing a stack trace or invention .

US 10 , 268 , 563 B2

tion .

FIG . 9 is chart of possible tag permutations for the present FIG . 29 is an example GUI listing additional log message
example computer system in accordance with embodiments information in accordance with embodiments of the present
of the present invention . invention .

FIG . 10 is a flowchart of various processes performed to FIG . 30 is an example GUI comprising complete log files
generate a signature back trace in accordance with embodi - 5 in accordance with embodiments of the present invention .
ments of the present invention FIG . 31 is a flowchart of various processes performed to

FIG . 11 is a diagram including a signature back trace monitor a crash analysis system in accordance with embodi
generated in accordance with embodiments of the present ments of the present invention .
invention . FIG . 32 is a diagram including an automated end - to - end

FIG . 12 is an example view of a GUI of computer system 10 system and a risk assessment system in accordance with
crash results in accordance with various embodiments of the embodiments of the present invention .

FIG . 33 is a schematic diagram of components compris present invention .
FIG . 13 is an example GUI of a dashboard page including ing a risk assessment system in accordance with embodi

component access control via a pull down window in 15 ments of the present invention .
accordance with various embodiments of the present inven 15 FIG . 34 is a listing of various example parameters utilized

by a risk assessment system in accordance with embodi
ments of the present invention . FIG . 14 is an example GUI of tables of crash report data FIG . 35 is a flowchart of various processes performed to

in accordance with various embodiments of the present monitor a crash analysis system in accordance with embodi
invention . 20 ments of the present invention .

FIG . 15 is an example GUI listing signatures and the FIG . 36 is a flowchart of various processes performed to
corresponding PSOD counts for a driver in accordance with determine a culprit thread in a physical central processing
various embodiments of the present invention . unit (pcpu) lockup in accordance with embodiments of the

FIG . 16 is an example GUI for selecting a start date and present invention .
an end date for desired crash results in accordance with 25 FIG . 37 is a schematic diagram of various components
various embodiments of the present invention . comprising crash analyzer 210 in accordance with embodi

FIG . 17 is an example GUI which provides a graphic ments of the present invention .
visualization representing crash data in accordance with
various embodiments of the present invention . DESCRIPTIONS OF EMBODIMENTS

FIG . 18 is an example GUI which provides a table listing 30
the data for individual crashes in accordance with various Reference will now be made in detail to various embodi
embodiments of the present invention . ments of the present technology , examples of which are

illustrated in the accompanying drawings . While the present FIG . 19 is an example GUI which provides a graphic
visualization representing crash data in accordance with 35 embodiments it will be understood that they are not

technology will be described in conjunction with these
various embodiments of the present invention . intended to limit the present technology to these embodi FIG . 20 is an example GUI which provides a Crash ments . On the contrary , the present technology is intended to Report Feedback feature in accordance with various cover alternatives , modifications and equivalents , which
embodiments of the present invention . may be included within the spirit and scope of the present

FIG . 21 is an example GUI which provides the complete 40 technology as defined by the appended claims . Furthermore ,
signature back trace corresponding to a signature portion in in the following description of the present technology ,
accordance with various embodiments of the present inven - numerous specific details are set forth in order to provide a
tion . thorough understanding of the present technology . In other

FIG . 22 is a flowchart of various processes performed to instances , well - known methods , procedures , components ,
provide crash results for a computer system on a graphical 45 and circuits have not been described in detail as not to
user interface in accordance with embodiments of the pres - unnecessarily obscure aspects of the present technology .
ent invention .

FIG . 23 is a diagram including an automated end - to - end NOTATION AND NOMENCLATURE
system and a monitoring system in accordance with embodi
ments of the present invention . 50 Some portions of the detailed descriptions which follow

FIG . 24 is a schematic diagram of components compris - are presented in terms of procedures , logic blocks , process
ing a monitoring system in accordance with embodiments of ing and other symbolic representations of operations on data
the present invention . bits within a computer memory . These descriptions and

FIG . 25 is a listing of various example log messages or representations are the means used by those skilled in the
logs having an example prefix in accordance with embodi - 55 data processing arts to most effectively convey the substance
ments of the present invention . of their work to others skilled in the art . In the present

FIG . 26 is a listing illustrating an example prefix format application , a procedure , logic block , process , or the like , is
used in accordance with embodiments of the present inven - conceived to be one or more self - consistent procedures or
tion . instructions leading to a desired result . The procedures are

FIG . 27 is an example GUI including a graphical repre - 60 those requiring physical manipulations of physical quanti
sentation of example operation results received from a log ties . Usually , although not necessarily , these quantities take
analyzer in accordance with embodiments of the present the form of electrical or magnetic signals capable of being
invention . stored , transferred , combined , compared , and otherwise

FIG . 28 is an example GUI including charts correspond - manipulated in an electronic device .
ing to example operation results received from a log ana - 65 It should be borne in mind , however , that all of these and
lyzer in accordance with embodiments of the present inven - similar terms are to be associated with the appropriate
tion . physical quantities and are merely convenient labels applied

US 10 , 268 , 563 B2

to these quantities . Unless specifically stated otherwise as read - only memory (EEPROM) , FLASH memory , other
apparent from the following discussions , it is appreciated known storage media , and the like . The techniques addi
that throughout the description of embodiments , discussions tionally , or alternatively , may be realized at least in part by
utilizing terms such as “ displaying ” , “ identifying ” , “ gener - a processor - readable communication medium that carries or
ating ” , “ deriving ” , “ providing , " " utilizing ” , “ determining , ” 5 communicates code in the form of instructions or data
or the like , refer to the actions and processes of an electronic structures and that can be accessed , read , and / or executed by
computing device or system such as : a host processor , a a computer or other processor .
processor , a memory , a virtual storage area network The various illustrative logical blocks , modules , circuits
(VSAN) , a virtualization management server or a virtual and instructions described in connection with the embodi
machine (VM) , among others , of a virtualization infrastruc - 10 ments disclosed herein may be executed by one or more
ture or a computer system of a distributed computing processors , such as one or more motion processing units
system , or the like , or a combination thereof . The electronic (MPUs) , sensor processing units (SPUs) , host processor (s)
device manipulates and transforms data , represented as or core (s) thereof , digital signal processors (DSPs) , general
physical (electronic and / or magnetic) quantities within the purpose microprocessors , application specific integrated cir
electronic device ' s registers and memories , into other data 15 cuits (ASICs) , application specific instruction set processors
similarly represented as physical quantities within the elec (ASIPs) , field programmable gate arrays (FPGAs) , or other
tronic device ' s memories or registers or other such infor equivalent integrated or discrete logic circuitry . The term
mation storage , transmission , processing , or display com “ processor , ” as used herein may refer to any of the foregoing
ponents . structures or any other structure suitable for implementation

Embodiments described herein may be discussed in the 20 of the techniques described herein . In addition , in some
general context of processor - executable instructions resid aspects , the functionality described herein may be provided
ing on some form of non - transitory processor - readable within dedicated software modules or hardware modules
medium , such as program modules , executed by one or more configured as described herein . Also , the techniques could
computers or other devices . Generally , program modules be fully implemented in one or more circuits or logic
include routines , programs , objects , components , data struc - 25 elements . A general purpose processor may be a micropro
tures , etc . , that perform particular tasks or implement par - cessor , but in the alternative , the processor may be any
ticular abstract data types . The functionality of the program conventional processor , controller , microcontroller , or state
modules may be combined or distributed as desired in machine . A processor may also be implemented as a com
various embodiments . bination of computing devices , e . g . , a combination of an

In the Figures , a single block may be described as 30 SPU / MPU and a microprocessor , a plurality of micropro
performing a function or functions ; however , in actual cessors , one or more microprocessors in conjunction with an
practice , the function or functions performed by that block SPU core , MPU core , or any other such configuration .
may be performed in a single component or across multiple
components , and / or may be performed using hardware , Example Computer System Environment
using software , or using a combination of hardware and 35
software . To clearly illustrate this interchangeability of With reference now to FIG . 1 , all or portions of some
hardware and software , various illustrative components , embodiments described herein are composed of computer
blocks , modules , circuits , and steps have been described readable and computer - executable instructions that reside ,
generally in terms of their functionality . Whether such for example , in computer - usable / computer - readable storage
functionality is implemented as hardware or software 40 media of a computer system . That is , FIG . 1 illustrates one
depends upon the particular application and design con example of a type of computer (computer system 100) that
straints imposed on the overall system . Skilled artisans may can be used in accordance with or to implement various
implement the described functionality in varying ways for embodiments which are discussed herein . It is appreciated
each particular application , but such implementation deci that computer system 100 of FIG . 1 is only an example and
sions should not be interpreted as causing a departure from 45 that embodiments as described herein can operate on or
the scope of the present disclosure . Also , the example within a number of different computer systems including ,
mobile electronic device described herein may include com - but not limited to , general purpose networked computer
ponents other than those shown , including well - known systems , embedded computer systems , routers , switches ,
components . server devices , client devices , various intermediate devices /

The techniques described herein may be implemented in 50 nodes , stand alone computer systems , media centers , hand
hardware , software , firmware , or any combination thereof , held computer systems , multi - media devices , virtual
unless specifically described as being implemented in a machines , virtualization management servers , and the like .
specific manner . Any features described as modules or Computer system 100 of FIG . 1 is well adapted to having
components may also be implemented together in an inte peripheral tangible computer - readable storage media 102
grated logic device or separately as discrete but interoper - 55 such as , for example , an electronic flash memory data
able logic devices . If implemented in software , the tech storage device , a floppy disc , a compact disc , digital versa
niques may be realized at least in part by a non - transitory tile disc , other disc based storage , universal serial bus
processor - readable storage medium comprising instructions " thumb " drive , removable memory card , and the like
that , when executed , perform one or more of the methods coupled thereto . The tangible computer - readable storage
described herein . The non - transitory processor - readable data 60 media is non - transitory in nature .
storage medium may form part of a computer program System 100 of FIG . 1 includes an address / data bus 104 for
product , which may include packaging materials . communicating information , and a processor 106A coupled

The non - transitory processor - readable storage medium with bus 104 for processing information and instructions . As
may comprise random access memory (RAM) such as depicted in FIG . 1 , system 100 is also well suited to a
synchronous dynamic random access memory (SDRAM) , 65 multi - processor environment in which a plurality of proces
read only memory (ROM) , non - volatile random access sors 106A , 106B , and 106C are present . Conversely , system
memory (NVRAM) , electrically erasable programmable 100 is also well suited to having a single processor such as ,

US 10 , 268 , 563 B2

for example , processor 106A . Processors 106A , 1066 , and eral computer - readable storage media 102 , and / or other
106C may be any of various types of microprocessors . tangible computer - readable storage media .
System 100 also includes data storage features such as a
computer usable volatile memory 108 , e . g . , random access Automated End - to - End System and Method for
memory (RAM) , coupled with bus 104 for storing informa - 5 Analysis of Customer Service Requests
tion and instructions for processors 106A , 106B , and 106C .
System 100 also includes computer usable non - volatile First , a brief overview of the present Automated End - to
memory 110 , e . g . , read only memory (ROM) , coupled with End System for Analysis of Customer Service Requests , as
bus 104 for storing static information and instructions for depicted in FIG . 2 , is provided in the present paragraph . The
processors 106A , 1066 , and 106C . Also present in system 10 various embodiments of the present invention provide an
100 is a data storage unit 112 (e . g . , a magnetic or optical disc automated , end - to - end , system which automatically gener
and disc drive) coupled with bus 104 for storing information ates and provides crash report analytics . The various com
and instructions . System 100 also includes an alphanumeric ponents of the present embodiments , will initially receive a
input device 114 including alphanumeric and function keys crash report . Next , the components of the present embodi
coupled with bus 104 for communicating information and 15 ments automatically analyze the core dump of the crash
command selections to processor 106A or processors 106A , report . Finally , the components of the present embodiments
1066 , and 106C . System 100 also includes an cursor control generate a graphical representation summarizing the results
device 116 coupled with bus 104 for communicating user for all received crash reports . The below discussion provides
input information and command selections to processor a detailed description of various embodiments of the present
106A or processors 106A , 106B , and 106C . In one embodi - 20 invention . Additionally , a description of the automated end
ment , system 100 also includes a display device 118 coupled to - end method for analysis of customer service requests is
with bus 104 for displaying information . provided in conjunction with FIG . 5 .

Referring still to FIG . 1 , display device 118 of FIG . 1 may Importantly , for purposes of brevity and clarity , the fol
be a liquid crystal device (LCD) , light emitting diode display lowing detailed description of the various embodiments of
(LED) device , cathode ray tube (CRT) , plasma display 25 the present invention , will be described using an example in
device , a touch screen device , or other display device which the computer system generating the core dump or
suitable for creating graphic images and alphanumeric char - PSOD is a VMware ESXiTM , enterprise - class , type - 1 hyper
acters recognizable to a user . Cursor control device 116 visor developed by VMware , Inc . of Palo Alto , Calif . for
allows the computer user to dynamically signal the move - deploying and serving virtual computers . Importantly ,
ment of a visible symbol (cursor) on a display screen of 30 although the description and examples herein refer to
display device 118 and indicate user selections of selectable embodiments of the present invention applied to the above
items displayed on display device 118 . Many implementa computer system with , for example , its corresponding set of
tions of cursor control device 116 are known in the art functions , it should be understood that the embodiments of
including a trackball , mouse , touch pad , touch screen , joy - the present invention are well suited to use with various
stick or special keys on alphanumeric input device 114 35 other types of computer systems .
capable of signaling movement of a given direction or With reference now to FIG . 2 , a diagram 200 , including ,
manner of displacement . Alternatively , it will be appreciated among other items , the various components which comprise
that a cursor can be directed and / or activated via input from an automated end - to - end system for analysis of customer
alphanumeric input device 114 using special keys and key service requests , is shown . The present discussion will first
sequence commands . System 100 is also well suited to 40 identify the various components in diagram 200 . The present
having a cursor directed by other means such as , for discussion will then describe , in detail , the operation of the
example , voice commands . In various embodiments , alpha - various components . As shown in FIG . 2 , diagram 200
numeric input device 114 , cursor control device 116 , and includes a customer 202 and a customer service request
display device 118 , or any combination thereof (e . g . , user repository 204 . FIG . 2 further includes an analysis system
interface selection devices) , may collectively operate to 45 206 which is comprised of the various components , which ,
provide a graphical user interface (GUI) 130 under the in turn , comprise the present automated end - to - end system
direction of a processor (e . g . , processor 106A or processors for analysis of core dumps . Specifically , analysis system 206
106A , 106B , and 106C) . GUI 130 allows user to interact includes a core dump collector 208 and a crash analyzer 210 .
with system 100 through graphical representations presented Various components comprising crash analyzer 210 are
on display device 118 by interacting with alpha - numeric 50 further discussed below . Referring still to FIG . 2 , diagram
input device 114 and / or cursor control device 116 . 200 also includes database application interface (API) 212 ,

System 100 also includes an I / O device 120 for coupling a report database 214 , and a partner portal 216 which is
system 100 with external entities . For example , in one accessible by a partner 218 . It should be understood that in
embodiment , I / O device 120 is a modem for enabling wired various embodiments of the present invention , one or more
or wireless communications between system 100 and an 55 of the components of FIG . 3 are embodied in a computer
external network such as , but not limited to , the Internet . system such as , for example , computers system 100 of FIG .

Referring still to FIG . 1 , various other components are 1 . As one example , in various embodiments of the present
depicted for system 100 . Specifically , when present , an invention , the operations of crash analyzer 210 are executed
operating system 122 , applications 124 , modules 126 , and using one of more of processors 106a , 106b , and 106c .
data 128 are shown as typically residing in one or some 60 Referring still to FIG . 2 , in typical operation , customer
combination of computer usable volatile memory 108 (e . g . , 202 experiences a computer crash . Once the crash occurs ,
RAM) , computer usable non - volatile memory 110 (e . g . , customer 202 receives a PSOD on his computer display .
ROM) , and data storage unit 112 . In some embodiments , all When presented with the PSOD , customer 202 then gener
or portions of various embodiments described herein are ates a service request and uploads the service request , along
stored , for example , as an application 124 and / or module 65 with the contents of the PSOD (also referred to as a “ core
126 in memory locations within RAM 108 , computer - dump ”) , to service request repository 204 . As is known in
readable storage media within data storage unit 112 , periph - the art , a core dump is a binary file that contains a snapshot

US 10 , 268 , 563 B2
10

of system memory at the time of crash . Using various tools , Referring still to core summary generator 302 , in various
one is able to extract a " back trace ” from the core dump file . embodiments of the present invention , core summary gen
Some operating systems display the back trace on the erator 302 is comprised of numerous modules , not shown . In
monitor when the crash happens along with generation of such embodiments , each module performs an analysis of a
the core dump file . For purposes of brevity and clarity the 5 specific component . For example , in one embodiment , a
following discussion will describe the operation of the physical central processing unit (PCPU) lockup module
components of FIG . 2 in conjunction with a single core performs a lockup analysis , an Interrupt module performs
dump . It will be understood , that the embodiments of the interrupt related analysis , a BackTrace module extracts the

present invention are similarly well suited to operation with back trace , etc . Further , in various embodiments , a Core
10 Summary application loads the macro modules into a GNU a plurality of core dumps .

Core dump collector 208 of analysis system 206 receives debugger (GDB) for the macros to perform their analyses .
Once the analyses by all of the macros are complete , core the core dump from service request repository 204 . In summary generator 302 collects the output , translates it , and

various embodiments of the present invention , core dump generates the JSON object , and XML core summary report .
collector 208 automatically and periodically accesses ser - 15 Again , although the above described macros and resulting
vice request repository 204 to check for core dumps . In XML core summary report and JSON object pertain to the
various other embodiments , service request repository 204 above - described computer system experiencing a crash , it
periodically pushes core dumps to core dump collector 208 . should be understood that the embodiments of the present
In one embodiment , core dump collector 208 performs a invention are well suited to use with various other types of
check to ensure that the core dump is not a duplicate using , 20 computer systems . Specifically , different types of computer
for example , a secure hash algorithm . In various embodi systems will have , for example , different methods for ana
ments , core dump collector 208 ignores or discards duplicate lyzing crash data . However , the inventive concepts of the
core dumps . Core dump collector 208 then assigns various various embodiments of the present invention are also
values to the unique core dump including , but not limited to , applicable to the different types of computer systems and
a location of dump , a timestamp of when the core dump was 25 their respective types of crash data .
uploaded by core dump collector 208 , an indication of Referring briefly to FIG . 4 , a back trace 400 or stack of
success or failure as will be returned from crash analyzer functions of a culprit thread is shown . In the present appli
210 , retry attempts , and the like . The present invention is cation , the term " core dump ” is used to represent informa
also well suited to having various other values assigned to tion from a received PSOD , including the back trace or
the core dump . Dump collector 208 then provides the unique 30 listing of functions . As stated above , a user typically delivers
core dump to crash analyzer 210 . In various embodiments of the PSOD or core dump to , for example , a service request
the present invention , core dump collector 208 automatically repository . Typically , a core summary is derived , by core
provides the core dump to crash analyzer 210 . In various summary generator 302 of FIG . 3 , from the core dump or
other embodiments , crash analyzer 210 accesses core dump PSOD . Back trace 400 or stack of functions corresponds to
collector 208 . Although certain components are depicted in 35 a thread (i . e . the " culprit thread ") which the user believes is
FIG . 2 , it should be understood that , for purposes of clarity causing a software crash . It will be understood that the core
and brevity , each of the components may themselves be dump or PSOD may include some additional information
comprised of numerous modules or macros which are not other than the back trace or stack of functions corresponding
shown . to the culprit thread . As such , in the present application , the

Referring now to FIG . 3 , a detailed diagram including 40 terms " crash report ” , “ core dump ” , “ core summary ” , “ back
various components of crash analyzer 210 is shown . As trace ” , “ function stacks ” , “ stack of functions ” , “ PSOD ” , and
shown in FIG . 3 , crash analyzer 210 includes a core sum - the like , may be used interchangeably as they often are in the
mary generator 302 , a culprit module identifier 304 , a art . Further , in 400 , that stack of functions is presented in the
signature back trace generator 306 , and a GUI generator column entitled " function ” . Information provided in other
308 . Upon receiving a core dump , core summary generator 45 columns is generated by crash analyzer 210 .
302 generates a core summary . In one embodiment , core Although shown in black and white in the present patent
summary generator 302 analyzes a core dump and generates application , it will be understood that such back traces or
a JavaScript Object Notation (JSON) object , and a core function stacks are often presented to the user , on the user ' s
summary report in EXtensible Markup Language (XML) display , in a color such as , for example , purple . Additionally ,
format . In such an embodiment , the JSON object contains 50 as these back traces are found in a core dump of a stack of
several key value pairs (i . e . , fields and their values) . The functions resulting in a software crash , these back traces or
core summary XML report contains various sections such as core dumps are sometimes referred to as a purple screen of
the back trace , system information , driver version and death (PSOD) . It will be understood that is some cases ,
firmware information , driver heap memory information , depending upon the type operating system or computer
driver scheduled jobs information , driver locks information 55 platform , the display of the PSOD may have another color
etc . corresponding to the core dump . Although the above or may be referred to using a different name or acronym . For
XML core summary report and JSON object pertain to the purposes of clarity and brevity , examples used in the present
above - described computer system experiencing a crash , it application will refer to such core dumps or displays as
should be understood that the embodiments of the present PSODs . Furthermore , again for purposes of brevity and
invention are well suited to use with various other types of 60 clarity , the following description of the various embodi
computer systems . Specifically , different types of computer ments of the present invention , will be described using an
systems will have , for example , different types of crashes , example in which the computer system generating the core
with different types of alerts , and core dumps with different dump or PSOD is a VMware ESXiTM , enterprise - class ,
types of information in different formats . However , the type - 1 hypervisor developed by VMware , Inc . of Palo Alto ,
inventive concepts of the various embodiments of the pres - 65 Calif . for deploying and serving virtual computers . Impor
ent invention are also applicable to the different types of tantly , although the description and examples herein refer to
computer systems and their respective types of crashes . embodiments of the present invention applied to the above

US 10 , 268 , 563 B2

computer system with , for example , its corresponding set of possible to , from a back trace derived from the PSOD ,
functions , it should be understood that the embodiments of identify a culprit module and generate a signature back trace
the present invention are well suited to use with various which corresponds to the software symptom of the received
other types of computer systems . Specifically , different types PSOD . Thus , embodiments of present analysis system 206
of computer systems will have , for example , a different 5 provide an end - to - end method and system which amounts to
operating system and / or different types of function stacks or significantly more than merely comparing a back trace of
back traces . However , the inventive concepts of the various one PSOD to a back trace of another PSOD using a
embodiments of the present invention are also applicable to computer . That is , the present embodiments provide signifi
the different types of computer systems and their respective cantly more than merely applying conventional processes on
types of functions . 10 a computer . Further , in some embodiments of the present

Referring again to crash analyzer 210 of FIGS . 2 and 3 , invention , the culprit module is accurately identified and the
crash analyzer 210 employs culprit module identifier 304 signature back trace is automatically generated in near real
and signature back trace generator 306 to analyze back trace time . In addition to identifying the culprit module , by
400 of FIG . 4 . In brief , culprit module identifier 304 and providing a signature back trace , culprit module identifier
signature back trace generator 306 automatically identify a 15 304 and signature back trace generator 306 provide specific
culprit module and automatically generate a signature back code - based information about the source of the reported
trace corresponding to the software symptom of each crash . Again , a detailed description of the operations of
received PSOD . Importantly , in various embodiments , culprit module identifier 304 and signature back trace gen
should there be any failure during the operations of analysis erator 306 is provided below .
system 206 , the process will default to restart from the 20 Referring still to FIG . 3 , in the present end - to - end method
beginning . In so doing , analysis system 206 provides a performed by analysis system 206 of FIG . 2 , the results from
robust fallback position for the received core dumps and culprit module identifier 304 and signature back trace gen
helps to ensure that each core dump is properly analyzed . A erator 306 are then provided to GUI generator 308 . In
detailed description of the operation of crash analyzer 210 various embodiments , GUI generator 308 generates graphi
including the operation of culprit module identifier 304 and 25 cal representations of the results received from culprit
signature back trace generator 306 is provided below . Simi - module identifier 304 and signature back trace generator
larly , a detailed description of the operation of GUI genera - 306 . In embodiments of the present invention , GUI genera
tor 308 is provided below . tor 308 generates novel graphical representations which

Referring still to crash analyzer 210 of FIGS . 2 and 3 , in were previously not possible using conventional manual
one embodiment of the present invention , crash analyzer 30 back trace comparisons . The graphical representations of
210 validates the input from core dump collector 208 . Crash GUI generator 308 provide analytics and new found insight
analyzer 210 of the present embodiment then checks depen - for customer support teams . These analytics and new found
dencies and calls the CoreSummary application described insight all enable the support team to provide verifying data
above . In the present embodiment , crash analyzer 210 then along with the support team ' s determination of the problem
validates the JSON object and the XML core summary 35 source (i . e . , the culprit module) for a reported crash . Again ,
report generated by core summary generator 302 of FIG . 3 . a detailed description of the operation of GUI generator 308
Further , if crash analyzer 210 finds that an error has hap - is provided below .
pened during the analysis (described in detail below) , crash With reference again to FIG . 2 , the graphical representa
analyzer 210 returns a FATAL error or a retry again (EA - tions of the results received from culprit module identifier
GAIN) error . Crash analyzer 212 and database API 212 may 40 304 and signature back trace 306 , are forwarded from
sometimes fail due to issues with external dependencies analysis system 206 to a database API 212 . Database API
such as symbol server down , intermittent network issues , 212 ensures that the graphical representations are in the
scheduled maintenance , and similar . In such instances crash proper state to be stored in report database 214 . More
analyzer 212 fails and returns the EAGAIN error to core specifically , in various embodiments of the present inven
dump collector 208 . Upon receiving the EAGAIN error , in 45 tion , crash analyzer 210 outputs xml data and JSON data of
various embodiments of the present invention , core dump an individual crash to the report database 214 through
collector 208 will retry after a given configurable time database API 212 . Over time , the database accumulates data
and / or will execute a number of retry attempts . After all the of several thousands of crashes . As will be described below
retry attempts are exhausted , in various embodiments , core in detail , the final GUI presentation will “ bucket ” the various
dump collector 208 will stop retrying . As stated above , 50 crashes and a web server , not shown , of partner portal 216
although the crash analyzer operations pertain to the above - will generate the corresponding charts , graphs , etc . In one
described computer system experiencing a crash , it should embodiment of the present invention pertaining to the above
be understood that the embodiments of the present invention described example computer system , database API 212
are well suited to use with various other types of computer receives the previously mentioned JSON object and XML
systems . However , the inventive concepts of the various 55 core summary report from crash analyzer 210 . In one such
embodiments of the present invention are also applicable to embodiment , database API 212 performs a schema valida
the different types of computer systems and their respective tion of the JSON object and performs a schema validation of
types of crash data . the XML core summary report . If everything is found to be

Referring still to FIG . 3 , in the present embodiments , fine , database API 212 writes the JSON object and the XML
culprit module identifier 304 and signature back trace gen - 60 core summary report to report database 214 . Although the
erator 306 perform a novel process for culprit module above operations of database API 212 pertain to the above
identification and signature back trace generation which is described computer system experiencing a crash , it should
necessarily rooted in computer technology to overcome a be understood that the embodiments of the present invention
problem specifically arising in the realm of the analysis of are well suited to use with various other types of computer
crash reports for computer systems . Thus , embodiments of 65 systems . Specifically , different types of computer systems
the present analysis system 206 of FIG . 2 provide a here will have , for example , different types of APIs and may
tofore unknown end - to - end system and method by which it utilize databases requiring information in different formats .

14
US 10 , 268 , 563 B2

13
However , the inventive concepts of the various embodi cedures of this method will be described with reference to
ments of the present invention are also applicable to the elements and / or components of , for example , FIGS . 1 - 11 . It
different types of computer systems and their respective is appreciated that in some embodiments , the procedures
types of APIs and databases . may be performed in a different order than described , that

In one embodiment of the present invention pertaining to 5 some of the described procedures may not be performed ,
the above described example computer system , Partner and / or that one or more additional procedures to those
portal 216 accesses report database 214 and via , for described may be performed . Flow diagram 600 includes
example , a website enables a partner 218 to access the some procedures that , in various embodiments , are carried
graphical representations stored in report database 214 . In so out by one or more processors under the control of com
doing , partner 218 is able to access , for example , the 10 puter - readable and computer - executable instructions that are
graphical representations of the results derived by crash stored on non - transitory computer - readable storage media . It
analyzer 210 of analysis system 206 . In one embodiment , is further appreciated that one or more procedures described
partner portal 216 further includes a messaging component , in the flow diagrams may be implemented in hardware , or a
not shown , for communicating crash results or other infor combination of hardware with firmware and / or software ,
mation with desired parties . 15 such as is shown , for example , in FIG . 1 . More specifically ,

Referring now to FIG . 5 , a flowchart 500 is provided various embodiments of the present invention , as described
which shows various processes performed in accordance in detail below , are performed by crash analyzer 210 of
with embodiments of the present automated end - to - end FIGS . 2 and 3 . In other approaches , the various embodi
method for analysis of customer service requests . At 502 , the ments of the present invention are performed on a crash
present embodiment of the automated end - to - end method for 20 analyzer which operates outside of an end - to - end system and
analysis of customer service requests begins by receiving a method .
core dump . Referring again to FIG . 6 , in one embodiment , as shown
At 504 of flowchart 500 of FIG . 5 , the core dump received at 602 , the present invention initially determines whether a

at 502 is analyzed . In the present automated end - to - end reported crash was caused by hardware . In one embodiment ,
method for analysis of customer service requests , the analy - 25 the present embodiment looks for a Machine Check Excep
sis includes 506 and 508 . tion (MCE) , a System Management Interrupt (SMI) , or any

At 506 , the present automated end - to - end method for other operation indicating that the crash was hardware
analysis of customer service requests initially analyzes the related . If such an indication is located , at 604 , the present
core dump by identifying the culprit module . embodiment determines that the crash corresponding to the
At 508 , the present automated end - to - end method for 30 core dump was caused by hardware . At 602 , if the crash was

analysis of customer service requests continues with the not caused by hardware , the present embodiment , must then
analysis of the core dump by generating a signature back determine what software and , more specifically , which
trace corresponding to the core dump received at 502 . thread or “ world ” , in which the crash is occurring . That is ,
Importantly , a detailed description of the analysis of the core embodiments in accordance with the present invention must
dump including the identification of culprit module and the 35 determine which thread is the culprit thread . If the crash is
generation of a signature back trace provided below . caused by hardware , embodiments of the present invention

At 510 , after the identification of culprit module at 506 indicate that the cause of the PSOD is hardware - based .
and the generation of a signature back trace at 508 , a GUI Further , a detailed description of the process used to deter
is generated to graphically represent the results of 506 and mine whether a reported a physical central processing unit
508 . 40 (PCPU) lockup crash was caused by hardware is provided

Thus , the present embodiments provide an automated below in conjunction with the discussion of FIGS . 36 - 37 .
end - to - end system and method for analysis for customer At 606 , to determine which thread is the culprit thread , the
service requests . present embodiment then determines whether a physical

central processing unit (pcpu) lockup or “ hang ” has
Culprit Module Detection and Signature Back 45 occurred . For clarification , a pcpu lockup occurs when one

Trace Generation Process or more threads run in kernel / privileged context for a longer
period without yielding the CPU (central processing unit) to

A brief overview of the present Culprit Module Detection the scheduler and / or not serving interrupts (for a longer
and Signature Back Trace Generation Process , of , for period of time) . This may be due to interdependencies
example , FIGS . 6 - 11 , is provided in the present paragraph . 50 between these threads , but often one thread is causing other
As is known in the art , a crash or system crash refers to a threads to lockup . Importantly , a pcpu lockup can occur in
situation in which a computer program such as , for example , one thread although another thread is responsible for the
an operating system or a software application ceases to pcpu lockup . That is , a first thread may be found to be
function properly . Using a back trace derived from a looping or otherwise in a pcpu lockup . Upon closer inspec
received PSOD , embodiments in accordance with the pres - 55 tion , it is sometimes determined that a second thread is
ent invention automatically determine which module / driver causing the first thread to experience the popu lockup . As an
(referred to as the " culprit module ”) is responsible for example , a first thread may be awaiting a lock that is being
causing a particular crash depicted in the PSOD . Further improperly held by a second thread . Thus , the first thread
more , embodiments in accordance with the present inven - experiences the popu lockup , but the second thread , which
tion will automatically generate a representative signature 60 improperly holding the lock , is causing the popu lockup of
back trace which corresponds to the software symptom of the first thread . In such situations , it is important to identify
the received PSOD . The below discussion provides a the second thread (not the first thread) as the culprit thread
detailed description of various embodiments of the present which corresponds to the pcpu lockup and corresponding
invention . software crash . Thus , in embodiments of the present inven
FIGS . 6 , 7 and 10 are flow diagrams of an example 65 tion , if it is determined at 606 that a pcpu lockup has

method for culprit module detection and generating a sig - occurred , a further determination is made , at 608 , to identify
nature back trace , according to various embodiments . Pro - which thread is responsible for the popu lockup condition . If

16
US 10 , 268 , 563 B2

15
a pcpu lockup is not present , embodiments in accordance Referring again to 702 of FIG . 7 , embodiments of the
with the present invention determine , at 610 , whether present invention receive back trace 400 of FIG . 4 for the
another type of deadlock is responsible for the software culprit thread identified at 600 above . Typically , back trace
crash . A detailed description of the process used to deter - 400 will begin with the thread in which the crash occurred .
mine which thread is the culprit thread causing a pcpu 5 As described above , although back trace 400 typically has
lockup is provided below in conjunction with the discussion the thread in which the crash occurred listed at the top , it is
of FIGS . 36 - 37 . It should be noted that in the present possible that another thread is actually responsible for the
computer system can generate a PSOD due to any of several crash . It should be noted that the back trace 400 is only used
types of crashes . The types of crashes include , for example , herein for purposes of explaining the various embodiments
Exceptions , Intentional crashes , Panics , and Lockups . 10 of the present invention and is not intended to limit the
Although the above types of crashes pertain to the present present invention to a particular type of PSOD , core dump ,
computer system , the embodiments of the present invention or a specific back trace . Embodiments of the present inven
are well suited to use with various other types of computer tion are well suited to use with any of numerous PSODs or
systems . Specifically , different types of computer systems corresponding numerous back traces . Moreover , as will be
will have , for example , different types of crashes . However , 15 described below in detail , a significant benefit of the various
the inventive concepts of the various embodiments of the embodiments of the present invention is the capability to
present invention are also applicable to the different types of automatically identify a culprit module and automatically
computer systems and their respective types of crashes . generate a signature back trace corresponding to the soft

In one embodiment , at 610 , the present invention then ware symptom of each PSOD received . Further , embodi
determines if a spin lock count exceeded is occurring and is 20 ments of the present invention are able to accomplish the
causing the software crash . Like 606 above , at 610 , embodi - aforementioned tasks regardless of the number of PSODs
ments of the present invention determine if a spin lock count received and with accurate and repeatable results .
exceeded condition exists . For clarification , a spin lock Importantly , the embodiments of the present invention , as
count exceeded condition occurs , for example , when thread will be described below , provide an approach for culprit
A is trying to hold a lock but is unable because the lock is 25 module detection and signature back trace generation which
held by another thread , thread B , for longer period . Thread differs significantly from the conventional processes used to
A will continue to spin waiting for the lock to be released review PSOD crash reports . In conventional approaches ,
and after a certain time it will give up causing the “ Spin lock after a crash , the entire stack trace is manually examined and
count exceeded ” condition and corresponding PSOD . In this compared to prior entire stack traces to hopefully find some
example , the culprit world is thread B . This is a very simple 30 similarity . Such conventional approaches are error prone ,
manifestation but it can happen in several complex ways tedious , time - consuming , and often fail to yield accurate
where multiple threads are involved . It should be noted that information about the source of the crash . Instead , the
a deadlock is just one scenario which can cause a “ Spin lock present embodiments , as will be described and explained
count exceeded ” condition . In fact , deadlocks are quite rare . below in detail , provide a previously unknown procedure for
It will be understood that there are various other scenarios 35 utilizing " tag sequence ” and “ tag depth " , in combination
which can cause “ Spin lock count exceeded ” condition . As with a newly derived listing of “ tag sequence permutations ”
shown at 610 , if a spin lock count exceeded condition exists , to provide a consistently accurate and repeatable determi
embodiments in accordance with the present invention nation of a culprit module and the generation of a signature
determine , at 612 , which thread is responsible for the spin back trace for a received PSOD . Thus , embodiments of the
lock count exceeded . In so doing , embodiments in accor - 40 present invention provide a PSOD crash report analysis
dance with the present invention can accurately identify the methodology which extends well beyond what was previ
culprit thread responsible for the spin lock count exceeded . ously done by hand .
Thus , at 612 , when a spin lock occurs , embodiments of the As will be described in detail , the various embodiments of
present invention accurately identify the culprit thread the present invention do not merely implement conventional
responsible for the software crash . 45 crash report analysis processes on a computer . Instead , the

As shown at 614 of FIG . 6 , if no spin lock count exceeded various embodiments of the present invention , in part ,
is identified at 610 , embodiments of the present invention provide a previously unknown procedure for utilizing “ tag
make the determination that the thread which is crashing is sequence ” and “ tag depth ” , in combination with a newly
the culprit thread . derived listing of “ tag sequence permutations ” to provide a

Referring now to FIG . 7 , a flowchart 700 of processes 50 consistently accurate and repeatable determination of a
performed in accordance with embodiments of the present culprit module and the generation of a signature back trace
invention is shown . At 702 of FIG . 7 , once the culprit thread for a received PSOD . Hence , embodiments of the present
is identified as described in conjunction with 602 through invention provide a novel process for culprit module detec
614 of FIG . 6 , embodiments in accordance with the present tion and signature back trace generation which is necessarily
invention then obtain the back trace or stack of functions 55 rooted in computer technology to overcome a problem
corresponding to the culprit thread . Referring briefly to FIG . specifically arising in the realm of the analysis of crash
4 , a back trace 400 of an example culprit thread is shown . reports for computer systems .
The below discussion will describe how embodiments in At 704 of FIG . 7 , embodiments of the present invention
accordance with the present invention use back trace 400 of divide back trace 400 of FIG . 4 of the culprit thread into
the culprit thread extracted from a PSOD or core dump to 60 frames . FIG . 8 shows back trace 400 with various frames
identify which module or driver (referred to as the “ culprit 802 - 826 . In the present embodiment , each of frames 802
module ”) is causing the crash . Additionally , the below 826 pertains to a function . The present invention is also well
discussion will describe how embodiments in accordance suited to embodiments in which the back trace 400 is
with the present invention use back trace 400 of the culprit separated into frames that are based upon features other than
thread to determine which module is the culprit module , and 65 the functions .
to then generate a " signature ” back trace corresponding to At 706 of FIG . 7 , embodiments in accordance with the
the software symptom of the received PSOD or core dump . present invention then determine the module or driver

US 10 , 268 , 563 B2
17 18

associated with each of frames 802 - 826 of back trace 400 of trace 400 , starting at frame 808 and working down back
FIG . 8 . In one embodiment , tags are assigned to the various trace 400 , it is determined that frame 812 contains an
modules as follows : D = Driver ; M = Module ; V = VMkernel ; interrupt function , BH _ DrainAndDisablelnterrupts . Hence ,
and L = VMKLinux . As shown in FIG . 8 , the tag assignation in the present embodiment , the current context is “ interrupt ” .
is shown in the Tag column 834 of back trace 400 . Further , 5 At 710 Of FIG . 7 , upon determining the current context , the
as shown in FIG . 8 , back trace 400 also includes an present embodiments define the function that marks the start
Instruction Address column 828 , a Function column 830 , of the current context as a benign function marker . That is ,
and Offset column 832 , and Module / Driver Name column all functions located below the function which defines the 836 . Although such tags and modules and such a back trace current context will not be involved in the current context . format are recited in the present embodiment , the present 10 As such , the functions located below the function which invention is well suited to using other tags for each module defines the current context will not be responsible for the and to using back traces organized differently than back crash . Said differently , the crash can only be caused by those trace 400 . Similarly , the present invention is also well suited
to use with various other modules or module types . That is , functions pertaining to the current context . Thus , embodi
the tags and modules recited herein are representative of one 15 ments of the present invention define those functions located
embodiment of the present invention applied to a particular below the function that marks the start of the current context
computer system (as recited above) , and it should be under - as benign functions . Hence , as stated above , embodiments of
stood that the embodiments of the present invention are well the present invention define the function which marks the
suited to use with various other computer systems . Specifi start of the current context as a benign function marker . In
cally , different types of systems with , for example , different 20 the present example , function BH DrainAndDisableInter
operating systems , different modules , different drivers , or rupts of frame 812 is defined as the benign function marker .
differing kernel types may utilize different tags or type of In the present embodiment , an interrupt function was
tags , but the inventive concepts of the various embodiments defined as the context . It should be noted that several other
of the present invention are applicable to the different types contexts are possible , and that the number and type of
of computer systems . 25 possible contexts are based on the various functions asso
At 708 , embodiments in accordance with the present ciated with the particular computer system being evaluated .

invention examine frames 802 - 826 of back trace 400 of FIG . Further , different types of computer systems with , for
8 to identify functions which are known to be almost example , different types of functions and back traces may
certainly not responsible for the crash . That is , at 708 of FIG . have different possible contexts . That said , the inventive
7 , the various embodiments identify “ moot " functions in 30 concepts of the various embodiments of the present inven
back trace 400 . In one embodiment , such moot functions are , tion are applicable to the different types of computer systems
for example , helper function sequences , application program and their respective types of functions and their correspond
interface (API) functions to the kernel , driver calls , or i ng contexts .
various other functions whose probability to cause a crash is At 712 of FIG . 7 , using the results from 702 - 710 above ,
negligible . As shown in FIG . 8 , in back trace 400 , frames 35 the present embodiments define an essential stack . More
802 , 804 and 806 happen to include functions which are specifically , in the present embodiment , the essential stack is
known to be highly unlikely to cause a crash . As such , in the defined as the frame containing the benign function marker
example back trace 400 of FIG . 8 , frames 802 , 804 and 806 and all frames there above . In the present example , the
are deemed to include moot functions . Specifically , in the essential stack of back trace 400 is comprised of frame 812
present embodiment , back trace 400 contains frames 802 , 40 and all frames there above . Hence , the essential stack is
804 and 806 which include functions pertaining to a spin comprised of frames 802 - 812 . Referring now to FIG . 8 , the
lock . It is known that , in the present computer system , the back trace 400 is shown having essential stack 838 .
functions of frames 802 , 804 and 806 rarely , if ever , cause Referring now to 714 of FIG . 7 , the present embodiments
a crash . Hence , frames 802 , 804 and 806 are deemed as determine a tag sequence and a tag depth associated with
containing moot functions . Once again , the specific moot 45 essential stack 838 of FIG . 8 generated at 712 of FIG . 7
functions recited herein pertain to embodiments of the above . In one embodiment , the present invention generates
present invention applied to a particular computer system , as the tag sequence by accessing essential stack 838 of FIG . 8 .
described above , with a particular set of functions . It should Next , embodiments of the present invention ignore the moot
be understood that the present invention is well suited to use functions of frames 802 - 806 , and only consider the sequence
with various other types of computer systems . Specifically , 50 of tags found in remaining frames 808 - 812 of essential stack
different types of computer systems with , for example , 838 . That is , when frames 802 - 806 containing moot func
different types of functions and back traces may find that tions are removed from essential stack 838 , only frames 808 ,
different types of functions qualify as moot functions , but 810 , and 812 remain . In examining the remaining frames ,
the inventive concepts of the various embodiments of the embodiments in accordance with the present invention find
present invention are applicable to the different types of 55 that frame 808 has a tag of D , frame 810 has a tag of V , and
computer systems and their respective types of functions . frame 812 has a tag of V . Thus , for the present example ,

Referring now to 710 of FIG . 7 , the various embodiments embodiments in accordance with the present invention find
of the present invention identify the particular frame in back a sequence of tags , referred to as a “ tag sequence ” , of D - V - V
trace 400 of FIG . 8 which defines the current context . As an corresponding to back trace 400 and essential stack 838 .
example , assume that a central processing unit (CPU) is 60 Embodiments in accordance with the present invention
executing a thread . The CPU then receives an interrupt . The further define this tag sequence in terms of its tag depth . That
CPU will then begin executing the interrupt handler func - is , the present embodiments note that , in the tag sequence
tion . Once the CPU begins executing the interrupt handle D - V - V , the tag of D occurs once (referred to as a depth of 1
function , it is understood that the context is now based on the for tag D) , and the tag of V occurs twice (referred to as a
interrupt . As such , any crash that then occurs would be 65 depth of 2 for tag V) . Thus , in the present embodiments , the
related to the current context (i . e . the interrupt) rather than tag depth and sequence for essential stack 838 is defined as
any prior context or previous functions . As shown in back DIV2 .

US 10 , 268 , 563 B2
19 20

At 716 of FIG . 7 , the embodiments of the present inven module . The following discussion will describe , in detail ,
tion utilize the tag depth and sequence , generated at 714 , to how embodiments of the present invention utilize chart 900
determine the culprit module . Specifically , referring now to and , in certain cases , the tag depth , to determine the culprit
FIG . 9 , a chart 900 (and corresponding legend 902) of module . As shown in chart 900 , permutation I pertains to a
possible tag sequence permutations is provided . Embodi - 5 tag sequence (determined at 714 of FIG . 7 above) which
ments of the present invention utilize the tag depth and begins with a D (i . e . , a driver or , more specifically , xla) .
sequence , D1V2 , derived at 714 of FIG . 7 above , along with Embodiments of the present invention have determined that ,
chart 900 of FIG . 9 to determine the culprit module . This for any tag sequence which begins with a D , the culprit
operation is described below in detail . Embodiments of the module is the first module in the tag sequence (i . e . , xla) ,
present invention generate the content of chart 900 (i . e . the 10 regardless of which tags (and corresponding modules) fol
list of permutations I - VII) based upon the tag sequences low the D in the tag sequence . Further , for tag sequences
which are permitted to occur in the operating system of the which pertain to permutation I , the present embodiments do
present example (described above) . Importantly , the list of not consider tag depth in the determination of the culprit
permutations I - VII , derived by the present embodiments and module . Similarly , as shown in chart 900 , permutation II
recited in chart 900 , pertains to embodiments of the present 15 pertains to a tag sequence (determined at 714 of FIG . 7
invention applied to a particular computer system with a above) which begins with an M (. e . , a module) . Embodi
particular operating system (as described above) and a ments of the present invention have determined that for any
corresponding set of functions . It should be understood that tag sequence which begins with an M , the culprit module is
the embodiments of the present invention are well suited to the first module in the tag sequence (i . e . , a module) , regard
use with various other types of computer systems . Specifi - 20 less of which tags (and corresponding modules) follow the
cally , different types of computer systems with , for example , M in the tag sequence . Further , for tag sequences which
different types of operating systems may find that different pertain to permutation II , the present embodiments do not
tag sequences are permitted , but the inventive concepts of consider tag depth in the determination of the culprit mod
the various embodiments of the present invention are appli - ule . Embodiments of the present invention utilize the below
cable to the different types of computer systems and their 25 if - then statements when the tag sequence (derived at 714 of
respective permitted tag sequences . FIG . 7 above) pertains to either permutation I or permutation
As shown in FIG . 9 , chart 900 , of the present embodi II .

ments , includes a first Component column having three 1 . Permutation I :
substantive rows listed as N , N - 1 , and N - 2 . The component 2 . Permutation II :
N refers to the first tag type (and corresponding module) of 30 3 . Default :
the tag sequence , the component N - 1 refers to the second 4 . Culprit = Component N .
tag type (and corresponding module) of the tag sequence , Referring still to 716 of FIG . 7 , as shown in chart 900 of
and the component N - 2 refers to the third tag type (and FIG . 9 , permutation III pertains to a tag sequence which
corresponding module) of the tag sequence . As discussed begins with an L (i . e . , VMKLinux) and which is followed by
above , for the present example , embodiments of the present 35 a D (i . e . , a driver) . So , permutation III , of the present
invention derived a tag depth and sequence of D1V2 at 714 embodiments , pertains to any tag sequence starting with an
of FIG . 7 . Hence , in the present example , permutation I is L (component N) followed by a D (component N - 1) regard
used to determine the culprit module . That is , in the present less of any third tag type (component N - 2) which may (or
example , with a tag depth and sequence of D1V2 , the first may not) be present in the tag sequence . Embodiments of the
tag type is D and the second tag type is V . Hence , the 40 present invention have determined that for any tag sequence
component N for the tag sequence of the present example is which begins with an L (component N) and is followed by
D , and the component N - 1 for the tag sequence of the a D (component N - 1) , the determination of the culprit
present example is V . For purposes of clarity , we will briefly module is based upon the tag depth of the first module in the
ignore the depth values . The tag depth values , and how they tag sequence (component N) . More specifically , embodi
are utilized by the embodiments of the present invention , 45 ments of the present invention compare the depth of com
will be described below in detail . The present embodiments ponent N to a predetermined value of 2 . If the depth of
compare the tag sequence DV to chart 900 of FIG . 9 . Of the component N is less than or equal to the value of 2 , then the
seven allowed permutations in chart 900 for the present culprit module is component N - 1 . If the depth of component
example , only permutation I begins with a D (i . e . , has D as N is not less than or equal to the value of 2 , then the culprit
component N) . Thus , only permutation I has a tag sequence 50 module is component N (referred to as the default compo
which matches the tag sequence DV of the present example . nent in the present embodiment) . In this embodiment of the
Importantly , in permutation I , only the first tag type (i . e . , present invention , the predetermined value of 2 is referred to
component N) of the tag sequence is considered . That is , as the VMKLinux _ API _ DEPTH . In the embodiments of the
permutation I pertains to allowed tag sequences which begin present invention , the VMKLinux _ API _ DEPTH value is
with a D regardless of the tag types , if any , which follow the 55 configurable , and the value of 2 , as used in the present
D . So , permutation I , of the present embodiments , pertains embodiment , has been determined to be the most appropri
to any tag sequence starting with a D regardless of any ate value after extensive empirical analysis of many thou
second tag type (component N - 1) and regardless of any sands of PSODs . Embodiments of the present invention
third tag type (component N - 2) which may (or may not) be utilize the below if - then statements when the tag sequence
present in the tag sequence . 60 (as derived at 714 of FIG . 7 above) pertains to permutation

Referring still 716 of FIG . 7 and also to chart 900 of FIG . III .
9 , each of seven allowable permutations of tag sequences 5 . Permutation III :
determined by embodiments of the present invention for the a . If (Depth (component _ N) < = VMKLINUX _
computer system of the present example is listed . Embodi API _ DEPTH)
ments of the present invention utilize chart 900 and , for 65 b . Culprit = Component N - 1
some of the seven permutations , embodiments of the present c . else
invention also utilize the tag depth to determine the culprit d . goto Default

US 10 , 268 , 563 B2
21

5

Importantly , the value of 2 for VMKLinux _ API _ DEPTH 6 . Permutation IV :
derived by the present embodiments and recited above , 7 . Permutation V :
pertains to embodiments of the present invention applied to 8 . Permutation VI :

a . If a particular computer system with a particular operating (Depth (component _ N } < = VMKER
NEL _ API _ DEPTH) system (as described above) and a corresponding set of b . Culprit = Component N - 1

functions . It should be understood that the embodiments of c . else
the present invention are well suited to use with various d . goto Default
other types of computer systems . Specifically , different types Similar to , the value of 2 for VMKLinux _ API _ DEPTH
of computer systems with , for example , different types of 10 discussed above , the value of 2 for VMkernel _ API _ DEPTH
operating systems may find that different configurable derived by the present embodiments and recited above ,

pertains to embodiments of the present invention applied to parameters with different values are needed , but the inven a particular computer system with a particular operating
tive concepts of the various embodiments of the present system (as described above) and a corresponding set of
invention are applicable to the different types of computer 15 functions . It should be understood that the embodiments of
systems and their respective permitted tag sequences . the present invention are well suited to use with various
With reference still to 716 of FIG . 7 , as shown in chart other types of computer systems . Specifically , different types

900 of FIG . 9 , permutations IV , V , and VI pertain to tag of computer systems with , for example , different types of
sequences which begin with a V (i . e . , VMkernel) and which operating systems may find that different configurable
are followed by at least one other module . Specifically , 20 parameters with different values are needed , but the inven
permutation IV pertains to a tag sequence which begins with tive concepts of the various embodiments of the present
a V (i . e . , VMkernel) and which is followed by a D (i . e . , a invention are applicable to the different types of computer
driver) . Permutation V pertains to a tag sequence which systems and their respective permitted tag sequences .

begins with a V (i . e . , VMkernel) and which is followed by Referring still to 716 of FIG . 7 , Permutation VII pertains
25 to a tag sequence which begins with a V (i . e . , VMkernel) an M (i . e . , a module) . Permutation VI pertains to a tag followed by an L (i . e . , VMKLinux) and which is then sequence which begins with a V (i . e . , VMkernel) which is followed by a D (i . e . , driver) . Thus , permutation VII , of the followed by an L (i . e . , VMKLinux) and which is followed present embodiments , pertains to a tag sequence starting

by another V (i . e . , VMkernel) . Furthermore , permutation IV , with a V (component N) followed by an L (component N - 1)
of the present embodiments , pertains to any tag sequence 30 and then followed by a D (component N - 2) . Embodiments
starting with a V (component N) followed by a D (compo of the present invention have determined that , for permuta
nent N - 1) regardless of any third tag type (component N - 2) tion VII , the determination of the culprit module is based
which may or may not be present in the tag sequence . upon the tag depth of the first and second modules in the tag
Permutation V , of the present embodiments , pertains to any sequence (i . e . , components N and N - 1) . This means that , for
tag sequence starting with a V (component N) followed by 35 permutation VII , the embodiments of the present invention
an M (component N - 1) regardless of any third tag type determine the culprit module based upon the tag depth of the
(component N - 2) which may or may not) be present in the first and second modules in the tag sequence (i . e . , VMkernel
tag sequence . Permutation VI , of the present embodiments , and VMKLinux) . More specifically , embodiments of the
pertains to a tag sequence starting with a V (component N) present invention first compare the depth of component N to
followed by an L (component N - 1) and then followed by 40 a predetermined value of 2 and also compare the depth of
another V (component N - 2) . Embodiments of the present component N - 1 to a predetermined value of 2 . If the depth
invention have determined that for each of permutation IV , of component N is less than or equal to the value of 2 , and
permutation V , and permutation VI , the determination of the the depth of component N - 1 is less than or equal to the value
culprit module is based upon the tag depth of the first of 2 , then the culprit module is component N - 2 . If the depth
module in the tag sequence (component N) . This means that * 45 of component N and component N - 1 are not both less than

or equal to the value of 2 , then the present embodiments for permutations IV , V , and VI , the embodiments of the perform another comparison . Specifically , in the second present invention determine the culprit module based upon comparison , embodiments of the present invention compare the tag depth of the first module in the tag sequence (i . e . , the depth of component N to a predetermined value of 2 . If
VMKLinux) also known as component N . More specifically , 50 the depth of component N is less than or equal to the value
embodiments of the present invention compare the depth of of 2 , then the culprit module is component N - 1 . If the depth
component N to a predetermined value of 2 . If the depth of of component N is not less than or equal to the value of 2 .
component N is less than or equal to the value of 2 , then the then the culprit module is component N (referred to as the
culprit module is component N - 1 . If the depth of component default component in the present embodiment) . In this
N is not less than or equal to the value of 2 , then the culprit 55 embodiment of the present invention , the predetermined
module is component N (referred to as the default compo value of 2 is used for both the VMkernel _ API _ DEPTH
nent in the present embodiment) . In this embodiment of the value and the VMkernel _ API _ DEPTH value . As stated
present invention , the predetermined value of 2 is referred to above , the value for both VMkernel _ API _ DEPTH and
as the VMkernel API DEPTH . As with above embodi - VMkernel API DEPTH is configurable , and the value of 2 ,
ments of the present invention , the VMkernel _ API _ DEPTH 60 as used in the present embodiment , has been determined to
value is configurable , and the value of 2 , as used in the be the most appropriate value after extensive empirical
present embodiment , has been determined to be the most analysis of many thousands of PSODs . Further , through
appropriate value after extensive empirical analysis of many detailed analysis , embodiments of the present invention
thousands of PSODs and their corresponding back traces have been able to quantitatively determine that a value of 2
Embodiments of the present invention utilize the below 65 for both VMkernel _ API _ DEPTH and VMker
if - then statements when the tag sequence (as derived at 714 nel _ API _ DEPTH provides a high confidence of correctly
of FIG . 7 above) pertains to permutation IV , V , or V . determining the culprit module . Moreover , through similar

US 10 , 268 , 563 B2
23 24

detailed analysis , embodiments of the present invention dler , corresponds to culprit module , xla , in the present
have been able to quantitatively determine that using values example , embodiments of the present invention are also well
other than 2 for both VMkernel _ API _ DEPTH and VMker - suited to instances in which the culprit module has more than
nel API DEPTH does not provide a high confidence of one corresponding function .
correctly determining the culprit module . Embodiments of 5 Referring now to 1004 of FIG . 10 , embodiments of the
the present invention utilize the below if - then statements present invention locate the functions , in essential stack 838
when the tag sequence (as derived at 714 of FIG . 7 above) of FIG . 8 , corresponding to the module located below the
pertains to permutation VII . culprit module . In essential stack 838 of the present

9 . Permutation VII : example , module , V , (i . e . , VMkernel) , is located below the
a . If [Depth (component N < = VMKER - 10 culprit module , xla . Functions IRQBH and BH _ DrainAnd
NEL _ API _ DEPTH) and Disablelnterrupts are the only functions , in essential stack

b . Depth (Component N - 1) < = VMKLINUX _ 838 , which correspond to the module , VMkernel . As a result ,
API _ DEPTH)] embodiments of the present invention include functions

c . Culprit = Component N - 2 IRQBH and BH _ DrainAndDisablelnterrupts as another por
d . else if [Depth (Component _ N) < = VMKER - 15 tion of the signature back trace . In the present example , two
NEL _ API _ DEPTH] functions , IROBH and BH _ DrainAndDisablelnterrupts , cor

e . Culprit - Component N - 1 respond to the module (VMkernel) located below culprit
f . else module , xla . Embodiments of the present invention , how
g . goto Default ever , are also well suited to instances in which the module

Again , the value of 2 for VMkernel _ API _ DEPTH and for 20 located below the culprit module has more or less than two
VMKLinux _ API _ DEPTH as discussed above , is derived by corresponding functions .
the present embodiments and pertains to embodiments of the With reference next to 1006 of FIG . 10 , the present
present invention applied to a particular computer system embodiment then locates , in essential stack 838 of FIG . 8 ,
with a particular operating system (as described above) and the bottom frame from the sequence of frames containing
a corresponding set of functions . It should be understood 25 moot functions . In the present example , and as described in
that the embodiments of the present invention are well suited detail above , embodiments in accordance with the present
to use with various other types of computer systems . Spe - invention determined that frames 802 , 804 and 806 were
cifically , different types of computer systems with , for deemed as containing moot functions . Frame 806 is the
example , different types of operating systems may find that bottom frame in the sequence of frames containing moot
different configurable parameters with different values are 30 functions . Further , frame 806 contains the moot function
needed , but the inventive concepts of the various embodi - vmk _ SpinlockLock . Thus , the present embodiments include
ments of the present invention are applicable to the different the function vmk _ SpinlockLock as yet another portion of
types of computer systems and their respective permitted tag the signature back trace . Hence , in the present example ,
sequences . Thus , embodiments of the present invention embodiments of the present invention generate a signature
amount to significantly more than merely manually com - 35 back trace which includes the functions vmk _ SpinlockLock ,
paring the back trace of one PSOD to the back trace of xla _ sli _ fp _ intr _ handler , IRQBH , and BH _ DrainAndDisa
another PSOD using a computer . Instead , embodiments of blelnterrupts .
the present invention specifically recite a novel process for Referring now to FIG . 1008 of FIG . 10 , embodiments in
culprit module detection which is necessarily rooted in accordance with the present invention add the offset of the
computer technology to overcome a problem specifically 40 culprit module , xla , to the function , xla _ sli _ fp _ intr _ handler ,
arising in the realm of the analysis of crash reports for which corresponds to the culprit module . As shown in frame
computer systems . 808 of FIG . 8 , the offset for the function , xla _ sli _ fp _ in

With reference now to FIG . 10 a flowchart 1000 of tr _ handler , is Oxaf . Thus , for the present example , the
processes for generating a signature back trace is shown . embodiments of the present invention append the offset ,
After determining the culprit module at FIG . 7 , as shown in 45 Oxaf , to the function xla _ sli _ fp _ intr _ handler . As a result , in
1000 of FIG . 10 , the present embodiments generate a the present example , embodiments of the present invention
signature back trace corresponding to the culprit module . As the signature back trace includes xla _ sli _ fp _ intr _ handler +
stated above , in the present embodiments , the signature back Oxaf . By including the offset , embodiments of the present
trace will correspond to the software symptom of the invention accurately pinpoint the exact assembly instruction
received PSOD . The following discussion will now 50 that was executing when the present computer system expe
describe , in detail , the present embodiments for generating rienced the crash . In the present embodiment , the offset is
the signature back trace . Referring to the present example , included only in the top function pertaining to the culprit
embodiments of the present invention previously derived a module , xla . In the present embodiment , including offsets
tag sequence and tag depth of D1V2 as described in detail from any functions below the top function pertaining to the
at 714 of FIG . 7 above . Embodiments of the present inven - 55 culprit module , xla , is determined to be redundant , so such
tion then utilized the derived chart 900 of FIG . 9 to deter offsets are not included . Additionally , it is understood that
mine that , for the present example , the driver , xla , was the there is a subset of crashes (referred to as lockups) that
culprit module . Referring now to 1002 of FIG . 10 , the happen due to pcpu lockup . In those crashes , the present
present embodiments access essential stack 838 of FIG . 8 computer system will generate a PSOD when the execution
generated above at 712 of FIG . 7 . At 1002 of FIG . 10 , the 60 control is looping through some set of instructions in a
present embodiments then locate functions , in essential function or functions corresponding to the culprit module ,
stack 838 , corresponding to the culprit module , xla . In the xla . As a result , it is possible to have two different PSODs
present example , the function xla _ sli _ jp _ intr _ handler is the (of a pcpu lockup type) with different offsets in the functions
only function which corresponds to the culprit module , xla corresponding to the culprit module , xla . However , these
Thus , the present embodiments include the function 65 different PSODs could be due to the same bug and have the
xla _ sli _ jp _ intr _ handler as one portion of the signature back same root cause . As a result , for any PSODs of a lockup type
trace . Although only a single function , xla _ sli _ fp _ intr _ han - or a spin lock count exceeded type , the present embodiments

US 10 , 268 , 563 B2
25 26

do not include or append the offset corresponding to the top performs the present Culprit Module Detection and Signa
function corresponding to the culprit module , xla . Thus , ture Back Trace Generation Process processes for the core
embodiments of the present invention provide a heretofore dump or PSOD , and provides the results to GUI generator
unknown process by which it possible to receive a PSOD , 308 of FIG . 3 for generating a graphical representation of the
and from a back trace derived from the PSOD , identify a 5 results (a detailed description of the operation of GUI
culprit module , and generate a signature back trace which generator 308 is provided below) . In other embodiments ,
corresponds to the software symptom of the received PSOD . crash analyzer 210 operates outside of an end - to - end system

Referring now to FIG . 11 , diagram 1100 shows the and method . Whether operating in or outside of an end - to
signature back trace 1102 generated by the embodiments of end system and method , the various embodiments of the
the present invention for the present example . Additionally , 10 present invention are able to : automatically receive and
in diagram 1100 , embodiments of the present invention also analyze a PSOD ; detect a culprit module ; and generate a
include a listing of the Culprit module , xla , and the PSOD signature back trace which uniquely pertains to the software
crash type , Panic , for the present example . In one embodi - symptom of the received PSOD , all in near real time .
ment , depicted at 1010 of FIG . 10 , the present invention will Hence , the embodiments of the present invention greatly
also include the size of the top function of the culprit module 15 extend beyond conventional methods of simply comparing
in the signature back trace . Importantly , 1002 - 1008 of FIG . entire core dumps or back traces . Moreover , embodiments of
10 above , describe a particular approach in accordance with the present invention amount to significantly more than
the present embodiments for generating the signature back merely using a computer to compare a back trace of one
trace . Thus , the various embodiments of the present inven - PSOD to the back trace of another PSOD . Instead , embodi
tion provide a novel process for generating a signature back 20 ments of the present invention specifically recite a novel
trace which corresponds to the software symptom of each process for culprit module detection and generation of a
PSOD received . More specifically , embodiments of the signature back trace which is necessarily rooted in computer
present invention generate an identifying signature from the technology to overcome a problem specifically arising in the
back trace which uniquely pertains to the software symptom realm of the analysis of crash reports for computer systems .
of the received PSOD . In so doing , different PSODs which 25
have core dumps or back traces which appear to be quite Graphical User Interface for Software Crash
different , may ultimately be found , by the present embodi Analysis Data
ments , to have the same or similar signature back trace . As
such , the two PSODs (even with different back traces) can First , a brief overview of the present Graphical User
be assumed to have the same software problem . Hence , the 30 Interface (GUI) for Software Crash Analysis Data is pro
embodiments of the present invention greatly extend beyond vided in the present paragraph . Embodiments of the present
conventional methods of simply manually comparing entire GUI provide a graphical representation and / or a categoriza
back traces . tion of novel data derived from the present crash analysis

It should be understood that the embodiments of the systems and methods described above . In some embodi
present invention are well suited to other approaches for 35 ments , the present GUI is provided on a portal which can be
generating the signature back trace with embodiments that accessed by various parties . In so doing , the present GUI
vary in some way from the present embodiment . As one enables a party , who experiences a computer crash , to obtain
example , in some embodiments of the present invention , the insight and information about the crash which was previ
signature back trace has a limit on the maximum number of ously not possible . The below discussion provides a detailed
functions permitted . As yet another example , in some 40 description of various embodiments of the present invention .
embodiments of the present invention , the signature back It should be appreciated that GUIs may be designed to
trace may include more than just the last of the moot provide a particular interactive experience based on the type
functions . Specifically , the various embodiments of the of information presented and / or received through the GUI .
present invention may differ in their respective implemen - Moreover , a GUI may include one or more different type of
tation details , but the underlying inventive concepts of the 45 interactive elements for receiving information . For example ,
various embodiments of the present invention will remain the interactive elements may include , without limitation :
consistent . buttons , widgets , controls , text boxes , radio buttons , tri - state

Thus , embodiments in accordance with the present inven - boxes , list boxes , numerical input boxes , tool bars , sliders ,
tion are able to automatically identify a culprit module and spinners , drop - down lists , accordion lists , menus , menu
automatically generate a signature back trace corresponding 50 bars , tool bars , icons , scroll bars , labels , tooltips , balloon
to the software symptom of each received PSOD . In some help , status bars , progress bars , etc . The types of interactive
embodiments of the present invention , the culprit module is elements included in a GUI are typically design decisions ,
accurately identified and the signature back trace is gener - where a GUI designer might attempt to provide particular
ated in near real time . Hence , the present embodiments elements to present and / or receive particular types of infor
provide a significant advantage over conventional 55 mation . For example , a simple GUI may include a drop
approaches which can take many days and which may still down list , where a user would select an item from the drop
not provide the correct source for the crash . As stated above , down list . Moreover , it should be appreciated that an aspect
in some embodiments , the present Culprit Module Detection of GUI design is to provide feedback to the user . For
and Signature Back Trace Generation Process is imple - example , if the user inputs invalid information , or is limited
mented as part of an end - to - end system and method as is 60 in the information they may be input , it might be desirable
described , for example , in FIG . 2 . In one such embodiment , to explain this to the user . This information may be
the Culprit Module Detection and Signature Back Trace explained explicitly , e . g . , via a message , or implicitly , e . g . ,
Generation Process are performed by crash analyzer 210 of disallowing the input .
FIGS . 2 and 3 . In one such embodiment , crash analyzer 210 Also , in various embodiments , the present GUI will be
accesses a back trace (e . g . back trace 400 of FIG . 4) 65 accessed by a party using , for example , display device 118 ,
generated from a corresponding core dump found , for alpha - numeric input 114 , and cursor control 116 (and vari
example in dump collector 208 , crash analyzer 210 then ous other components) of FIG . 1 . Further , in various

US 10 , 268 , 563 B2
28

embodiments , the present GUI will be accessed by a party window 1202 . As described above , a party accessing GUI
such as partner 218 via partner portal 216 and report 1300 is able to select only those components (e . g . , drivers ,
database 214 all of FIG . 2 . Further , in various embodiments modules , etc) pertaining to that party .
of the present invention , GUI generator 308 of crash ana - Referring still to FIG . 13 , GUI 1300 provides a break
lyzer 210 (all of FIG . 3) generates a GUI which is a 5 down of crashes analyzed by embodiments of the present
graphical representation of analysis results derived by crash invention . More specifically , GUI 1300 provides a stack
analysis system 206 of FIG . 2 . 1304 which graphically represents the PSOD count for
As described in great detail above , various embodiments various computer system builds and versions corresponding

of the present invention provide a novel process for gener - to the component selected at pull down window 1202 . The
ating a signature back trace which corresponds to a software 10 type of breakdown depicted in GUI 1300 is indicated by
symptom of a received PSOD . More specifically , embodi - highlighted box 1302 . Thus , in the present embodiment , as
ments of the present invention generate an identifying PSODs are received , the above described crash analysis is
signature from the back trace which uniquely pertains to the performed for each PSOD , and PSODs are then bucketed
software symptom of the received PSOD . In so doing , according to the results of the crash analysis . In GUI 1300 ,
different PSODs which have core dumps or back traces 15 the PSODs are bucketed according to the ESXiTM build and
which appear to be quite different , may ultimately be found , version for the system on which the crash occurred . Again
by the present embodiments , to have the same or similar for purposes of brevity and clarity , the following description
signature back trace . As such , the two PSODs (even with of the various embodiments of the present invention , will be
different back traces) can be assumed to have the same described using an example in which the computer system
software problem . As a result , PSODs with the same signa - 20 generating the core dump or PSOD is a VMware ESXiTM ,
ture back trace can be aggregated , “ bucketed ” , or placed in enterprise - class , type - 1 hypervisor developed by VMware ,
the same " bin " for purposes of data analysis . As will be Inc . of Palo Alto , Calif . for deploying and serving virtual
described below in detail , various embodiments of the computers . Importantly , although the description and
present invention generate a GUI which graphically repre - examples herein refer to embodiments of the present inven
sents the crash analysis results derived as described above . 25 tion applied to the above computer system with , for
As was stated above , many of the previous examples example , its corresponding crash data , it should be under

pertain to performing the present crash analysis on a single stood that the embodiments of the present invention are well
core dump or back trace . However , a significant benefit of suited to use with various other types of computer systems .
the various embodiments of the present invention is the Specifically , different types of computer systems will have ,
capability to automatically identify a culprit module and 30 for example , a different operating system and / or different
automatically generate a signature back trace corresponding types of crash analysis data . However , the inventive con
to the software symptom of each PSOD received . Further , cepts of the various embodiments of the present invention
embodiments of the present invention are able to accomplish are also applicable to the different types of computer systems
the aforementioned tasks regardless of the number of and their respective crash analysis data .
PSODs received and with accurate and repeatable results . In 35 Referring still to FIG . 13 , in the present embodiment , GUI
some embodiments , the present invention analyzes the 1300 depicts the various build and corresponding PSOD
received PSODs and generates the present GUI for the crash counts in stack 1304 using different colors to represent the
analysis results all in near real time . various builds and versions . In the GUI 1300 , a white

With reference now to FIG . 12 , an example view of a GUI background is used and various colors comprise stack 1304 .
1200 is shown , in accordance with various embodiments of 40 It should be appreciated that other visual distinctions are
the present invention . It should be appreciated that GUI available , including but not limited to shadings , textures , or
1200 (and all other GUIs described below) may be included other visual distinctions , and that these visual distinctions
as a visual component of a larger GUI (e . g . , as a widget , or are typically design decisions .
an embedded GUI) , and is not limited to the illustrated Referring now to FIG . 14 , another GUI 1400 is provided .
embodiment . GUI 1200 is a dashboard page which includes 45 In one embodiment , GUI 1300 and 1400 are provided as
a component access control feature via pull down window scrollable GUIs residing vertically adjacent to each other .
1202 . As such , in one embodiment , a party accessing GUI Thus , in such an embodiment , a party viewing GUI 1300 can
1200 is able to select only those components (e . g . , drivers , simply scroll down and access GUI 1400 and vice versa .
modules , etc) pertaining to that party . It should be appreci - GUI 1400 is comprised of two tables , 1402 and 1404 . Table
ated that other types of selectable control may be utilized for 50 1402 contains a listing of the signatures corresponding to the
component access control via pull down window 1202 , greatest number of PSODs (i . e . , PSOD counts) . In one
including , but not limited to , a check box , a button , a radio embodiment GUI 1400 will list the entire signature back
button , an option button , or another visual control . trace (e . g . , signature back trace 1102 of FIG . 11) generated

Referring still to FIG . 12 , GUI 1200 provides a break - as described above . In other embodiments , such as is shown
down of crashes analyzed by embodiments of the present 55 the present embodiment , GUI 1400 lists only some portion
invention . More specifically , GUI 1200 provides a histogram of the signature back trace having the highest corresponding
which graphically represents the PSOD count for various number of PSOD counts . In various embodiments , GUI
versions of the component selected at pull down window 1400 is also configured such that a user can select a
1202 . The type of breakdown depicted in GUI 1200 is particular portion of a signature (e . g . signature portion 1401
indicated by highlighted box 1204 . Thus , in the present 60 of 1400) . In such an embodiment , the complete signature
embodiment , as PSODs are received , the above described back trace corresponding to signature portion 1401 is pro
crash analysis is performed for each PSOD , and PSODs are vided in a separate GUI . When signature portion 1401 is
then bucketed according to the results of the crash analysis . selected , separate GUI 2100 of FIG . 21 , below , is generated
In GUI 1200 , the PSODs are bucketed according to the listing the complete signature back trace 2102 corresponding
version of the driver on which the crash occurred . 65 to signature portion 1401 . In the embodiment of FIG . 14 ,

Referring now to FIG . 13 , GUI 1300 is a dashboard page table 1402 lists , at most , the top five signatures . Table 1402
which also includes component access control via pull down of GUI 1400 is , however , well suited to displaying a greater

29
US 10 , 268 , 563 B2

30
or lesser number of top signatures . Further , in various PSODs . In that column , embodiments of the present inven
embodiments of the present invention , all columns in of all tion provide a selectable view link (typically shown as
tables (e . g . GUIS 1400 , 1500 , 1600 and 1800) are sortable . 1410) . When view link 1410 is selected , the present embodi
The ability to sort the various GUIs includes columns with ments display a GUI 1700 of FIG . 17 which contains data for
dates like “ Date of Psod ” , “ Last reported date ” , “ first 5 all PSODs having the same signature .
reported date ” etc . By sorting “ first reported date ” , a user can With reference to FIGS . 17 and 18 , GUI 1700 of the
see the latest reported signatures or the oldest reported present embodiment is in a scrollable format . FIG . 17
signatures . By sorting the “ Last reported date ” , the user can contains the top portion of GUI 1700 , and FIG . 18 contains
see signatures that are recently being seen by the customers . the bottom portion of GUI 1700 . The top portion of GUI
Further , at bottom of 1404 there is a link " browse all 10 1700 in FIG . 17 provides a graphic visualization 1702
PSODs ” that will take a user to FIG . 16 . representing the crash data . The bottom portion of GUI

Referring still to FIG . 14 , table 1404 contains a listing of 1700 , in FIG . 18 , provides a table 1802 listing the data for
the PSODs and the corresponding information , according to the individual crashes .
how recently the PSOD was reported . As with table 1402 , in GUIs 1400 and 1700 of FIGS . 14 and 17 , respectively ,
one embodiment table 1404 will list the entire signature 15 provide important and beneficial information , which was
back trace , and in other embodiments , such as is shown the previously unavailable , to users of the present embodiments .
present embodiment , table 1404 of GUI 1400 lists only some Specifically , with GUI 1400 of FIG . 14 , a user is able to
portion of the signature back trace . Thus , in GUI 1400 , table immediately observe , for example , that one particular sig .
1402 provides a graphical representation of bucketed nature is occurring far more frequently than other signatures .
PSODs . Table 1404 of GUI 1400 provides a graphical 20 GUI 1700 of FIG . 17 then allows the user to " drill down "
representation of the occurrence of various signatures in and determine the particular driver version on which the
near real time . Moreover , FIG . 1404 contains a “ Similar signature most frequently occurs . Thus , GUIs 1400 and
PSODs ” column . This is just the ' converse of “ Similar 1700 of the present embodiments now allow a user to
PSODs ” column 1408 . Both the links land in the same page prioritize their approach to a particular crash in an informed
(i . e . FIG . 1700) that contains list of all PSODs with same 25 manner .
signature . Here is the difference : 1408 takes a user from a Referring now to FIG . 19 , GUI 1900 of the present
signature to 1700 . That is , given a signature it takes a user embodiment is in a scrollable format . The top portion of GUI
to a page that contains all the PSODs with the same 1900 provides a graphic visualization 1902 representing the
signature . 1404 takes a user from a PSOD to the page that crash data . More specifically , GUI 1900 provides a graphic
contains its similar PSODs . So , if a user wants to know if 30 visualization 1902 of the signatures corresponding to a
there are other PSODs similar to a PSOD in table 1404 , the particular ESXiTM build version . The bottom portion of GUI
user can click " view " and find out . 1900 , not shown , provides the same table 1802 , of FIG . 18 ,

Referring still to FIG . 14 , GUI 1400 also includes a listing the data for the individual crashes . Again , GUIs 1400
“ Browse all Signatures ” selection 1406 at the bottom of and 1900 of FIGS . 14 and 19 , respectively , provide impor
table 1402 . The same “ Browse all Signatures ” selection is 35 tant and beneficial information , which was previously
also available (although not shown in FIG . 14) at the bottom unavailable , to users of the present embodiments . As stated
of table 1404 . The " Browse all Signatures ” selection 1406 above , with GUI 1400 of FIG . 14 , a user is able to imme
allows a user to select a GUI 1500 of FIG . 15 . diately observe , for example , that one particular signature is

With reference now to FIG . 15 , a GUI 1500 is shown occurring far more frequently than other signatures . GUI
which lists all known signatures and the corresponding 40 1900 of FIG . 19 then allows the user to " drill down ” and
PSOD count for the driver selected at pull down window determine the particular ESXiTM build version on which the
1202 . Also , in GUI 1500 , a pull down window 1502 is signature most frequently occurs . Thus , GUIs 1400 and
available for a user to select a particular ESXiTM build 1900 of the present embodiments now allow a user to
version in combination with the selection made via pull prioritize their approach to a particular crash in an informed
down window 1202 . 45 manner . Pie charts 1702 , 1902 are just few of the many

Referring next to FIG . 16 , a GUI 1600 is shown which possible . The various embodiments of the present invention
includes a pull down calendar window 1602 for selecting a are well suited to GUIs including pie charts by firmware
start date and pull down calendar window 1604 for selecting version , server model , etc . This is an important feature
an end date . In so doing , GUI 1600 enables a user to define which helps user see what is common across the PSODs of
a date range for reported PSODs . GUI 1600 displays data for 50 a given signature . For example , the user is able to determine
individual crashes that have occurred . Additionally , GUI if the PSOD is happening with same ESXiTM build version
1600 includes selectable report links (see , e . g . , 1606 and or same driver version or same firmware version or same
1608) . By selecting , for example , report link 1606 , the server models , and so on .
present embodiments provide the user with a GUI having Referring again to FIG . 16 , GUI 1600 further includes a
additional information (e . g . the PSOD screen , system infor - 55 selectable Feedback link typically shown as 1610 and 1612 .
mation , the back trace) corresponding to the selected crash . In various embodiments , when , for example , Feedback link
By providing such a GUI , the present embodiments assist a 1610 is selected , a Crash Report Feedback GUI 2000 of FIG .
party with resolving a crash . Further , the report links opens 20 is generated . GUI 2000 , of the present embodiments ,
a report that contains more in - depth details of the selected allows a user to send input or comments regarding the user ' s
crash including information such as , but not limited to , 60 experience . Also , the feedback forum helps partner to pro
driver heap usage , driver jobs , driver interrupt status , driver vide feedback on a per core dump basis . They can report any
logs , frame variables and their values , etc . along with back errors with the data provided on that specific crash report
trace , system configuration , PSOD screen . This report helps etc . In so doing , GUI 1600 helps to enable improvements to
the support team to root cause the issue . the overall crash analysis system .

Referring again to FIG . 14 , GUI 1400 includes another 65 Referring now to FIG . 22 , a flow chart 2200 is provided
mechanism for providing additional information regarding a of an example method for providing crash results for a
crash . GUI 1400 includes , at 1408 , a column entitled Similar computer system on a graphical user interface , according to

32
US 10 , 268 , 563 B2

31
various embodiments of the present invention . Procedures of In the present embodiments , an administrator 2301 is
this method are performed in conjunction with the various tasked with ensuring that crash analysis system 206 remains
elements and / or components of FIGS . 1 - 21 . It is appreciated operational . As the usage of crash analysis system 206
that in some embodiments , the procedures may be per increases , the tasks of the administrator 2301 become even
formed in a different order than described , that some of the 5 more important . That is , as crash analysis system 206
described procedures may not be performed , and / or that one increases in use , the number of core dumps handled by crash
or more additional procedures to those described may be analysis system 206 also increases . Should crash analysis
performed . Flow diagram 2200 includes some procedures system 206 fail , a significant number of customer service
that , in various embodiments , are carried out by one or more request remain un - serviced , or may even be lost . Further , as
processors under the control of computer - readable and com - " the number of core dumps handled by crash analysis system
puter - executable instructions that are stored on non - transi - 206 increases , the number of logs generated by crash analy
tory computer - readable storage media . It is further appreci - sis system 206 may increase by more than a hundred times
ated that one or more procedures described in flow diagram the number of core dumps . That is , for each core dump
2200 may be implemented in hardware , or a combination of handled , crash analysis system 206 may generate hundreds
hardware with firmware and / or software . of logs . As a result , should an error occur in crash analysis

At 2202 embodiments in accordance with the present system 206 , conventional methods for simply reviewing the
invention display a component access control feature (see error logs and then manually attempting to determine which
e . g . , pull down window 1202 of FIG . 12) on a graphic user component caused the error are no longer feasible . Impor
interface . As is described in detail above , the component 20 tantly , an administrator using conventional approaches sim
access control feature enable a user to select a component ply lacks the time to analyze each error log when numerous
and view the crash results pertaining to the component . core dumps are being handled . Also , conventionally , error
Again , the details of the various components and processes logs are manually examined to attempt to determine which
for performing 2200 are provided above . particular application , macro , or component is responsible

At 2204 , embodiments in accordance with the present 25 for the failure . In some cases , the " cost " associated with
invention generate a graphical representation for display on manually determining an error actually exceeds the “ benefit ”
the graphic user interface . In one embodiment of the present derived from determining the cause of the error .
invention , the graphical representation includes at least a Referring again to FIG . 23 , as was described in detail
portion of a signature back trace corresponding to a crash above , core dump collector 208 of crash analysis system 206
associated with the component selected above at 2200 . Once 30 receives the core dump from service request repository 204 .
more , the details of the various components and processes Dump collector 208 then provides the unique core dump to
for performing 2204 are provided above . crash analyzer 210 . Crash analyzer 210 analyzes the core

Importantly , the embodiments of the present invention , dump , generates crash report data , and then generates a
provide GUI which significantly extends what was previ - graphic user interface including a graphic representation of
ously possible . The GUIs of the present embodiments pro - 35 the crash report data . In embodiments of the present inven
vide accurate information , in novel visualizations , about the tion , monitoring system 2302 monitors crash analysis sys
source of software crashes . Moreover , the present GUI tem 206 and then generate operations results pertaining to
graphically represent data which was derived from a previ - crash analysis system 206 . In various embodiments , moni
ously unknown procedure , to provide beneficial information toring system 2302 also generates a graphic user interface
related to a computer crash . Thus , embodiments of the 40 for display on a computer , wherein the graphic user interface
present GUI provide a PSOD crash report analysis method includes a graphical representation of the operation results
ology which extends well beyond what was previously done data for crash analysis system 206 . A detailed discussion of
by hand . the operation of monitoring system 2310 is provided below .

Additionally , the embodiments of the present invention ,
Monitoring of Automated End - to - End System 45 provide a monitoring system 2302 which significantly

extends what was previously possible . The present embodi
First , a brief overview of the present system and method ments of monitoring system 2302 provide accurate infor

for monitoring of an automated end - to - end system is pro - mation , in novel visualizations , about errors in crash analy
vided in the present paragraph . Embodiments of the present sis system 206 . Moreover , present monitoring system 2302
invention augment the various logs , which are generated as 50 generates data to provide beneficial information related to a
part of the above described automated end - to - end system , failure within crash analysis system 206 . Thus , embodi
with a prefix containing identification information . The ments of present monitoring system 2302 provide a moni
prefix enables those monitoring the automated end - to - end toring methodology which extends well beyond what was
system to readily determine the specific component respon - previously done by hand .
sible for an error , and to more quickly determine the cause 55 Also , although certain components are depicted in , for
of the error . The below discussion provides a detailed example , crash analysis system 206 and monitoring system
description of various embodiments of the present invention . 2302 , it should be understood that , for purposes of clarity
As was described in detail above , the present automated and brevity , each of the components may themselves be

end - to - end analysis system 200 described , for example , in comprised of numerous modules or macros which are not
conjunction with the discussion of FIG . 2 , includes crash 60 shown . In operation , each of the various components , or its
analysis system 206 . Further , as was described in detail sub - components (e . g . , modules or macros) of crash analysis
above , crash analysis system 206 is comprised of various system 206 will generate logs as the core dump is being
components . The following description pertains to a method analyzed and is proceeding through crash analysis system
and system for monitoring the performance of crash analysis 206 . In the present embodiments , monitoring system 2302
system 206 . Referring now to FIG . 23 , a diagram 2300 is 65 collects the logs (generated by crash analysis system 206)
shown illustrating the present monitoring system 2302 com - and analyzes the logs to generate the operation results for
municatively coupled with crash analysis system 206 . crash analysis system 206 .

33
US 10 , 268 , 563 B2

34
Referring now to FIG . 24 , a schematic diagram of various system 2302 and corresponding prefixes , pertains to an

components comprising monitoring system 2302 is shown , example in which monitoring system 2302 monitors a crash
in accordance with embodiments of the present invention analysis system 206 analyzing is core dump or PSOD is
Monitoring system 2302 includes a log prefix generator received from a VMware ESXiTM , enterprise - class , type - 1
2402 . In embodiments of the present invention , log prefix 5 hypervisor developed by VMware , Inc . of Palo Alto , Calif .
generator 2402 adds a prefix to the log messages or " logs ” Importantly , although the description and examples herein
generated by crash analysis system 206 . In FIG . 24 , log refer to such embodiments of the present invention moni
prefix generator is depicted as integrated with log analyzer toring crash analysis of the above described core dumps , it
2404 and operation results GUI generator 2406 . It should be should be understood that the embodiments of the present
noted that such a depiction is intended merely to show the 10 invention are well suited to monitoring crash analysis per
various components of monitoring system 2302 , and is not formed on other types of core dumps . However , the inven
intended to limit the location of log prefix generator 2402 or tive concepts of the various embodiments of the present
log analyzer 2404 and operation results GUI generator 2406 . invention are also applicable to the monitoring of different
In various embodiments of the present invention , log prefix types of crash analysis systems which , in turn , are analyzing
generator 2402 is implemented , for example , within core 15 various other types of crash data .
dump collector 208 . Referring again to FIG . 24 , log analyzer 2404 then

Referring still to FIG . 24 , log prefix generator 2402 receives the various log messages generated by crash analy
appends or attaches a prefix to the various log messages sis system 206 of FIG . 23 . Log analyzer 2404 of FIG . 24
generated by crash analysis system 206 . The prefix contains then proceeds to categorize and analyze the received log
identifying information for the various log messages . In one 20 messages to generate operation results for crash analyzer
embodiment of the present invention , the identifying infor - system 206 . In one embodiment , log analyzer 2404 uses the
mation identifies the core dump being analyzed by crash prefix attached to the log messages to group and bin those
analysis system 206 when the log messages are generated . In log messages pertaining to a failure within crash analysis
various other embodiments , the identifying information in system 206 . More specifically , because the prefixes gener
the log prefix includes but is not limited to said log mes - 25 ated by prefix generator 2402 indicate the component at
sages , identifying the job being performed by crash analysis which a crash analysis failed , log analyzer 2404 can generate
system 206 , indicating a success or failure of an analysis operation results which ultimately determine which of the
being performed by crash analysis system 206 , or indicating failures occurred on each of the various components . Thus ,
an error source within the analysis being performed by crash in the present embodiments , log analyzer 2404 is now able
analysis system 206 . Additionally , embodiments of the pres - 30 to generate operation results which determine that a particu
ent invention are also well suited to having the prefix lar analysis failed , and moreover , the operation results from
comprise any combination of two or more of the above log analyzer 2404 can also indicate the particular component
described types of identifying information . By adding a at which the failure occurred . Thus , embodiments of the
prefix to the logs generated by crash analysis system 206 , present invention now provide an analysis capability that
embodiments of the present invention allow the log mes - 35 wasn ' t possible in conventional approaches . Further , log
sages to be categorized and analyzed in a manner that was analyzer 2404 is able to make determinations regarding
not previously possible . The novel categorization and analy - other characteristics of crash analysis system 206 where
sis realized by embodiments of the present invention is such determinations were not previously possible .
described below in detail . With reference now to FIGS . 27 and 28 , GUI 2700 of the

With reference to FIG . 25 , in accordance with embodi - 40 present embodiment is in a scrollable format . FIG . 27
ments of the present invention , a listing 2500 of various contains the top portion of GUI 2700 , and FIG . 28 contains
example log messages or logs having an example prefix , the bottom portion of GUI 2700 . The top portion of GUI
“ log prefix ” , is provided . Thus , as a core dump progresses 2700 in FIG . 27 includes a graphical representation of
through the various components (including subcomponent , example operation results received from log analyzer 2402 .
modules , and macros , etc .) of crash analysis system 206 , 45 The bottom portion of GUI 2700 , located on FIG . 28
prefix log generator 2402 will attach a prefix to the log includes additional charts corresponding to the example
messages generated by crash analysis system 206 . For operation results . In the present embodiment , operation
illustration purposes only , in the example listing 2500 of results GUI generator 2406 generates GUI 2700 . As shown
FIG . 25 , as components App X , App Y and App Z generate in GUI 2700 , operation results GUI generator 2406 gener
their various logs , each of the logs contains the prefix 50 ated a graphical representation comprising several histo
generated by prefix generator 2402 of FIG . 24 . grams and charts . It should be understood that FIGS . 27 and

Referring now to FIG . 26 , an example listing 2600 28 contain only example data and graphical representations
illustrating a prefix format used in various embodiments of to illustrate the functionality of monitoring system 2302 and
the present invention is shown . In the embodiment of FIG . operation results GUI generator 2406 of FIG . 24 . In GUI
26 , prefix generator 2402 of FIG . 24 will generate a prefix 55 2700 on FIG . 27 , a histogram 2702 of example data is
which includes several key / value pairs . In the embodiment provided which indicates that on a particular date , monitor
of FIG . 26 , the prefix includes a core dump id and value ing system 2302 monitored a crash analysis system and
2602 , a job id and value 2604 , an attempt # and value 2608 , found that there were eight failures within the crash analysis
a job result and value 2610 , and an error source and value system .
2612 . At 2614 , a string comprising the entire prefix for the 60 Referring now to FIG . 28 , GUI 2700 further provides a
present example is shown . Although such a prefix is shown graphical representation of four example components , A , B ,
in the example of FIG . 26 , it should be understood that , in C and D which comprise the example crash analysis system .
various embodiments of the present invention , prefix gen - As shown at 2704 of GUI 2700 on FIG . 28 , for the eight
erator 2402 is well suited to generating a prefix with a failures described above , one the failures was due to com
different amount and / or different types of key / value pairs or 65 ponent A as indicated at 2706 . None of the failures was due
even with different information entirely . Also , for purposes to component B or component D . As indicated at 2708 , the
of brevity and clarity , the present description of monitoring remaining seven of the eight failures was due to component

35
US 10 , 268 , 563 B2

36
C . Thus , monitoring system 2302 of FIG . 23 is able to Instead , embodiments of the present invention specifically
provide information , and GUIs , regarding the operation of a recite a novel process , rooted in computer technology , for
crash analysis system . Additionally , by attaching prefixes to appending a prefix to a log message and generating opera
the various logs generated by a crash analysis system , tion results to overcome a problem specifically arising in the
monitoring system 2302 of the present embodiments pro - 5 realm of monitoring computer systems .
vides information and GUIs , about the operation results ,
which were previously not possible . Referring briefly to Computer Crash Risk Assessment
FIG . 29 , in various embodiments , GUI 2700 is also config
ured such that a user can select a particular portion of a First , a brief overview of the present Computer Crash
graphical representation (e . g . histogram 2902 of 2700) . In 10 Risk Assessment invention is provided in the present para
such an embodiment , additional information corresponding graph . Embodiments of the present invention utilize results to histogram 2902 is provided in a separate GUI . For obtained from the above described crash analysis system to example , when histogram 2902 is selected , separate GUI determine the likelihood that a computer system will expe 2904 of FIG . 29 , is generated listing additional log message rience a particular crash in the future . In some embodiments , information corresponding to histogram 2902 . Further , in 15
various embodiments , GUI 2904 is also configured such that the present invention provides information , regarding the

likelihood of the future computer system crash , on a portal a user can select a particular portion thereon . In such an
embodiment , additional information corresponding to his which can be accessed by various parties . In other embodi
togram GUI 2904 is provided in yet a separate GUI . For ments , the present invention proactively notifies a customer
example , if GUI 2904 is selected , a separate GUI 3000 of 20 of the likelihood of the customers computer to experience
FIG . 30 comprising complete log files are provided corre the future computer system crash . In so doing , the present
sponding to the item selected in GUI 2904 . Thus , GUIS embodiments enable a customer to take preemptive action to
provided by operation results GUI generator 2406 of FIG . 24 avoid the future computer system crash . The below discus
allow the user to “ drill down ” and gain additional informa - sion provides a detailed description of various embodiments
tion and insight regarding the operation results derived by 25 of the present invention .
monitoring system 2302 of the present embodiments . As was described in detail above , the present automated

Referring now to FIG . 31 , a flow chart 3100 is provided end - to - end analysis system 200 (described , for example , in
of an example method for monitoring a crash analysis conjunction with the discussion of FIG . 2) includes crash
system , according to various embodiments of the present analysis system 206 . The following description pertains to a
invention . Procedures of this method are performed in 30 method and system for using results obtained from crash
conjunction with the various elements and / or components of analysis system 206 to determine the likelihood that a FIGS . 1 - 30 . It is appreciated that in some embodiments , the particular computer system will experience a crash in the
procedures may be performed in a different order than future . Referring now to FIG . 32 , a diagram 3200 is shown
described , that some of the described procedures may not be illustrating an embodiment of the present risk assessment performed , and / or that one or more additional procedures to 35 system communicatively coupled with crash analysis system those described may be performed . Flow chart 3100 206 . includes some procedures that , in various embodiments , are
carried out by one or more processors under the control of In the present embodiments , risk assessment system 3202
computer - readable and computer - executable instructions and its corresponding processes enables , for example , a
that are stored on non - transitory computer - readable storage 40 support person to determine the likelihood that a particular
media . It is further appreciated that one or more procedures computer system will experience a crash in the future . In the
described in flow chart 3100 may be implemented in hard following discussion , the potential crash which may occur
ware , or a combination of hardware with firmware and / or on a computer system in the future , is referred to as a “ future
software . crash ” .

At 3102 , embodiments in accordance with the present 45 Referring again to FIG . 32 , as was described in detail
invention attach a prefix to log messages generated by crash above , core dump collector 208 of crash analysis system 206
analysis system 206 . receives the core dump from service request repository 204 .
At 3104 , embodiments in accordance with the present Dump collector 208 then provides the unique core dump to

invention automatically access the log messages generated crash analyzer 210 . Crash analyzer 210 analyzes the core
by crash analysis system 206 . 50 dump , generates crash report data (also referred to as crash

At 3106 embodiments in accordance with the present results) , and then generates a graphic user interface includ
invention analyze , at a processor (e . g . one or more of ing a graphic representation of the crash report data . In
processors 106A , 1066 and 106C of FIG . 1) , the log mes - embodiments of the present invention , risk assessment sys
sages generated by crash analysis 206 system in order to tem 3202 receives the data or crash results from crash
generate operation results data . 55 analysis system 206 . Risk assessment system 3202 analyzes

At 3108 embodiments in accordance with the present the crash results (as will be described below in detail) to
invention generate a graphic user interface for display on a determine the likelihood that a particular computer system
computer , the graphic user interface include a graphical will experience a future crash . Risk assessment system 3202
representation of the operation results data derived at 3106 . then provides information regarding the likelihood of the

Once more , the details of the various components and 60 future crash occurring on the particular computer system to
processes for performing 3100 of FIG . 31 are provided a user of the particular computer system . In various embodi
above . ments , risk assessment system 3202 also generates a graphic

Hence , the embodiments of the present invention greatly user interface for display on a computer , wherein the graphic
extend beyond conventional methods of simply manually user interface includes a graphical representation of the
examining log messages . Moreover , embodiments of the 65 information regarding the likelihood of the future crash
present invention amount to significantly more than merely occurring on the particular computer system . FIG . 32 further
using a computer to examine conventional log messages . includes a customer computer system database 3204 . A

US 10 , 268 , 563 B2
37 38

detailed discussion of the operation of risk assessment version 1 . 1 of Driver D . Moreover , in the present example ,
system 3202 and the various components of FIG . 32 is crash results analyzer 3304 determines that version 1 . 1 of
provided below . Driver D is almost always the culprit module when utilized

Importantly , the embodiments of the present invention , with the ABC operating system . Conversely , in the present
provide a risk assessment system 3202 which significantly 5 example , crash results analyzer 3304 then determines that no
extends what was previously possible . Various embodiments crashes correspond to version 2 . 2 of Driver D , even when
of risk assessment system alert a user , regarding the likeli - version 2 . 2 of Driver D is utilized with the ABC operating
hood of the future crash occurring on a particular computer system . In such an example , crash results analyzer 3304 is
system . Moreover , present risk assessment system 3202 able to determine that there is a probable or “ High ” likeli
enables the user to take preemptive action to avoid the future 10 hood of a future crash for a computer system which is using
crash . This is in contrast to conventional approaches for version 1 . 1 of Driver D in conjunction with the ABC
crash handling which simply wait for a computer crash to operating system . In the same example , crash results ana
occur before addressing the crash . Thus , embodiments of lyzer 3304 is able to determine that there is an occasional or
present risk assessment system 3202 provide an assessment “ Medium ” likelihood of a future crash for a computer
methodology which extends well beyond what was previ - 15 system which is using version 1 . 1 of Driver D but which is
ously known . not using the ABC operating system . Finally , in the present

Also , although certain components are depicted in , for example , crash results analyzer 3304 is able to determine
example , crash analysis system 206 and risk assessment that there is an isolated or “ Low ” likelihood of a future crash
system 3202 , it should be understood that , for purposes of for a computer system which is using version 2 . 2 of Driver
clarity and brevity , each of the components may themselves 20 D regardless of the operating system . Thus , as shown in the
be comprised of numerous modules or macros which are not example above , in various embodiments , crash results ana
shown . lyzer 3304 is able to apply ranking to the likelihood of the

Referring now to FIG . 33 , a schematic diagram of various future crash occurring on a particular computer system .
components comprising risk assessment system 3202 is Although the present example used the “ High ” , “ Medium ”
shown , in accordance with embodiments of the present 25 or “ Low ” ranking format , the various embodiments of the
invention . Risk assessment system 3202 includes a crash present invention are well suited to using various other types
results receiver 3302 . In embodiments of the present inven - and quantities of ranking formats . In some embodiments , the
tion , crash results receiver 3302 receives the crash results present invention will return a message indicating that there
directly from crash analysis system 206 . It should be under - is insufficient data to calculate the likelihood of a crash .
stood that the various embodiments of the present invention 30 In the above example , crash results analyzer 3304 utilized
are also well suited to having crash results receiver 3302 the type of driver and the type of operating system determine
receive the crash results from , for example , crash analyzer the likelihood of a future crash for a computer system . It
210 . Similarly , the various embodiments of the present should be noted that in the various embodiments of the
invention are also well suited to having crash results receiver present invention , crash results analyzer 3304 is well suited
3302 receive the crash results from , for example , report 35 to using other information (or function parameters) to deter
database 214 or from elsewhere within system 3200 . mine the likelihood of a future crash for a computer system .

In FIG . 33 , crash results receiver 3302 is depicted as With reference next to FIG . 34 , in accordance with embodi
integrated with crash results analyzer 3304 and information ments of the present invention , a listing 3400 of various
provider 3306 . It should be noted that such a depiction is function parameters is provided . In the various embodiments
intended merely to show the various components of risk 40 of the present invention , crash results analyzer 3304 is able
assessment system 3202 , and is not intended to limit the to consider any or all of the listed parameter when deter
location of crash results receiver 3302 , crash results analyzer mining the likelihood of a future crash for a computer
3304 or information provider 3306 . In various embodiments system . Also , it should be understood that the list of param
of the present invention , one or more of crash results e ters in 3400 of FIG . 34 is not intended to be exhaustive of
receiver 3302 , crash results analyzer 3304 and information 45 the parameters which can be considered by crash results
provider 3306 is implemented , for example , other than analyzer 3304 when determining the likelihood of a future
integrated as shown in FIG . 33 . crash for a computer system .
Referring still to FIG . 33 , crash results analyzer 3304 Additionally , embodiments of the present invention are

receives the crash results from crash results receiver 3302 , also well suited to having crash results analyzer 3304 utilize
and then analyzes the crash results . In various embodiments 50 any one or more of the parameters listed in FIG . 34 when
of the present invention some or all of the necessary analysis analyzing the crash results to determine the likelihood of the
of the crash results may have previously been completed by future crash for a particular computer system . Similarly ,
other components within system 3200 of FIG . 32 . Ulti - embodiments of the present invention are also well suited to
mately , analysis of the crash results is required for risk having crash results analyzer 3304 utilize any combination
assessment system 3202 to complete its tasks . For purposes 55 of two or more of the parameters listed in FIG . 34 when
of the below discussion , it is assumed that crash results analyzing the crash results to determine the likelihood of the
analyzer 3304 performs the necessary analysis on the crash future crash for a particular computer system . Several of the
results . more common parameters considered by crash results ana

With reference still to FIG . 33 , crash results analyzer 3304 lyzer 3304 when determining the likelihood of a future crash
utilizes the crash results to determine the likelihood that a 60 for a computer system include , but are not limited to , a
particular computer system will experience a future crash . particular instance of software , a particular instance of
For purposes of the present discussion , consider the follow - hardware , a particular combination software and hardware ,
ing example . In the present example , in one embodiment , and a particular computational load experienced by a com
crash results analyzer 3304 determines that a significant puter system .
number of the crashes found in the crash results (generated 65 Referring still to FIG . 34 , in one embodiment of the
by crash analysis system 206 of FIG . 32 and received by present invention , risk assessment system 3202 is commu
crash results receiver 3302) are shown to correspond to nicatively coupled with customer computer system database

39
US 10 , 268 , 563 B2

40
3204 . Customer computer system database 3204 , of the provider 3306 sends a message to the user containing the
present embodiment , contains a listing of the various com information regarding the likelihood of the future crash
puter systems (and the corresponding parameters for the occurring on the user ' s computer system . In such an embodi
computer systems) for customers of interest . In one such ment , users are made aware of the likelihood of a future
embodiment , crash results analyzer 3304 accesses customer 5 crash on their computer systems regardless of whether the
computer system database 3204 . In such an embodiment , user initiates access to partner portal 216 . Thus , such an
crash results analyzer 3304 determines the likelihood of a approach can be described as an " active " approach . The
future crash for a computer system , and then crash results present embodiments are well suited to either the passive or
analyzer 3304 accesses customer computer system database the active approach . Moreover , embodiments of the present
3204 . In so doing , crash results analyzer 3304 is able to 10 invention are also well suited to using one approach (e . g . ,
" pair ” the determined likelihood for a future crash with the the active approach) when the likelihood of future crash is
computer systems found in customer computer system data “ High ” , and another approach (e . g . , the passive approach)
base 3204 . when the likelihood of a future crash is “ Low ” .
Using the example of above , crash results analyzer 3304 With reference still to FIG . 33 , in various embodiments of

would access customer computer system database 3204 to 15 the present invention , information provider 3306 may gen
determine which customers have a computer system which erate GUI including a graphical representation of the infor
uses version 1 . 1 of Driver D in conjunction with the ABC mation regarding the likelihood of a future crash . In such an
operating system . Crash results analyzer 3304 would then embodiment , information provider 3306 would generate and
identify those customers as having a “ High ” likelihood of provide the GUI for display in a manner as was described
experiencing a future crash . Similarly , crash results analyzer 20 above in conjunction with discussion of FIGS . 12 - 22 . Gen
3304 will access customer computer system database 3204 erally , in such embodiments , the GUIs provide a graphical
to determine which customers have a computer system representation and / or a categorization of novel data derived
which uses version 1 . 1 of Driver D without the ABC from the present risk assessment system 3202 . In some
operating system . Crash results analyzer 3304 would then embodiments , the present GUI is provided , for example , on
identify those customers as having a “ Medium ” likelihood 25 partner portal 216 which can be accessed by various parties .
of experiencing a future crash . Finally , crash results analyzer In so doing , the present GUI enables a party to obtain insight
3304 would access customer computer system database and information about the likelihood of a future crash in a
3204 to determine which customers have a computer system manner that was not previously possible . It should be
which uses version 2 . 2 of Driver D . Crash results analyzer appreciated that GUIs may be designed to provide a par
3304 would then identify those customers as having a 30 ticular interactive experience based on the type of informa
“ Low ” likelihood of experiencing a future crash . In the tion presented and / or received through the GUI . Moreover ,
present embodiments numerous permutations are possible a GUI may include one or more different type of interactive
based on the content of customer computer system database elements for receiving information . For example , the inter
3204 and the determinations made by crash results analyzer active elements may include , without limitation : buttons ,
3304 . Ultimately , the information determined by crash 35 widgets , controls , text boxes , radio buttons , tri - state boxes ,
results analyzer 3304 regarding the likelihood of a future list boxes , numerical input boxes , tool bars , sliders , spinners ,
crash is received by information provider 3306 . drop - down lists , accordion lists , menus , menu bars , tool

Referring again to FIG . 33 , risk assessment system 3202 bars , icons , scroll bars , labels , tooltips , balloon help , status
further comprises an information provider 3306 . In the bars , progress bars , etc . The types of interactive elements
present embodiments , information provider 3306 provides 40 included in a GUI are typically design decisions , where a
the information determined by crash results analyzer 3304 to GUI designer might attempt to provide particular elements
computer system users . In one embodiment , information to present and / or receive particular types of information . For
provider 3306 provides the information , regarding the like - example , a simple GUI may include a drop - down list , where
lihood of a future crash , on a portal accessible by to users of a user would select an item from the drop down list .
the computer systems of interest . In one such embodiment , 45 Moreover , it should be appreciated that an aspect of GUI
information provider 3306 utilizes partner portal 216 of FIG . design is to provide feedback to the user . For example , if the
32 to provide the information to the users of the computer user inputs invalid information , or is limited in the infor
systems of interest . In such an embodiment , users are made mation they may be input , it might be desirable to explain
aware of the likelihood of a future crash on their computer this to the user . This information may be explained explic
systems only if the user accesses partner portal 216 . Thus , 50 itly , e . g . , via a message , or implicitly , e . g . , disallowing the
such an approach can be described as a “ passive ” approach . input .
In various other embodiments of the present invention , Referring now to FIG . 35 , a flow chart 3500 is provided
partner portal 216 is for third party software companies only . of an example method for assessing the risk that a future
Further , in another embodiment , risk assessment system crash will occur on a computer system , according to various
3202 provides a stand - alone service which customers call to 55 embodiments of the present invention . Procedures of this
determine if a given driver version is at risk or not . For method are performed in conjunction with the various
example , a customer is setting a new data center of 100 elements and / or components of FIGS . 1 - 34 . It is appreciated
machines . At that time the data center administrator has to that in some embodiments , the procedures may be per
pick the driver version , etc which will be deployed on all formed in a different order than described , that some of the
those 100 machines . Using embodiments in acordance with 60 described procedures may not be performed , and / or that one
the present invention , the data center administrator can call or more additional procedures to those described may be
the service and enquire if his / her choice of driver version is performed . Flow chart 3500 includes some procedures that ,
at risk or not . in various embodiments , are carried out by one or more

Referring still to FIG . 33 , in another embodiment of the processors under the control of computer - readable and com
present invention , information provider 3306 utilizes a mes - 65 puter - executable instructions that are stored on non - transi
saging platform , not shown , to send a message to a user of tory computer - readable storage media . It is further appreci
a computer system . In such an embodiment , information a ted that one or more procedures described in flow chart

US 10 , 268 , 563 B2
42

3500 may be implemented in hardware , or a combination of improperly held by a second thread . As a result , the first
hardware with firmware and / or software . thread experiences the popu lockup , but the second thread ,

At 3502 , embodiments in accordance with the present which improperly holding the lock , is actually causing the
invention receive crash results from crash analysis system pcpu lockup of the first thread . In such situations , it is
206 of FIG . 32 5 important to identify the second thread (not the first thread)

At 3504 , embodiments in accordance with the present as the culprit thread which corresponds to the pcpu lockup
invention analyze the crash results , at a processor (e . g . one and corresponding software crash . As one example , an
or more of processors 106A , 106B and 106C of FIG . 1) , to internal system “ heartbeat ” may not be received from a CPU
determine the likelihood of a future crash occurring on a for a period of time which exceeds the system parameters .
particular computer system . 10 In one common system parameter , if a particular CPU does

At 3506 , embodiments in accordance with the present not provide a heartbeat for a period of time exceeding , for
invention provide information regarding the likelihood of example , 14 seconds , that particular CPU is deemed to be
the future crash occurring on the particular computer system locked up . When the CPU is deemed to be locked up , a crash
to a user of the particular computer system analyze . occurs and a core dump is generated in the manner described
Hence , the embodiments of the present invention greatly 15 above in detail .

extend beyond conventional methods of simply waiting for Procedures of this method will be described with refer
a computer crash to occur before attempting to deal with the ence to elements and / or components of , for example , FIGS .
problem . Moreover , embodiments of the present invention 1 - 11 . It is appreciated that in some embodiments , the pro
amount to significantly more than merely using a computer cedures may be performed in a different order than
to perform conventional crash handling . Instead , embodi - 20 described , that some of the described procedures may not be
ments of the present invention specifically recite a novel performed , and / or that one or more additional procedures to
process , necessarily rooted in computer technology , for those described may be performed . Flow diagram 3600
determining the likelihood that a computer system will includes some procedures that , in various embodiments , are
experience a particular crash in the future . In various carried out by one or more processors under the control of
embodiments , the present invention provides information , 25 computer - readable and computer - executable instructions
regarding the likelihood of the future computer system that are stored on non - transitory computer - readable storage
crash , to a user of the computer system . In so doing , the media . It is further appreciated that one or more procedures
present embodiments enable a customer to take preemptive described in the flow diagrams may be implemented in
action to avoid the future computer system crash . Thus , hardware , or a combination of hardware with firmware
embodiments of the present invention teach novel 30 and / or software , such as is shown , for example , in FIG . 1 .
approaches for using a computer to overcome a problem More specifically , various embodiments of the present
specifically arising in the realm of computer system crash invention , as described in detail below , are performed by
analysis . crash analyzer 210 of FIGS . 2 and 3 . In other approaches , the

Once more , the details of the various components and various embodiments of the present invention are performed
processes for performing 3500 of FIG . 35 are provided 35 on a crash analyzer which operates outside of an end - to - end
above . system and method .

A brief overview of the present Method for Determination
Determination of a Culprit Thread after a Physical of a Culprit Thread after a Physical Central Processing Unit

Central Processing Unit Lockup (pcpu) Lockup , of , for example , FIGS . 36 - 37 , is provided in
40 the present paragraph . As is known in the art , a crash or

FIG . 36 is a flow diagram of an example Method for system crash refers to a situation in which a computer
Determination of a Culprit Thread after a Physical Central program such as , for example , an operating system or a
Processing Unit (pcpu) Lockup , according to various software application ceases to function properly . Using a
embodiments . As is described in detail above , in various received PSOD , embodiments in accordance with the pres
embodiments of the present invention , a back trace (gener - 45 ent invention automatically determine if the crash was due
ated from a core dump) is ultimately used to determine a to a pcpu lockup . If the computer crash was caused by a pcpu
culprit thread corresponding to a computer crash . However , lockup , embodiments in accordance with the present inven
in certain instances , for example , when a pcpu lock up tion will automatically determine which thread (referred to
occurs , a back trace generated from a received core dump as the " culprit thread ') is responsible for causing the par
may only reveal a victim thread and may not reveal the 50 ticular pcpu - based crash depicted in the PSOD . The below
culprit thread . Thus , as will be described in detail below , discussion provides a detailed description of various
embodiments of the present invention will address the embodiments of the present invention .
situation wherein a pcpu lockup is suspected to be the cause FIG . 36 is a flow diagram of an example Method for
of a computer crash . As stated previously , a pcpu lockup Determination of a Culprit Thread after a Physical Central
occurs when one or more threads run in kernel / privileged 55 Processing Unit (pcpu) Lockup , according to various
context for a longer period of time without yielding the CPU embodiments . Procedures of this method will be described
(central processing unit) to the scheduler and / or not serving with reference to elements and / or components of , for
interrupts (for a longer period of time) . This may be due to example , FIGS . 1 - 11 . It is appreciated that in some embodi
interdependencies between these threads , but often one ments , the procedures may be performed in a different order
thread is causing other threads to lockup . Importantly , a pcpu 60 than described , that some of the described procedures may
lockup can occur in one thread although another thread is not be performed , and / or that one or more additional pro
actually responsible for the popu lockup . That is , a first cedures to those described may be performed .
thread may be found to be looping or otherwise in a pcpu Referring again to FIG . 36 , in one embodiment , after a
lockup . Upon closer inspection , it is sometimes determined crash of the computer system occurs , a core dump is
that a second thread is actually causing the first thread to 65 received by , for example , crash analyzer 210 of FIGS . 2 and
experience the popu lockup . As an example , a first thread has 3 . At 3602 , embodiments in accordance with the present
disabled interrupts and may be awaiting a lock that is being invention identify all of the threads in the received core

US 10 , 268 , 563 B2
43 44

10

dump) which are locked up . It should be noted that the terms At 3614 , upon receiving an indication that a crash has
“ hung ” , “ hang up ” , “ hang " , and the like are sometimes used occurred , one embodiment of the present invention deter
to synonymously with the term “ locked up " . It should mines if a Machine Check Exception (MCE) has occurred
further be noted that , in some instances , there may be on any of the locked up threads at the time of the computer
hundreds or thousands of running threads in a core dump 5 crash . If a MCE has occurred on any of the locked up threads
depending upon the number of pcpu lockups . As will be at the time of the computer crash , the present embodiment
described below , the present embodiment specifically deter makes a determination that the lock up was caused by a mines which of the running threads of the core dump are hardware or firmware issue as shown at 3620 . If at 3614 , it locked up using the processes disclosed at 3604 and 3606 of is determined that no MCE has occurred on any of the FIG . 36 . locked up threads , the present embodiment proceeds to At 3604 , the present embodiment examines the time 3616 . stamps associated with each thread of the received core At 3616 , one embodiment of the present invention deter dump and compares the panic timestamp for each thread
with the preempt disable timestamp for the same thread . It mines if a Non - Maskable Interrupt (NMI) is pending on any
should be noted that the panic timestamp is common across 15 is of the locked up threads at the time of the computer crash .
all threads in a core dump (i . e . across all threads) whereas If an NMI is pending on any of the locked up threads at the
the preempt disable time stamp is per thread . If the differ time of the computer crash , the present embodiment makes
ence between the panic timestamp and the preempt disable a determination that the lock up was caused by a hardware
timestamp for a thread is greater than 14 seconds , the present and / or firmware issue as shown at 3620 . If at 3616 , it is
embodiment determines that the thread is in a locked up state 20 determined that no NMI is pending on any of the locked up
as indicated by 3610 . If the difference between the panic threads at the time of the computer crash , the present
timestamp and the preempt disable timestamp for a thread is embodiment proceeds to 3618 .
not greater than 14 seconds , than the present embodiment At 3618 , one embodiment of the present invention deter
proceeds to 3606 . mines if any of the locked up threads have been in a " HALT "

Referring now to 3606 , the present embodiment then 25 state for longer than 5 seconds at the time of the computer
examines the timestamps associated with each received crash . If any of the locked up threads have been in a “ HALT ”
thread and compares the panic timestamp for each received state for longer than 5 seconds at the time of the computer
thread with the interrupt disable timestamp for the same crash , the present embodiment makes a determination that
thread . It should be noted that the panic timestamp is the lock up was caused by a hardware and / or firmware issue
common across all threads in a core dump (i . e . across all 30 as shown at 3620 . If at 3616 , it is determined that none of
threads) whereas the interrupt disable time stamp is per the locked up threads were in a " HALT " state for longer than
thread . If the difference between the panic timestamp and the 5 seconds at the time of the computer crash , the present
interrupt disable timestamp for a thread is greater than 5 embodiment determines that the lock up was caused by
seconds , the present embodiment determines that the thread software as shown at 3622 .
is in a locked up state as indicated by 3610 . If the difference 35 It should be noted if a determination is made , as shown at
between the panic timestamp and the interrupt disable 3620 , that the computer crash is due to hardware and / or
timestamp for a thread is not greater than 5 seconds , than the firmware , the present embodiment takes no further action . In
present embodiment determines that the thread is not is a some embodiments , a notification is automatically provided
locked up state (that is , there is no “ hang ” for that thread) as to an appropriate vendor indicating that the vendors hard
shown at 3608 . Thus , at the completion of 3606 , the present 40 ware and / or firmware is responsible for causing the com
embodiment will have which of the threads (from the core puter crash . In one such embodiment , the notification is sent
dump) are in a locked up state . In one embodiment , the to the appropriate vendor . In one such embodiment , infor
present invention compiles a listing of the threads which are mation provider 3306 of FIG . 33 provides the information ,
locked up . Importantly , although the description and determined by the present Method for Determination of a
examples herein refer to specific time differences between 45 Culprit Thread after a Physical Central Processing Unit
the panic timestamp and the preempt disable timestamp and (pcpu) Lockup , to computer system users . In one embodi
the interrupt disable timestamp , the present invention is well ment , information provider 3306 provides the information ,
suited to utilizing a different time differences and even regarding the hardware or firmware causing the crash , on a
different types of timestamps . Also , for purposes of brevity portal accessible by to users of the computer systems of
and clarity , the present description of 3604 and 3606 of FIG . 50 interest . In one such embodiment , information provider
36 pertains to an example in which crash analysis system 3306 utilizes partner portal 216 of FIG . 32 to provide the
206 is analyzing a core dump or PSOD received from a information to the users of the computer systems of interest .
VMware ESXiTM , enterprise - class , type - 1 hypervisor devel . In such an embodiment , users are made aware of the
oped by VMware , Inc . of Palo Alto , Calif . Importantly it hardware or firmware causing the crash on their computer
should be understood that the embodiments of the present 55 systems only if the user accesses partner portal 216 . Thus ,
invention are well suited to having the processes of FIG . 36 such an approach can be described as a “ passive ” approach .
performed on other types of core dumps . However , the Referring still to FIG . 33 , in another embodiment of the
inventive concepts of the various embodiments of the pres - present invention , information provider 3306 utilizes a mes
ent invention are still applicable to various other types of saging platform , not shown , to send a message to a user of
crash analysis systems which , in turn , are analyzing various 60 a computer system . In such an embodiment , information
other types of crash data . provider 3306 sends a message to the computer system user
At 3612 , one embodiment of the present invention then (and / or the hardware or firmware vendor) containing the

determines if the lock up of the thread / threads was caused by information regarding the hardware or firmware causing the
hardware and / or firmware . The present embodiment specifi - crash of the user ' s computer system . Thus , such an approach
cally determines whether the lock up was caused by hard - 65 can be described as an “ active ” approach . The present
ware and / or firmware using the processes disclosed at 3614 , embodiments are well suited to either the passive or the
3616 and 3618 of FIG . 36 . active approach .

US 10 , 268 , 563 B2
45 46

With reference still to FIG . 33 , in various embodiments of mines whether only a single thread is locked up . If only a
the present invention , information provider 3306 may gen single thread is locked up , the present Method for Determi
erate GUI including a graphical representation of the infor nation of a Culprit Thread after a Physical Central Process
mation regarding the hardware or firmware causing the ing Unit (pcpu) Lockup makes the determination , as shown
crash . In such an embodiment , information provider 3306 5 at 3626 , that the single locked up thread is , in fact , the culprit
would generate and provide the GUI for display in a manner thread . That is , in such an instance , as shown at 3626 , the
as was described above in conjunction with discussion of single locked up thread is deemed responsible for the pcpu
FIGS . 12 - 22 . Generally , in such embodiments , the GUIS lock up of the crashed computer system corresponding to the
provide a graphical representation and / or a categorization of received PSOD or core dump . If , at 3624 , it is determined
novel data derived from the present Method for Determina - 10 that more than one thread is locked up , the present embodi
tion of a Culprit Thread after a Physical Central Processing ment proceeds to 3628 as shown in FIG . 36 .
Unit (pcpu) Lockup . In some embodiments , the present GUI It should be noted if a determination is made , as shown at
is provided , for example , on partner portal 216 which can be 3626 , that a single thread was responsible for the lock up
accessed by various vendors or other parties . In so doing , the and , therefore , that the single thread is the culprit thread , in
present GUI enables a party to obtain insight and informa - 15 some embodiments , a notification is automatically provided
tion about the hardware or firmware causing the crash in a to the computer system user or to other parties of interest
manner that was not previously possible . It should be indicating which thread is responsible for causing the com
appreciated that GUIs may be designed to provide a par puter crash . Other parties of interest include , for example ,
ticular interactive experience based on the type of informa - third party software vendors . In one such embodiment ,
tion presented and / or received through the GUI . Moreover , 20 information provider 3306 of FIG . 33 provides the infor
a GUI may include one or more different type of interactive mation , determined by the present Method for Determina
elements for receiving information . For example , the inter tion of a Culprit Thread after a Physical Central Processing
active elements may include , without limitation : buttons , Unit (pcpu) Lockup , to computer system users or other
widgets , controls , text boxes , radio buttons , tri - state boxes , parties of interest . In one embodiment , information provider
list boxes , numerical input boxes , tool bars , sliders , spinners , 25 3306 provides the information and / or notification , regarding
drop - down lists , accordion lists , menus , menu bars , tool the culprit thread causing the crash , on a portal accessible by
bars , icons , scroll bars , labels , tooltips , balloon help , status to users of the computer systems of interest . In one such
bars , progress bars , etc . The types of interactive elements embodiment , information provider 3306 utilizes partner
included in a GUI are typically design decisions , where a portal 216 of FIG . 32 to provide the information to the users
GUI designer might attempt to provide particular elements 30 of the computer systems or other parties of interest . In such
to present and / or receive particular types of information . For an embodiment , users (or parties of interest) are made aware
example , a simple GUI may include a drop - down list , where of the culprit thread causing the crash on their computer
a user would select an item from the drop down list . systems only if the user (or party of interest) accesses partner
Moreover , it should be appreciated that an aspect of GUI portal 216 . Thus , such an approach can be described as a
design is to provide feedback to the user . For example , if the 35 " passive ” approach .
user inputs invalid information , or is limited in the infor - Referring still to FIG . 33 , in another embodiment of the
mation they may be input , it might be desirable to explain present invention , information provider 3306 utilizes a mes
this to the user . This information may be explained explic saging platform , not shown , to send a message to a user of
itly , e . g . , via a message , or implicitly , e . g . , disallowing the a computer system . In such an embodiment , information
input . 40 provider 3306 sends a message to the computer system user

Referring back to FIG . 36 , when the present embodiment (or party of interest) containing the information regarding
determines , as shown at 3622 , that the computer crash is due the culprit thread causing the crash of the user ' s computer
to software , the present embodiment proceeds to 3624 . Also , system . Thus , such an approach can be described as an
although the description and examples herein related to " active " approach . The present embodiments are well suited
3614 , 3616 and 3618 refer to MCE , NMI and HALT state , 45 to either the passive or the active approach .
respectively , the present invention is well suited to utilizing With reference again to FIG . 36 , and specifically to 3628 ,
a different exceptions , interrupts , and / or HALT state dura - if it was determined at 3624 that more than one thread is
tions to indicate that hardware and / or firmware caused the locked up , the present Method for Determination of a Culprit
computer crash . Also , for purposes of brevity and clarity , the Thread after a Physical Central Processing Unit (pcpu)
present description of 3614 , 3616 and 3618 of FIG . 36 50 Lockup generates a listing of all of the threads which are
pertains to an example in which crash analysis system 206 locked up . It should be noted that in computer systems
is analyzing a core dump or PSOD received from a VMware crashes caused pcpu lock up , the number of locked up
ESXiTM , enterprise - class , type - 1 hypervisor developed by threads can be in the hundreds or even many hundreds of
VMware , Inc . of Palo Alto , Calif . Importantly it should be threads . In the present embodiment , at 3628 , the present
understood that the embodiments of the present invention 55 method generates a listing of all locked up threads in which
are well suited to having the processes of FIG . 36 performed the locked up threads are ordered in the list according to
on other types of core dumps . However , the inventive each locked up thread ' s respective preempt disable time
concepts of the various embodiments of the present inven stamp . In one embodiment of the present invention , at 3628 ,
tion are still applicable to various other types of crash the list is generated with the locked up threads ranked on the
analysis systems which , in turn , are analyzing various other 60 list in ascending order according to each locked up thread ' s
types of crash data . respective preempt disable timestamp . Although an ascend

At 3624 , one embodiment of the present Method for ing order is used in the present embodiment , the present
Determination of a Culprit Thread after a Physical Central method is also well suited to ranking the locked up threads
Processing Unit (pcpu) Lockup determines if only a single other than by ascending order .
thread is locked up . That is , the present embodiment , pro - 65 Referring still to 3628 , in one embodiment , the present
vided the completion of steps 3602 - 3622 renders a deter - method also generates a second listing of the locked up
mination that the lock up was caused by software , deter - threads . In such an embodiment , the present method gener

47
US 10 , 268 , 563 B2

48
ates the second listing of all locked up threads in which the Referring still to FIG . 33 , in another embodiment of the
locked up threads are ordered according to each locked up present invention , information provider 3306 utilizes a mes
thread ' s respective interrupt disable timestamp . In one saging platform , not shown , to send a message to a user of
embodiment of the present invention , at 3628 , the second list a computer system . In such an embodiment , information
is generated with the locked up threads ranked on the list in 5 provider 3306 sends a message to the computer system user
ascending order according to each locked up thread ' s (or party of interest) containing the information regarding
respective interrupt disable timestamp . Although an ascend - the culprit thread causing the crash of the user ' s computer
ing order is used in the present embodiment , the present system . Thus , such an approach can be described as an
method is also well suited to ranking the locked up threads " active ” approach . The present embodiments are well suited
other than by ascending order on the second list . Upon 10 to either the passive or the active approach .
completion of 3628 , the present invention proceeds to 3630 . As was described in detail above , the present automated

At 3630 , one embodiment of the present invention ana end - to - end analysis system 200 (described , for example , in
lyzes the first list generated at 3628 . The present embodi conjunction with the discussion of FIG . 2) includes crash
ment locates the locked up thread which has the earliest analysis system 206 . Referring now to FIG . 37 , an embodi
preemptive disable timestamp . The present embodiment 15 ment of the present crash analyzer 210 is provided .
then identifies the locked up thread having the earliest In the present embodiment , crash analyzer is used to
preemptive disable timestamp as the culprit thread . Further , perform several of the task described above in detail in
in an embodiment in which , for example , two locked up conjunction with 3602 - 3630 .
threads appear to have the same (or very similar) preemptive Referring again to FIG . 37 , as was described in detail
disable timestamps , the present embodiment then accesses 20 above , core dump collector 208 of crash analysis system 206
the second list . The present embodiment then compares the receives the core dump from service request repository 204 .
first thread ' s interrupt disable timestamp to the second Dump collector 208 then provides the unique core dump to
thread ' s interrupt disable timestamp . The present embodi - crash analyzer 210 . Crash analyzer 210 of the present
ment then identifies the locked up thread having the earliest embodiment analyzes the core dump and determines if the
interrupt disable timestamp as the culprit thread . Thus , even 25 pcpu lockup is due to software . Provided the popu lockup is
when two or more locked up threads appear to have very due to software , embodiments of the present invention
similar preemptive disable timestamps , embodiments of the positively identify the culprit thread responsible for the popu
present method utilize the interrupt disable timestamp to lockup of the computer system . In embodiments of the
positively identify which of the two or more locked up present invention , crash analyzer 210 includes timestamp
threads is actually the culprit thread . Also , although the 30 analyzer 3702 . Timestamp analyzer 3702 performs the
description and examples herein related to 3628 and 3630 operations described above in conjunction with 3602 - 3608 .
refer to preemptive disable timestamps and interrupt disable In embodiments of the present invention , crash analyzer 210
timestamps , the present invention is well suited to utilizing also includes computer state analyzer 3704 . Computer state
different timestamps to identify the culprit thread . Also , for analyzer 3704 performs the operations described above in
purposes of brevity and clarity , the present description of 35 conjunction with 3612 - 3620 . Additionally , in embodiments
3628 and 3630 of FIG . 36 pertains to an example in which of the present invention , crash analyzer 210 also includes
crash analysis system 206 is analyzing a core dump or PSOD culprit thread identifier 3706 . Culprit thread identifier 3706
received from a VMware ESXiTM , enterprise - class , type - 1 performs the operations described above in conjunction with
hypervisor developed by VMware , Inc . of Palo Alto , Calif . 3624 - 3630 . In various embodiments , crash analyzer 210 also
Importantly it should be understood that the embodiments of 40 generates a graphic user interface for display on a computer ,
the present invention are well suited to having the processes wherein the graphic user interface includes a graphical
of FIG . 36 performed on other types of core dumps . How - representation of the information derived from components
ever , the inventive concepts of the various embodiments of 3702 , 3704 and / or 3706 .
the present invention are still applicable to various other Also , although certain components are depicted in , for
types of crash analysis systems which , in turn , are analyzing 45 example , crash analyzer 210 , it should be understood that ,
various other types of crash data . for purposes of clarity and brevity , each of the components

In some embodiments , a notification is automatically may themselves be comprised of numerous modules or
provided to the computer system user or to other parties of macros which are not shown .
interest indicating which thread is responsible for causing Hence , the embodiments of the present invention greatly
the computer crash . Other parties of interest include , for 50 extend beyond conventional methods which simply estimate
example , third party software vendors . In one such embodi - or make a best guess as to whether or not a computer crash
ment , information provider 3306 of FIG . 33 provides the was caused by a pcpu lock up . In addition , embodiments of
information , determined by the present Method for Deter - the present invention greatly extend beyond conventional
mination of a Culprit Thread after a Physical Central Pro methods of simply estimating or making a best guess as to
cessing Unit (pcpu) Lockup , to computer system users or 55 whether or pcpu lock up was caused by a hardware or
other parties of interest . In one embodiment , information firmware issue , or whether the popu lock up was actually
provider 3306 provides the information and / or notification , caused by software . Further , embodiments of the present
regarding the culprit thread causing the crash , on a portal invention greatly extend beyond conventional methods by
accessible by to users of the computer systems of interest . In positively identifying which locked up thread (of potentially
one such embodiment , information provider 3306 utilizes 60 many hundreds of locked up threads) is actually the respon
partner portal 216 of FIG . 32 to provide the information to sible for the computer crash . That is , unlike conventional
the users of the computer systems or other parties of interest . methods which simply estimate or make a best guess as to
In such an embodiment , users (or parties of interest) are which thread is the actual culprit thread , embodiments of the
made aware of the culprit thread causing the crash on their present invention positively identify a culprit thread . More
computer systems only if the user (or party of interest) 65 over , embodiments of the present invention amount to
accesses partner portal 216 . Thus , such an approach can be significantly more than merely using a computer to perform
described as a " passive ” approach . conventional analysis of pcpu lock ups . Instead , embodi

US 10 , 268 , 563 B2
49 50

ments of the present invention specifically recite a novel wherein said automatically determining a culprit
process , necessarily rooted in computer technology , for module responsible for said crash of said computer
determining a culprit thread after a physical central process system further comprises :
ing unit (pcpu) lockup . In various embodiments , the present generating an essential stack of functions corre
invention utilizes a novel analysis approach employing 5 sponding to said crash of said computer system ;
threshold values associated with a plurality of disable time determining a tag sequence and a tag depth corre
stamps . The various embodiments of the present invention sponding to said essential stack of functions ;
further locate and utilize various exception types and thresh deriving a list of permissible tag permutations cor
old values associated with underlying computer status sig responding to said computer system ; and
nals (e . g . Halt state data) to definitively differentiate 10 utilizing said tag sequence and said tag depth in
between hardware or firmware caused lock ups and software combination with said list of permissible tag per
caused lock ups . Further , embodiments of the present inven mutations to identify a culprit module responsible
tion employ another novel process in which a plurality of for said computer crash ;
disable timestamps are used to positively identify a culprit analyzing , at a processor , said log messages pertaining to
thread from numerous locked up threads . Thus , embodi - 15 the operation of said crash analysis system in order to
ments of the present invention teach novel approaches for generate operation results data ; and
using a computer to overcome a problem specifically arising generating a graphic user interface for display on a
in the realm of computer system crash analysis . More computer , said graphic user interface including a
specifically , embodiments of the present invention teach graphical representation of said operation results data .
novel approaches for using a computer to determine a culprit 20 2 . The computer - implemented method of claim 1 , further
thread after a physical central processing unit (pcpu) lockup . comprising :

Once more , the details of the various components and adding a prefix to said log messages , wherein said prefix
processes for performing 3600 of FIG . 36 are provided contains information identifying said core dump cor
above . responding to said operation results data .

25 3 . The computer - implemented method of claim 1 , further
CONCLUSION comprising :

adding a prefix to said log messages , wherein said prefix
The examples set forth herein were presented in order to contains information identifying a job identification

best explain , to describe particular applications , and to number corresponding to said operation results data .
thereby enable those skilled in the art to make and use 30 4 . The computer - implemented method of claim 1 , further
embodiments of the described examples . However , those comprising :
skilled in the art will recognize that the foregoing descrip adding a prefix to said log messages , wherein said prefix
tion and examples have been presented for the purposes of contains information identifying an outcome of said
illustration and example only . The description as set forth is analysis system for said core dump .
not intended to be exhaustive or to limit the embodiments to 35 5 . The computer - implemented method of claim 1 , further
the precise form disclosed . Rather , the specific features and comprising :
acts described above are disclosed as example forms of adding a prefix to said log messages , wherein said prefix
implementing the claims . contains information identifying an error source within

Reference throughout this document to " one embodi said analysis system .
ment , " " certain embodiments , " " an embodiment , ” “ various 40 6 . The computer - implemented method of claim 1 ,
embodiments , " " some embodiments , " " various embodi - wherein said generating a graphic user interface for display
ments ” , or similar term , means that a particular feature , on a computer further comprises :
structure , or characteristic described in connection with that displaying a graphical representation of said operation
embodiment is included in at least one embodiment . Thus , results indicating the identity of said core dump .
the appearances of such phrases in various places throughout 45 7 . The computer - implemented method of claim 1 ,
this specification are not necessarily all referring to the same wherein said generating a graphic user interface for display
embodiment . Furthermore , the particular features , struc on a computer further comprises :
tures , or characteristics of any embodiment may be com - displaying a graphical representation of said operation
bined in any suitable manner with one or more other results indicating a source of failure within said analy
features , structures , or characteristics of one or more other 50 sis system .
embodiments without limitation . 8 . The computer - implemented method of claim 1 ,

wherein said generating a graphical a graphic user interface
What is claimed is : for display on a computer further comprises :
1 . A computer - implemented method for monitoring a including at least a portion of said operations results in a

crash analysis system , said method comprising : 55 selectable link format ; and
accessing log messages pertaining to the operation of said displaying a complete log file on said graphic user inter

crash analysis system for analyzing a core dump , face when said user selects said operations results .
wherein said crash analysis system receives crash 9 . A method for monitoring the performance of a crash
results and performs a process of analyzing said crash analysis system , said method comprising :
results , wherein said analyzing said crash results fur - 60 attaching a prefix to log messages generated by said crash
ther comprises : analysis system , wherein said crash analysis system
automatically determining a culprit module responsible receives crash results and performs a process of ana

for a crash of a computer system , said crash results lyzing said crash results , wherein said analyzing said
corresponding to said crash ; and crash results further comprises :

automatically generating a signature back trace , 65 automatically determining a culprit module responsible
wherein said signature back trace pertains to a symp for a crash of a computer system , said crash results
tom of said crash of said computer system , and corresponding to said crash ; and

atta 10

US 10 , 268 , 563 B2
51 52

automatically generating a signature back trace , 12 . The method of claim 9 , wherein said attaching a prefix
wherein said signature back trace pertains to a symp t o log messages further comprises :
tom of said crash of said computer system , and attaching a prefix containing identifying information to
wherein said automatically determining a culprit said log messages , said identifying information indi

module responsible for said crash of said computer 5 cating a success or failure of an analysis being per
formed by said crash analysis system when said log system further comprises : messages are generated .

generating an essential stack of functions corre 13 . The method of claim 9 , wherein said attaching a prefix sponding to said crash of said computer system ; to log messages further comprises :
determining a tag sequence and a tag depth corre attaching a prefix containing identifying information to

sponding to said essential stack of functions ; said log messages , said identifying information indi
deriving a list of permissible tag permutations cor cating an error source within said analysis being per

responding to said computer system ; and formed by said crash analysis system when said log
utilizing said tag sequence and said tag depth in messages are generated .

combination with said list of permissible tag per 14 . The method of claim 9 , wherein said generating a
mutations to identify a culprit module responsible 15 graphic user interface for display on a computer further
for said computer crash ; comprises :

automatically accessing said log messages generated by generating a graphical representation of said operation
said crash analysis system ; results indicating the identity of a core dump being

analyzing , at a processor , said log messages generated by 20 analyzed by said crash analysis system when said log
said crash analysis system in order to generate opera messages are generated by said crash analysis system .
tion results data ; and 15 . The method of claim 9 , wherein said generating a

generating a graphic user interface for display on a graphic user interface for display on a computer further ra
computer , said graphic user interface including a comprises :
graphical representation of said operation results data . 25 generating a graphical representation of said operation

10 . The method of claim 9 , wherein said attaching a prefix results indicating a source of failure within said crash
to log messages further comprises : analysis system .

attaching a prefix containing identifying information to 16 . The method of claim 9 , wherein said generating a
said log messages , said identifying information identi - i graphic user interface for display on a computer further graphic user
fies a core dump being analyzed by said crash analysis 30 comprises :
system when said log messages are generated . generating a graphical representation of said operation

11 . The method of claim 9 , wherein said attaching a prefix results wherein at least a portion of said operations
results are presented in a selectable link format ; and to log messages further comprises :

attaching a prefix containing identifying information to presenting a complete log file corresponding to said
said log messages , said identifying information identi - 35 operation results , on said graphic user interface , when
fies job being performed by said crash analysis system said when said user selects said selectable link .
when said log messages are generated .

