

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 292 610

(51) Int. Cl.:

C07D 209/16 (2006.01)

C07C 259/06 (2006.01)

C07D 417/12 (2006.01)

C07D 403/12 (2006.01)

C07D 471/04 (2006.01)

C07D 519/00 (2006.01)

C07D 295/02 (2006.01)

A61K 31/4045 (2006.01)

A61K 31/16 (2006.01)

A61P 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 86) Número de solicitud europea: 01960717 .5
- (86) Fecha de presentación : **30.08.2001**
- 87 Número de publicación de la solicitud: 1318980 87 Fecha de publicación de la solicitud: 18.06.2003
- 54 Título: Derivados de hidroximato útiles como inhibidores de la deacetilasa.
- (30) Prioridad: **01.09.2000 US 229943 P** 18.05.2001 US 292232 P
- (73) Titular/es: Novartis AG. Lichtstrasse 35 4056 Basel, CH
- (45) Fecha de publicación de la mención BOPI: 16.03.2008
- (72) Inventor/es: Bair, Kenneth, Walter; Green, Michael, A.; Perez, Lawrence, B.; Remiszewski, Stacy, W.; Sambucetti, Lidia; Versace, Richard, William v Sharma, Sushil, Kumar
- (45) Fecha de la publicación del folleto de la patente: 16.03.2008
- (74) Agente: Carvajal y Urquijo, Isabel

ES 2 292 610 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados de hidroximato útiles como inhibidores de la deacetilasa.

La presente invención se relaciona con los compuestos de hidroximato que son inhibidores de la histona deacetilasa. Los compuestos inventivos son útiles como medicamentos para el tratamiento de enfermedades proliferativas.

Antecedentes

10

15

2.5

30

45

50

55

La acetilación reversible de las histonas es un regulador importante de la expresión génica que actúa alterando la accesibilidad de los factores transcripción del ADN. En células normales, la histona deacetilasa (HDA) y la histona acetiltransferasa juntas controlan el nivel de acetilación de las histonas para mantener un balance. La inhibición de la HDA resulta en la acumulación de las histonas hiperacetiladas, que resulta de una variedad de respuestas celulares.

Los inhibidores de la HDA se han estudiado por sus efectos terapéuticos en las células cancerosas. Por ejemplo, el ácido butírico y sus derivados, incluyendo el fenilbutirato de sodio, se ha reportado que induce la apoptosis *in vitro* en el carcinoma de colon en humanos, la leucemia y líneas celulares de retinoblastoma. Sin embargo, el ácido butírico y sus derivados no son útiles agentes farmacológicos debido a que ellos tienden a ser metabolizados rápidamente y tienen una vida media muy corta *in vivo*. Otros inhibidores de la HDA que han sido ampliamente estudiados por sus actividades anti-cáncer son tricostatina A y trapoxina. La tricostatina A es un antifúngico y un antibiótico y es un inhibidor reversible de la HDA en mamíferos. La trapoxina es un tetrapéptido cíclico, que es un inhibidor reversible de la HDA en mamíferos. A pesar que la tricostatina y la trapoxina se han estudiado por sus actividades anti-cáncer, la inestabilidad *in vivo* de estos compuestos, los hace menos apropiados como fármacos anti-cáncer.

Adicionalmente, WO-A-98/55449 revela los ácidos hidroxámicos cinamílicos como inhibidores de la histona deacetilasa que son útiles en el tratamiento de enfermedades proliferativas. WO-A-95/31977 revela los derivados del ácido hidroxámico cinamílico útiles en el tratamiento del cáncer. WO-A-01/38322 revela que los ácidos hidroxámicos cinamílicos como inhibidores de la histona deacetilasa que pueden ser útiles en el tratamiento del cáncer.

La presente invención proporciona compuestos inhibidores de la deacetilasa efectivos, que son útiles como agentes farmacéuticos.

Los compuestos de la presente invención son apropiados como agentes activos en composiciones farmacéuticas que son eficaces particularmente para tratar enfermedades proliferativas celulares. La composición farmacéutica tiene una cantidad farmacéutica efectiva del presente agente activo junto con otros excipientes, vehículos, rellenos, diluentes aceptables farmacéuticamente y similar. El término cantidad efectiva farmacéuticamente según se utiliza aquí indica, una cantidad necesaria para administrar a un huésped para lograr un resultado terapéutico, especialmente un efecto anti-tumor, por ejemplo, inhibición de la proliferación de las células cancerosas malignas, células de tumor benigno u otras células proliferativas.

La presente invención proporciona los compuestos de hidroximato, por ejemplo, ácidos hidroxámicos, que son inhibidores de las deacetilasas, preferiblemente inhibidores de la histona deacetilasas. Los compuestos de hidroximato son altamente apropiados para tratar tumores, incluyendo tumores cancerosos. Los compuestos de hidroximato de la presente invención tienen la siguiente estructura I

HO N
$$R_1$$
 R_2 R_3 R_4 R_5 R_5

en donde

 R_1 es un H, halo, o un alquilo C_1 - C_6 de cadena lineal (especialmente metil, etil o *n*-propil, cuyos sustituyentes metil, etil y n-propil son no sustituidos o sustituidos por uno o más sustituyentes descritos abajo para los sustituyentes alquilo);

 R_2 se selecciona de un H, alquilo C_1 - C_{10} , (preferiblemente un alquilo C_1 - C_6 , por ejemplo metil, etil o - CH_2CH_2 -OH), cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo (por ejemplo, ciclopropilmetil), arilo, heteroarilo, arilalquilo (por ejemplo bencil), heteroarilalquilo (por ejemplo piridilmetil), - $(CH_2)_nC(O)R_6$, - $(CH_2)_nC(O)R_6$, aminoacil, HON-C (O)- $CH=C(R_1)$ -aril-alquil- y - $(CH_2)_nR_7$;

 R_3 y R_4 son iguales o diferentes e independientemente un H, alquilo C_1 - C_6 , acil o acilamino, o R_3 y R_4 junto con el carbono al cual están unidos representan un C=S, o $C=NR_8$, o R_2 junto con el nitrógeno al cual está unido y R_3

junto con el carbono al cual está unido pueden formar un heterocicloalquilo C₄-C₉, un heteroarilo, un poliheteroaril, un poliheterociclo no-aromático, o un anillo poliheterociclo arilo y no-arilo mezclado;

- R₅ se selecciona de un cicloalquilo C₄-C₉, heterocicloalquilo C₄-C₉, acil, arilo, heteroarilo, arilalquilo (por ejemplo bencil), heteroarilalquilo (por ejemplo, piridilmetil), policiclos aromáticos, policiclos no-aromáticos, policiclos arilo y no arilo mezclados, poliheteroaril, poliheterociclos no-aromáticos, y poliheterociclos arilo y no-arilo mezclados;
 - n, n_1 , n_2 y n_3 son iguales o diferentes e independientemente se seleccionan de 0-6, cuando n_1 es 1-6, cada átomo de carbono puede ser opcionalmente e independientemente sustituido con R_3 y/o R_4 ;
- X y Y son iguales o diferentes e independientemente se seleccionan de un H, halo, alquilo C₁-C₄, tal como CH₃ y CF₃, NO₂, C(O)R₁, OR₉, SR₉, CN, y NR₁₀R₁₁;
- R_6 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo (por ejemplo, ciclopropilmetil), arilo, heteroarilo, arilalquilo (por ejemplo, bencil, 2-feniletenil), heteroarilalquilo (por ejemplo, piridilmetil), OR_{12} , VR_{13} , VR_{13} , VR_{14} ;
 - R₇ se selecciona de OR₁₅, SR₁₅, S(O)R₁₆, SO₂R₁₇, NR₁₃R₁₄, y NR₁₂SO₂R₆;
- R_8 se selecciona de un H, OR_{15} , $NR_{13}R_{14}$, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo (por ejemplo, bencil), y heteroarilalquilo (por ejemplo, piridilmetil);
 - R₉ se selecciona de un alquilo C₁-C₄, por ejemplo; CH₃ y CF₃, C(O)-alquilo, por ejemplo C(O)CH₃, y C(O)CF₃;
 - R_{10} y R_{11} son iguales o diferentes e independientemente se seleccionan de un H, alquilo C_1 - C_4 , y -C(O)-alquilo;
 - R_{12} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_8 , heterocicloalquilo C_4 - C_9 , heterocicloalquilalquilo C_4 - C_9 , arilo, policiclo arilo y no-arilo mezclado, heteroarilo, arilalquilo (por ejemplo, bencil), y heteroarilalquilo (por ejemplo, piridilmetil);
- R₁₃ y R₁₄ son iguales o diferentes e independientemente se seleccionan de un H, alquilo C₁-C₆, cicloalquilo C₄-C₉, heterocicloalquilo C₄-C₉, arilo, heteroarilo, arilalquilo (por ejemplo, bencil), heteroarilalquilo (por ejemplo, piridilmetil), aminoacil, o R₁₃ y R₁₄ junto con el nitrógeno al cual están unidos son heterocicloalquilo C₄-C₉, heteroarilo, poliheteroaril, poliheterociclo no-aromático o poliheterociclo arilo y no-arilo mezclado;
- R₁₅ se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_8 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;
 - R_{16} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, poliheteroaril, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;
- R_{17} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, policiclos aromáticos, heteroarilo, arilalquilo, heteroarilalquilo, poliheteroaril y $NR_{13}R_{14}$;
 - m es un número entero seleccionado de 0 a 6; y
- Z se selecciona de O, NR₁₃, S y S(O),

25

- en donde los términos dados tienen los siguientes significados:
- "alquilo" es un alquilo C₁-C₆ lineal o ramificado que es no sustituido o sustituido por uno o más sustituyentes, incluyendo la insaturación (i.e. hay uno o más enlaces C-C dobles o triples), acil, cicloalquilo, halo, oxialquilo, alquilamino, aminoalquilo, acilamino y OR₁₅;
 - "cicloalquilo" es un grupo cicloalquilo C_3 - C_9 que es no sustituido o sustituido por uno o más sustituyentes seleccionados de un alquilo C_1 - C_6 , halo, hidroxi, aminoalquilo, oxialquilo, alquilamino, y OR_{15} ;
 - "cicloalquilalquilo" es un radical de la fórmula $-(CH_2)_{n5}$ -cicloalquilo en donde n_5 es un número de 1-6 y es no sustituido en la porción alquilo o en la porción cicloalquilo por un sustituyente enumerado arriba para el alquilo y el cicloalquilo;
- "heterocicloalquilo" es un anillo alifático de 3 a 9 miembros que contiene de uno a tres heteroátomos seleccionados de un nitrógeno, azufre y oxígeno y es no sustituido o sustituido en los átomos de carbono por uno o más sustituyentes alquilo C₁-C₆, cicloalquilo C₄-C₉, arilo, heteroarilo, arilalquilo, heteroarilalquilo, halo, amino, alquilo amino y OR₁₅, en donde los heteroátomos de nitrógeno son no sustituidos o sustituidos por un alquilo C₁-C₄, arilalquilo, y heteroarilalquilo, acil, aminoacil, alquilsulfonil, y arilsulfonil;
 - "arilo" es un fenil y fenil sustituido por uno o más sustituyentes alquilo C_1 - C_6 , cicloalquilalquilo, O(CO)alquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, aminosulfonil, arilsulfonil, y OR_{15} :

"arilalquilo" es un grupo de la fórmula $-(CH_2)_{n5}$ -arilo, $-(CH_2)_{n5-1}$ -(CHaril) $-(CH_2)_{n5}$ -arilo o $-(CH2)_{n5-1}$ -CH(aril)(aril), en donde n_5 es un número de 1-6 y en donde el arilalquilo es no sustituido o sustituido en la fracción alquilo o la fracción arilo o ambas según lo descrito arriba para el alquilo y el arilo;

"heteroarilo" es un anillo aromático de 5 a 7 miembros que contiene de 1 a 4 heteroátomos seleccionados de N, O y S y es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de un sustituyente alquilo y otro heteroarilo, en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"heteroarilalquilo" es un grupo de la fórmula -(CH₂)_{n5}-heteroarilo en donde el heteroarilo y n₅ son según lo definido arriba y el grupo de enlace se conecta a un carbono o un nitrógeno de la porción heteroarilo;

"policiclo aromático" es naftil o naftil sustituido por uno o más sustituyentes seleccionados de alquilo C_1 - C_6 , cicloalquilalquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, arilsulfonil, aminosulfonil y OR_{15} ;

"policiclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros y cada anillo contiene cero, 1 o más enlaces dobles y/o triples, en donde un policiclo no-aromático es no sustituido o sustituido según lo descrito arriba para el cicloalquilo;

"aminoacil" es un grupo de la fórmula $-C(O)-(CH_2)_n-C(H)(NR_{13}R_{14})-(CH_2)_n-R_5$;

"policiclos arilo y no arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros y al menos un anillo es aromático, en donde los policiclos arilo y no arilo mezclados son no sustituidos o sustituidos por nitro o según lo descrito arriba para el cicloalquilo;

"poliheteroaril" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser independientemente de 5 o 6 miembros y contener de 1-4 heteroátomos escogidos de O, N o S tal que el sistema de anillo fundido sea aromático, en donde el poliheteroaril es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de alquilo y un sustituyente de la fórmula -O-($CH_2CH=CH(CH_3)(CH_2))_{1-3}H$ y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R_{13} , especialmente por un alquilo C_1-C_4 , acil, aminoacil, y sulfonil;

"poliheterociclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros, contener de 1-4 heteroátomos escogidos de O, N o S y contener cero o uno o más enlaces C-C dobles o triples, en donde un poliheterociclo no-aromático es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R_{13} , especialmente por un alquilo C_1 - C_4 , acil, aminoacil, y sulfonil;

"poliheterociclos arilo y no-arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros, contener uno o más heteroátomos escogidos de O, N o S, y al menos uno de los anillos debe ser aromático, en donde los poliheterociclos arilo y no-arilo mezclados son no sustituidos o sustituidos en un átomo de carbono por uno o más sustituyentes seleccionados de -N-OH, =N-OH y alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"acil" es un grupo de la fórmula -C(O)-W, -OC(O)-W, -C(O)-O-W y -C(O)N $R_{13}R_{14}$, donde W es R_{16} , H o cicloal-quilalquilo;

"acilamino" es un grupo de la fórmula $-N(R_{12})C(O)-W$, $-N(R_{12})C(O)-O-W$, y $-N(R_{12})C(O)-NHOH$, en donde R_{12} y W son según lo definido arriba;

y en donde

50

55

60

10

15

20

25

"HON-C(O)-CH=C(R₁)-aril-alquil-" es un grupo de la fórmula

en donde n₄ es 0-3 y X y Y son según lo definido arriba;

o una sal farmacéuticamente aceptable de estos.

Según proceda, no sustituido significa que no hay sustituyente o que los únicos sustituyentes son hidrógeno.

Los sustituyentes halo se seleccionan de flúor, cloro, bromo y yodo, preferiblemente flúor o cloro.

Los sustituyentes alquilo incluyen alquilo C_1 - C_6 lineal y ramificado, a menos que se indique de otra manera. Ejemplos de sustituyentes alquilo C_1 - C_6 lineales y ramificados apropiados incluyen metil; etil, n-propil, 2-propil, n-butil, sec-butil, t-butil, y similares. A menos que se indique de otra manera, los sustituyentes alquilo incluyen ambos grupos alquilo no sustituidos y grupos alquilo que son sustituidos por uno o más sustituyentes apropiados, incluyendo insaturación (i.e. hay uno o más enlaces C-C dobles o triples), acil, cicloalquilo, halo, oxialquilo, alquilamino, aminoalquilo, acilamino y OR_{15} , por ejemplo, alcoxi. Los sustituyentes preferidos para los grupos alquilo incluyen halo, hidroxi, alcoxi, oxialquilo, alquilamino, y aminoalquilo.

Los sustituyentes cicloalquilo incluyen grupos alquilo C_3 - C_9 , tal como ciclopropil, ciclobutil, ciclopentil, ciclohexil y similares, a menos que se especifique de otra manera. A menos que se indique de otra manera, los sustituyentes cicloalquilo incluyen ambos grupos cicloalquilo no sustituidos y grupos cicloalquilo que son sustituidos por uno o más sustituyentes apropiados, incluyendo alquilo C_1 - C_8 , halo, hidroxi, aminoalquilo, oxialquilo, alquilamino, y OR_{15} , tal como alcoxi. Los sustituyentes preferidos para los grupos cicloalquilo incluyen halo, hidroxi, alcoxi, oxialquilo, alquilamino y aminoalquilo.

El argumento anterior del alquilo y los sustituyentes cicloalquilo también aplica a las porciones alquilo de otros sustituyentes, tal como sin limitación, sustituyentes alcoxi, alquilo aminas, alquilo cetonas, arilalquilo, heteroarilalquilo, alquilsulfonil y alquilo éster y similares.

Los sustituyentes heterocicloalquilo incluyen anillos alifáticos de 3 a 9 miembros, tal como anillos alifáticos de 4 a 7 miembros, que contienen de uno a tres heteroátomos seleccionados de un nitrógeno, azufre y oxígeno. Ejemplos de sustituyentes heterocicloalquilo apropiados incluyen pirrolidil, tetrahidrofuril, tetrahidrotiofuranil, piperidil, piperazil, tetrahidropiranil, morfilino, 1,3-diazapan, 1,4-diazapan, 1,4-oxazepan, y 1,4-oxatiapan, a menos que se indique de otra manera, los anillos son no sustituidos o sustituidos en los átomos de carbono por uno o más sustituyentes apropiados, incluyendo alquilo C₁-C₆, cicloalquilo C₄-C₉, arilo, heteroarilo, arilalquilo (por ejemplo, bencil), y heteroarilalquilo (por ejemplo, piridilmetil), halo, amino, alquilo amino y OR₁₅, por ejemplo alcoxi. A menos que se indique de otra manera, los heteroátomos de nitrógeno son no sustituidos o sustituidos por H, alquilo C₁-C₄, arilalquilo (por ejemplo, bencil), y heteroarilalquilo (por ejemplo, piridilmetil), acil, aminoacil, alquilsulfonil, y arilsulfonil.

Los sustituyentes cicloalquilalquilo incluyen los compuestos de la fórmula -(CH₂)_{n5}-cicloalquilo en donde n₅ es un número de 1-6. Los sustituyentes cicloalquilalquilo apropiados incluyen ciclopentilmetil-, ciclopentiletil, ciclohexilmetil y similares. Tales sustituyentes son no sustituidos o sustituidos en la porción alquilo o en la porción cicloalquilo por un apropiado sustituyente, incluyendo aquellos enumerados arriba para el alquilo y el cicloalquilo.

Los sustituyentes arilo incluyen el fenil no sustituido y fenil sustituido por uno o más sustituyentes apropiados, incluyendo alquilo C₁-C₆, cicloalquilalquilo (por ejemplo, ciclopropilmetil), O(CO)alquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, aminosulfonil, arilsulfonil, y OR₁₅, tal como alcoxi. Los sustituyentes arilo preferidos incluyen alquilo C₁-C₆, cicloalquilo (por ejemplo, ciclopropilmetil), alcoxi, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, arilsulfonil, y aminosulfonil. Ejemplos de grupos arilo apropiados incluyen fenilalquilo C₁-C₄, fenilalcoxi C₁-C₄, trifluorometilfenil, metoxifenil, hidroxietilfenil, dimetilaminofenil, aminopropilfenil, carbetoxifenil, metanosulfonilfenil y tolilsulfonilfenil.

Los policiclos aromáticos incluyen naftil, y naftil sustituido por uno o más sustituyentes apropiados, incluyendo alquilo C_1 - C_6 , cicloalquilalquilo (por ejemplo, ciclopropilmetil), oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, arilsulfonil, aminosulfonil y OR_{15} , tal como alcoxi.

50

Los sustituyentes heteroaril incluyen los compuestos con un anillo aromático de 5 a 7 miembros que contiene uno o más heteroátomos, por ejemplo de 1 a 4 heteroátomos, se seleccionan de un N, O y S. Los sustituyentes heteroarilo típicos incluyen furil, tienel, pirrol, pirazol, triazol, tiazol, oxazol, piridina, pirimidina, isoxazolil, pirazina y similares. A menos que se indique de otra manera, los sustituyentes heteroarilo son no sustituidos o sustituidos en un átomo de carbono por uno o más sustituyentes apropiados, incluyendo el alquilo, los sustituyentes alquilo identificados arriba, y otro sustituyente heteroarilo. Los átomos de nitrógeno son no sustituidos o sustituidos, por ejemplo por R_{13} ; sustituyentes N especialmente útiles incluyen H, alquilo C_1 - C_4 , acil, aminoacil, y sulfonil.

Los sustituyentes arilalquilo incluyen grupos de la fórmula -(CH_2) $_{n5}$ -arilo, -(CH_2) $_{n5-1}$ -(CHaril)-(CH_2) $_{n5}$ -arilo o -(CH_2) $_{n5-1}$ CH(aril)(aril) en donde el aril y n_5 son según lo definido arriba. Tales sustituyentes arilalquilo incluyen bencil, 2-feniletil, 1-feniletil, tolil-3-propil, 2-fenilpropil, difenilmetil, 2-difeniletil, 5,5-dimetil-3-fenilpentil y similares. Los sustituyentes arilalquilo son no sustituidos o sustituidos en la fracción alquilo o la fracción arilo o ambas según lo descrito arriba para los sustituyentes alquilo y arilo.

Los sustituyentes heteroarilalquilo incluyen grupos de la fórmula - $(CH_2)_{n5}$ -heteroarilo en donde el heteroarilo y n_5 son según lo definido arriba y el grupo de enlace se conecta a un carbono o a un nitrógeno de la porción heteroarilo, tal

como 2-, 3- o 4-piridilmetil, imidazolilmetil, quinoliletil, y pirrolilbutil. Los sustituyentes heteroaril son no sustituidos o sustituidos como se plantea arriba para el heteroarilo y los sustituyentes alquilo.

Los sustituyentes aminoacil incluyen grupos de la fórmula $-C(O)-(CH_2)_n-C(H)(NR_{13}R_{14})-(CH_2)_n-R_5$ en donde n, R_{13} , R_{14} y R_5 se describen arriba. Los sustituyentes aminoacil apropiados incluyen amino ácidos naturales y nonaturales tal como glicinil, D-triptofanil, L-lisinil, D- o L-homoserinil, 4-aminobutrico acil, 6-3-amin-4-hexenoil.

Los sustituyentes policiclo no-aromáticos incluyen los sistemas de anillo fundidos bicíclicos y tricíclicos donde cada anillo puede ser de 4-9 miembros y cada anillo puede contener cero, 1 o más enlaces dobles y/o triples. Ejemplos apropiados de policiclos no-aromáticos incluyen decalin, octahidroindeno, perhidrobenzociclohepteno, perhidrobenzo-[f]-azuleno. Tales sustituyentes son no sustituidos o sustituidos según lo descrito arriba para los grupos ciclo-alquilo.

Los sustituyentes policiclo arilo y no-arilo mezclados incluyen sistemas de anillo fundidos bicíclicos y tricíclicos donde cada anillo puede ser de 4-9 miembros y al menos un anillo es aromático. Ejemplos apropiados de policiclos arilo y no arilo mezclados incluyen metilenedioxifenil, *bis*-metilenedioxifenil, 1,2,3,4-tetrahidronaftaleno, dibenzosuberano, dihidroantraceno, 9H-fluoreno. Tales sustituyentes son no sustituidos o sustituidos por nitro o según lo descrito arriba para los grupos cicloalquilo.

Los sustituyentes poliheteroaril incluyen sistemas de anillo fundidos bicíclicos y tricíclicos donde cada anillo puede ser independientemente de 5 o 6 miembros y contener uno o más heteroátomos, por ejemplo, 1, 2, 3, o 4 heteroátomos, escogidos de O, N o S tal que el sistema de anillo fundido sea aromático. Ejemplos apropiados de sistemas de anillo poliheteroaril incluyen quinolina, isoquinolina, piridopirazina, pirrolopiridina, furopiridina, indol, benzofuran, benzotiofuran, benzindol, benzoxazol, pirroloquinolina, y similares. A menos que se indique de otra manera, los sustituyentes poliheteroaril son no sustituidos o sustituidos en un átomo de carbono por uno o más sustituyentes apropiados, incluyendo alquilo, los sustituyentes alquilo identificados arriba y un sustituyente de la fórmula -O-(CH₂CH=CH (CH₃)(CH₂))₁₋₃H. Los átomos de nitrógeno son no sustituidos o sustituidos, por ejemplo por R₁₃; Los sustituyentes del N especialmente útiles incluyen H, alquilo C₁-C₄, acil, aminoacil, y sulfonil.

Los sustituyentes poliheterociclicos no-aromáticos incluyen sistemas de anillo fundidos bicíclicos y tricíclicos donde cada anillo puede ser de 4-9 miembros, contener uno o más heteroátomos, por ejemplo, 1, 2, 3, o 4 heteroátomos, escogidos de O, N o S y contener cero o uno o más enlaces C-C dobles o triples. Ejemplos apropiados de poliheterociclos no-aromáticos incluyen hexitol, cis-perhidro-ciclohepta[b]piridinil, decahidro-benzo[f][1,4] oxazepinil, 2,8-dioxabiciclo[3.3.0]octano, hexahidro-tieno[3,2-b]tiofeno, perhidropirrolo[3,2-b]pirrol, perhidronaftiridina, perhidro-1H-diciclopenta[b,e]piran. A menos que se indique de otra manera, los sustituyentes poliheterocíclicos no-aromáticos son no sustituidos o sustituidos en un átomo de carbono por uno o más sustituyentes, incluyendo alquilo y los sustituyentes alquilo identificados arriba. Los átomos de nitrógeno son no sustituidos o sustituidos, por ejemplo, por R₁₃; sustituyentes de N especialmente útiles incluyen H, alquilo C₁-C₄, acil, aminoacil, y sulfonil.

Los sustituyentes poliheterociclos arilo y no-arilo mezclados incluyen sistemas de anillo fundidos bicíclicos y tricíclicos donde cada anillo puede ser de 4-9 miembros, contener uno o más heteroátomos escogidos de O, N o S, y al menos uno de los anillos debe ser aromático. Ejemplos apropiados de poliheterociclos arilo y no-arilo mezclados incluyen 2,3-dihidroindol, 1,2,3,4-tetrahidroquinolina, 5,11-dihidro-10H-dibenz[b,e][1,4]diazepina, 5H-dibenzo[b,e][1,4]diazepina, 1,2-dihidropirrolo[3,4-b][1,5]benzodiazepina, 1,5-dihidropirido[2,3-b][1,4]diazepin-4-ona, 1,2,3,4,6,11-hexahidro-benzo[b]pirido[2,3-e][1,4]diazepin-5-ona. A menos que se indique de otra manera, los sustituyentes poliheterocíclicos arilo y no-arilo mezclados son no sustituidos o sustituidos en un átomo de carbono por uno o más sustituyentes apropiados, incluyendo, -N-OH, =N-OH, alquilo y los sustituyentes alquilo identificados arriba. Los átomos de nitrógeno son no sustituidos o sustituidos, por ejemplo, por R_{13} ; sustituyentes de N especialmente útiles incluyen H, alquilo C_1 - C_4 , acil, aminoacil, y sulfonil.

Los sustituyentes amino incluyen aminas primarias, secundarias y terciarias y en forma de sal, aminas cuaternarias. Ejemplos de sustituyentes amino incluyen mono- y di-alquilamino, mono- y di-arila amino, mono- y di-arila quilamino, alquil-arila quilamino, alquil-arila quilamino y similares.

Los sustituyentes sulfonil incluyen alquilsulfonil y arilsulfonil, por ejemplo metano sulfonil, benceno sulfonil, tosil y similares.

Los sustituyentes acil incluyen grupos de la fórmula -C(O)-W, -OC(O)-W, -C(O)-O-W y -C(O)NR₁₃R₁₄, donde W es R_{16} , H o cicloalquilalquilo.

Los sustituyentes acilamino incluyen grupos de la fórmula -N(R_{12})C(O)-W, -N(R_{12})C(O)-O-W, y -N(R_{12})C (O)-NHOH y R_{12} y W son según lo definido arriba.

El sustituyente R₂ HON-C(O)-CH=C(R₁)-aril-alquil- es un grupo de la fórmula

 $_{15}$ $\,\,$ en donde n_4 es 0-3 y X y Y son según lo definido arriba.

25

55

60

Las preferencias para cada uno de los sustituyentes incluyen las siguientes:

 R_1 es un H, halo, o un alquilo C_1 - C_4 de cadena lineal;

 R_2 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, - $(CH_2)_nC(O)R_6$, aminoacil, y - $(CH_2)_nR_7$;

R₃ y R₄ son iguales o diferentes e independientemente se seleccionan de un H, y alquilo C₁-C₆, o R₃ y R₄ juntos con el carbono al cual están unidos representan C=O, C=S, o C=NR₈;

 R_5 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo, un policiclo aromático, un policiclo no-aromático, un policiclo arilo y no-arilo mezclado, poliheteroaril, un poliheterociclo no aromático, y un poliheterociclo arilo y no-arilo mezclado;

n, n₁, n₂ y n₃ son iguales o diferentes e independientemente se seleccionan de 0-6, cuando n₁ es 1-6, cada átomo de carbono es no sustituido o independientemente sustituido con R₃ y/o R₄; X y Y son iguales o diferentes e independientemente se seleccionan de un H, halo, alquilo C₁-C₄, CF₃, NO₂, C(O)R₁, OR₉, SR₉, CN, y NR₁₀R₁₁;

 R_6 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, OR_{12} , y $NR_{13}R_{14}$;

R₇ se selecciona de OR₁₅, SR₁₅, S(O)R₁₆, SO₂R₁₇, NR₁₃R₁₄, y NR₁₂SO₂R₆;

 R_8 se selecciona de un H, OR_{15} , $NR_{13}R_{14}$, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, y heteroarilalquilo;

R₉ se selecciona de un alquilo C₁-C₄ y C(O)-alquilo;

 R_{10} y R_{11} son iguales o diferentes e independientemente se seleccionan de un H, alquilo C_1 - C_4 , y -C(O)-alquilo;

 R_{12} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, y heteroarilalquilo;

 R_{13} y R_{14} son iguales o diferentes e independientemente se seleccionan de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo y aminoacil;

 R_{15} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{16} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{17} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo y $NR_{13}R_{14}$;

m es un número entero seleccionado de 0 a 6; y

Z se selecciona de O, NR_{13} , S, S(O).

Los compuestos útiles de la fórmula I incluyen aquellos en donde cada uno de R₁, X, Y, R₃, y R₄ sea un H, incluyendo aquellos en donde uno de n₂ y n₃ es cero y el otro es 1, especialmente aquellos en donde R₂ es un H o -CH₂-CH₂-OH.

Un género apropiado de los compuestos de hidroximato es aquel de fórmula Ia

en donde

5

10

15

20

25

30

35

 n_4 es 0-3,

 R_2 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilalquilo, heteroarilalquilo, -(CH₂)nC(O)R₆, aminoacil y -(CH₂)_nR₇;

 R_5 ' es un heteroarilo, heteroarilalquilo (por ejemplo, piridilmetil), policiclos aromáticos, policiclos no-aromáticos, policiclos arilo y no arilo mezclados, poliheteroaril, o poliheterociclos arilo y no-arilo mezclados, o una sal farmacéuticamente aceptable de estos.

Otro género apropiado de los compuestos de hidroximato es aquel de fórmula Ia

en donde

 n_4 es 0-3,

 R_2 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilalquilo, heteroarilalquilo, - $(CH_2)_nC(O)R_6$, aminoacil y - $(CH_2)_nR_7$;

R₅' es arilo, arilalquilo, policiclos aromáticos, policiclos no-aromáticos, y policiclos arilo y no arilo mezclados; especialmente arilo, tal como p-flurofenil, p-clorofenil, p-O- alquilfenil C₁-C₄, tal como p-metoxifenil, y p-alquilfenil C₁-C₄; y arilalquilo, tal como bencil, *orto, meta o para-fluorobencil, orto, meta o para-*clorobencil, *orto, meta o para-*metoxibencil, *m, p*-dietoxibencil, *o, m, p*-triimetoxibenzil, y *orto, meta o para-* mono, di o tri alquilfenil C₁-C₄, tal como *p*-metil, *m, m*-dietilfenil, o una sal farmacéuticamente aceptable de estos.

Otro género interesante son los compuestos de fórmula Ib

HO
$$\mathbb{R}_{5}^{1}$$
 (1b)

en donde

 R_2 ' se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_6 , cicloalquilalquilo (por ejemplo, *ciclopropilmetil*), -(CH₂)₂₋₄OR₂₁ donde

R₂₁ es un H, metil, etil, propil, y i-propil, y

R₅" es no sustituido 1*H*-indol-3-il, benzofuran-3-il o quinolin-3-il, o sustituido 1*H*-indol-3-il, tal como 5-flúor-1*H*-indol-3-il o 5-metoxi-1*H*-indol-3-il, benzofuran-3-il o quinolin-3-il,

o una sal farmacéuticamente aceptable de estos.

Otro género interesante de los compuestos de hidroximato son los compuestos de fórmula Ic

10

15

20

5

HO N
$$R_1$$
 R_{18} R_{18} R_{19} R_{19}

25

en donde

el anillo que contiene Z₁ es aromático o no-aromático, anillos no-aromáticos que son saturados o insaturados,

 $Z_1 \text{ es O, S o N-R}_{20}$

 R_{18} es un H, halo, alquilo C_1 - C_6 (metil, etil, t-butil), cicloalquilo C_3 - C_7 , arilo, por ejemplo fenil no sustituido o fenil sustituido por 4-OCH₃ o 4-CF₃, o heteroarilo, tal como 2-furanil, 2-tiofenil o 2-, 3- o 4-piridil;

R₂₀ es un H, alquilo C₁-C₆, alquilo C₁-C₆-cicloalquilo C₃-C₉ (por ejemplo, ciclopropilmetil), arilo, heteroarilo, arilalquilo (por ejemplo, bencil), heteroarilalquilo (por ejemplo, piridilmetil), acil (acetil, propionil, benzoil) o sulfonil (metanosulfonil, etanosulfonil, bencenosulfonil, toluenosulfonil);

A₁ es 1, 2 o 3 sustituyentes que son independientemente un H, alquilo C₁-C₆, -OR₁₉, halo, alquilamino, aminoalquilo, halo, o heteroarilalquilo (por ejemplo, piridilmetil),

 R_{19} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo (por ejemplo, bencil), heteroarilalquilo (por ejemplo, piridilmetil) y- $(CH_2CH=CH(CH_3)(CH_2))_{1-3}H$;

R₂ se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, - $(CH_2)_n C(O) R_6$, aminoacil y - $(CH_2)_n R_7$;

v es 0, 1 o 2,

50 p es 0-3, y

q es 1-5 y r es 0 o

q es 0 y r es 1-5,

55

o una sal farmacéuticamente aceptable de estos. Los otros sustituyentes variables son según lo definido arriba.

Especialmente los compuestos útiles de fórmula Ic son aquellos en donde R_2 es un H, o -(CH_2) $_pCH_2OH$, en donde p es 1-3, especialmente aquellos en donde R_1 es un H; tal como aquellos en donde R_1 es un H y X y Y son cada uno H, y en donde q es 1-3 y r es 0 o en donde q es 0 y r es 1-3, especialmente aquellos en donde Z_1 es N-R₂₀. Entre estos compuestos Z_1 es preferiblemente H o - Z_2 0H y la suma de q y r es preferiblemente 1.

Otro género interesante de los compuestos de hidroximato son los compuestos de fórmula Id

HO N
$$R_1$$
 R_{18} R_{18} R_{19} R_{19}

en donde

5

10

15

35

50

55

 Z_1 es O, S o N- R_{20} ,

R₁₈ es un H, halo, alquilo C₁-C₆ (metil, etil, t-butil), cicloalquilo C₃-C₇, arilo, por ejemplo, no sustituido fenil o fenil sustituido por 4-OCH₃ o 4-CF₃, o heteroarilo,

R₂₀ es un H, alquilo C₁-C₆, alquilo C₁-C₆-cicloalquilo C₃-C₉ (por ejemplo, ciclopropilmetil), arilo, heteroarilo, arilalquilo (por ejemplo, bencil), heteroarilalquilo (por ejemplo, piridilmetil), acil (acetil, propionil, benzoil) o sulfonil (metanosulfonil, etanosulfonil, bencenosulfonil, toluenosulfonil);

A₁ es 1, 2 o 3 sustituyentes que son independientemente H, alquilo C₁-C₆, -OR₁₉, o halo,

 R_{19} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo (por ejemplo, bencil), y heteroarilalquilo (por ejemplo, piridilmetil);

p es 0-3, y

q es 1-5 y r es 0 o

q es 0 y r es 1-5,

o una sal farmacéuticamente aceptable de estos. Los otros sustituyentes variables son según lo definido arriba.

Los compuestos especialmente útiles de fórmula Id son aquellos en donde R_2 es un H, o -(CH_2) $_pCH_2OH$, en donde P_1 es 1-3, especialmente aquellos en donde P_2 es un P_3 es un P_4 y P_4 son cada uno P_4 en donde P_4 es un P_4 y P_5 son cada uno P_6 es 1-3 y P_6 es preferiblemente P_6 o en donde P_8 es preferiblemente P_8 es preferiblemente P_8 o - P_8 es preferiblemente P_8 es

La presente invención además se relaciona con los compuestos de la fórmula Ie

HO N
$$R_1$$
 R_{18} (le)

o una sal farmacéuticamente aceptable de estos. Los sustituyentes variables son según lo definido arriba.

Los compuestos especialmente útiles de fórmula Ie son aquellos en donde R_{18} es un H, flúor, cloro, bromo, un grupo alquilo C_1 - C_4 , un grupo alquilo C_1 - C_4 , un grupo alquilo C_1 - C_4 sustituido, un grupo cicloalquilo C_3 - C_7 , fenil no sustituido, fenil sustituido en la posición para, o un anillo heteroarilo (por ejemplo, piridil).

Otro grupo de los compuestos útiles de fórmula Ie son aquellos en donde R_2 es un H, o - $(CH_2)_pCH_2OH$, en donde p es 1-3, especialmente aquellos en donde R_1 es un H; tal como aquellos en donde R_1 es un H y X y Y son cada uno H,

y en donde q es 1-3 y r es 0 o en donde q es 0 y r es 1-3. Entre estos los compuestos R₂ es preferiblemente H o -CH₂-CH₂-OH y la suma de q y r es preferiblemente 1.

Otro grupo de los compuestos útiles de fórmula Ie son aquellos en donde R₁₈ es un H, metil, etil, t-butil, trifluorometil, ciclohexil, fenil, 4-metoxifenil, 4-trifluorometilfenil, 2-furanil, 2-tiofenil, o 2-, 3- o 4-piridil en donde los sustituyentes 2-furanil, 2-tiofenil y 2-, 3- o 4-piridil son no sustituidos o sustituidos según lo descrito arriba para los anillos heteroarilo; R_2 es un H, o -(CH_2) $_pCH_2OH$, en donde p es 1-3; especialmente aquellos en donde R_1 es un H y X y Y son cada uno H, y en donde q es 1-3 y r es 0 o en donde q es 0 y r es 1-3. Entre estos compuestos R_2 es preferiblemente H o -CH₂-CH₂-OH y la suma de q y r es preferiblemente 1.

Aquellos compuestos de fórmula Ie en donde R₂₀ es un H o alquilo C₁-C₆, especialmente H, son miembros importantes de cada uno de los subgéneros de los compuestos de fórmula Ie descritos arriba.

N-hidroxi-3-[4-[[(2-hidroxietil)[2-(1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida, N-hidroxi-3-[4-[[[2-(1 H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida y N-hidroxi-3-[4-[[[2-(2-metil-1*H*-indol-3-il)-etil]-amino] metil]fenil]-2E-2-propenamida, o una sal farmacéuticamente aceptable de estos, son importantes compuestos de fórmula Ie.

La presente invención además se relaciona con los compuestos de la fórmula If

15

20

2.5

30

35

o una sal farmacéuticamente aceptable de estos. Los sustituyentes variables son como se definieron arriba.

Los compuestos útiles de fórmula If son aquellos en donde R₂ es un H, o -(CH₂)_pCH₂OH, en donde p es 1-3, especialmente aquellos en donde R₁ es un H; tal como aquellos en donde R₁ es un H y X y Y son cada uno H, y en donde q es 1-3 y r es 0 o en donde q es 0 y r es 1-3. Entre estos compuestos R_2 es preferiblemente H o -CH₂-CH₂-OH y la suma de q y r es preferiblemente 1.

La N-hidroxi-3-[4-[[[2-(benzofur-3-il)-etil]-amino]metil]fenil]-2E-2-propenamida, o una sal farmacéuticamente aceptable de esta, es un compuesto importante de fórmula If.

45

Los compuestos descritos arriba generalmente se utilizan en la forma de una sal farmacéuticamente aceptable. Las sales farmacéuticamente aceptables incluyen, cuando es apropiado, las sales de adición de base y sales de adición de ácido farmacéuticamente aceptables, por ejemplo, las sales metálicas, tal como sales de metal alcalinotérreo y alcalino, sales de amonio, sales de adición de amina orgánica, y sales de adición de aminoácido, y sales sulfonato. Las sales de adición de ácidos incluyen sales de adición de ácido inorgánico tal como clorhidrato, sulfato y fosfato, y sales de adición de ácido orgánico tal como alquilo sulfonato, arilsulfonato, acetato, maleato, fumarato, tartrato, citrato y lactato. Ejemplos de sales metálicas son sales de metal alcalino, tal como sal de litio, sal de sodio y sal de potasio, sales de metal alcalinotérreo tal como sal de magnesio y sal de calcio, sal de aluminio, y sal de cinc. Ejemplos de sales de amonio son sal de amonio y sal de tetrametilamonio. Ejemplos de sales de adición de aminas orgánicas son las sales con morfolina y piperidina. Ejemplos de sales de adición de aminoácido son sales con glicina, fenilalanina, ácido glutámico y lisina. Las sales sulfonato incluyen mesilato, tosilato y sales de ácido sulfónico benceno.

Como es evidente para aquellos de habilidad en el oficio, la mayoría de los compuestos inhibidores de la deacetilasa de la presente invención contienen átomos de carbono asimétricos. Debería entenderse, por consiguiente, que los estereoisómeros individuales se contemplan como incluidos en el alcance de esta invención.

60

Los compuestos de hidroximato de la presente invención se pueden producir por conocidos métodos de síntesis orgánica. Por ejemplo, los compuestos de hidroximato se pueden producir haciendo reaccionar el metil 4-formil cinnamato con triptamina y luego convirtiendo el reactivo con los compuestos de hidroximato. Como un ejemplo, el metil 4-formil cinnamato 2, se prepara mediante la esterificación catalizada del ácido del ácido 4-formilcinámico 3 (Bull. Chem. Soc. Jpn. 1995; 68:2355-2362). Una preparación alterna del metil 4-formil cinnamato 2 es mediante un acoplamiento Pd-catalizado del metil acrilato 4 con 4-bromobenzaldehído 5.

Las materias primas adicionales se pueden preparar a partir del 4-carboxibenzaldehído 6, y un método ejemplar se ilustra para la preparación del aldehído 9, se muestra abajo. El ácido carboxílico en 4-carboxibenzaldehído 6 se puede proteger como un silil éster (por ejemplo, el t-butildimetilsilil éster) por el tratamiento con un cloruro de silil (por ejemplo, t-butildimetilsilil cloruro) y una base (por ejemplo trietilamina) en un solvente apropiado (por ejemplo, diclorometano). El silil éster resultante 7 puede experimentar una reacción de olefinación (por ejemplo, una olefinación Homer-Emmons) con un éster fosfonato (por ejemplo, trietil 2- fosfonopropionato) en la presencia de una base (por ejemplo, hidruro de sodio) en un solvente apropiado (por ejemplo, tetrahidrofurano (THF)). El tratamiento del diester resultante con el ácido (por ejemplo, ácido clorhídrico acuoso) resulta en la hidrólisis del silil éster proporcionando el ácido 8. La reducción selectiva del ácido carboxílico de 8 utilizando, por ejemplo, complejo borano-dimetilsulfuro en un solvente (por ejemplo, THF) proporciona un alcohol intermedio. Este alcohol intermedio podría ser oxidado a aldehído 9 por un número de métodos conocidos, incluyendo, pero no limitando a, oxidación Swem, oxidación Dess-Martin periodinano, oxidación Moffatt y similares.

2.5

30

5

35

Las materias primas aldehído 2 o 9 se pueden aminar reductivamente para proporcionar las aminas secundarias o terciarias. Esto se ilustra por la reacción del metil 4-formil cinnamato 2 con triptamina 10 utilizando sodio triaceto-xiborohidruro (NaBH(OAc)₃) como el agente reductor en dicloroetano (DCE) como solvente para proporcionar una amina 11. Otros agentes reductores se pueden utilizar, por ejemplo, borohidruro de sodio (NaBH₄) y cianoborohidruro de sodio (NaBH₃CN), en otros solventes o mezclas de solventes en la presencia o ausencia de los catalizadores ácidos (por ejemplo, ácido acético y ácido trifluoroacético). La amina 11 se puede convertir directamente al ácido hidroxámico 12 mediante el tratamiento con hidroxilamina acuosa al 50% en un solvente apropiado (por ejemplo, THF en la presencia de una base, por ejemplo, NaOH). Otros métodos de la formación de hidroximato son conocidos e incluyen la reacción de un éster con la hidroxilamina clorhidrato y una base (por ejemplo, hidróxido de sodio o metóxido de sodio) en un solvente apropiado o mezcla de solventes (por ejemplo, metanol, etanol o metanol/THF).

50% HONH

60

55

El aldehído 2 se puede aminar reductivamente con una variedad de aminas, ejemplificadas por, pero no limitando a, aquellos ilustradas en la Tabla 1. Los ésteres resultantes se pueden convertir a hidroximatos blanco por los métodos enumerados.

TABLA 1

5		R.H.	N-OH	
10	Amina	Condiciones de Reducción	Condiciones de Hidroxamato	R
15	NH ₂	NaBH(OAc) ₃ HOAc, DCE	2 M HONH ₂ en MeOH	CH ₂
	HN NH2	11	17	HN CH ₂
20	CI _N I _{NH2}			CIN CH2
25	NH ₂	ı	11	CH ₂
30		ų	11	5
35	HN NH ₂			CH ₂
40	MeO NH ₂ HN	11	II	MeO CH₂ HN
45	SO ₂ HN-NH ₂	"	-	SO ₂ HN—CH ₂
50	Me NH₂	:	•	CH2
55		v	11	Mé
60	N~NH ₂			N_CH ₂
65	Ph(CH ₂) ₃ NH ₂	NaBH ₃ CN/MeOH/ HOAc		Ph(CH ₂) ₃

Una síntesis alterna de los compuestos de esta invención inicia por la aminación reductiva del ácido 4-formil cinámico 3, ilustrada abajo con la 3-fenilpropilamina 13, utilizando, por ejemplo, NaBH₃CN como el agente reductor en MeOH y HOAc como un catalizador. El nitrógeno básico del amino ácido resultante 14 se puede proteger, por ejemplo, como *t*-butoxicarbamato (BOC) por reacción con di-*t*-butildicarbonato para dar el 15.

5

30

65

El ácido carboxílico se puede acoplar con una hidroxilamina protegida (por ejemplo, *O*-tritil hidroxilamina) utilizando un agente de deshidratación (por ejemplo, 1-(3-dimetilaminopropil)-3-etilcarbodiimida clorhidrato (EDCI)) y un catalizador (por ejemplo, 1- hidroxibenzotriazol hidrato (HOBT)) en un solvente apropiado (por ejemplo, DMF) para producir el 16. El tratamiento de 16 con un ácido fuerte (por ejemplo, ácido trifluoroacético (TFA)) proporciona un ácido hidroxámico 17 de la presente invención. Ejemplos adicionales de los compuestos que se pueden preparar por este método son:

Los compuestos de aminas terciarias se pueden preparar por un número de métodos. La aminación reductiva de 30 con nicotinaldehído 32 utilizando el NaBH₃CN como el agente reductor en dicloroetano y HOAc como un catalizador, proporciona el éster 34. Otros agentes reductores se pueden utilizar (por ejemplo, NaBH₄ y NaBH(OAc)₃) en otros solventes o mezclas de solventes en la presencia o ausencia de catalizadores ácidos (por ejemplo, ácido acético, ácido trifluoroacético y similares). La reacción del éster 34 con HONH₂·HCl, NaOH en MeOH proporciona el hidroximato

Los compuestos de aminas terciarias preparadas por esta metodología son ejemplificados, pero no limitados a, aquellos enumerados en la Tabla 2.

TABLA 2

5	P' N-OH				
10	Pi	P'	O N_OH H		
15	F1	Condiciones de Reducción	Condiciones de Hidroxamato		
20	CH ₂	NaBH(OAc) ₃ HOAc, DCE	HONH ₂ •HCl/NaOMe/ MeOH		
	CH ₂	NaBH(OAc)3 HOAc, DCE	HONH ₂ •HCl/NaOMe/ MeOH		
25	CH ₂	NaBH(OAc)3 HOAc, DCE	2 M HONH ₂ en MeOH		
30	CT) CH2	NaBH₃CN/MeOH/ HOAc	2 M HONH₂ en MeOH		
35	HN CH2	NaBH(OAc)3 HOAc, DCE	2 M HONH ₂ en MeOH		

Un método alterno para preparar las aminas terciarias es haciendo reaccionar una amina secundaria con un agente alquilante en un solvente apropiado en la presencia de una base. Por ejemplo, calentando una solución de dimetilsulfóxido (DMSO) de la amina 11 y el bromuro 40 en la presencia de (*i*-Pr)₂NEt produjo la amina terciaria 42. La reacción de la amina terciaria 42 con HONH₂·HCl, NaOH en MeOH proporciona el hidroximato 43. El grupo silil se puede extraer por cualquier método conocido por aquellos de habilidad en el oficio. Por ejemplo, el hidroximato 43 se puede tratar con un ácido, por ejemplo, ácido trifluoroacético, o fluoruro para producir el compuesto hidroxietil 44.

60

65

El compuesto de hidroximato, o una sal de estos, es apropiado para preparar composiciones farmacéuticas, especialmente las composiciones farmacéuticas que tienen deacetilasa, especialmente histona deacetilasa, inhibiendo las propiedades. Estudios con ratones atímicos demostraron que el compuesto de hidroximato causa una inhibición de la HDA e incrementa la acetilación de la histona *in vivo*, lo cual provoca cambios en la expresión génica que se correlaciona con la inhibición del crecimiento del tumor.

La presente invención además incluye composiciones farmacéuticas que comprenden una cantidad efectiva farmacéuticamente de uno o más de los compuestos descritos arriba como ingrediente activo. Las composiciones farmacéu-

ticas de acuerdo con la invención son apropiadas para administración enteral, tal como oral o rectal, y parenteral a mamíferos, incluyendo el hombre, para el tratamiento de tumores, solas o en combinación con uno o más vehículos farmacéuticamente aceptables.

El compuesto de hidroximato es útil en la fabricación de composiciones farmacéuticas que tienen una cantidad efectiva del compuesto en conjunción o mezcla con los excipientes o vehículos apropiados para su aplicación enteral o parenteral. Se prefieren las tabletas y cápsulas de gelatina que contienen el ingrediente activo junto con (a) diluentes; (b) lubricantes, (c) aglutinantes (tabletas); si se desea, (d) desintegrantes; y/o (e) absorbentes, colorantes, saborizantes y edulcorantes. Las composiciones inyectables son preferiblemente soluciones o suspensiones isotónicas acuosas, y los supositorios se preparan ventajosamente a partir de emulsiones grasas o suspensiones. Las composiciones se pueden esterilizar y/o contener adyuvantes, tal como agentes de preservación, estabilización, humectación o emulsificación, promotores de solución, sales para regular la presión osmótica y/o soluciones reguladoras. Además, las composiciones también pueden contener otras sustancias valiosas terapéuticamente. Las composiciones se preparan de acuerdo con métodos convencionales de mezcla, granulación o cubierta, respectivamente, y contener preferiblemente aproximadamente 1 a 50% del ingrediente activo.

Las formulaciones apropiadas también incluyen formulaciones para administración parenteral, incluyen soluciones de inyección estéril acuosas y no-acuosas que pueden contener antioxidantes, soluciones reguladoras, bacterioestáticos y solutos que hacen la formulación isotónica con la sangre del pretendido receptor; y suspensiones estériles acuosas y no-acuosas que pueden incluir agentes de suspensión y agentes de espesamiento. Las formulaciones se pueden presentar en envases de dosis de unidad o multi-dosis, por ejemplo, ampollas y viales sellados, y pueden ser almacenados en una condición de liofilizado que requiere únicamente la adición del vehículo líquido estéril, por ejemplo, agua para inyecciones, inmediatamente antes de utilizar. Se pueden preparar, suspensiones y soluciones de inyección extemporáneas a partir de polvos, gránulos y tabletas estériles de la clase descrita previamente.

Como se ha señalado anteriormente, los compuestos de la presente invención son útiles para tratar enfermedades proliferativas. Una enfermedad proliferativa es principalmente una enfermedad tumoral (o cáncer) (y/o cualquier metástasis). Los compuestos inventivos son particularmente útiles para tratar un tumor que es cáncer de pecho, cáncer genitourinario, cáncer de pulmón, cáncer gastrointestinal, cáncer epidermoide, melanoma, cáncer de ovario, cáncer de páncreas, neuroblastoma, cáncer de cabeza y/o cuello o cáncer de vejiga, o en un sentido más amplio cáncer renal, de cerebro o gástrico; en particular (i) un tumor de pecho, un tumor epidermoide, tal como un tumor cabeza y/o cuello epidermoide o un tumor de boca; un tumor de pulmón, por ejemplo un tumor de pulmón de célula pequeña o célula no-pequeña, un tumor gastrointestinal, por ejemplo, un tumor colorectal; o un tumor genitourinario, por ejemplo, un tumor de próstata (especialmente un tumor de próstata de hormona-refractaria); o (ii) una enfermedad proliferativa que es refractaria al tratamiento con otros quimioterapéuticos; o (iii) un tumor que es refractario a un tratamiento con otros quimioterapéuticos debido a la resistencia multifármaco.

En un sentido más amplio de la invención, una enfermedad proliferativa adicionalmente puede ser una condición hiperproliferativa tal como leucemias, hiperplasia, fibrosis (especialmente pulmonar, pero también otros tipos de fibrosis, tal como fibrosis renal), angiogénesis, psoriasis, aterosclerosis y proliferación del músculo liso en los vasos sanguíneos, tal como estenosis o restenosis siguiendo la angioplastia.

Cuando un tumor, una enfermedad tumoral, un carcinoma o un cáncer se mencionan, también se implican la metástasis en el órgano o tejido original y/o en cualquier otra localización alternativamente o además, cualquier localización del tumor y/o la metástasis.

El compuesto es selectivamente tóxico o más tóxico para las células que proliferan rápidamente a las células normales, particularmente en células cancerosas humanas, por ejemplo, tumores cancerosos, el compuesto tiene importantes efectos antiproliferativos y promueve la diferenciación, por ejemplo, captura del ciclo celular y apoptosis. Además, el compuesto de hidroximato induce p21, proteína de interacción ciclina-CDK, la cual induce la apoptosis o la captura de G1 en una variedad de líneas celulares.

Los siguientes ejemplos se proponen para ilustrar la invención y no deben interpretarse como limitaciones a esta.

55 Ejemplo P1

Preparación de la N-Hidroxi-3-[4-[[[2-(1H-indol-3-il)-etil]-amino]metil]fenil]-2E-2-propenamida

El ácido 4-formilcinámico metiléster se produce adicionando el ácido 4-formilcinámico (25 g, 0.143 mol) en MeOH y HCl (6.7 g, 0.18 mol). La suspensión resultante se calienta a reflujo por 3 horas, se enfría y evapora a sequedad. El sólido de color amarillo resultante se disuelve en EtOAc, la solución se lava con NaHCO₃ saturado, se seca (MgSO₄) y se evapora para dar un sólido de color amarillo pálido que se utiliza sin una purificación adicional (25.0 g, 92%). A una solución de triptamina (16.3 g, 100 mmol) y ácido 4-formilcinámico metiléster (19 g, 100 mmol) en dicloroetano, se le adiciona NaBH(OAc)₃ (21 g, 100 mmol). Después de 4 horas la mezcla se diluye con solución de K₂CO₃ al 10%, la fase orgánica se separa y la solución acuosa se extrae con CH₂Cl₂. Los extractos orgánicos combinados se secaron (Na₂SO₄), se evaporaron y el residuo se purifica por cromatografía instantánea para producir el ácido 3-(4-{[2-(1*H*-indol-3-il)-etilamino]-metil}-fenil)-(2*E*)-2-propenoico metil éster (29 g). Una solución de KOH (12.9 g 87%, 0.2 mol) en MeOH (100 mL) se adiciona a una solución de HONH₂-HCl (13.9 g, 0.2 mol) en MeOH

(200 mL) y resulta un precipitado. Después de 15 minutos la mezcla se filtra, la torta del filtrado se lava con MeOH y el filtrado se evapora con vacío a aproximadamente 75 mL. La mezcla se filtra y el volumen se ajusta a 100 mL con MeOH. La solución resultante de HONH₂ 2M se almacena bajo N₂ a -20°C por hasta 2 semanas. Luego el ácido 3-(4-{[2-(1*H*-indol-3-il)-etilamino]-metil}-fenil)-(2*E*)-2-propenoico metil éster (2.20 g, 6.50 mmol) se adiciona al HONH₂ 2 M en MeOH (30 mL, 60 mmol) seguido por una solución de KOH (420 mg, 6.5 mmol) en MeOH (5 mL). Después de 2 horas se adiciona hielo seco a la reacción y la mezcla se evapora a sequedad. El residuo se disuelve en MeOH caliente (20 mL), se enfría y almacena a -20°C durante la noche. La suspensión resultante se filtra, los sólidos se lavan con MeOH helado y se seca con vacío, produciendo la *N*-Hidroxi-3-[4-[[[2-(1*H*-indol-3-il)-etil]-amino]metil]fenil]-2*E*-2- propenamida (m/z 336 [MH+]).

Ejemplo P2

15

Preparación de la N-Hidroxi-3-[4-[[(2-hidroxietil)[2-(1H-indol-3-il)-etil]-amino]metil]fenil]-2E-2-propenamida

Una solución del ácido 3-(4-{[2-(1*H*-indol-3-il)-etilamino]-metil}-fenil)-(2*E*)-2-propenoico metil éster (12.6 g, 37.7 mmol), (2-bromoetoxi)-ter-butildimetilsilano (12.8 g, 53.6 mmol), (*i*-Pr)₂NEt, (7.42 g, 57.4 mmol) en DMSO (100 mL) se calienta a 50°C. Después de 8 horas la mezcla se sometió a partición con CH₂Cl₂/H₂O. La capa orgánica se seca (Na₂SO₄) y se evapora. El residuo se somete a cromatografía en silica gel para producir el ácido 3-[4-({[2-(*tert*-butildimetilsilaniloxi)- etil]-[2-(1*H*+indol-3-il)-etil]-amino}-metil)-fenil]-(2*E*)-2-propenoico metil éster (13.1 g). Siguiendo el procedimiento descrito para la preparación del compuesto de hidroximato en el Ejemplo P1, el ácido 3-[4-({[2-(ter-butildimetilsilaniloxi)-etil]-[2-(1*H*-indol-3-il)-etil]-amino}-metil)-fenil]-(2*E*)-2-propenoico metil éster (5.4 g, 11 mmol) se convierte al N-hidroxi-3-[4-({[2-(*ter*-butildimetilsilaniloxi)-etil]-[2-(1*H*-indol-3-il)-etil]-amino}-metil)-fenil]-(2*E*)-2-propenamida (5.1 g), y se utiliza sin una purificación adicional. El ácido hidroxámico (5.0 g, 13.3 mmol) luego se disuelve en 95% de TFA/H₂O (59 mL) y se calienta a 40-50°C por 4 horas. La mezcla se evapora y el residuo se purifica por HPLC de fase reversa para producir la *N*-Hidroxi-3-[4-[[(2-hidroxietil)[2-(1*H*-indol-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida como la sal trifluoroacetato (m/z 380 [MH+]).

Ejemplo P3

Preparación de la N-hidroxi-3-[4-[[[2-(2-metil-1 \underline{H} -indol-3-il)-etil]-amino]metil]fenil]-2 \underline{E} -2-propenamida

Una suspensión de LiAIH4 (17 g, 445 mmol) en THF seco (1000 mL) se enfría a 0°C y se le adiciona 2-metilindol3-glioxilamida (30 g, 148 mmol) en porciones durante 30 min. La mezcla se agita a temperatura ambiente por 30 min. y luego se mantiene a reflujo por 3 h. La reacción se enfría a 0°C y trata con H₂O (17 ml), 15% de NaOH (aq., 17 ml) y H₂O (51 ml). La mezcla se trata con MgSO₄, se filtra y el filtrado se evapora para dar la 2-metiltriptamina que se disuelve en MeOH. Se adiciona el metil 4-formilcinnamato (16.9 g, 88.8 mmol) a la solución, seguido por NaBH₃CN (8.4 g) y AcOH (1 equiv.). Después de 1 h la reacción se diluye con NaHCO₃ (aq.) y se extrae con EtOAc. Los extractos orgánicos se secaron (MgSO4), se filtraron y evaporaron. El residuo se purifica por cromatografía para dar el ácido 3-(4-{[2-(2-metil-1*H*-indol-3-il)-etilamino]-metil}-fenil)-(2*E*)-2-propenoico metil éster. Al éster disuelto en MeOH, se le adiciona HCl/dioxano 1.0 M (1-1.5 equiv.) seguido por Et₂O. El precipitado resultante se filtra y el sólido se lava con Et₂O y se seca completamente para dar el 3 ácido-(4-{[2-(2-metil-1*H*-indol-3-il)-etilamino]-metil}-fenil)-(2*E*)-2-propenoico metil éster clorhidrato. Se adiciona NaOH 1.0 M (aq., 85 mL) a una solución helada del metil éster clorhidrato (14.9 g, 38.6 mmol) y HONH₂ (50% solución acuosa, 24.0 mL, ca. 391.2 mmol). Después de 6 h, la solución helada se diluye con H₂O y NH₄Cl (aq., 0.86 M, 100 mL). El precipitado resultante se filtra, se lava con H₂O y se seca para proporcionar la Nhidroxi-3-[4-[[[2-(2-metil-1*H*-indol-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida (m/z 350 [MH+]).

Ejemplos 1-265

Los siguientes compuestos se preparan por métodos análogos a aquellos revelados en los Ejemplos P1, P2 y P3:

Ejemplo	ESTRUCTURA	m/z (MH+)
1		426

65

60

50

5	2		
10	3	OH OH	
20	4	H-OH	325
30	5	I COM	
35	6	C C C C C C C C C C C C C C C C C C C	
45			
55	7	S H OSH	

5	8	HEN OH	465
20	9		
25		»————————————————————————————————————	
30	10	HIN THE STATE OF T	
35		A CH OH	
45			
50	11	N NH OH	
55		HON	420
60			420
65	12	H H	

5			
10	13		
15			
20	14		
25	15	J. J	465
30	13		
35	16		385
40			
45		но	550
50	;	но он	
55	17	но "МОН	

5		HOM	
10		The contract of the contract o	432
15	18		
20	19		366
25	20		350
30	21		
35	21		
40	22	HO HO	442
45	22	D I OH	338
50	23		

		<u> </u>	
		OH OH	
5			
10			464
15	24		
20		D D D D D D D D D D D D D D D D D D D	541
25	25		341
30		J. J	
35	26	\hat{\pi}	
40	27		
45		N OH	417
50	28	H H	41/
55		L CH CH	
60	29		

5		O I OH	
10	30) OH	
15	31		380
20		C C C C C C C C C C C C C C C C C C C	436
25	32		
30			
35	33	l 🦳	
40			493
45	34	H T	
50			477
55	35	но но но	

1		A	
5			586
10	36	но но	
15			
20			513
25	37	HEO'	
30			378
35	38	H 9	
40			408
45	39		
50		OH OH	449
55	40	in the second se	

5		NON DON	439
10	41		438
15		OH OH	
20			452
25	42	H .	
30	43		507
35	43		
40	44	THOM ON	565
45	44		
50			
55	45		

5			
10	46		
15		J. J	
20	47		
25	48		
30	70		
35	49		
40			
45	50	HOH.	
50			470
55	51	ў	
60			
65	52		

		0 0	
5			548
10	53		
15			623
20	54		
25			
30	55		456
35	55		
40		NAH OH	478
45			
50	56	уон Д	
55			394
60	57		

5			422
10	58		
15		Not on	479
20	59		
25			
30		Hand Hoose	603
35	60	<u> </u>	
40		нам	
45			477
50	61		

	r · · · · · · · · · · · · · · · · · · ·		
5			
10		OH OH	539
10		jn ^J	
15	62		
20			
25			523
30	63		
35		Charles Con	
40	C4	l	
40	64		
45	65		
		0	
50	1	ON ON	
55	66	H	
60	67		

5			539
10	68		
15			495
20	69		
25		S OH	
30	70	H3	
35			379
40	71	H H	
45			478
50	72		4/8
33			

			<u></u>
5			462
10	73		
15			378
20	74		
25			
30	75	h —	
35	76		493
45	77		503
55	78	The state of the s	350
			

5	79	549
15	80	471
25	81	350
35	82	418
50		486
55	83	

5		F	<i>7</i> 04
10	84		524
15		1 0	
20	85		424
		9	
30			364
35			
	86	H .	
40			440
45			
-			
	87	n	
50		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			420
55			
	88		
l			· · · · · · · · · · · · · · · · · · ·

5	89		390
10	0,7		
15	90		
20	91		
25			
30	92	CH OH	484
40	93		498
50			490
			770
55	94		
L			

5			
10	95		
15	06	HINTOH	475
20	96		
25		Har Co	
30		55	525
35		Heli	
40	97		
45	98	H OH OH	422
50			528
55		N OOH	340
	99		L

1			
5	100	The state of the s	448
15		HAN OH	437
20	101		
25		- July Com	
30	102		451
35 40			
45	100		505
50	103	HN OH	
55			519
60	104	M,	

		·	
5		No.	514
10	105		
15		ия он	
20			507
25	106		
30			
35			626
40			
45	107		
50	101	HA OH	
55			499
60	108		

5	109		
10	110		
15			429
20	111		
25	112		464
30			
35	113		432
40	114		422
50	114		390
55	115) 	
60			501
65	116	н	

5			484
10	117		
15	118		
20	110		
25	119		587
30			
35			602
40	120	HN OH	
45			539
50	121		
55	122		

5			
10		C) CH	528
10			İ
15	123		
			487
20) on	
	124	/	
25			
	125		
30		Q.	
35			556
		and mi	
40	126		
45			
	127	***	
50			
50			
	128	7>	
55			
60			552
		100	
65	129	N N	<u>L</u>

5		он Он	
10			519
15			
20	130		450
25	131	T T OH	
30			464
35	132	Д ОН	
40			558
45	133	OH OH	
50			
55		The contract of the contract o	533
60	134		

5			
10	135	Hit	
15	136		527
20	137	De la contraction de la contra	381
30	138		364
35			
40	139		
45			448
50	140		
55			558
60	141		

5			
10	142		
15			427
	143	HO	
20			
25			
30	144		
35		n-on	432
	145		
40	146		384
45		Li Cin	354
50	147	, l	
55			
60	148		

r			
5		O=S=O POM	
	149	HON	
10		o=s=o Nom	
		HIN	
15	150	9	
20		O-S-O N-OH	
	151		
25	131		
30		o → han	
	152	HALL N	
35			······································
40	153		
	in in	1	
45		и Он	350
			330
50	154		
		, HO.	
55			366
60	155		
60			

4			
5	157		408
10	156		
15	157		322
20		L H	
25	158	Jan	364
30	159		364
35		م م أ ١٥٠	
40	160		378
45	161		350
50		i on	463
55	162	, o.	
60			
65	162		
ļ	163		

5	164		381
10			463
15	165	→ H	
20	166		476
30	167		
35		\(\frac{1}{2}\)	
40	168		
45			
50	169		
55	170		368
60	170	I .	L

5			493
10	171		
15	172		527
20	1/2		
25	173	NO STORY	515
30		C I OH	323
35	174		
40	175		540
45			
50	176		441
55	177	The on	276
60			
65	178		

5	179		455
10		Ann on	
15	180		
20			336
25	181		
30	182		347
35			447
40	183	J. J.	
45	184		
50	104		
55	185	Jan on	420
	103		

		-	
5			424
10	186		
15			422
	187		
25			
30	188	•	
35	189		398
		HN N	
40	100	THE CH	418
45	190		
50	191		350
55	192		
(0			L
60			

1 1	0	
193	Charles Carl	352
10	, and the second	
20		499
194	~	
25	OH OH OH	408
30	H .	
195	Q	
35		394
40 196	0	
50		499
197	O II	
55		
60		
198	` o'	

5	199	O O O O O O O O O O O O O O O O O O O	
10		The second secon	350
	200	h de la companya de l	
15	200	H	
20		N—	
25		The state of the s	
30	201		
35			
45	202		
50			
55	203	но	
60	204	No. 104	365
•			

5			465
10	205		
15	204		
20	206	On Li	
25	207	Carlo Carlo	410
30		HQ HQ	
35	208	Can Can	410
40	209		
45	20)	A DAME OF THE OWN	
50	210		366
55			352
60	211	Н	

5	212		
10	212	P COH	368
15	213	8	
20	214	O Phon	338
25		The contract of the contract o	356
	215	8	
35	216	i par	408
45	217	The on	368
50		NH HO	396
	218	"	
60			
65	219	1	

5	220		342
10			392
15	221	H H	
20			412
25	222		
30	223		337
35			337
45	224		456
55	226		364

_			
5			
10			401
15			481
20		HO—N	
25	227		
30	222		355
-	228		
35	229	NOT THE COLUMN	312
40			424
45		HO NO1	
50	230	△ A L OH	
50			
55	231		
60	231	OH OH	
65			351
	232		

233 392 392 392 392 392 392 392 392 392				
15 234 20 25 235 30 236 35 40 45 238 50 55 239 60	5	233		392
234 25 235 236 236 237 40 45 238 50 55 239 60	10		i i i i i i i i i i i i i i i i i i i	
25 235 30 322 335 322 335 322 335 322 335 322 335 322 336 35 366 355 366 366 366 366 366 366	15			
25 235 30 322 335 322 335 322 335 322 335 322 335 322 336 35 366 355 366 366 366 366 366 366		234	F F	
30 236 322 335 322 336 3366 3368 368	20			
30 236 322 335 322 336 3366 3368 368	25			
236 236 237 40 45 238 50 239 46 368	23	235	9	
237 40 45 238 50 55 239 560 368	30	236		322
45 238 50 239 60 366	35	237	A A L OH	
238 50 239 60 366	40	20,	OH G	
55 239 F OH 368	45	238		366
55 239 F	50		. I w	
60 368		239		
240	60		\tag{\tag{\tag{\tag{\tag{\tag{\tag{	368
	ŀ	240	** -	

		0	
5	241	The state of the s	
10	242		406
20			398
25	243		442
30	244		350
40	245	No.	364
45	246		
50			402
55	247		418
	248	7 7 01	

1			
5	249		364
10	247		
15	250		
20			408
25	251	2	
30	252		
35			
40	253		
45	254	AND COM	413
50	234		
55	255		405

5			
10	256		
15	230	The second secon	
20	257	H Coc	394
25	231		390
30	258		
35		OH OH	434
40	259		
45		J. H. OH	386
50	260		
55		OH OH	368
60	261	N .	

Los compuestos de los Ejemplos 1-265 muestran una IC_{50} enzima HDA en el rango de aproximadamente 0.005 a aproximadamente 0.5 mM.

Ejemplo B1

35

Líneas celulares H1299 (célula de carcinoma pulmonar humano) y HCT116 (célula tumoral del colon) se obtuvieron a partir de American Type Culture Collection, Rockville, MD. Las líneas celulares son libres de la contaminación con *Mycoplasma* (Sistema de Detección Rápida mediante Gen-Probe, Inc., San Diego, CA) y contaminación viral (prueba MAP por MA BioServices, Inc., Rockville, MD). Las líneas celulares se propagan y expanden en medio RP-MI 1640 que contiene FBS 10% caliente-inactivo (Life Technologies, Grand Island, NY). Las expansiones celulares para la implantación se realizan en fábricas de células (NUNC, adquirido de Fisher Scientific, Springfield, NJ). Las células se cosecharon a una confluencia del 50-90%, se lavan una vez con HBSS (Solución de Sal Balanceada de Hank) que contiene FBS al 10%, y se suspenden en HBSS al 100%.

La proliferación celular se mide con un ensayo de kit MTS comercial (Promega, Madision, Wis.) utilizando una adaptación de los procedimientos publicados, por ejemplo, igual que los revelados en *Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay*, Alley MC, *et al.*, Cancer Res. 1988; 48:589-601. Las células se plantaron en platos de cultivo de tejidos de 96-pozos, con las filas superior e inferior izquierdas vacías. Las células H1299 y HCT116 se suspenden en medio completo a una densidad de $5.3 \times 10^3 \text{ y } 3.6 \times 10^3 \text{ células/mL}$, respectivamente, y se adiciona n 190 μ l por pozo. Cada línea celular se adiciona a una mitad de la placa. El medio completo (200 μ L) se adiciona a las filas de superior e inferior. Veinticuatro horas después, 10μ l de la solución MTS se adiciona a una de las placas para determinar la actividad al tiempo de adición del compuesto (T0). La placa se incuba a 37°C por 4 horas y la OD₄₉₀ se mide en un Molecular Devices Thermomax a 490 nm utilizando el programa Softmax. La placa T_0 sirve como una referencia para la actividad inicial en el inicio del experimento.

Cinco diluciones en serie (1:4) de cada compuesto se hicieron en una placa de 96 pozos profundos con las concentraciones más altas en el borde de la placa. Dos líneas celulares se probaron con dos de los compuestos por placa. Diez microlitros de cada una de las cinco diluciones se adicionaron por triplicado y el medio completo solo se adiciona a las columnas seis y siete. Las placas se incubaron a 37°C por 72 horas. La solución MTS se adiciona (en cuanto a la placa To) y se lee cuatro horas más tarde.

Con el fin de analizar los datos, el valor de fondo promedio (medio solo) se deduce de cada pozo experimental; los valores por triplicado se promedian para cada dilución del compuesto. Las siguientes fórmulas se utilizan para calcular el porcentaje de crecimiento.

Si $X > T_0$, % Crecimiento = $((X-T_0)/(GC - T_0)) \times 100$

Si X < T_0 , % Crecimiento = $(X-T_0)/T_0$) x 100

En el cual T0 = (valor promedio de la viabilidad celular en el tiempo 0) - fondo

GC = valor promedio de células sin tratar (por triplicado) - fondo

X = valor promedio de las células tratadas con el compuesto (por triplicado) - fondo

El "% de Crecimiento" se registra contra la concentración del compuesto y se utiliza para calcular las IC_{50s} empleando las técnicas de regresión lineal entre puntos de datos para predecir la concentración de los compuestos a un 50% de inhibición.

Las sales lactato de N-hidroxi-3-[4-[[[2-(1*H*-indol-3-il)-etil]-amino]metil]fenil]-2E-2-propenamida (CMD1), N-hidroxi-3-[4-[[(2-hidroxietil)[2-(1*H*-indol-3-il)-etil]-amino]metil]fenil]-2E-2-propenamida (CMD2), N-hidroxi-3-[4-[[[2-(5-metoxi-1*H*-indol-3-il)-etil]-amino]metil]fenil]-2E-2-propenamida (CMD3), N-hidroxi-3-[4-[[[2-(5-flúor-1*H*-indol-3-il)-etil]-amino]metil]fenil]-2E-2-propenamida (CMD4), N-hidroxi-3-[4-[[[2-(benzofur-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida (CMD5) que tienen una pureza mayor del 95% se disuelven en dimetilsulfóxido puro (DMSO) para crear una solución stock. La solución stock se diluye con inyección de dextrosa al 5%, USP, justo antes de dosificar. Además, la N-(2-aminofenil)-4-[N-piridin-3-il)metoxicarbonilaminometil]benzamida se sintetiza de acuerdo con el Ejemplo 48 de EP 0 847 992 y se utiliza como un compuesto control (CMDC). La inhibición del crecimiento celular en monocapa por 72 horas del tratamiento del compuesto se mide por experimentos por triplicado y se utiliza par deducir la IC₅₀ mediante el ensayo MTS. Los resultados se muestran en la Tabla B1.

TABLA B1

Crecimiento Monocapa IC₅₀ (μΜ)

Compuesto	H1299	HCT116
CMD1	0.40	0.03
CMD2	0.15	0.01
CMD3	0.58	0.03
CMD4	0.28	0.03
CMD5	0.18	0.03
CMDC	6.8	0.67

Los resultados muestran que los compuestos de hidroximato de la presente invención son altamente activos en la inhibición del tumor crecimiento de células tumorales. Además de los resultados anteriores, se ha observado que los compuestos selectivamente inhibieron las células tumorales mientras mostraban mínima inhibición de las actividades en las células no-tumorales.

Las células tratadas con los compuestos de hidroximato también se probaron para la inducción del promotor p21, que es un mediador clave de detención y diferenciación de G1. Los compuestos de hidroximato activan el promotor p21 a un nivel fácilmente detectable en una concentración dentro de dos-veces de su respectiva IC₅₀ para la inhibición del crecimiento celular monocapa en H1299. Sin que sea unido por cualquier teoría, la correlación aparece para demostrar que la inhibición de la HDA conduce a la activación transcripcional de los genes que inhiben proliferación de células tumorales.

Ejemplo B2

HDA se purifica parcialmente a partir de H1299, células de carcinoma pulmonar de célula no-pequeña humano (obtenidas de American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852, USA). Las células se cultivaron a una confluencia del 70-80% en medio RPMI en la presencia de FCS al 10%, se cosecharon y lisaron por sonicación. El lisado se centrifuga a 23, 420g por 10-15 min, el sobrenadante se aplica a una columna Q-sepharose de Alto rendimiento Hiload 26/10 (Amersham Pharmacia Biotech), y equilibrada con una solución reguladora que contiene Tris 20 mM pH 8.0, EDTA 1 mM, NH₄Cl₂ 10 mM, β -Mercaptoetanol 1 mM, glicerol 5%, 2 μ g/mL de aprotinina, 1 μ g/mL de leupeptina, y PMSF 400 mM. Las proteínas se eluyeron en alícuotas de 4 mL con un gradiente lineal de NaCl 0-500 mM en la anterior solución reguladora a una velocidad de flujo de 2.5 mL/min. Cada preparación de la enzima HAD parcialmente purificada se titula para determinar la cantidad óptima necesaria para obtener una señal para la relación de ruido de al menos 5 a 1. Generalmente, 20-30 μ l de HDA purificada parcialmente (5-10 mg de proteína/mL) se mezclan con 2 μ L de la solución del compuesto en DMSO en una placa de titulación de pozo profundo (Beckman). Los compuestos se diluyen en serie en DMSO para producir stocks a concentraciones

61

10

15

30

25

35

40

20-veces del ensayo. Las concentraciones finales de los compuestos en el ensayo son 10 μM, 2 μM, 400 nM, 80 nM, y 16 nM con el porcentaje final de DMSO en cada reacción de la enzima igual al 0.1%. Cada concentración del compuesto se analiza por duplicado. El sustrato utilizado en la reacción es un péptido de una secuencia de aminoácido, SGRGKGGKGLGKGGAKRHRKVLRD, correspondiente a los veinticuatro amino ácidos N-terminal de la histona H4human, biotinilados en el N-terminal y pentaacetilado, en cada residuo de lisina con ³H-acetato. Para iniciar la reacción, el sustrato se diluye en 10 μL de Solución Reguladora A (Tris 100 mM pH 8.0, EDTA 2 mM), se adiciona a la mezcla de la enzima y se recolecta en el fondo de la placa de pozo profundo por centrifugación por 5 minutos a 1500 rpm. Después de la centrifugación, la mezcla se incuba a 37°C por 1.5 hr. La reacción se detiene por la adición de 20 μL de la Solución Reguladora de Parada (HCl 0.5N, Ácido Acético 0.08M). En este punto, el ensayo continúa con la fase de extracción robótica o se congela por varios días a -80°C.

La extracción de los grupos acetato- 3 H enzimáticamente divididos de la mezcla de reacción se logra con el solvente TBME (t-butil metil éter) utilizando la estación de trabajo Tomtec Quadra 96. Un programa se escribe para adicionar 200 μ L de TBME a una placa de 96 "pozos profundo". La estación de trabajo se programa para aspirar 50 μ L de aire seguido por 200 μ L de TBME y finalmente otros 25 μ L de aire, que se dispensan en cada pozo de la placa. Los contenidos del pozo profundo se mezclaron completamente midiendo con pipeta 160 μ L de arriba a abajo 10 veces. Antes de la adición del TBME a la mezcla de reacción, es necesario "pre-mojar" las boquillas de la pipeta con TBME para prevenir que el goteo del solvente durante la transferencia a la placa de pozo profundo. Las fases orgánica y acuosa en el pozo profundo se separan por centrifugación a 1500 rpm por 5 min. Se adiciona el cóctel del líquido centelleo Opti-Phase Supermix (200 μ L) (Wallac) a cada pozo de la placa de 96-pozos Trilux (Wallac). El pozo profundo y las placas Trilux se colocan otra vez en la estación de trabajo programada para aspirar 25 μ L de aire en las boquillas de la pipeta seguido por 100 μ L de la fase superior de TBME y se transfiere esto a la placa Trilux. Las soluciones se mezclan pipeteando y expulsando 50 μ L, cinco veces, dentro del mismo pozo. La placa Trilux se cubre con película clara y se lee en el contador de centelleo líquido y lumuniscencia 1450 MicroBeta Trilux (Wallac) con un sofocante de color/químico y corrección dpm.

Con el fin de determinar los valores de IC₅₀, los datos se analizaron en una hoja de cálculo. Los análisis requieren una corrección para la luminiscencia fondo que se logra deduciendo los valores dpm de los pozos sin el sustrato ³H de los pozos experimentales. Los valores dpm corregidos junto con las concentraciones de los compuestos se utilizan para calcular la IC₅₀ utilizando la función Spline definida por el usuario. Esta función utiliza técnicas de regresión lineal entre los puntos de los datos para calcular la concentración de los compuestos que produjeron el 50% de inhibición. Los resultados se muestran en la Tabla B2.

TABLA B2

	Compuesto	Actividad Enzima HDA IC ₅₀ (µM)
	CMD1	0.032
	CMD2	0.063
	CMD3	0.014
	CMD4	0.014
	CMD5	0.016
	CMDC	> 10

Ejemplo B3

35

40

45

50

La línea celular del tumor humano de pulmón de célula no-pequeña A549 se adquirió de American Type Culture Collection, Rockville, MD. La línea celular es libre de contaminación con *Mycoplasma* (Sistema de Detección Rápido por Gen-Probe, Inc., San Diego, CA) y contaminación viral (prueba MAP por MA BioServices, Inc., Rockville, MD). La línea celular se propaga y expande en medio RPMI 1640 que contiene 10% de FBS caliente-inactivado (Life Technologies, Grand Island, NY). Las expansiones de las células para la implantación se realizan en fábricas de célula (NUNC, adquirida de Fisher Scientific, Springfield, NJ). Las células se cosecharon a una confluencia del 50-90%, se lavan una vez con HBSS que contiene FBS al 10%, y se suspenden en HBSS al 100%.

Ratones atímicos hembras (nulnu) hembras no consanguíneos ("Hsd:Athymic Nude-nu" from Harlan Sprague Dawley, Indianapolis, IN) se anestesiaron con Metofane (Mallinckrodt Veterinary, Inc., Mundelein, IL), y 100 μ L de la suspensión celular que contiene $1x10^7$ células se inyecta vía subcutánea en la región axilar derecha (lateral) de cada animal. Los tumores se dejan crecer por aproximadamente 20 días hasta que se logra un volumen de -100 mm³. En este punto, los ratones que llevan los tumores con morfología y tamaño aceptable se clasifican en grupos de ocho para el estudio. El proceso de clasificación produce los grupos balanceados con respecto al promedio y rango del tamaño del tumor. La actividad antitumor se expresa como el % T/C, comparando las diferencias en volúmenes del tumor para el grupo de tratamiento (T) para el grupo control vehículo (C). Las regresiones se calculan utilizando la fórmula: (1-T/T₀) x 100%, donde T es el volumen del tumor para el grupo de tratamiento en el final del experimento, y T₀ es el volumen del tumor en el inicio del experimento.

CMD1 se administra vía intravenosa, una vez al día 5x/semana por tres semanas, a dosis de 10, 25, 50, o 100 mg/kg. La concentración de DMSO final es 10%. Cada grupo de prueba tiene ocho ratones. Los tumores se midieron, y se registra el peso corporal de cada animal. La Tabla B3 muestra los resultados en el día 41.

5

TABLA B3

Δ VOLUMEN TUMOR

PROMEDIO *1

 $(mm^3 \pm SEM*3)$

 376 ± 55

121 ± 27

77 ± 32

 57 ± 10

 28 ± 25

Nota: *1. Diferencia en volumen del tumor promedio por un grupo de animales en el final del

*2. Diferencia en el peso corporal para un grupo de animales en el final del experimento menos el

DOSIS

(mg/kg)

10

25

50

100

experimento menos el volumen tumor promedio en el inicio.

volumen del tumor promedio en el inicio.

*3. Error estándar del promedio.*4. 5% inyección de dextrosa, USP.

COMPUESTO

10% DMSO/D5W*4

CMD1

CMD1

CMD1

CMD1

Δ % PESO

CORPORAL*2

 $(\% \pm SEM^{*3})$

 $+11.9 \pm 0.2$

 $+ 1.3 \pm 0.3$

 -0.9 ± 0.3

 -0.4 ± 0.3

 $+0.4 \pm 0.3$

%

T/C

32

20

15

7

10

15

20

20

25

30

-5

Ejemplo B4

El Ejemplo B3 se repite excepto que se utiliza CMD2. La Tabla B4 muestra los resultados.

35

TABLA B4

40	
45	

COMPUESTO	DOSIS (mg/kg)	\triangle VOLUMEN TUMOR PROMEDIO (mm 3 ± SEM)	% T/C	Д % PESO CORPORAL (% ± SEM)
10% DMSO/D5W		135 ± 43	-	+ 6.7 ± 1.1
CMD2	25	37 ± 16	27	- 4.2 ± 2.5
CMD2	50	29 ± 15	21	-2.9 ± 1.5

50 Ejemplo B5

El Ejemplo B3 se repite excepto que se utiliza, la línea célula tumoral del colon HCT116, en lugar de la línea celular A549. La línea celular HCT116 también se obtiene de American Type Culture Collection, Rockville, MD, y la línea celular es libre de contaminación con *Mycoplasma* y contaminación viral. Los resultados se registraron en el día 34 y se muestran en la Tabla B5.

TABLA B5

60

COMPUESTO (mg/l	$ \begin{array}{c c} \text{PROMEDIO} \\ \text{(mm}^3 \pm \text{SEM)} \end{array} $	T/C	CORPORAL (% ± SEM)
10% DMSO/D5W - CMD1 50*	759 ± 108	- 25	-0.4 ± 0.4 -7.4 ± 0.8

CMD1	100 140 ± 38		18	-3.2 ± 0.4		
Nota: *10. Siete ratones se probaron en este grupo.						

Ejemplo B6

5

15

20

2.5

30

50

60

65

El Ejemplo B4 se repite excepto que se utiliza la línea celular de tumor del colon HCT116 en lugar de la línea celular A549. La HCT116 también se obtiene de American Type Culture Collection, Rockville, MD, y la línea celular es libre de contaminación con *Mycoplasma* y contaminación viral. Los resultados se registraron en el día 34 y se muestran en la Tabla B6.

TABLA B6

COMPUESTO	DOSIS (mg/kg)	Δ VOLUMEN TUMOR PROMEDIO (mm³ ± SEM)	% T/C	Δ % PESO CORPORAL (% ± SEM)
10% DMSO/D5W	-	759 ± 108	- [-0.4 ± 0.4
CMD2	10	422 ± 75	56	-10.2 ± 0.5
CMD2	25	305 ± 47	40	-7.0 ± 0.2
CMD2	50	97 ± 30	13	-7.3 ± 0.3
CMD2	100	132 ± 30	17	-9.4 ± 0.4

Ejemplo B7

Se utilizó el enlace Anexina V como un marcador para los estados inmaduros de la apoptosis. Las células A549, HCT116 y Normal Dermal Human Fibroblasts (NDHF) se trataron por separado con cuatro de los compuestos (CMD1, CMD2, CMD3 y CMD4) por 24 o 48 horas, se tiñeron con anexina V y se compararon con las células tratadas de manera similar con el vehículo (DMSO). Las células se examinaron por microscopía de fluorescencia. Aquellos que experimentan apoptosis muestran tinción en la membrana verde fluorescente. La viabilidad se ensaya por la contratinción, yoduro de propidio. Las células detectadas por fluorescencia roja no son viables. Un pequeño porcentaje de A549 y la mayoría de las células HCT116 mostraron tinción en la superficie celular con anexina V después de 24 horas de exposición a cada uno de los cuatro compuestos. Después de 48 horas de tratamiento, la mayoría de las células A549 y HCT116 tiñeron con anexina V y/o yoduro de propidio indicando que los compuestos inducen la muerte celular apoptótica. En contraste, las células NDHF no muestran una tinción apreciable con anexina V después de 24 horas de exposición y tinción limitada con la anexina V en las células CMD3 después de 48 horas. Estos datos muestran que las células NDHF experimentan en forma predominante detención de crecimiento no-letal bajo el tratamiento del compuesto, consistente con el perfil del ciclo celular.

Los resultados de la tinción demuestran que los compuestos de hidroximato de la presente invención causan a las células tumorales muerte por apoptosis, mientras que causan a los fibroblastos normales en forma predominante experimentar la detención en el ciclo celular, demostrando claramente la eficacia selectiva de los presentes compuestos.

Referencias citadas en la descripción

Esta lista de referencias citadas por el aspirante es solamente para conveniencia del lector. No forma parte del documento de patente Europea. Aún cuando se ha tenido gran cuidado en recopilar las referencias, no se pueden excluir los errores u omisiones y la EPO desconoce toda responsabilidad a este respecto.

Documentos Patentes citados en la descripción

- WO 9855449 A [0004]
- WO 9531977 A [0004]
- WO 0138322 A [0004]
- EP 0847992 A [0078]

Literatura no-patente citada en la descripción

• Bull. Chem. Soc. Jpn., 1995, vol. 68, 2355-2362 [00]	• Bull.	Bull.	Chem.	Soc. J	pn.,	1995.	vol. 68.	. 2355-2362	[0051	1
--	---------	-------	-------	--------	------	-------	----------	-------------	-------	---

• ALLEY MC et al. Cancer Res., <u>1988</u>, vol. 48, 589-601 [0075]

REIVINDICACIONES

1. Un compuesto de la fórmula I

5

10

HO
$$N$$
 R_1 R_2 R_3 R_4 R_5 R_5 R_5

15

2.5

40

45

60

en donde

R₁ es un H, halo, o un alquilo C₁-C₆ de cadena lineal;

R₂ se selecciona de un H, alquilo C_1 - C_{10} , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, -(CH₂)_nC(O)R₆, -(CH₂)_nOC(O)R₆, aminoacil, HONC(O)-CH=C(R₁)-aril-alquil- y -(CH₂)nR₇;

R₃ y R₄ son iguales o diferentes e independientemente un H, alquilo C₁-C₆, acil o acilamino, o R₃ y R₄ juntos con el carbono al cual están unidos representan un C=S, o C=NR₈, o R₂ junto con el nitrógeno al cual está unido y R₃ junto con el carbono al cual está unido pueden formar un heterocicloalquilo C₄-C₉, un heteroarilo, un poliheteroaril, un poliheterociclo no-aromático, o un anillo poliheterociclo arilo y no-arilo mezclado;

 R_5 se selecciona de un cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , acil, arilo, heteroarilo, arilalquilo, heteroarilalquilo, policiclo aromático, policiclo no-aromático, policiclo arilo y no-arilo mezclado, poliheteroaril, poliheterociclo no-aromático, y poliheterociclo arilo y no-arilo mezclado;

n, n_1 , n_2 y n_3 son iguales o diferentes e independientemente se seleccionan de 0-6;

35 X y Y son iguales o diferentes e independientemente se seleccionan de un H, halo, alquilo C_1 - C_4 , NO_2 , $C(O)R_1$, OR_9 , SR_9 , CN, $y NR_{10}R_{11}$;

 R_6 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilalquilo, heteroarilalquilo, OR_{12} , y $NR_{13}R_{14}$;

 R_7 se selecciona de OR_{15} , SR_{15} , $S(O)R_{16}$, SO_2R_{17} , $NR_{13}R_{14}$, y $NR_{12}SO_2R_6$;

 R_8 se selecciona de un H, OR_{15} , $NR_{13}R_{14}$, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarila, arilalquilo, y heteroarilalquilo;

 R_9 se selecciona de un alquilo C_1 - C_4 y C(O)-alquilo;

R₁₀ y R₁₁ son iguales o diferentes e independientemente se seleccionan de un H, alquilo C₁-C₄, y -C(O)-alquilo;

R₁₂ se selecciona de un H, alquilo C₁-C₆, cicloalquilo C₄-C₉, heterocicloalquilo C₄-C₉, heterocicloalquilo C₄-C₉, arilo, policiclo arilo y no-arilo mezclado, heteroarilo, arilalquilo, y heteroarilalquilo;

 R_{13} y R_{14} son iguales o diferentes e independientemente se seleccionan de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo, aminoacil, o R_{13} y R_{14} junto con el nitrógeno al cual están unidos son heterocicloalquilo C_4 - C_9 , heteroarilo, poliheteroaril, poliheterociclo no-aromático o poliheterociclo arilo y no-arilo mezclado;

 R_{15} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{16} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, poliheteroaril, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{17} se selecciona de alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, policiclo aromático, heteroarilo, arilalquilo, heteroarilalquilo, poliheteroaril y $NR_{13}R_{14}$;

m es un número entero seleccionado de 0 a 6; y

Z se selecciona de O, NR_{13} , S y S(O);

en donde los términos dados tienen los siguientes significados:

"alquilo" es un alquilo C₁-C₆ lineal o ramificado que es no sustituido o sustituido por uno o más sustituyentes, incluyendo la insaturación (i.e. hay uno o más enlaces C-C dobles o triples), acil, cicloalquilo, halo, oxialquilo, alquilamino, aminoalquilo, acilamino y OR₁₅;

"cicloalquilo" es un grupo cicloalquilo C_3 - C_9 que es no sustituido o sustituido por uno o más sustituyentes seleccionado de un alquilo C_1 - C_6 , halo, hidroxi, aminoalquilo, oxialquilo, alquilamino, y OR_{15} ;

"cicloalquilalquilo" es un radical de la fórmula $-(CH_2)_{n5}$ -cicloalquilo en donde n_5 es un número de 1-6 y es no sustituido en la porción alquilo o en la porción cicloalquilo por un sustituyente enumerado arriba para el alquilo y el cicloalquilo;

15

10

"heterocicloalquilo" es un anillo alifático de 3 a 9 miembros que contiene de uno a tres heteroátomos seleccionados de un nitrógeno, azufre y oxígeno y es no sustituido o sustituido en los átomos de carbono por uno o más sustituyentes alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo, halo, amino, alquilamino y OR_{15} , en donde los heteroátomos de nitrógeno son no sustituidos o sustituidos por un alquilo C_1 - C_4 , arilalquilo, y heteroarilalquilo, acil, aminoacil, alquilsulfonil, y arilsulfonil;

"arilo" es un fenil y fenil sustituido por uno o más sustituyentes alquilo C_1 - C_6 , cicloalquilalquilo, O(CO)alquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, aminosulfonil, arilsulfonil, y OR_{15} ;

25

"arilalquilo" es un grupo de la fórmula - $(CH_2)_{n5}$ -arilo, - $(CH_2)_{n5-1}$ -(CHaril)- $(CH_2)_{n5}$ -arilo o - $(CH_2)_{n5-1}$ CH(aril)(aril), en donde n_5 es un número de 1-6 y en donde arilalquilo es no sustituido o sustituido en la fracción alquilo o la fracción arilo o ambas según lo descrito arriba para el alquilo y el arilo;

30

"heteroarilo" es un anillo aromático de 5 a 7 miembros que contiene de 1 a 4 heteroátomos seleccionados de N, O y S y es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de un alquilo u otro sustituyente heteroarilo, en donde los átomos de nitrógeno son no sustituidos o sustituidos por R_{13} , especialmente por un alquilo C_1 - C_4 , acil, aminoacil, y sulfonil;

35 at

"heteroarilalquilo" es un grupo de la fórmula - $(CH_2)_{n5}$ -heteroarilo en donde el heteroarilo y n_5 son según lo definido arriba y el grupo de enlace se conecta a un carbono o un nitrógeno de la porción heteroarilo;

40

"policiclo aromático" es un naftil o naftil sustituido por uno o más sustituyentes seleccionados de un alquilo C_1 - C_6 , cicloalquilalquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, cetonas alquilo, nitrilo, carboxialquilo, alquilsulfonil, arilsulfonil, aminosulfonil y OR_{15} ;

"policiclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros y cada anillo contiene cero, 1 o más dobles y/o triples enlaces, en donde un policiclo no-aromático es no sustituido o sustituido según lo descrito arriba para el cicloalquilo;

45

"aminoacil" es un grupo de la fórmula $-C(O)-(CH_2)_n-C(H)(NR_{13}R_{14})-(CH_2)_n-R_5$;

50 1

"policiclos arilo y no arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros y al menos un anillo es aromático, en donde los policiclos arilo y no arilo mezclados son no sustituidos o sustituidos por un nitro o según lo descrito arriba para el cicloalquilo;

_

"poliheteroaril" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser independientemente de 5 o 6 miembros y contener de 1-4 heteroátomos escogidos de O, N o S tal que el sistema de anillo fundido sea aromático, en donde el poliheteroaril es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de un alquilo y un sustituyente de la fórmula -O-($CH_2CH=CH(CH_3)(CH_2))_{1-3}H$ y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R_{13} , especialmente por un alquilo C_1-C_4 , acil, aminoacil, y sulfonil;

"poliheterociclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros, puede contener de 1-4 heteroátomos escogidos de O, N o S y contener cero o uno o más enlaces C-C dobles o triples, en donde un poliheterociclo no-aromático es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R_{13} , especialmente por un alquilo C_1 - C_4 , acil, aminoacil, y sulfonil;

65

"poliheterociclos arilo y no-arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros, puede contener uno o más heteroátomos escogidos de O, N o S, y al menos uno de los anillos debe ser aromático, en donde los poliheterociclos arilo y no-arilo mezclados son no sustituidos o sustituidos en un átomo carbono por uno o más sustituyentes seleccionados de -N-OH, =N-OH y alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R_{13} , especialmente por un alquilo C_1 - C_4 , acil, aminoacil, y sulfonil;

"acil" es un grupo de la fórmula -C(O)-W, -OC(O)-W, -C(O)-O-W y $-C(O)NR_{13}R_{14}$, donde W es R_{16} , H o cicloal-quilalquilo;

"acilamino" es un grupo de la fórmula $-N(R_{12})C(O)-W$, $-N(R_{12})C(O)-O-W$, y $-N(R_{12})C(O)-NHOH$, en donde R_{12} y W son según lo definido arriba; y en donde

"HON-C(O)-CH=C(R₁)-aril-alquil-" es un grupo de la fórmula

10 HO X

20 en donde n₄ es 0-3 y X y Y son según lo definido arriba;

o una sal farmacéuticamente aceptable de estos.

- 2. Un compuesto de la reivindicación 1 en donde cada uno de R₁, X, Y, R₃, y R₄ es un H.
- 3. Un compuesto de la reivindicación 2 en donde uno de n_2 y n_3 es cero y el otro es 1.
- 4. Un compuesto de la reivindicación 3 en donde R₂ es un H o -CH₂-CH₂-OH.
- 5. Un compuesto de la reivindicación 1 de la fórmula Ia

HO R_2 (la)

en donde

25

35

40

50

 n_4 es 0-3,

45 R₂ se selecciona de un H, alquilo C₁-C₆, cicloalquilo C₄-C₉, heterocicloalquilo C₄-C₉, cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, - $(CH_2)_nC(O)R_6$, aminoacil y - $(CH_2)_nR_7$;

 R_5 ' es un heteroarila, heteroarilalquilo, un policiclo aromático, un policiclo no-aromático, un policiclo arilo y no-arilo mezclado, poliheteroaril, o un poliheterociclo arilo y no-arilo mezclado,

o una sal farmacéuticamente aceptable de estos.

6. Un compuesto de la reivindicación 1 de la fórmula Ia

55 en donde

 n_4 es 0-3,

 R_2 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, - $(CH_2)_nC(O)R_6$, aminoacil y - $(CH_2)_nR_7$;

 R_5 ' es un arilo, arilalquilo, un policiclo aromático, un policiclo no-aromático o un policiclo arilo y no-arilo mezclado,

- o una sal farmacéuticamente aceptable de estos.
 - 7. Un compuesto de la reivindicación 6 en donde R₅' es un arilo o arilalquilo.

- 8. Un compuesto de la reivindicación 7 en donde R_5 ' es un p-flurofenil, p-clorofenil, p-O- C_1 - C_4 alquilfenil, p-alquilfenil C_1 - C_4 , bencil, orto, meta o para-fluorobencil, orto, meta o para-clorobencil, o orto, meta o para-mono, di o tri-O-alquilbencil C_1 - C_4 .
 - 9. Un compuesto de la reivindicación 1 de la fórmula Ib

en donde

5

10

15

20

30

 R_2 ' se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_6 , cicloalquilalquilo, - $(CH_2)_{2-4}OR_{21}$ donde R_{21} es un H, metil, etil, propil, o isopropil, y

R₅" es no sustituido o sustituido 1*H*-indol-3-il, benzofuran-3-il o quinolin-3-il,

o una sal farmacéuticamente aceptable de estos.

- 25 10. Un compuesto de la reivindicación 9 en donde R₅" es 1*H*-indol-3-il o quinolin-3-il, o una sal farmacéuticamente aceptable de estos.
 - 11. Un compuesto de la reivindicación 9 en donde R_5 " es un 1H-indol-3-il sustituido o un benzofuran-3-il sustituido.
 - 12. Un compuesto de la reivindicación 1 de la fórmula Ic

HO N (Ic)
$$R_1 = R_3 R_4 R_4$$

$$R_1 = R_4 R_5$$

$$R_1 = R_4 R_5$$

$$R_2 = R_3 R_4 R_4$$

$$R_3 = R_4 R_5$$

$$R_4 = R_5$$

$$R_5 = R_5$$

$$R_4 = R_5$$

$$R_5 = R_5$$

$$R_6 = R_5$$

$$R_7 = R_5$$

$$R_8 = R_5$$

45 en donde

el anillo que contiene Z_1 es un aromático o no-aromático, donde los anillos no-aromáticos son saturados o insaturados,

 Z_1 es O, S o N- R_{20} ;

 R_{18} es un H, halo, alquilo C_1 - C_6 , cicloalquilo C_3 - C_7 , arilo, o heteroarilo;

 R_{20} es un H, alquilo C_1 - C_6 , alquilo C_1 - C_6 -cicloalquilo C_3 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo, acil o sulfonil;

 A_1 es 1, 2 o 3 sustituyentes que son independientemente H, alquilo C_1 - C_6 , -OR₁₉, halo, alquilamino, aminoalquilo, halo, o heteroarilalquilo;

R₂ se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, - $(CH_2)_n C(O)R_6$, aminoacil y - $(CH_2)_n R_7$;

 R_{19} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, y heteroarilalquilo;

v es 0, 1 o 2,

p es 0-3, y

q es 1-5 y r es 0 o

5 q es 0 y r es 1-5,

10

15

20

25

45

50

o una sal farmacéuticamente aceptable de estos.

- 13. Un compuesto de la reivindicación 12 en donde Z_1 es $N-R_{20}$.
- 14. Un compuesto de la reivindicación 12 en donde R₂ es un H o -CH₂-CH₂-OH y la suma de q y r es 1.
- 15. Un compuesto de la reivindicación 1 de la fórmula Id

HO N R₁₈ (Id) $R_{18} R_{3} R_{4}$ $R_{18} Z_{1}$

en donde

 Z_1 es O, S o N- R_{20} ,

 R_{18} es un H, halo, alquilo C_1 - C_6 , cicloalquilo C_3 - C_7 , fenil no sustituido, fenil sustituido, o heteroarilo,

 R_{20} es un H, alquilo C_1 - C_6 , alquilo C_1 - C_6 -cicloalquilo C_3 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo, acil o sulfonil;

A₁ es 1, 2 o 3 sustituyentes que son independientemente H, alquilo C₁-C₆, -OR₁₉, o halo,

 $R_{19} \ se \ selecciona \ de \ un \ H, \ alquilo \ C_1-C_6, \ cicloalquilo \ C_4-C_9, \ heterocicloalquilo \ C_4-C_9, \ arilo, \ heteroarilo, \ arilalquilo, \ heteroarilalquilo \ y \ -(CH_2CH=CH(CH_3)(CH_2))_{1-3}H;$

p es 0-3, y

q es 1-5 y r es 0 o

q es 0 y r es 1-5,

o una sal farmacéuticamente aceptable de estos.

- 16. Un compuesto de la reivindicación 15 en donde R₂ es un H o -CH₂-CH₂-OH y la suma de q y r es 1.
 - 17. Un compuesto de la reivindicación 12 de la fórmula Ie

HO N R₁
$$R_{18}$$
 R_{18} R_{19} R_{19}

o una sal farmacéuticamente aceptable de estos.

- 18. Un compuesto de la reivindicación 17 en donde R_{18} es un H, flúor, cloro, bromo, alquilo C_1 - C_4 , cicloalquilo C_3 - C_7 , fenil o heteroarilo.
 - 19. Un compuesto de la reivindicación 17 en donde R₂ es un H, o -(CH₂)_pCH₂OH y en donde p es 1-3.
- 20. Un compuesto de la reivindicación 19 en donde R_1 es un H y X y Y son cada uno H, y en donde q es 1-3 y r es 0 o en donde q es 0 y r es 1-3.
- 21. Un compuesto de la reivindicación 17 en donde R₁₈ es un H, metil, etil, t-butil, trifluorometil, ciclohexil, fenil, 4-metoxifenil, 4-trifluorometilfenil, 2-furanil, 2-tiofenil, o 2-, 3- o 4-piridil.
 - 22. Un compuesto de la reivindicación 21 en donde R₂ es un H, o -(CH₂)_pCH₂OH.
 - 23. Un compuesto de la reivindicación 22 en donde p es 1-3.
 - 24. Un compuesto de la reivindicación 23 en donde R_1 es un H y X y Y son cada uno H, y en donde q es 1-3 y r es 0 o en donde q es 0 y r es 1-3.
- 25. Un compuesto de la reivindicación 24 en donde R₂ es un H o -CH₂-CH₂-OH y la suma de q y r es 1.
 - 26. Un compuesto de la reivindicación 17 en donde R₂₀ es un H o alquilo C₁-C₆.
- 27. Un compuesto de la reivindicación 17 se selecciona del grupo que consiste de N-hidroxi-3-[4-[[(2-hidroxietil) [2-(1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida, N-hidroxi-3-[4-[[[2-(1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida y N-hidroxi-3-[4-[[[2-(2-metil-1*H*-indol-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida, o una sal farmacéuticamente aceptable de estos.
- 28. Un compuesto de la reivindicación 27 que es N-hidroxi-3-[4-[[(2-hidroxietil)[2-(1H-indol-3-il)etil]-amino] metil]fenil]-2E-2-propenamida, o una sal farmacéuticamente aceptable de estos.
 - 29. Un compuesto de la reivindicación 27 que es N-hidroxi-3-[4-[[[2-(2-metil-1*H*-indol-3-il)-etil]-amino]metil] fenil]-2*E*-2-propenamida, o una sal farmacéuticamente aceptable de estos.
 - 30. Un compuesto de la reivindicación 12 de la fórmula If

HO N R₁

$$R_2$$
 R_3
 R_4
 R_4
 R_{18}
 $R_{$

o una sal farmacéuticamente aceptable de estos.

- 31. Un compuesto de la reivindicación 30 en donde R₂ es un H o -(CH₂)_pCH₂OH y p es 1-3.
- 32. Un compuesto de la reivindicación 31 en donde R_1 es un H y X y Y son cada uno H, y en donde q es 1-3 y r es 0 o en donde q es 0 y r es 1-3.
 - 33. Un compuesto de la reivindicación 32 en donde R₂ es un H o -CH₂-CH₂-OH y la suma de q y r es 1.
- 34. Un compuesto de la reivindicación 30 que es N-hidroxi-3-[4-[[[2-(benzofur-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida, o una sal farmacéuticamente aceptable de estos.

65

55

60

5

10

15

35. Una composición farmacéutica que comprende una cantidad efectiva farmacéuticamente de un compuesto de fórmula I

HO N
$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5 R_5 R_5

en donde

5

10

15

20

2.5

30

35

40

45

50

55

65

 R_1 es un H, halo, o un alquilo C_1 - C_6 de cadena lineal;

 R_2 se selecciona de un H, alquilo C_1 - C_{10} , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, - $(CH_2)_nC(O)R_6$. - $(CH_2)_nOC(O)R_6$, aminoacil, HONC(O)-CH= $C(R_1)$ -aril-alquil- y - $(CH_2)_nR_7$:

 R_3 y R_4 son iguales o diferentes e independientemente un H, alquilo C_1 - C_6 , acil o acilamino, o R_3 y R_4 juntos con el carbono al cual están unidos representan un C=S, o C=N R_8 , o R_2 junto con el nitrógeno al cual este se une y R_3 junto con el carbono al cual está unido pueden formar un heterocicloalquilo C_4 - C_9 , un heteroarilo, un poliheteroaril, un poliheterociclo no-aromático, o un anillo poliheterociclo arilo y no-arilo mezclado;

 R_5 se selecciona de cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , acil, arilo, heteroarilo, arilalquilo, heteroarilalquilo, policiclo aromático, policiclo no-aromático, policiclo arilo y no-arilo mezclado, poliheteroaril, no-aromático poliheterociclo, y poliheterociclo arilo y no-arilo mezclado;

n, n₁, n₂ y n₃ son iguales o diferentes e independientemente se seleccionan de 0-6;

X y Y son iguales o diferentes e independientemente se seleccionan de H, halo, alquilo C_1 - C_4 , NO_2 , $C(O)R_1$, OR_9 , SR_9 , CN, y $NR_{10}R_{11}$;

 R_6 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilalquilo, heteroarilalquilo, OR_{12} , y $NR_{13}R_{14}$;

 R_7 se selecciona de OR_{15} , SR_{15} , $S(O)R_{16}$, SO_2R_{17} , $NR_{13}R_{14}$, $y NR_{12}SO_2R_6$;

 $R_8 \ se \ selecciona \ de \ un \ H, \ OR_{15}, \ NR_{13}R_{14}, \ alquilo \ C_1-C_6, \ cicloalquilo \ C_4-C_9, \ heterocicloalquilo \ C_4-C_9, \ arilo, \ heteroarilo, \ arilalquilo, \ y \ heteroarilalquilo;$

 R_9 se selecciona de alquilo C_1 - C_4 y C(O)-alquilo;

R₁₀ y R₁₁ son iguales o diferentes e independientemente se seleccionan de H, alquilo C₁-C₄, y -C(O)-alquilo;

 R_{12} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, policiclo arilo y no-arilo mezclado, heteroarilo, arilalquilo, y heteroarilalquilo;

 R_{13} y R_{14} son iguales o diferentes e independientemente se seleccionan de H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo, aminoacil, o R_{13} y R_{14} junto con el nitrógeno al cual están unidos son un heterocicloalquilo C_4 - C_9 , heteroarilo, poliheteroaril, poliheterociclo no-aromático o poliheterociclo arilo y no-arilo mezclado;

 R_{15} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarila, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{16} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, poliheteroaril, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{17} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, policiclo aromático, heteroarilo, arilalquilo, heteroarilalquilo, poliheteroaril y $NR_{13}R_{14}$;

m es un número entero seleccionado de 0 a 6; y

Z se selecciona de O, NR_{13} , S y S(O);

en donde los términos dados tienen los siguientes significados:

10

25

35

40

45

"alquilo" es un alquilo C_1 - C_6 lineal o ramificado que es no sustituido o sustituido por uno o más sustituyentes, incluyendo la insaturación (i.e. hay uno o más enlaces C-C dobles o triples), acil, cicloalquilo, halo, oxialquilo, alquilamino, aminoalquilo, acilamino y OR_{15} ;

"cicloalquilo" es un grupo cicloalquilo C_3 - C_9 que es no sustituido o sustituido por uno o más sustituyentes seleccionado de un alquilo C_1 - C_6 , halo, hidroxi, aminoalquilo, oxialquilo, alquilamino, y OR_{15} ;

"cicloalquilalquilo" es un radical de la fórmula - $(CH_2)_{n5}$ -cicloalquilo en donde n_5 es un número de 1-6 y es no sustituido o sustituido en la porción alquilo o en la porción cicloalquilo por un sustituyente enumerado arriba para el alquilo y el cicloalquilo;

"heterocicloalquilo" es un anillo alifático de 3 a 9 miembros que contiene de uno a tres heteroátomos seleccionado del nitrógeno, azufre y oxígeno y es no sustituido o sustituido en los átomos de carbono por uno o más sustituyentes alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo, halo, amino, alquilo amino y OR_{15} , en donde los heteroátomos del nitrógeno son no sustituidos o sustituidos por un alquilo C_1 - C_4 , arilalquilo, y heteroarilalquilo, acil, aminoacil, alquilsulfonil, y arilsulfonil;

"arilo" es un fenil y fenil sustituido por uno o más sustituyentes alquilo C_1 - C_6 , cicloalquilalquilo, O(CO)alquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, aminosulfonil, arilsulfonil, y OR_{15} ;

"arilalquilo" es un grupo de la fórmula $-(CH_2)_{n5}$ -arilo, $-(CH_2)_{n5-1}$ -(CHaril) $-(CH_2)_{n5}$ -arilo o $-(CH_2)_{n5-1}$ -CH(aril)(aril), en donde n_5 es un número de 1-6 y en donde arilalquilo es no sustituido o sustituido en la fracción alquilo o la fracción arilo o ambas según lo descrito arriba para el alquilo y arilo;

"heteroarilo" es un anillo aromático de 5 a 7 miembros que contiene de 1 a 4 heteroátomos seleccionados de N, O y S y es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de alquilo y otro heteroarilo sustituyente, en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"heteroarilalquilo" es un grupo de la fórmula - $(CH_2)_{n5}$ -heteroarilo en donde heteroarilo y n_5 son según lo definido arriba y el grupo de enlace se conecta a un carbono o a un nitrógeno de la porción heteroarilo;

"policiclo aromático" es un naftil o naftil sustituido por uno o más sustituyentes seleccionados de un alquilo C_1 - C_6 , cicloalquilalquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, arilsulfonil, aminosulfonil y OR_{15} ;

"policiclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros y cada anillo contiene cero, 1 o más dobles y/o triples enlaces, en donde un policiclo no-aromático es no sustituido o sustituido según lo descrito arriba para el cicloalquilo;

"aminoacil" es un grupo de la fórmula -C(O)- $(CH_2)_n$ - $C(H)(NR_{13}R_{14})$ - $(CH_2)_n$ - R_5 ;

"policiclos arilo y no arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros y al menos un anillo es aromático, en donde los policiclos arilo y no arilo mezclados son no sustituidos o sustituidos por un nitro o según lo descrito arriba por un cicloalquilo;

"poliheteroaril" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser independientemente de 5 o 6 miembros y contener de 1-4 heteroátomos escogidos de O, N o S tal que el sistema de anillo fundido es aromático, en donde el poliheteroaril es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de un alquilo y un sustituyente de la fórmula -O-(CH₂CH=CH(CH₃)(CH₂))₁₋₃H y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"poliheterociclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros, contener de 1-4 heteroátomos escogidos de O, N o S y contener cero o uno o más enlaces C-C dobles o triples, en donde un poliheterociclo no-aromático es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R_{13} , especialmente por un alquilo C_1 - C_4 , acil, aminoacil, y sulfonil;

"poliheterociclos arilo y no-arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros, contener uno o más heteroátomos escogidos de O, N o S, y al menos uno de los anillos debe ser aromático, en donde los poliheterociclos arilo y no-arilo mezclados son no sustituidos o sustituidos en un átomo de carbono por uno o más sustituyentes seleccionados de -N-OH, =N-OH y alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"acil" es un grupo de la fórmula -C(O)-W, -OC(O)-W, -C(O)-O-W y -C(O)N R_{13} R $_{14}$, donde W es R_{16} , H o cicloal-quilalquilo;

"acilamino" es un grupo de la fórmula $-N(R_{12})C(O)-W$, $-N(R_{12})C(O)-O-W$, y $-N(R_{12})C(O)-NHOH$, en donde R_{12} y W son según lo definido arriba; y en donde

"HON-C(O)-CH=C(R₁)-aril-alquil-" es un grupo de la fórmula

en donde n₄ es 0-3 y X y Y son según lo definido arriba; o una sal farmacéuticamente aceptable de estos.

36. Una composición farmacéutica de la reivindicación 35 en donde el compuesto de fórmula I se selecciona del grupo que consiste del N-hidroxi-3-[4-[[(2-hidroxietil)[2-(1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida, N-hidroxi-3-[4-[[(2-(1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida y N-hidroxi-3-[4-[[(2-(2-metil-1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida, o una sal farmacéuticamente aceptable de estos.

37. Una composición farmacéutica de la reivindicación 36 en donde el compuesto de fórmula I es el N-hidroxi-3-[4-[(2-hidroxietil)[2-(1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida, o una sal farmacéuticamente aceptable de estos.

38. Una composición farmacéutica de la reivindicación 36 en donde el compuesto de fórmula I es el N-hidroxi-3-[4-[[[2-(2-metil-1*H*-indol-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida, o una sal farmacéuticamente aceptable de estos.

39. Una composición farmacéutica de la reivindicación 35 en donde el compuesto de fórmula I es el N-hidroxi-3-[4-[[[2-(benzofur-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida, o una sal farmacéuticamente aceptable de estos.

40. El uso de un compuesto de la fórmula I

HO
$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5 R_5

⁵⁰ en donde

10

15

30

40

45

R₁ es un H, halo, o un alquilo C₁-C₆ de cadena lineal;

 R_2 se selecciona de un H, alquilo C_1 - C_{10} , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , heterocicloalquilalquilo C_4 - C_9 , cicloalquilalquilo, arilo, heteroarilo, arilalquilo, heteroarilalquilo, $(CH_2)_nC(O)R_6$, $-(CH_2)_nOC(O)R_6$, aminoacil, C_9 , C_9 , cicloalquilalquilo, arilo, heteroarilalquilo, heteroarilalquilo, C_9 , C_9 ,

 R_3 y R_4 son iguales o diferentes e independientemente H, alquilo C_1 - C_6 , acil o acilamino, o R_3 y R_4 juntos con el carbono al cual están unidos representan C=S, o C=NR₈, o R_2 junto con el nitrógeno al cual este se une y R_3 junto con el carbono al cual está unido pueden formar un heterocicloalquilo C_4 - C_9 , un heteroarilo, un poliheteroaril, un poliheterociclo no-aromático, o un anillo poliheterociclo arilo y no-arilo mezclado;

 R_5 se selecciona de cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , acil, arilo, heteroarilo, arilalquilo, heteroarilalquilo, policiclo aromático, policiclo no-aromático, policiclo arilo y no-arilo mezclado, poliheteroaril, no-aromático poliheterociclo, y poliheterociclo arilo y no-arilo mezclado;

n, n₁, n₂ y n₃ son iguales o diferentes e independientemente se seleccionan de 0-6;

X y Y son iguales o diferentes e independientemente se seleccionan de H, halo, alquilo C_1 - C_4 , NO_2 , $C(O)R_1$, OR_9 , SR_9 , CN, y $NR_{10}R_{11}$;

 R_6 se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , cicloalquilalquilo, arilo, beteroarilo, arilalquilo, heteroarilalquilo, OR_{12} , y $NR_{13}R_{14}$;

 R_7 se selecciona de OR_{15} , SR_{15} , $S(O)R_{16}$, SO_2R_{17} , $NR_{13}R_{14}$, $y\ NR_{12}SO_2R_6$;

 R_8 se selecciona de un H, OR_{15} , $NR_{13}R_{14}$, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarila, arilalquilo, y heteroarilalquilo;

 R_9 se selecciona de alquilo C_1 - C_4 y C(O)-alquilo;

 R_{10} y R_{11} son iguales o diferentes e independientemente se seleccionan de H, alquilo C_1 - C_4 , y -C(O)-alquilo;

 R_{12} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, policiclo arilo y no-arilo mezclado, heteroarilo, arilalquilo, y heteroarilalquilo;

R₁₃ y R₁₄ son iguales o diferentes e independientemente se seleccionan de H, alquilo C₁-C₆, cicloalquilo C₄-C₉, heterocicloalquilo C₄-C₉, arilo, heteroarilo, arilalquilo, heteroarilalquilo, aminoacil, o R₁₃ y R₁₄ junto con el nitrógeno al cual están unidos son heterocicloalquilo C₄-C₉, heteroarilo, poliheteroaril, poliheterociclo no-aromático o poliheterociclo arilo y no-arilo mezclado;

 R_{15} se selecciona de un H, alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{16} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, heteroarilo, poliheteroaril, arilalquilo, heteroarilalquilo y $(CH_2)_m ZR_{12}$;

 R_{17} se selecciona de un alquilo C_1 - C_6 , cicloalquilo C_4 - C_9 , heterocicloalquilo C_4 - C_9 , arilo, policiclo aromático, heteroarilo, arilalquilo, heteroarilalquilo, poliheteroaril y $NR_{13}R_{14}$;

m es un número entero seleccionado de 0 a 6; y

Z se selecciona de O, NR_{13} , S y S(O);

15

45

55

en donde los términos dados tienen los siguientes significados:

"alquilo" es un alquilo C₁-C₆ lineal o ramificado que es no sustituido o sustituido por uno o más sustituyentes, incluyendo la insaturación (i.e. hay uno o más enlaces C-C dobles o triples), acil, cicloalquilo, halo, oxialquilo, alquilamino, aminoalquilo, acilamino y OR₁₅;

"cicloalquilo" es un grupo cicloalquilo C_3 - C_9 que es no sustituido por uno o más sustituyentes seleccionados de un alquilo C_1 - C_6 , halo, hidroxi, aminoalquilo, oxialquilo, alquilamino, y OR_{15} ;

"cicloalquilalquilo" es un radical de la fórmula $-(CH_2)_{n5}$ -cicloalquilo en donde n_5 es un número de 1-6 y es no sustituido o sustituido en la porción alquilo o en la porción cicloalquilo por un sustituyente enumerado arriba para el alquilo y cicloalquilo;

"heterocicloalquilo" es un anillo alifático de 3 a 9 miembros que contiene de uno a tres heteroátomos seleccionados de un nitrógeno, azufre y oxígeno y es no sustituido o sustituido en los átomos de carbono por uno o más sustituyentes alquilo C₁-C₆, cicloalquilo C₄-C₉, arilo, heteroarilo, arilalquilo, heteroarilalquilo, halo, amino, alquilo amino y OR₁₅, en donde los heteroátomos de nitrógeno son no sustituidos o sustituidos por un alquilo C₁-C₄, arilalquilo, y heteroarilalquilo, acil, aminoacil, alquilsulfonil, y arilsulfonil;

"arilo" es un fenil y fenil sustituido por uno o más sustituyentes alquilo C_1 - C_6 , cicloalquilalquilo, O(CO)alquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, aminosulfonil, arilsulfonil, y OR_{15} ;

"arilalquilo" es un grupo de la fórmula - $(CH_2)_{n5}$ -arilo, - $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ -arilo o - $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ -arilo o - $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ -arilo o - $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ - $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ -(CHaril)- $(CH_2)_{n5}$ - $(CH_2)_{n5}$

"heteroarilo" es un anillo aromático de 5 a 7 miembros que contiene de 1 a 4 heteroátomos seleccionados de N, O y S y es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de alquilo y otro heteroarilo sustituyente, en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"heteroarilalquilo" es un grupo de la fórmula - $(CH_2)_{n5}$ -heteroarilo en donde el heteroarilo y n_5 son según lo definido arriba y el grupo de enlace se conecta a un carbono o un nitrógeno de la porción heteroarilo;

"policiclo aromático" es un naftil o naftil sustituido por uno o más sustituyentes seleccionados del alquilo C₁-C₆, cicloalquilalquilo, oxialquilo, halo, nitro, amino, alquilamino, aminoalquilo, alquilo cetonas, nitrilo, carboxialquilo, alquilsulfonil, arilsulfonil, aminosulfonil y OR₁₅;

"policiclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros y cada anillo contiene cero, 1 o más enlaces dobles y/o triples, en donde un policiclo no-aromático es no sustituido o sustituido según lo descrito arriba para el cicloalquilo;

"aminoacil" es un grupo de la fórmula $-C(O)-(CH_2)_n-C(H)(NR_{13}R_{14})-(CH_2)_n-R_5$;

15

35

45

50

55

60

"policiclos arilo y no arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros y al menos un anillo es aromático, en donde los policiclos arilo y no arilo mezclados son no sustituidos o sustituidos por nitro o según lo descrito arriba para el cicloalquilo;

"poliheteroaril" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser independientemente de 5 o 6 miembros y contener de 1-4 heteroátomos escogidos de O, N o S tal que el sistema de anillo fundido es aromático, en donde el poliheteroaril es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes seleccionados de un alquilo y un sustituyente de la fórmula -O-(CH₂CH=CH(CH₃)(CH₂))₁₋₃H y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"poliheterociclo no-aromático" es un sistema de anillo fundido bicíclico o tricíclico donde cada anillo puede ser de 4-9 miembros, contener de 1-4 heteroátomos escogidos de O, N o S y contener cero o uno o más enlaces C-C dobles o triples, en donde un poliheterociclo no-aromático es no sustituido o sustituido en un átomo de carbono por uno o más sustituyentes alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"poliheterociclos arilo y no-arilo mezclados" son sistemas de anillos fundidos bicíclicos o tricíclicos donde cada anillo puede ser de 4-9 miembros, contener uno o más heteroátomos escogidos de O, N o S, y al menos uno de los anillos debe ser aromático, en donde los poliheterociclos arilo y no-arilo mezclados son no sustituidos o sustituidos en un átomo de carbono por uno o más sustituyentes seleccionados de -N-OH, =N-OH y alquilo y en donde los átomos de nitrógeno son no sustituidos o sustituidos por R₁₃, especialmente por un alquilo C₁-C₄, acil, aminoacil, y sulfonil;

"acil" es un grupo de la fórmula -C(O)-W, -OC(O)-W, -C(O)-O-W y -C(O)NR $_{13}$ R $_{14}$, donde W es R $_{16}$, H o cicloal-quilalquilo;

"acilamino" es un grupo de la fórmula -N(R_{12})C(O)-W, -N(R_{12})C(O)-O-W, y -N(R_{12})C(O)-NHOH, en donde R_{12} y W son según lo definido arriba; y en donde

"HON-C(O)-CH=C(R1)-aril-alquil-" es un grupo de la fórmula

en donde n₄ es 0-3 y X y Y son según lo definido arriba;

o una sal farmacéuticamente aceptable de estos, para la fabricación de una composición farmacéutica para el tratamiento de un desorden proliferativo en un mamífero.

41. El uso de acuerdo con la reivindicación 40 en donde el compuesto de fórmula I es la N-hidroxi-3-[4-[[(2-hidroxietil)[2-(1H-indol-3-il)etil]-amino]metil]fenil]-2E-2-propenamida, o una sal farmacéuticamente aceptable de esta.

42. El uso de acuerdo con la reivindicación 40 en donde el compuesto de fórmula I es la N-hidroxi-3-[4-[[[2-(2-metil-1*H*-indol-3-il)-etil]-amino]metil]fenil]-2*E*-2-propenamida, o una sal farmacéuticamente aceptable de esta.