LOADING STATION FOR TRANSFERRING FROZEN SAMPLES AT LOW TEMPERATURES

LADESTATION ZUM UMLADEN VON GEFRORENEN PROBEN BEI TIEFEN TEMPERATUREN

Abstract: The invention relates to a loading station (100, 200) for transferring a frozen sample for electron microscopy, comprising a chamber (104, 204), which is open in the upward direction and which can be at least partially filled with a coolant, wherein the chamber (104, 204) has, in a side wall thereof, at least two connections (101a, 102a, 103a) for different sample transfer devices (101, 102, 103), wherein the connections (101a, 102a, 103a) allow a frozen sample to be inserted into the chamber (104, 204) by means of a selected sample transfer device and allow a frozen sample to be removed from the chamber by means of a different sample transfer device, and wherein a receptacle (108, 208) for at least two differently designed sample holders (109, 110) is arranged in the chamber (104, 204), wherein the at least two sample holders (109, 110) can be detachably fastened to at least one of the sample transfer devices (101) in order to insert the frozen sample into the chamber (104, 204) and to remove the frozen sample from the chamber (104, 204).

Zusammenfassung:

[Fortsetzung auf der nächsten Seite]
Veröffentlicht:
— mit internationalem Recherchenbericht (Artikel 21 Absatz 3)

Ladestation (100, 200) zum Umladen einer gefrorenen Probe für die Elektronenmikroskopie umfassend eine nach oben hin offene Kammer (104, 204), die zumindest teilweise mit einem Kühlmittel befüllbar ist, wobei die Kammer (104, 204) in ihrer Seitenwand zumindest zwei Anschlüsse (101a, 102a, 103a) für jeweils unterschiedliche Probentransfereinrichtungen (101, 102, 103) aufweist, wobei die Anschlüsse (101a, 102a, 103a) ein Einbringen einer gefrorenen Probe in die Kammer (104, 204) über eine ausgewählte Probentransfereinrichtung und ein Ausbringen einer gefrorenen Probe aus der Kammer über eine jeweils andere Probentransfereinrichtung gestatten, und dass in der Kammer (104, 204) eine Aufnahme (108, 208) für zumindest zwei unterschiedlich ausgebildete Probenhalter (109, 110) angeordnet ist, wobei die zumindest zwei Probenhalter (109, 110) zum Einbringen der gefrorenen Probe in die Kammer (104, 204) und zum Ausbringen der gefrorenen Probe aus der Kammer (104, 204) an zumindest einer der Probentransfereinrichtungen (101) lösbare befestigbar sind.
Ladestation zum Umladen von gefrorenen Proben bei tiefen Temperaturen

Die Erfindung betrifft eine Ladestation zum Umladen einer gefrorenen Probe für die Elektronenmikroskopie umfassend eine nach oben hin offene Kammer, die zumindest teilweise mit einem Kühlmittel befüllbar ist.

Um die Qualität der gefrorenen Proben nicht zu beeinträchtigen ist es von großer Bedeutung, dass sie gekühlt und kontaminationsfrei zwischen den zum Einsatz kommenden Bearbeitungsgeräten (z.B. Kryofixiereinrichtung, Gefrierbruchvorrichtung,
Beschichtungsvorrichtung) bzw. Analysegeräten (z.B. Kryoelektronenmikroskop, gekühltes Lichtmikroskop) transferiert werden.

Es ist daher eine Aufgabe der Erfindung, ein möglichst kontaminationsfreies Umladen einer gefrorenen Probe von einem Probenhalter in einen anders ausgebildeten Probenhalter bzw. in eine anders ausgebildete Probentransfereinrichtung, der/die für eine andere Anwendung vorgesehen ist, zu ermöglichen.

Diese Aufgabe wird mit einer Ladestation der eingangs genannten Art gelöst, welche erfindungsgemäß dadurch gekennzeichnet ist, dass die Kammer in ihrer Seitenwand zumindest zwei Anschlüsse für jeweils unterschiedliche Probentransfereinrichtungen aufweist, wobei die Anschlüsse ein Einbringen einer gefrorenen Probe in die Kammer über eine ausgewählte Probentransfereinrichtung und ein Ausbringen einer gefrorenen Probe aus der Kammer über eine jeweils andere Probentransfereinrichtung gestatten, und dass in der Kammer eine Aufnahme für zumindest zwei unterschiedlich ausgebildete Probenhalter angeordnet ist, wobei die zumindest zwei Probenhalter zum Einbringen der gefrorenen Probe in die Kammer und zum Ausbringen der gefrorenen Probe aus der Kammer an zumindest einer der Probentransfereinrichtungen lösbar befestigbar sind.

Dank der Erfindung ist ein weitestgehend kontaminationsfreies und zeitsparendes Umladen gefrorener Proben für die Elektronenmikroskopie zwischen den zumeist unterschiedlich ausgestalteten Probenhaltern der einzelnen Bearbeitungsgeräte bzw. Analysegeräte bei Temperaturen von < -150 °C möglich.

Die gefrorene Probe ist in den meisten Fällen auf einem elektronenmikroskopischen Probenträger aufgebracht, dessen Ausgestaltung von der jeweiligen Anwendung abhängig ist. Der Begriff "Probenträger" bezieht sich daher auf alle für die Elektronenmikroskopie und für die elektronenmikroskopische Probenpräparation geeigneten Träger. Probenträger für die Elektronenmikroskopie sind einem Fachmann hinlänglich bekannt. Beispielsweise handelt es sich dabei um stiftartige Träger für die Rasterlelektronenmikroskopie oder um kleine netzförmige Träger, die allgemein als Grids oder Netzträger bezeichnet werden. Die Grids können verschiedenartig geformte Löcher (Waben, Schlitzte etc.) oder ein Gitter definierter mesh-Zahl aufweisen und/oder
mit einem Film beschichtet (z.B. beschichtete Grids der Firma Quantifoil) und/oder kohlebedampft sein können. Andere Träger, die ebenfalls bei der Kryo-Präparation elektronenmikroskopischer Proben eingesetzt werden, sind z.B. Saphirscheiben wie in der EP 1 267 164 B1 beschrieben.

Der Probenträger mit der Probe kann wiederum in einem Probenhalter der Probentransfereinrichtung lösbar befestigt werden. Der Probenhalter kann entweder fest mit der Probentransfereinrichtung verbunden sein (z.B. ein Probenhalter für die Transmissionselektronenmikroskopie wie beispielsweise ein Kryo-TEM-Halter der Firma Gatan (Model 626 Single Tilt Liquid Nitrogen Cryo Transfer Holder)) oder er kann lösbar an die Probentransfereinrichtung ankoppelbar und daher auswechselbar sein. Eine bekannte Probentransfereinrichtung, an welche verschieden ausgestaltete Probenhalter, die jeweils für unterschiedliche Anwendungen zum Einsatz kommen, ist das bereits oben genannte Leica EM VCT100 Shuttle (Hersteller: Leica Microsystems). Das Leica EM VCT100 Shuttle ist auch zum Anschließen an die Ladestation gemäß der Erfindung geeignet. In Abhängigkeit des verwendeten Probenträgers (z.B. ein Grid/Netzchen) wird der an das Leica EM VCT100 Shuttle ankoppelbare Probenhalter ausgewählt. Alternativ dazu sehen gewissen Anwendungen vor, dass die Probe direkt auf einer Oberfläche des Probenhalters, d.h. ohne Probenträger wie Grid/Netzchen, aufgebracht wird.

Zweckmäßigerweise ist die Aufnahme für die zumindest zwei unterschiedlich ausgebildeten Probenhälter in einem Bodenbereich der Kammer angeordnet.

Bei einer vorteilhaften Weiterbildung umfasst die Aufnahme ein dreh- und kippbares Kugelsegment, auf welchem zumindest zwei unterschiedlich ausgebildete Probenhalter
aufnehmbar sind. Die Probenthalter werden also lösbar in der Aufnahme arretiert. Bei einer Untervariante ist die Aufnahme für genau zwei unterschiedlich ausgebildete Probenträger vorgesehen, wobei das Kugelsegment eine Drehung um eine senkrechte Achse und ein Kippen ermöglicht. Alternativ dazu kann die Aufnahme auch mehr als zwei Probenthalter aufnehmen, beispielsweise eine Aufnahme, auf der vier Probenthalter kreuzweise arretiert sein können.

Bei einer anderen Weiterbildung umfasst die Aufnahme einen verschiebbaren Schlitten, auf welchem zumindest zwei unterschiedlich ausgebildete Probenthalter aufnehmbar sind.

Die Ladestation kann ferner eine Temperaturüberwachung, z.B. durch einen in der Kammer positionierten Temperatursensor, aufweisen.

Die Regelung der Kühlmittelzufuhr mittels des Füllstandssensors und des steuerbaren Einlassventils sowie die Temperaturüberwachung durch den Temperatursensor erfolgt durch eine Steuerung, die nach an sich bekannter Art aufgebaut ist und typischerweise einen Mikrocontroller sowie elektronische Bauteile aufweist.

Füllstandsabweichungen sowie Temperaturabweichungen in der Kammer, die über einen vorgebaren Temperaturbereich bzw. Füllstandsbereich hinausgehen, können durch die Steuerung wieder ausgeglichen werden. Darüber hinaus ist es auch möglich, dass Abweichungen einem Bediener auch als Alarmsignal zur Kenntnis gebracht werden.
Die Ladestation kann ferner eine Bedienkonsole zur Eingabe von Befehlen für die Steuerung umfassen. Derartige Befehle umfassen beispielsweise die Programmierung der Kühlmittelzufuhr und der Temperatur.

Bei dem Kühlmittel (auch als Kryogen bezeichnet) handelt es sich um ein Flüssiggas wie flüssigen Stickstoff (LN2) oder flüssige Luft, vorzugsweise um flüssigen Stickstoff.

Schubstange, an der der Probenthalter mit der Probe fixiert ist. Der Probenthalter kann dann mittels der Schubstange durch die Schleuse hindurch von der Ladestation in die Probentransfereinrichtung und vice versa transferiert werden.

Bei einer Variante ist zumindest einer der Anschlüsse als Anschluss für eine Probentransferseinrichtung, die für den Kryotransfer gefrorener Proben unter Vakuum oder Schutzgasatmosphäre vorgesehen ist, ausgebildet. Ein Beispiel für eine solche Probentransfereinrichtung ist das oben genannte Leica EM VCT100 Shuttle (Hersteller: Leica Microsystems).

Die Erfindung wird im Folgenden anhand eines nicht einschränkenden Beispiels, das in den beiliegenden Zeichnungen dargestellt ist, näher erläutert. Die Zeichnungen zeigen in

Fig. 1 eine perspektivische Ansicht einer erfindungsgemäßen Ladestation,

Fig. 2 eine weitere perspektivische Ansicht der Ladestation aus Fig. 1 aus einem anderen Blickwinkel,
Fig. 3 eine vergrößerte perspektivische Ansicht der Aufnahme für Probenhalter der in den Fig. 1 und Fig. 2 dargestellten Ladestation.

Fig. 4 eine perspektivische Ansicht einer alternativen Ausführungsform der Aufnahme für Probenhalter,

Fig. 5 einen Schnitt durch die Ladestation und die Transfereinrichtung für den Kryovakuumtransfer aus Fig. 1 in vergrößerter Ansicht, und

Fig. 6 einen weiteren Schnitt durch die Ladestation und die Transfereinrichtung für den Kryovakuumtransfer aus Fig. 1 in vergrößerter Ansicht.

Fig. 1 und Fig. 2 zeigen perspektivische Ansichten einer Ladestation 100 gemäß der Erfindung. Die Ladestation 100 umfasst eine mit Kühlmittel (im Beispiel flüssiger Stickstoff (LN2)) gekühlte Kammer 104, die nach oben hin offen ist. Im gezeigten Beispiel ist die Kammer 104 in ein Gehäuse 115 eingebettet. Die Kammer 104 ist zumindest teilweise mit LN2 befüllt. Durch das kontinuierliche Verdampfen des Kühlmittels bildet sich ein Strom kalten Gases, der aus der Kammer 104 austritt und so ein Eindringen von Luft verhindert. Oberhalb des offenen Bereichs 105 der Kammer 104 ist ein Hauchschirm 106 positioniert. Der Hauchschirm verhindert, dass Wasserdampf in oder an der Kammer gefriert. Der austretende Strom kalten Gases und der Hauchschirm verhindern somit ein Kontaminieren der Proben. Die Ladestation verfügt zudem noch über ein Vergrößerungsglas (Lupe) 118, das oberhalb der Kammer 104 und unterhalb des Hauchschirms 106 positioniert ist.

Bei den Proben handelt es sich um sehr kleine gefrorene Proben für die Elektronenmikroskopie, die im eingefrorenen Zustand bei < -150 °C in die bzw. aus der Kammer 104 transferiert und in der Kammer 104 umgeladen werden.

Am Kammerboden 107 ist eine Aufnahme 108 für zwei Probenhalter 109, 110, die zum Halten gefrorener Proben ausgebildet sind, angeordnet. Die Aufnahme 108, die in der Fig. 3 vergrößert dargestellt ist, ist auf einem Kugelsegment 111 angeordnet. Das Kugelsegment 111 ist kippbar und um eine senkrechte Achse drehbar gelagert und lässt sich über nicht näher dargestellte Federn in verschiedene Stellungen rasten.
Zurückkommend auf die Fig. 1 und 2, weist die Kammer 104 in ihren Seitenwänden insgesamt drei Anschlüsse 101a, 102a und 103a für jeweils drei unterschiedliche Transfereinrichtungen 101, 102 und 103 auf. Die Transfereinrichtungen 101, 102 und 103 werden von außen an die Anschlüsse 101a, 102a und 103a angeschlossen. Die Anschlüsse 101a, 102a, 103a umfassen Öffnungen, durch welche gefrorene elektronenmikroskopische Proben von den Transfereinrichtungen 101, 102, 103 in die Kammer eingebracht bzw. ausgebracht werden können. Nicht genutzte Anschlüsse werden jeweils durch einen nicht näher dargestellten Schieber verschlossen.

Bei der Transfereinrichtung 101 handelt es sich im gezeigten Beispiel um das oben erwähnte Leica EM VCT100 Shuttle (Hersteller: Leica Microsystems), d.h. ein Transferbehälter, der für den Kryotransfer gefrorener Proben unter Vakuum oder Schutzgasatmosphäre vorgesehen ist. Die Transfereinrichtung 101 verfügt über eine Schubstange 113, mit welcher ein Probenhalter aus der gekühlten Transfereinrichtung 101 durch die Öffnung des Anschlusses 101a in die Kammer 104 eingebracht werden kann. Das Ein- und Ausschleusen der Probe in die Transfereinrichtung 101 erfolgt über eine weiter unten in den Fig. 5 und 6 im Detail beschriebene Schleuse 119.

Die Transfereinrichtung 103 ist im gezeigten Beispiel eine Transfereinrichtung für die Lichtmikroskopie und verfügt ebenfalls über eine Schubstange 112, mit Hilfe derer ein Probenhalter durch die Öffnung des Anschlusses 103a in die Kammer 104 eingebracht werden kann.

Bei der Transfereinrichtung 102 handelt es sich um einen Kryo-TEM-Probenhalter (z.B. Model 626 Single Tilt Liquid Nitrogen Cryo Transfer Holder der Firma Gatan), wobei jenes Ende des TEM-Präparathalters, in welchem die Probe aufgenommen ist, durch die Öffnung des Anschlusses 102a in die Kammer 104 eingeführt werden kann.

Die in dem Beispiel gezeigte Ladestation 100 verfügt über insgesamt drei unterschiedliche Anschlüsse für drei unterschiedliche Transfereinrichtungen. Es können jedoch auch nur zwei unterschiedliche Anschlüsse oder aber mehr als drei unterschiedliche Anschlüsse, z.B. vier oder fünf unterschiedliche Anschlüsse, sein. Die Anzahl und die jeweilige Ausgestaltung der Anschlüsse sind von den anzuschließenden Transferbehältern abhängig, wobei die Kombination der Art der Anschlüsse bzw. der Transferbehälter in Abhängigkeit des Anwendungsspektrums entsprechend gewählt ist.
Im gezeigten Beispiel kommuniziert nur die Transfereinrichtung 101 mit der Aufnahme 108 für die Probenhalter 109, 110. Das Kippen der Aufnahme 108 mit Hilfe des dreh- und kippbaren Kugelsegments 111 ist notwendig, da die Transfereinrichtung 101 schräg an die Ladestation 100 angesetzt wird (vgl. Fig. 2) und zum Umladen der Probe der Probenhalter 109 bzw. 110 von der Schubstange 113 über ein Bajonett entkoppelt, in der Aufnahme 108 arretiert und erst dann in eine waagrechte Bearbeitungsposition gebracht wird.

Nach dem Umladen wird das Kugelsegment 111 um 180° gedreht, so dass nunmehr der Probenhalter 110 zur Transfereinrichtung 101 gerichtet ist. Anschließend wird das Kugelsegment 111 gekippt und der Probenhalter 110 mit der Probe kann nun an das sich in die Kammer 104 erstreckende Ende 113a der Schubstange 113 gekoppelt und durch Zurückziehen der Schubstange 113 aus der Kammer 104 entnommen werden. Alternativ dazu kann die Probe für andere Analysen- oder Bearbeitungsschritte aus dem Probenhalter 109 auch in die jeweiligen Probenhalterungen der Transfereinrichtungen 102 bzw. 103 umgeladen werden.

Die Ladestation 100 weist außerdem einen Vorratsbehälter 114 für das Kühlmittel auf, der ebenfalls in das Gehäuse 115 eingebettet ist. Der Vorratsbehälter 114 ist mit einem Deckel 116 verschließbar. Der Vorratsbehälter 114 ist mit der Kammer 104 über ein nicht näher dargestelltes steuerbares Einlassventil für das Kühlmittel verbunden. Das

Die Regelung der Kühlmittelzufuhr mittels des Füllstandssensors und des steuerbaren Einlassventils sowie die Temperaturüberwachung durch den Temperatursensor erfolgt durch eine nicht näher dargestellte Steuerung, die nach an sich bekannter Art aufgebaut ist und typischerweise einen Mikrokontroller sowie elektronische Bauteile aufweist. Füllstandsabweichungen sowie Temperaturabweichungen in der Kammer 104, die über einen vorgebaren Temperaturbereich bzw. Füllstandsbereich hinausgehen, können durch die Steuerung wieder ausgeglichen werden. Darüber hinaus ist es auch möglich, dass Abweichungen einem Bediener auch als Alarmsignal, z.B. als optisches oder akustisches Alarmsignal, zur Kenntnis gebracht werden.

Die Ladestation 100 umfasst darüber hinaus eine Bedienkonsole zur Eingabe von Befehlen für die Steuerung. Derartige Befehle umfassen beispielsweise die Programmierung der Kühlmittelzufuhr und der Temperatur.

Fig. 4 zeigt eine perspektivische Ansicht einer alternativen Ausführungsform einer Aufnahme 208 für Probenhalter. Die Aufnahme 208 ist am Kammerboden 207 einer Kammer 204 einer Ladestation 200 angeordnet. Bis auf die Aufnahme 208 entspricht der Aufbau der Ladestation 200 ansonsten jener der Ladestation 100. Die in Fig. 4 gezeigte Aufnahme 208 umfasst einen Schieber 211 nach Art eines Schlittdens, in welchem insgesamt zwei Probenhalter arretierbar sind. Die in Fig. 4 ist nur ein Probenhalter 209 in einer ersten Arretierposition 209a der Aufnahme 208 lösbar befestigt, die zweite Arretierposition 210a für den nicht dargestellten Probenhalter 210 ist unbesetzt. Die Probenhalter 209, 210 sind wie die oben beschriebenen Probenhalter 109, 110 ausgeführt. Der Schieber 211 ist kippbar gelagert, um die Probenhalter 209, 210 an das sich in die Kammer 204 erstreckende Ende 113a der Schubstange 113 der Transfereinrichtung 101 zu koppeln. Durch Verschieben des
Schiebers 211 in einer Richtung, die durch den Pfeil 212 angezeigt ist, kann der jeweilige Probenhalter 209, 210 zur Schubstange 113 hin positioniert werden.

Die Fig. 5 und 6 zeigen Schnitte durch die Ladestation 100 und die Transfereinrichtung 101 aus der Fig. 1 in vergrößerter Ansicht. Wie oben beschrieben, handelt es sich bei der Transfereinrichtung 101 um das Leica EM VCT100 Shuttle (Hersteller: Leica Microsystems), d.h. ein Transferbehälter, der für den Kryotransfer gefrorener Proben unter Vakuum oder Schutzgasatmosphäre vorgesehen ist. Mit Hilfe der Schubstange 113 der Transfereinrichtung 101 kann ein Probenhalter aus der gekühlten Transfereinrichtung 101 durch die Öffnung des Anschlusses 101a über eine Schleuse 119 in die Kammer 104 der Ladestation 100 eingebracht werden kann.

Die Schleuse 119 umfasst zwei Vakuumschieber 119a, 119b. Durch entsprechende Stellung der Vakuumschieber 119a, 119b ist im Zwischenraum 120 zwischen den Vakuumschiebern 119a, 119b bzw. im Inneren der Transfereinrichtung 101 ein Vakuum herstellbar. Die Ladestation 100 verfügt über einen Pumpenanschluss 123 für eine nicht näher dargestellte Vakuumpumpe zum Auspumpen der Transfereinrichtung 101 bzw. zum Auspumpen des Zwischenraums 120. Der Vakuumschieber 119a ist an der Probentransfereinrichtung 101 befestigt; der Vakuumschieber 119b ist am Anschluss 101a der Ladestation 100 befestigt. Die Schleuse 119 wird durch Andocken der Probentransfereinrichtung 101 am Anschluss 101a der Ladestation 100 gebildet.

Fig. 5 zeigt die beiden Vakuumschieber 119a, 119b in geschlossener Position. Das Ende 113a der Schubstange 113 ist in die Transfereinrichtung 101 zurückgezogen. In dieser Darstellung befindet sich derzeit kein Probenhalter 109, 110 in der Transfereinrichtung 101; die Probenhalter 109, 110 sind in dem dreh- und kippbaren Kugelsegment 111 der Aufnahme 108 positioniert (vgl. hierzu auch Fig. 3). Zum Einbringen einer sich auf einem Probenhalter 109, 110 befindlichen Probe aus der Ladestation 100 mit Hilfe der Schubstange 113 werden die Vakuumschieber 119a, 119b geöffnet. Dies ist in der Fig. 6 zu sehen, in der beide Vakuumschieber 119a, 119b in offener Position gezeigt sind und die Schubstange 113 der Transfereinrichtung 101 durch die Schleuse 119 hindurch in die Kammer 104 der Ladestation 100 vorgeschoben ist. Der Probenhalter 109 bzw. 110 mit der Probe kann nun am Ende 113a der Schubstange 113 befestigt und anschließend in die Transfereinrichtung 101

Wie ebenfalls aus den Fig. 5 und 6 ersichtlich ist, verfügt die Transfereinrichtung 101 zum Kühlen der Probe außerdem über ein Kühlmediumreservoir 122 (Dewar-Behälter 122), das mit einem Kühlmittel, typischerweise flüssiger Stickstoff, befüllbar ist. Zum Kühlen der Probe ist der Dewar-Behälter 122 nach an sich bekannter Art über wärmeleitende Kupferbauteile mit einem im Inneren der Transfereinrichtung 101 angeordneten gekühlten Präparattisch 121 verbunden. Während des Transfers zwischen der Ladestation 100 und einem Bearbeitungs- und/oder Analysegerät ist der Probenhalter 109, 110 mit der Probe auf dem gekühlten Präparattisch 121 positioniert.

Das gezeigte Beispiel ist nur eines unter vielen und nicht als einschränkend auszulegen.
BEZUGSZEICHENLISTE

100 Ladestation
101 Transfereinrichtung für Kryotransfer unter Vakuum oder Schutzgasatmosphäre
102 Transfereinrichtung für Transmissionselektronenmikroskopie
103 Transfereinrichtung für Lichtmikroskopie
101a Anschluss Transfereinrichtung 101
102a Anschluss Transfereinrichtung 102
103a Anschluss Transfereinrichtung 103
104 Kammer
105 Offener Bereich der Kammer 104
106 Hauchschild
107 Kammerboden
108 Aufnahme für Probenhalter umfassend ein kipp- und drehbares Kugelsegment
111
111 Probenhalter
110 Probenhalter
111 Kipp- und drehbares Kugelsegment
112 Schubstange Transfereinrichtung 103
113 Schubstange Transfereinrichtung 101
113a Ende Schubstange Transfereinrichtung 101
114 Vorratsbehälter für Kühlmittel
115 Gehäuse
116 Deckel Vorratsbehälter für Kühlmittel
117 Bedienkonsole
118 Vergrößerungsglas
119 Schleuse
119a Vakuumschieber
119b Vakuumschieber
120 Zwischenraum zwischen Vakuumschieber 119a und 119b
121 Präparattisch
122 Dewar-Behälter
123 Pumpenanschluss für eine Vakuumpumpe

200 Ladestation
207 Kammerboden
208 Aufnahme für Probenhalter umfassend einen Schieber 211
209 Probenhalter
210 Probenhalter
209a Arretierposition für Probenhalter 209
210a Arretierposition für Probenhalter 210
211 Schieber
212 Verschieberichtung Schieber 211
1. Ladestation (100, 200) zum Umladen einer gefrorenen Probe für die Elektronenmikroskopie umfassend eine nach oben hin offene Kammer (104, 204), die zumindest teilweise mit einem Kühlmittel befüllbar ist, dadurch gekennzeichnet, dass die Kammer (104, 204) in ihrer Seitenwand zumindest zwei Anschlüsse (101a, 102a, 103a) für jeweils unterschiedliche Probentransfereinrichtungen (101, 102, 103) aufweist, wobei die Anschlüsse (101a, 102a, 103a) ein Einbringen einer gefrorenen Probe in die Kammer (104, 204) über eine ausgewählte Probentransfereinrichtung und ein Ausbringen einer gefrorenen Probe aus der Kammer über eine jeweils andere Probentransfereinrichtung gestatten, und dass in der Kammer (104, 204) eine Aufnahme (108, 208) für zumindest zwei unterschiedlich ausgebildete Probenhalter (109, 110) angeordnet ist, wobei die zumindest zwei Probenhalter (109, 110) zum Einbringen der gefrorenen Probe in die Kammer (104, 204) und zum Ausbringen der gefrorenen Probe aus der Kammer (104, 204) an zumindest einer der Probentransfereinrichtungen (101) lösbar befestigbar sind.

2. Ladestation nach Anspruch 1, dadurch gekennzeichnet, dass die Aufnahme (108, 208) in einem Bodenbereich (107, 207) der Kammer (104, 204) angeordnet ist.

3. Ladestation nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Aufnahme (108) ein dreh- und kippbares Kugelsegment (111) umfasst, auf welchem zumindest zwei unterschiedlich ausgebildete Probenhalter (109, 110) aufnehmbar sind.

4. Ladestation nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Aufnahme (208) einen verschiebbaren Schlitten (211) umfasst, auf welchem zumindest zwei unterschiedlich ausgebildete Probenhalter (209, 210) aufnehmbar sind.

5. Ladestation nach einem der Ansprüche 1 bis 4, gekennzeichnet durch einen Vorratsbehälter (114) für das Kühlmittel, welcher mit der Kammer (104, 204) über ein steuerbares Einlassventil für das Kühlmittel verbunden ist.
6. Ladestation nach Anspruch 5, dadurch gekennzeichnet, dass in der Kammer (104, 204) ein Füllstandssensor angeordnet ist, mit welchem die Kühlmitteleinfuhr aus dem Vorratsbehälter (114) in die Kammer (104, 204) über das steuerbare Einlassventil regelbar ist.

7. Ladestation nach Anspruch 6, gekennzeichnet durch einen oberhalb der nach oben hin offenen Kammer (104, 204) positionierten Hauchschirm (106).

8. Ladestation nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass an der Kammer (104) eine Schleuse, die mittels einer Vakuumpumpe eine Evakuierung einer Probentransfereinrichtung bzw. ein Einschleusen der gefrorenen Probe in eine evakuierbare Probentransfererinrichtung und ein Ausschleusen der gefrorenen Probe aus einer evakuierbaren Probentransfererinrichtung gestattet, anschließbar ist.

9. Ladestation nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zumindest einer der Anschlüsse (101a) als Anschluss für eine Probentransferleinrichtung (101), die für den Kryotransfer gefrorener Proben unter Vakuum oder Schutzgasatmosphäre vorgesehen ist, ausgebildet ist.

10. Ladestation nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zumindest einer der Anschlüsse (102a) als Anschluss für eine Probentransferleinrichtung (102) für die Transmissionselektronenmikroskopie ausgebildet ist.

11. Ladestation nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zumindest einer der Anschlüsse (103a) ein Anschluss für eine Probentransferleinrichtung (103) für die Lichtmikroskopie ausgebildet ist.
figures 5,8
2.4 Cryo-transfer at the FIB-SEM pages 34-36
2.7 Cryo-transfer to the TEM pages 37-38

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
14 September 2015

Date of mailing of the international search report
22/09/2015

Name and mailing address of the ISA/
European Patent Office, P.B. 5018 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Bockstahl, Frédéric
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2011027876 A1</td>
<td>03-02-2011</td>
<td>AT 508018 A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102010021313 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011027876 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102008059284 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009183613 A1</td>
</tr>
<tr>
<td>US 2008239283 A1</td>
<td>02-10-2008</td>
<td>JP 2008244327 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008239283 A1</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

INV. G01N/42
ADD. G01N/06, G01N/32

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCIERTE GEBiete

Rechercherter Mindestprüfobjekt (Klassifikationsystem und Klassifikationssymbole)
G01N G02B H01J

Recherchierte, aber nicht zum Mindestprüfobjekt gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CHYONGERE HSIEH ET AL: "Practical workflow for cryo focused-ion-beam milling of tissues and cells for cryo-TEM tomography", JOURNAL OF STRUCTURAL BIOLOGY, Bd. 185, Nr. 1, 6. November 2013 (2013-11-06), Seiten 32-41, X055211969, ISSN: 1047-8477, DOI: 10.1016/j.jsb.2013.10.019 Abbildungen 5,8 2.4 Cryo-transfer at the FIB-SEM pages 34-36 2.7 Cryo-transfer to the TEM pages 37-38 ---- -/--</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

"*" Besondere Kategorien von angegebenen Veröffentlichungen :
"*A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
"*E" frühere Anmeldung oder Patent, die jedoch erst am oder nach dem internationalen Anmelbedatum veröffentlicht worden ist
"*L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
"*O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht
"*P" Veröffentlichung, die vor dem internationalen Anmelbedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"*T" Spätere Veröffentlichung, die nach dem internationalen Anmelbedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
"*X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
"*Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
"*Z" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche
14. September 2015

Absendetermin des internationalen Rechercheberichts
22/09/2015

Name und Postanschrift der Internationalen Recherchebehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-5040, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter
Bockstahl, Frédéric

Formblatt PCT/ISA/210 (Blatt 2), (April 2005)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>US 2011027876 A1</td>
<td>03-02-2011</td>
<td>AT 508018 A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102010021313 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011027876 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102008059284 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009183613 A1</td>
</tr>
<tr>
<td>US 2008239283 A1</td>
<td>02-10-2008</td>
<td>JP 2008244327 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008239283 A1</td>
</tr>
</tbody>
</table>