

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 August 2006 (24.08.2006)

PCT

(10) International Publication Number
WO 2006/086870 A1

(51) International Patent Classification:

CI2N 15/15 (2006.01) *A61K 51/08* (2006.01)
C07K 14/81 (2006.01) *A61K 49/14* (2006.01)
A61K 47/48 (2006.01) *A61P 25/00* (2006.01)
A61K 47/42 (2006.01)

(74) Agents: FORGET, Janique et al.; BCF LLP, 1100 René-Lévesque Blvd. West, 25th Floor, Montréal, Québec H3B 5C9 (CA).

(21) International Application Number:

PCT/CA2005/001158

(22) International Filing Date: 21 July 2005 (21.07.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/653,928 18 February 2005 (18.02.2005) US

(71) Applicant: ANGIOCHEM INC. [CA/CA]; 500 Cartier Boulevard West, Laval, Québec H7V 5B7 (CA).

(72) Inventors: BELIVEAU, Richard; 266 Wilson, Montréal, Québec H3E 1L8 (CA). DEMEULE, Michel; 343 Preston, Beaconsfield, Québec H9W 1Z2 (CA). CHE, Christian; 7385 Avenue Chateaubriand, Montréal, Québec H2R 2L7 (CA). REGINA, Anthony; 7385 Avenue Chateaubriand, Montréal, Québec H2R 2L7 (CA).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/086870 A1

(54) Title: APROTININ POLYPEPTIDES FOR TRANSPORTING A COMPOUND ACROSS THE BLOOD-BRAIN BARRIER

(57) Abstract: The invention relates to improvements in the field of drug delivery. More particularly, the invention relates to polypeptides derived from aprotinin and from aprotinin analogs as well as conjugates and pharmaceutical compositions comprising these polypeptides or conjugates. The present invention also relates to the use of these polypeptide for transporting a compound or drug across the blood-brain barrier of a mammal and in the treatment and diagnosis of neurological diseases.

**MOLECULES FOR TRANSPORTING A COMPOUND
ACROSS THE BLOOD-BRAIN BARRIER**

FIELD OF THE INVENTION

5 The present invention relates to improvements in the field of drug delivery. More particularly, the invention relates to polypeptides, conjugates and pharmaceutical compositions comprising the polypeptides or conjugates of the present invention. The present invention also relates to the use of these polypeptides and
10 conjugates for transporting a compound or drug across the blood-brain barrier of a mammal and in the treatment and diagnosis of neurological diseases.

BACKGROUND OF THE INVENTION

15 In the development of a new therapy for brain pathologies, the blood-brain barrier (BBB) is considered as a major obstacle for the potential use of drugs for treating disorders of the central nervous system (CNS). The global market for CNS drugs was \$33 billion in 1998, which was roughly half that of global market for cardiovascular drugs, even though in the United States, nearly twice as many people suffer from CNS disorders as from cardiovascular diseases. The reason
20 for this lopsidedness is that more than 98% of all potential CNS drugs do not cross the blood-brain barrier. In addition, more than 99% of worldwide CNS drug development is devoted solely to CNS drug discovery, and less than 1% is directed to CNS drug delivery. This ratio could explain why no efficient treatment
25 is currently available for the major neurological diseases such as brain tumors, Alzheimer's and stroke.

30 The brain is shielded against potentially toxic substances by the presence of two barrier systems: the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). The BBB is considered to be the major route for the uptake of serum ligands since its surface area is approximately 5000-fold greater than that of BCSFB. The brain endothelium, which constitutes the BBB, represents the major obstacle for the use of potential drugs against many disorders of the CNS.

As a general rule, only lipophilic molecules smaller than about 500 Daltons may pass across the BBB, i.e., from blood to brain. However, the size of many drugs that show promising results in animal studies for treating CNS disorders is considerably bigger. Thus, peptide and protein therapeutics are generally 5 excluded from transport from blood to brain, owing to the negligible permeability of the brain capillary endothelial wall to these drugs. Brain capillary endothelial cells (BCECs) are closely sealed by tight junctions, possess few fenestrae and few endocytic vesicles as compared to capillaries of other organs. BCECs are surrounded by extracellular matrix, astrocytes, pericytes and microglial cells. The 10 close association of endothelial cells with the astrocyte foot processes and the basement membrane of capillaries are important for the development and maintenance of the BBB properties that permit tight control of blood-brain exchange.

International publication WO2004/060403 discloses an invention made by the 15 inventors relating to molecules for transporting a drug across the blood brain barrier. Otherwise, to date, there is no efficient drug delivery approach available for the brain. Methods under investigation for peptide and protein drug delivery to the brain may be divided in three principal strategies. Firstly, invasive procedures include the direct intraventricular administration of drugs by means of surgery, and 20 the temporary disruption of the BBB via intracarotid infusion of hyperosmolar solutions. Secondly, the pharmacologically-based strategy consists in facilitating the passage through the BBB by increasing the lipid solubility of peptides or proteins. Thirdly, physiologic-based strategies exploit the various carrier mechanisms at the BBB, which have been characterized in the recent years. In 25 this approach, drugs are attached to a protein vector that performs like receptors-targeted delivery vehicle on the BBB. This approach is highly specific and presents high efficacy with an extreme flexibility for clinical indications with unlimited targets. The latter approach has been, and is still, investigated by the inventors, who came up with the molecules described in the afore-mentioned 30 publication and those of the present invention.

U.S. patent no. 5,807,980 describes Bovine Pancreatic Trypsin Inhibitor (aprotinin) -derived inhibitors as well as a method for their preparation and therapeutic use. These peptides are used for the treatment of a condition

characterized by an abnormal appearance or amount of tissue factor and/or factor VIIa such as abnormal thrombosis.

U.S. patent no. 5,780,265 describes serine protease inhibitors that are capable of inhibiting plasma kallikrein.

5 U.S. Patent no. 5,118,668 describes Bovine Pancreatic Trypsin Inhibitor variants.

It would be highly desirable to be provided with improved molecules that can act as carriers or vectors for transporting a compound or drug across the BBB of an individual.

10 **SUMMARY OF THE INVENTION**

One aim of the present invention is to provide an improvement in the field of drug delivery.

Another aim of the present invention is to provide a non-invasive and flexible method and carrier for transporting a compound or drug across the blood-brain 15 barrier of an individual.

The present application discloses new molecules which may be able, for example, of transporting desirable compounds across the blood brain barrier.

In a first aspect the present invention provides a biologically active polypeptide which may be able to cross (i.e., crossing) a cell layer mimicking (which mimics) a 20 mammalian blood brain barrier in an *in vitro* assay, the polypeptide may be selected, for example, from the group of

- aprotinin (SEQ ID NO.:98),
- an aprotinin analogue
- an aprotinin fragment which may comprise (or may consist essentially 25 of) the amino acid sequence defined in SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1,
- a biologically active fragment of SEQ ID NO.:1, and;
- a biologically active fragment of a SEQ ID NO.:1 analogue.

In a second aspect the present invention provides, a biologically active polypeptide which may be able to cross (i.e., crossing) a cell layer mimicking (which mimics) a mammalian blood brain barrier in an *in vitro* assay, the

5 polypeptide may be selected, for example, from the group of;

- an aprotinin fragment which may comprise the amino acid sequence defined in SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1,
- a biologically active fragment of SEQ ID NO.:1 and;
- a biologically active fragment of a SEQ ID NO.:1 analogue.

10

In accordance with the present invention the aprotinin fragment may consist of the sequence defined in SEQ ID NO.:1. Further in accordance with the present invention, the aprotinin fragment may comprise SEQ ID NO.1 and may have a 15 length of from about 19 amino acids to about 54 amino acids, e.g., from 10 to 50 amino acids in length, from 10 to 30 amino acids in length etc.

15

In accordance with the present invention, the biologically active analogue of SEQ ID NO.:1, may have a length of from about 19 amino acids to about 54 amino

20 acids (e.g., including for example 21 to 23, 25 to 34, 36 to 50 and 52 to 54), or of from about 19 amino acids to about 50 amino acids, or from about 19 amino acids to about 34 amino acids (e.g., 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34), or from about 19 amino acids to about 23 amino acids or of about 19, 20, 21, 22, 23, 24, 35, 51, amino acids.

25

A biologically active fragment of a polypeptide (e.g., of 19 amino acids) described herein may include for example a polypeptide of from about 7, 8, 9 or 10 to 18 amino acids. Therefore, in accordance with the present invention, a biologically active fragment of SEQ ID NO.:1 or of a SEQ ID NO.:1 analogue may have a 30 length of from about 7 to about 18 amino acids or from about 10 about 18.

U.S. patent no. 5,807,980 describes a polypeptide which is identified herein as SEQ ID NO.:102.

U.S. Patent no. 5,780,265 describes a polypeptide which is identified herein as SEQ ID NO.:103.

The aprotinin amino acid sequence (SEQ ID NO.:98), the Angiopep-1 amino acid sequence (SEQ ID NO.:67), as well as some sequences of biologically active 5 analogs may be found for example in international application no.

PCT/CA2004/000011 published on July 22, 2004 in under international publication no. WO2004/060403. Additionally, international publication No. WO04/060403 describes a polypeptide which is identified herein as SEQ ID NO.: 104.

10 U.S. Patent no.5,118,668 describes polypeptides which has the sequence illustrated in SEQ ID NO.: 105.

Examples of aprotinin analogs may be found by performing a protein blast 15 (Genebank: www.ncbi.nlm.nih.gov/BLAST/) of the synthetic aprotinin sequence (or portion thereof) disclosed in international application no. PCT/CA2004/000011. Exemplary aprotinin analogs may be found, for example under accession nos. 15 CAA37967 (GI:58005), 1405218C (GI:3604747) etc.

In a further aspect the present invention provides a biologically active polypeptide 20 which may be able to cross (i.e., crossing) a cell layer mimicking (which mimics) a mammalian blood brain barrier in an *in vitro* assay, the polypeptide may be selected, for example, from the group of;

- an aprotinin fragment of from 19 to 54 (e.g., 19-50) amino acid long, 25 which may comprise SEQ ID NO.:1,
- an aprotinin fragment consisting of SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1 of from about 19 to 50 amino acids long, and;
- a biologically active fragment of SEQ ID NO.:1 (of from 10 to 18 amino acids) or biologically active fragment of a SEQ ID NO.:1 analogue (of 30 from about 10 to 18 amino acids).

In accordance with the present invention there is provided a biologically active analogue of SEQ ID NO.:1 which may be selected, for example, from the group consisting of

- a SEQ ID NO.:1 analogue which may comprise at least 35 % identity with the amino acid sequence of SEQ ID NO.:1,
- a SEQ ID NO.:1 analogue which may comprise at least 40 % identity with the amino acid sequence of SEQ ID NO.:1,
- a SEQ ID NO.:1 analogue which may comprise at least 50 % identity with the amino acid sequence of SEQ ID NO.:1,
- a SEQ ID NO.:1 analogue which may comprise at least 60 % identity with the amino acid sequence of SEQ ID NO.:1,
- a SEQ ID NO.:1 analogue which may comprise at least 70 % identity with the amino acid sequence of SEQ ID NO.:1,
- a SEQ ID NO.:1 analogue which may comprise at least 80 % identity with the amino acid sequence of SEQ ID NO.:1,
- a SEQ ID NO.:1 analogue which may comprise at least 90 % identity with the amino acid sequence of SEQ ID NO.:1 and;
- a SEQ ID NO.:1 analogue which may comprise at least 95 % (i.e., 96%, 97%, 98%, 99% and 100%) identity with the amino acid sequence of SEQ ID NO.:1.

For example, the biologically active analogue of SEQ ID NO.:1 may comprise an amino acid sequence selected from the group consisting of an amino acid sequence defined in any one of SEQ ID NO.:2 to SEQ ID NO.: 62, SEQ ID NO.: 68 to SEQ ID NO.: 93, and SEQ ID NO.:97 as well as 99, 100 and 101. When the polypeptide of the present invention comprises, for example, SEQ ID NO.:99, 100 or 101, the polypeptide may have an amino acid sequence of from about 10 to 50 amino acids, e.g., from 10 to 30 amino acids in length.

Further in accordance with the present invention, the biologically active analogue of SEQ ID NO.:1 may comprise the amino acid sequence defined in SEQ ID NO.:67 (i.e., polypeptide no. 67 which is an amidated version of SEQ ID NO.:67 (Angiopep-1)).

The polypeptides of the present invention may be amidated, i.e., may have an amidated amino acid sequence. For example, the polypeptide of SEQ ID NO.:67 may be amidated (polypeptide no.67).

5 Portion of the present invention may relate to the polypeptides defined herein with the exception of polypeptides defined in SEQ ID NO.: 102, 103, 104 and 105, while other portion of the invention may include these peptides. For example and without limitation, conjugates comprising these peptides as well as their use for treating a neurological disease (e.g., brain tumor), method of treatment of a
10 neurological disease (e.g., brain tumor), pharmaceutical composition for treating a neurological disease, etc. are encompassed by the present invention.

In yet a further aspect the present invention provides a biologically active polypeptide which may be able to cross (i.e., crossing) a cell layer mimicking (which mimics) a mammalian blood brain barrier in an *in vitro* assay, the 15 polypeptide may be selected, for example, from the group of;

- an aprotinin fragment of from 19 to 54 (e.g., 19-50) amino acid long, which may comprise SEQ ID NO.:1,
- an aprotinin fragment consisting of SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1 of from about 19 to 50 amino acids long, provided that said analogue does not comprise SEQ ID NO.: 102, 103, 104 or 105 and provided that when said analogue 20 consists of SEQ ID NO.:67 said analogue is amidated,
- a biologically active fragment of SEQ ID NO.:1 of from 10 to 18 amino acids, and;
- a biologically active fragment of a SEQ ID NO.:1 analogue of from 25 about 10 to 18 amino acids.

Further in accordance with the present invention, the biologically active fragment 30 of SEQ ID NO.:1 or the biologically active fragment of a SEQ ID NO.:1 analogue may comprise at least 9 or at least 10 (consecutive or contiguous) amino acids of SEQ ID NO.1 or of the SEQ ID NO.:1 analogue.

The polypeptides of the present invention may have an amino acid sequence which may comprise of from between 1 to 12 amino acid substitutions (i.e., SEQ ID NO.:91). For example, the amino acid substitution may be from 1 to 10 amino acid substitutions, or from 1 to 5 amino acid substitutions. In 5 accordance with the present invention, the amino acid substitution may be a non-conservative amino acid substitution or a conservative amino acid substitution.

For example, when a polypeptide of the present invention comprises amino acids which are identical to those of SEQ ID NO.:1 and other amino acids which are not 10 identical (non-identical), those which are non-identical may be a conservative amino acid substitution. The comparison of identical and non-identical amino acids may be performed by looking at a corresponding location.

Examples of SEQ ID NO.:1 analogue which may have at least 35% identity 15 includes for example, a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:91 (about 36.8% identity, i.e., 7 amino acid out of 19 amino acids of SEQ ID NO.:91 are identical to SEQ ID NO.:1), a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:98 (about 68.4% identity, i.e., 13 amino acid out of 19 amino acids are identical to SEQ ID NO.:1), a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:67 (about 73.7% identity, i.e., 14 amino acid out of 19 20 amino acids are identical to SEQ ID NO.:1), a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.: 76 (about 73.7% identity, i.e., 14 amino acid out of 19 amino acids are identical to SEQ ID NO.:1) and a 25 polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:5 (about 79 % identity, i.e., 15 amino acid out of 19 amino acids are identical to SEQ ID NO.:1).

Examples of SEQ ID NO.:1 analogue which may have at least 60% identity 30 includes for example, a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:98 (about 68.4% identity, i.e., 13 amino acid out of 19 amino acids are identical to SEQ ID NO.:1), a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:67 (about 73.7% identity, i.e., 14 amino acid out of 19 amino acids are identical to SEQ ID NO.:1), a

polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.: 76 (about 73.7% identity, i.e., 14 amino acid out of 19 amino acids are identical to SEQ ID NO.:1) and a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:5 (about 79 % identity, i.e., 15 amino acid out of 19 amino acids are identical to SEQ ID NO.:1).

Examples of SEQ ID NO.:1 analogue which may have at least 70% identity includes for example, a polypeptide comprising (consisting of) the amino acid sequence defined in SEQ ID NO.:67 (about 73.7% identity, i.e., 14 amino acid out of 19 amino acids are identical to SEQ ID NO.:1), SEQ ID NO.: 76 (about 73.7% identity, i.e., 14 amino acid out of 19 amino acids are identical to SEQ ID NO.:1), SEQ ID NO.:5 (about 79 % identity, i.e., 15 amino acid out of 19 amino acids are identical to SEQ ID NO.:1).

In accordance, with the present invention, the carrier may more particularly be selected from the group consisting of peptide Nos. 5, 67, 76, 91 and peptide 97 (i.e., SEQ ID NO.:5, 67, 76, 91 and 97 (Angiopep-2)). The carrier may be used, for example, for transporting an agent attached thereto across a blood-brain barrier. In accordance with the present invention, the carrier may be able to cross the blood-brain barrier after attachment to the agent and may therefore be able to transport the agent across the blood-brain barrier.

In accordance with the present invention, the polypeptides may be in an isolated form or in a substantially purified form.

More particularly, the present invention provides a carrier for transporting an agent attached thereto across a blood-brain barrier, wherein the carrier may be able to cross the blood-brain barrier after attachment to the agent and thereby transport the agent across the blood-brain barrier. The carrier may comprise at least one polypeptide of the present invention (provided that when said polypeptide or carrier consist of SEQ ID NO.:67, said polypeptide is modified by a group e.g., amidated). For example, the carrier may be selected from a class of molecules related to aprotinin.

The transporting activity which is effected by the carrier does not affect blood-brain barrier integrity. The transporting of an agent may result, for example, in the delivery of the agent to the central nervous system (CNS) of an individual.

It is to be understood herein that the polypeptides of the present invention may be synthesized chemically (e.g., solid phase synthesis) or may be produced by recombinant DNA technology. Codons which encode specific amino acids are well known in the art and is discuss, for example, in Biochemistry (third edition; 1988, Lubert Stryer, Stanford University, W.H. Freeman and Company, New-York). A nucleotide sequence encoding a carrier of the present invention is therefore encompassed herein. More particularly, nucleotide sequences (deoxyribonucleotides or ribonucleotides or derivatives thereof) encoding a polypeptide selected from the group consisting of any one of SEQ ID NO.:1 to 97, are encompassed by the present invention. An exemplary nucleotide sequence encoding an aprotinin analogue is illustrated in SEQ ID NO.:106 and may be found in Gene Bank under accession no.X04666. This sequence encodes an aprotinin analogue having a lysine at position 16 (with reference to the amino acid sequence encoded by SEQ ID NO.:106) instead of a valine as found in SEQ ID NO.:98. A mutation in the nucleotide sequence of SEQ ID NO.:106 may be introduced by methods known in the art to change the produce the peptide of SEQ ID NO.:98 having a valine in position 16. Techniques known in the art may be used to introduce further mutations in the nucleotide sequence to encode analogues of the present invention. Fragments may be obtained from this nucleotide sequence by enzymatic digestion or polymerase chain reaction, etc. Alternatively, a desired nucleotide sequence may be synthesized chemically by methods known in the art.

In a further aspect, the present invention relates to a conjugate which may comprise a carrier selected from the group consisting of any one of the polypeptide of the present invention, and an agent selected from the group consisting, for example, of a drug (e.g., a small molecule drug, e.g., an antibiotic), a medicine, a detectable label, a protein (e.g., an enzyme), protein-based compound (e.g., a protein complex comprising one or polypeptide chain) and a polypeptide (peptide). The agent may be more particularly, a molecule which is

active at the level of the central nervous system. The agent may be any agent for treating or detecting a neurological disease.

In accordance with the present invention the carrier which is part of conjugate may be selected, for example, from the group of;

- 5 - an aprotinin fragment of from 10 to 54 (e.g., 19-50) amino acid long, which may comprise SEQ ID NO.:1,
- an aprotinin fragment consisting of SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1 (e.g., of from about 19 to 50 amino acids long), provided that when said analogue consists of
- 10 SEQ ID NO.:67 said analogue is amidated,
- a biologically active fragment of SEQ ID NO.:1 of from 10 to 18 amino acids, and;
- biologically active fragment of a SEQ ID NO.:1 analogue of from about 10 to 18 amino acids.

15

In accordance with the present invention, the agent may have a maximum molecular weight of about 160,000 Daltons.

Further in accordance with the present invention, the transporting activity may be effected by receptor-mediated transcytosis or adsorptive-mediated transcytosis. 20 The agent may be one able to be transported by such mechanism.

Further in accordance with the present invention, the conjugate may be in the form of a fusion protein which may have a first moiety consisting essentially of the 25 carrier of the present invention and a second moiety consisting essentially of a protein or protein-based agent.

Exemplary neurological diseases which may be treated or detected by the carrier and/or conjugate is a disease selected, for example, from the group consisting of a brain tumor, a brain metastasis, schizophrenia, epilepsy, Alzheimer's disease, 30 Parkinson's disease, Huntington's disease, stroke and blood-brain barrier related malfunctions (e.g., obesity).

In accordance with the present invention, the blood-brain barrier related malfunction is obesity. Also in accordance with the present invention, the agent which may be conjugated with the carrier of the present invention may be a leptin. A conjugate comprising a leptin and a carrier may be used, for example, in the 5 treatment of obesity.

In accordance with the present invention, the detectable label may be a radioimaging agent. Example of a label which may be conjugated with the carrier of the present invention and which is encompassed herein includes, for example and without limitation, an isotope, a fluorescent label (e.g., rhodamine), a reporter 10 molecule (e.g., biotin), etc. Other examples of detectable labels include, for example, a green fluorescent protein, biotin, a histag protein and β -galactosidase.

Example of a protein or protein-based compound which may be conjugated with the carrier of the present invention and which is encompassed herein includes, 15 without limitation, an antibody, an antibody fragment (e.g., an antibody binding fragment such as Fv fragment, F(ab)2, F(ab)2' and Fab and the like), a peptidic- or protein-based drug (e.g., a positive pharmacological modulator (agonist) or an pharmacological inhibitor (antagonist)) etc. Other examples of agent which are encompassed herein include cellular toxins (e.g., monomethyl auristatin E 20 (MMAE), toxins from bacteria endotoxins and exotoxins; diphtheria toxins, botulinum toxins, tetanus toxins, perussis toxins, staphylococcus enterotoxins, toxin shock syndrome toxin TSST-1, adenylate cyclase toxin, shiga toxin, cholera enterotoxin, and others) and anti-angiogenic compounds (endostatin, catechins, nutriceuticals, chemokine IP-10, inhibitors of matrix metalloproteinase (MMPIs), 25 anastellin, vironectin, antithrombin, tyrosine kinase inhibitors, VEGF inhibitors, antibodies against receptor, herceptin, avastin and panitumumab and others).

Also in accordance with the present invention, the agent may be a small molecule drug such as an anticancer drug (e.g., for treating a brain tumor). An anticancer 30 drug encompassed by the present invention may include, for example, a drug having a group allowing its conjugation to the carrier of the present invention. Examples of anticancer drug includes, for example, without limitation, a drug which may be selected from the group consisting of paclitaxel (Taxol), vinblastine,

vincristine, etoposide, doxorubicin, cyclophosphamide, taxotere, melphalan, chlorambucil, and any combination.

More particularly, the conjugate of the present invention may comprise the formula
5 R-L-M or pharmaceutically acceptable salts thereof, wherein R is a class of molecules related to aprotinin (e.g., aprotinin, aprotinin fragment, Angiopep-1, Angiopep-2, analogs, derivatives or fragments). For example, R may be a carrier selected from a class of molecules related to aprotinin able to cross the blood-brain barrier after attachment to L-M and thereby transport M across the blood-brain barrier. L may be a linker or a bond (chemical bond). M may be an agent selected from the group consisting of a drug (e.g., a small molecule drug), a medicine, a (detectable) label, a protein or protein-based compound (e.g., antibody, an antibody fragment), an antibiotic, an anti-cancer agent, an anti-angiogenic compound and a polypeptide or any molecule active at the level of the
10 central nervous system. It is to be understood herein that the formula R-L-M is not intended to be restricted to a specific order or specific ratio. As being exemplified herein, M may be found in several ratios over R.
15

For example, conjugates of formula R-L-M or a pharmaceutically acceptable salt
20 thereof, may be used for transporting M across a blood-brain barrier, where R may be for example, a carrier selected from the group consisting of peptide Nos: 5, 67, 76, 91 and 97 as described in herein. The carrier may be able to cross the blood-brain barrier after attachment to L-M and may therefore transport M across the blood-brain barrier.
25

In accordance with the present invention, M may be an agent useful for treating or diagnosing a neurological disease.

It is to be understood herein that when more than one carrier conjugation site are
30 available or present, more than one drug or drug molecule may be conjugated to the carrier of the present invention. Therefore, the conjugate may comprise one or more drug molecules. The conjugate may be active by itself, i.e., the drug may be active even when associated with the carrier. Also in accordance with the present invention, the compound may or may not be released from the carrier i.e.,

generally after transport across the blood-brain barrier. The compound may therefore be releasable from the conjugate (or from the carrier) and may become active thereafter. More particularly, the agent may be releasable from the carrier after transport across the blood-brain barrier.

- 5 In accordance with another embodiment of the present invention, there is provided a conjugate for transporting an agent across a blood-brain barrier, the conjugate may comprise: (a) a carrier; and (b) an agent attached to the carrier, wherein the conjugate is able to cross the blood-brain barrier and thereby transport the agent across the blood-brain barrier.
- 10 In a further aspect, the present invention relates to the use of a carrier or a conjugate of the present invention for transporting an agent across a blood brain barrier of a mammal in need thereof.

15 In yet a further aspect, the present invention relates to the use of a class of molecules related to aprotinin for transporting a compound attached thereto across the blood-brain barrier of a patient.

20 In an additional aspect, the present invention relates to the use of a carrier or a conjugate as described herein for the diagnosis of a neurological disease or a central nervous system disease. For example, the carrier or conjugate may be used for the *in vivo* detection of a neurological disease.

The carrier may be selected, for example, from the group of (biologically active);

- aprotinin (SEQ ID NO.:98),
- an aprotinin fragment which may comprise the amino acid sequence defined in SEQ ID NO.:1,
- an aprotinin fragment consisting of SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1, and;
- a biologically active fragment of SEQ ID NO.:1 or biologically active fragment of a SEQ ID NO.:1 analogue.

30

More particularly, the carrier may be selected, for example, from the group of (biologically active);

- an aprotinin fragment which may comprise the amino acid sequence defined in SEQ ID NO.:1,
- an aprotinin fragment consisting of SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1, and;
- 5 - a biologically active fragment of SEQ ID NO.:1 or biologically active fragment of a SEQ ID NO.:1 analogue.

In accordance with the present invention, when that analogue consists of SEQ ID NO.:67, said analogue is amidated.

10

Even more particularly, the carrier may be selected, for example, from the group of;

15

20

- an aprotinin fragment of from 10 to 54 (e.g., 19-50) amino acid long, which may comprise SEQ ID NO.:1,
- an aprotinin fragment consisting of SEQ ID NO.:1,
- a biologically active analogue of SEQ ID NO.:1 (e.g., of from about 19 to 50 amino acids long), provided that when said analogue consists of SEQ ID NO.:67, said analogue is amidated,
- a biologically active fragment of SEQ ID NO.:1 of from 10 to 18 amino acids, and;
- a biologically active fragment of a SEQ ID NO.:1 analogue of from about 10 to 18 amino acids.

25

In another aspect, the present invention relates to the use of a class of molecules related to aprotinin in the manufacture of a medicament.

According to the present invention, there is provided the use of a class of molecules related to aprotinin in the manufacture of a medicament for treating a neurological disease, or for treating a central nervous system disorder.

30

In yet another aspect, the present invention relate to the use of a carrier or conjugate described herein, in the manufacture of a medicament for treating a brain disease (a brain-associated disease) or neurological disease, for the

diagnosis of a brain disease or neurological disease or for transporting an agent across the blood-brain barrier

In an additional aspect, the present invention relates to the use of a carrier or conjugate of the present invention for treating a mammal having, for example, a neurological disease or for the diagnosis of a neurological disease in a mammal in need thereof.

In accordance with the present invention, neurological disease encompassed by the present invention includes, for example and without limitation, a brain tumor, a brain metastasis, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke and blood-brain barrier related malfunctions.

In a further aspect, the present invention relates to a method for transporting an agent across the blood-brain barrier of a mammal (human, animal), which may comprise the step of administering to the mammal a compound comprising the agent attached to a class of molecules related to aprotinin.

In yet a further aspect, the present invention provides a method for treating a neurological disease of a patient comprising administering to the patient a medicament comprising a class of molecules related to aprotinin, and a compound adapted to treat the disease, the compound being attached to the class of molecules related to aprotinin.

In an additional aspect, there is provided a method for treating a central nervous system disorder of a patient comprising administering to the patient a medicament comprising a class of molecules related to aprotinin, and a compound adapted to treat the disease, the compound being attached to the aprotinin.

In yet an additional aspect there is provided a method for transporting an agent across a blood-brain barrier, which comprises the step of administering to an individual a pharmaceutical composition of the present invention.

The present invention also relates, in a further aspect to a method for treating a mammal (e.g., a patient) in need thereof (e.g., a patient having a neurological disease). The method may comprise administering a carrier, a conjugate and/or a pharmaceutical composition of the present invention to the mammal.

5 The present invention additionally relates to a method for (of) diagnosing (i.e., a diagnostic method) a neurological disease in a mammal (e.g., a patient) in need thereof. The method may comprise administering a carrier, a conjugate and/or a pharmaceutical composition of the present invention to the mammal (human individual, patient, animal).

10 In accordance with the present invention, the administration may be performed intra-arterially, intra-nasally, intra-peritoneally, intravenously, intramuscularly, sub-cutaneously, transdermally or *per os*.

In accordance with the present invention, the pharmaceutical composition may be administered to the mammal in a therapeutically effective amount.

15 A mammal in need (individual in need) may be, for example, a mammal which has or is at risk of having a neurological disease, a central nervous system disease, brain cancer, a brain metastasis, etc.

20 In an additional aspect, the present invention relates to a pharmaceutical composition which may comprise, for example;

- a carrier (which may be selected from the group consisting of any of the polypeptide described herein) or conjugate of the present invention; and
- a pharmaceutically acceptable carrier, e.g., a pharmaceutically acceptable excipient.

25 In accordance with the present invention, the pharmaceutical composition may be used, for example, for the treatment of a neurological disease.

30 Further in accordance with the present invention, the pharmaceutical composition may be used, for example, for the diagnosis of a neurological disease.

Also in accordance with the present invention, the pharmaceutical composition may be used for example, for transporting an agent across a blood-brain barrier.

Also in accordance with the present invention, the pharmaceutical composition may be used for example, for the delivery of an agent to the CNS of an individual.

5 Further in accordance with the present invention, the pharmaceutical composition may be used for example, for treating a central nervous system disorder of a mammal in need thereof

10 In accordance with the present invention, pharmaceutical composition may be used for delivery of an agent to the CNS of an individual

It is to be understood herein that a pharmaceutically acceptable salts of a carrier (polypeptide) or of a conjugate is encompassed by the present invention.

15 The composition (pharmaceutical composition) may thus comprise a medicament manufactured as defined herein in association with a pharmaceutically acceptable excipient.

For the purpose of the present invention the following terms are defined below.

20 The term "carrier" or "vector" is intended to mean a compound or molecule such as a polypeptide that is able to transport a compound. For example, transport may occur across the blood-brain barrier. The carrier may be attached to (covalently or not) or conjugated to another compound or agent and thereby may be able to transport the other compound or agent across the blood-brain barrier. For example, the carrier may bind to receptors present on brain endothelial cells 25 and thereby be transported across the blood-brain barrier by transcytosis. The carrier may be a molecule for which high levels of transendothelial transport may be obtained, without affecting the blood-brain barrier integrity. The carrier may be, but is not limited to, a protein, a peptide or a peptidomimetic and may be naturally occurring or produced by chemical synthesis or recombinant genetic technology 30 (genetic engineering).

The term "conjugate" is intended to mean a combination of a carrier and another compound or agent. The conjugation may be chemical in nature, such as via a

linker, or genetic in nature for example by recombinant genetic technology, such as in a fusion protein with for example a reporter molecule (e.g. green fluorescent protein, β -galactosidase, Histag, etc.).

5 The expression "small molecule drug" is intended to mean a drug having a molecular weight of 1000 g/mol or less.

The terms "treatment", "treating" and the like are intended to mean obtaining a desired pharmacologic and/or physiologic effect, e.g., inhibition of cancer cell growth, death of a cancer cell or amelioration of a neurological disease or condition. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. "Treatment" as used herein covers any treatment of a disease in a mammal, particularly a human, and includes: (a) preventing a disease or condition (e.g., preventing cancer) from occurring in an individual who may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting a disease, (e.g., arresting its development); or (c) relieving a disease (e.g., reducing symptoms associated with a disease). "Treatment" as used herein covers any administration of a pharmaceutical agent or compound to an individual to treat, cure, alleviate, improve, diminish or inhibit a condition in the individual, including, without limitation, administering a carrier-agent conjugate to an individual.

25 The term "cancer" is intended to mean any cellular malignancy whose unique trait is the loss of normal controls which results in unregulated growth, lack of differentiation and ability to invade local tissues and metastasize. Cancer can develop in any tissue of any organ. More specifically, cancer is intended to include, without limitation, cancer of the brain.

30 The term "administering" and "administration" is intended to mean a mode of delivery including, without limitation, intra-arterially, intra-nasally, intra-peritoneally, intravenously, intramuscularly, sub-cutaneously, transdermally or *per os*. A daily dosage can be divided into one, two or more doses in a suitable form to be administered at one, two or more times throughout a time period.

The term "therapeutically effective" or "effective amount" is intended to mean an amount of a compound sufficient to substantially improve some symptom associated with a disease or a medical condition. For example, in the treatment of cancer or a mental condition or neurological or CNS disease, an agent or compound which decreases, prevents, delays, suppresses, or arrests any symptom of the disease or condition would be therapeutically effective. A therapeutically effective amount of an agent or compound is not required to cure a disease or condition but will provide a treatment for a disease or condition such that the onset of the disease or condition is delayed, hindered, or prevented, or the disease or condition symptoms are ameliorated, or the term of the disease or condition is changed or, for example, is less severe or recovery is accelerated in an individual.

The carrier and conjugates of the present invention may be used in combination with either conventional methods of treatment and/or therapy or may be used separately from conventional methods of treatment and/or therapy.

When the conjugates of this invention are administered in combination therapies with other agents, they may be administered sequentially or concurrently to an individual. Alternatively, pharmaceutical compositions according to the present invention may be comprised of a combination of a carrier-agent conjugate of the present invention in association with a pharmaceutically acceptable excipient, as described herein, and another therapeutic or prophylactic agent known in the art.

Pharmaceutically acceptable acid addition salts may be prepared by methods known and used in the art and are encompassed by the present invention.

Biologically active polypeptides of the present invention encompass functional derivatives. The term "functional derivative" is intended to mean a "chemical derivative", "fragment", or "variant" biologically active sequence or portion of a carrier or agent or conjugate and a salt thereof of the present invention. A carrier functional derivative may be able to be attached to or conjugated to another compound or agent and cross the blood-brain barrier and thereby be able to transport the other compound or agent across the blood-brain barrier.

The term "chemical derivative" is intended to mean a carrier, an agent, or a conjugate of the present invention, which contains additional chemical moieties not a part of the carrier, agent or carrier-agent conjugate. Covalent modifications are included within the scope of this invention. A chemical derivative may be

5 conveniently prepared by direct chemical synthesis, using methods well known in the art. Such modifications may be, for example, introduced into a protein or peptide carrier, agent or carrier-agent conjugate by reacting targeted amino acid residues with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues. A carrier chemical derivative is able to

10 cross the blood-brain barrier and be attached to or conjugated to another compound or agent and thereby be able to transport the other compound or agent across the blood-brain barrier. In a preferred embodiment, very high levels of transendothelial transport across the blood-brain barrier are obtained without any effects on the blood-brain barrier integrity.

15 The term "agent" is intended to mean without distinction an antibody, a drug (such as a medicinal drug) or a compound such as a therapeutic agent or compound, a marker, a tracer or an imaging compound.

The term "therapeutic agent" or "agent" is intended to mean an agent and/or medicine and/or drug used to treat the symptoms of a disease, physical or mental

20 condition, injury or infection and includes, but is not limited to, antibiotics, anti-cancer agents, anti-angiogenic agents and molecules active at the level of the central nervous system Paclitaxel, for example, can be administered intravenously to treat brain cancer.

The term "condition" is intended to mean any situation causing pain, discomfort, sickness, disease or disability (mental or physical) to or in an individual, including

25 neurological disease, injury, infection, or chronic or acute pain. Neurological diseases which can be treated with the present invention include, but are not limited to, brain tumors, brain metastases, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease and stroke.

30 As used herein, "pharmaceutical composition" means therapeutically effective amounts of the agent together with pharmaceutically acceptable diluents,

preservatives, solubilizers, emulsifiers, adjuvant and/or carriers. A "therapeutically effective amount" as used herein refers to that amount which provides a therapeutic effect for a given condition and administration regimen. Such compositions are liquids or lyophilized or otherwise dried formulations and include 5 diluents of various buffer content (e.g., Tris-HCl., acetate, phosphate), pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts). Solubilizing agents (e.g., glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., thimerosal, benzyl 10 alcohol, parabens), bulking substances or tonicity modifiers (e.g., lactose, mannitol), covalent attachment of polymers such as polyethylene glycol to the protein, complexation with metal ions, or incorporation of the material into or onto particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, hydrogels, etc, or onto liposomes, microemulsions, micelles, 15 unilamellar or multilamellar vesicles, erythrocyte ghosts, or spheroplasts. Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance. Controlled or sustained release compositions include formulation in lipophilic depots (e.g., fatty acids, waxes, oils). Also comprehended by the invention are particulate compositions coated with 20 polymers (e.g., poloxamers or poloxamines). Other embodiments of the compositions of the invention incorporate particulate forms protective coatings, protease inhibitors or permeation enhancers for various routes of administration, including parenteral, pulmonary, nasal, oral, vaginal, rectal routes. In one embodiment the pharmaceutical composition is administered parenterally, 25 paracancerally, transmucosally, transdermally, intramuscularly, intravenously, intradermally, subcutaneously, intraperitoneally, intraventricularly, intracranially and intratumorally.

Further, as used herein "pharmaceutically acceptable carrier" or "pharmaceutical carrier" are known in the art and include, but are not limited to, 0.01-0.1 M or 0.05 M phosphate buffer or 0.8 % saline. Additionally, such pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl 30

oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, collating agents, inert gases and the like.

A "analogue" is to be understood herein as a polypeptide originating from an original sequence or from a portion of an original sequence and which may comprise one or more modification; for example, one or more modification in the amino acid sequence (e.g., an amino acid addition, deletion, insertion, substitution etc.), one or more modification in the backbone or side-chain of one or more amino acid, or an addition of a group or another molecule to one or more amino acids (side-chains or backbone). An "analogue" is therefore understood herein as a molecule having a biological activity and chemical structure (or a portion of its structure) similar to that of a polypeptide described herein. An analog comprises a polypeptide which may have, for example, one or more amino acid insertion, either at one or both of the ends of the polypeptide and/or inside the amino acid sequence of the polypeptide.

An "analogue" may have sequence similarity and/or sequence identity with that of an original sequence or a portion of an original sequence and may also have a modification of its structure as discussed herein. The degree of similarity between two sequences is base upon the percentage of identities (identical amino acids) and of conservative substitution.

Similarity or identity may be compared, for example, over a region of 2, 3, 4, 5, 10, 19, 20 amino acids or more (and any number therebetween). Identity may include herein, amino acids which are identical to the original peptide and which may occupy the same or similar position when compared to the original polypeptide. An analog which have, for example, 50% identity with an original polypeptide may include for example, an analog comprising 50% of the amino acid sequence of the original polypeptide and similarly with the other percentages. It is to be understood

herein that gaps may be found between the amino acids of an analogs which are identical or similar to amino acids of the original peptide. The gaps may include no amino acids, one or more amino acids which are not identical or similar to the original peptide. Biologically active analogs of the carriers (polypeptides) of the 5 present invention are encompassed herewith.

Percent identity may be determined, for example, with n algorithm GAP, BESTFIT, or FASTA in the Wisconsin Genetics Software Package Release 7.0, using default gap weights.

10 For example an analogue may comprise or have 50% identity with an original amino acid sequence and a portion of the remaining amino acid which occupies a similar position may be for example a non-conservative or conservative amino acid substitution.

15 Therefore, analogues of the present invention comprises those which may have at least 90 % sequence similarity with an original sequence or a portion of an original sequence. An "analogue" may have, for example t least 35%, 50 %, 60%, 70%, 80%, 90% or 95% (96%, 97%, 98%, 99% and 100%) sequence similarity with an 20 original sequence or a portion of an original sequence. Also, an "analogue" may also have, for example, at least 35%, 50 %, 60%, 70%, 80%, 90% or 95% (96%, 97%, 98%, 99% and 100%) sequence similarity to an original sequence with a combination of one or more modification in a backbone or side-chain of an amino acid, or an addition of a group or another molecule, etc. Exemplary amino acids 25 which are intended to be similar (a conservative amino acid) to others are known in the art and includes, for example, those listed in Table 1.

Analogues of the present invention also comprises those which may have at least 35%, 50 %, 60%, 70%, 80%, 90% or 95% (96%, 97%, 98%, 99% and 100%) 30 sequence identity with an original sequence or a portion of an original sequence. Also, an "analogue" may have, for example, 35%, 50 %, 60%, 70%, 80%, 90% or 95% (sequence) identity to an original sequence (i.e., an analogue that is at least 35%, 50 %, 60%, 70%, 80%, 90% or 95% identical to an original peptide) with a

combination of one or more modification in a backbone or side-chain of an amino acid, or an addition of a group or another molecule, etc.

A "fragment" is to be understood herein as a polypeptide originating from a portion of an original or parent sequence or from an analogue of said parent sequence. 5 Fragments encompass polypeptides having truncations of one or more amino acids, wherein the truncation may originate from the amino terminus (N-terminus), carboxy terminus (C-terminus), or from the interior of the protein. A fragment may comprise the same sequence as the corresponding portion of the original sequence. Biologically active fragments of the carrier (polypeptide) described 10 herein are encompassed by the present invention.

Thus, biologically active polypeptides in the form of the original polypeptides, fragments (modified or not), analogues (modified or not), derivatives (modified or 15 not), homologues, (modified or not) of the carrier described herein are encompassed by the present invention.

Therefore, any polypeptide having a modification compared to an original polypeptide which does not destroy significantly a desired biological activity is 20 encompassed herein. It is well known in the art, that a number of modifications may be made to the polypeptides of the present invention without deleteriously affecting their biological activity. These modifications may, on the other hand, keep or increase the biological activity of the original polypeptide or may optimize one or more of the particularity (e.g. stability, bioavailability, etc.) of the 25 polypeptides of the present invention which, in some instance might be needed or desirable. Polypeptides of the present invention comprises for example, those containing amino acid sequences modified either by natural processes, such as posttranslational processing, or by chemical modification techniques which are known in the art. Modifications may occur anywhere in a polypeptide including the 30 polypeptide backbone, the amino acid side-chains and the amino- or carboxy- terminus. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without

branching. Cyclic, branched and branched cyclic polypeptides may result from posttranslational natural processes or may be made by synthetic methods.

Modifications comprise for example, without limitation, pegylation, acetylation, acylation, addition of acetomidomethyl (Acm) group, ADP-ribosylation, alkylation, 5 amidation, biotinylation, carbamoylation, carboxyethylation, esterification, covalent attachment to flavin, covalent attachment to a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of drug, covalent attachment of a marker (e.g., fluorescent, radioactive, etc.), covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition 10 of amino acids to proteins such as arginylation and ubiquitination, etc. It is to be understood herein that more than one modification to the polypeptides described herein are encompassed by the present invention to the extent that the biological activity is similar to the original (parent) polypeptide.

15

20 As discussed above, polypeptide modification may comprise, for example, amino acid insertion (i.e., addition), deletion and substitution (i.e., replacement), either conservative or non-conservative (e.g., D-amino acids, desamino acids) in the polypeptide sequence where such changes do not substantially alter the overall biological activity of the polypeptide.

25

Example of substitutions may be those, which are conservative (i.e., wherein a residue is replaced by another of the same general type or group) or when wanted, non-conservative (i.e., wherein a residue is replaced by an amino acid of another type). In addition, a non-naturally occurring amino acid may substitute for 30 a naturally occurring amino acid (i.e., non-naturally occurring conservative amino acid substitution or a non-naturally occurring non-conservative amino acid substitution).

As is understood, naturally occurring amino acids may be sub-classified as acidic, basic, neutral and polar, or neutral and non-polar. Furthermore, three of the encoded amino acids are aromatic. It may be of use that encoded polypeptides differing from the determined polypeptide of the present invention contain 5 substituted codons for amino acids, which are from the same type or group as that of the amino acid be replaced. Thus, in some cases, the basic amino acids Lys, Arg and His may be interchangeable; the acidic amino acids Asp and Glu may be interchangeable; the neutral polar amino acids Ser, Thr, Cys, Gln, and Asn may be interchangeable; the non-polar aliphatic amino acids Gly, Ala, Val, Ile, and Leu 10 are interchangeable but because of size Gly and Ala are more closely related and Val, Ile and Leu are more closely related to each other, and the aromatic amino acids Phe, Trp and Tyr may be interchangeable.

It should be further noted that if the polypeptides are made synthetically, 15 substitutions by amino acids, which are not naturally encoded by DNA (non-naturally occurring or unnatural amino acid) may also be made.

A non-naturally occurring amino acid is to be understood herein as an amino acid which is not naturally produced or found in a mammal. A non-naturally occurring 20 amino acid comprises a D-amino acid, an amino acid having an acetylaminomethyl group attached to a sulfur atom of a cysteine, a pegylated amino acid, etc. The inclusion of a non-naturally occurring amino acid in a defined polypeptide sequence will therefore generate a derivative of the original polypeptide. Non-naturally occurring amino acids (residues) include also the 25 omega amino acids of the formula $\text{NH}_2(\text{CH}_2)_n\text{COOH}$ wherein n is 2-6, neutral nonpolar amino acids, such as sarcosine, t-butyl alanine, t-butyl glycine, N-methyl isoleucine, norleucine, etc. Phenylglycine may substitute for Trp, Tyr or Phe; citrulline and methionine sulfoxide are neutral nonpolar, cysteic acid is acidic, and ornithine is basic. Proline may be substituted with hydroxyproline and retain the 30 conformation conferring properties.

It is known in the art that analogues may be generated by substitutional mutagenesis and retain the biological activity of the polypeptides of the present invention. These analogues have at least one amino acid residue in the protein

molecule removed and a different residue inserted in its place. Examples of substitutions identified as "conservative substitutions" are shown in Table 1. If such substitutions result in a change not desired, then other type of substitutions, denominated "exemplary substitutions" in Table 1, or as further described herein 5 in reference to amino acid classes, are introduced and the products screened.

In some cases it may be of interest to modify the biological activity of a polypeptide by amino acid substitution, insertion, or deletion. For example, modification of a polypeptide may result in an increase in the polypeptide's 10 biological activity, may modulate its toxicity, may result in changes in bioavailability or in stability, or may modulate its immunological activity or immunological identity. Substantial modifications in function or immunological identity are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of 15 the substitution, for example, as a sheet or helical conformation. (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side chain properties:

20 (1) hydrophobic: norleucine, methionine (Met), Alanine (Ala), Valine (Val), Leucine (Leu), Isoleucine (Ile), Histidine (His), Tryptophan (Trp), Tyrosine (Tyr), Phenylalanine (Phe),
(2) neutral hydrophilic: Cysteine (Cys), Serine (Ser), Threonine (Thr)
(3) acidic/negatively charged: Aspartic acid (Asp), Glutamic acid (Glu)
25 (4) basic: Asparagine (Asn), Glutamine (Gln), Histidine (His), Lysine (Lys), Arginine (Arg)
(5) residues that influence chain orientation: Glycine (Gly), Proline (Pro);
(6) aromatic: Tryptophan (Trp), Tyrosine (Tyr), Phenylalanine (Phe), Histidine (His),
30 (7) polar: Ser, Thr, Asn, Gln
(8) basic positively charged: Arg, Lys, His, and;
(9) charged : Asp, Glu, Arg, Lys, His

Non-conservative substitutions will entail exchanging a member of one of these classes for another. A conservative substitution will entail exchanging a member of one of these groups for another member of these groups. Alternatively other conservative amino acid substitutions are listed in Table 1.

5

Table 1. amino acid substitution

Original residue	Exemplary substitution	Conservative substitution
Ala (A)	Val, Leu, Ile	Val
Arg (R)	Lys, Gln, Asn	Lys
Asn (N)	Gln, His, Lys, Arg	Gln
Asp (D)	Glu	Glu
Cys (C)	Ser	Ser
Gln (Q)	Asn	Asn
Glu (E)	Asp	Asp
Gly (G)	Pro	Pro
His (H)	Asn, Gln, Lys, Arg	Arg
Ile (I)	Leu, Val, Met, Ala, Phe, norleucine	Leu
Leu (L)	Norleucine, Ile, Val, Met, Ala, Phe	Ile
Lys (K)	Arg, Gln, Asn	Arg
Met (M)	Leu, Phe, Ile	Leu
Phe (F)	Leu, Val, Ile, Ala	Leu
Pro (P)	Gly	Gly
Ser (S)	Thr	Thr
Thr (T)	Ser	Ser
Trp (W)	Tyr	Tyr
Tyr (Y)	Trp, Phe, Thr, Ser	Phe
Val (V)	Ile, Leu, Met, Phe, Ala, norleucine	Leu

A biologically active analog may be, for example, an analogue having at least one (i.e., non-conservative or conservative) amino acid substitution in the original

sequence. A biologically active analog may also be for example, an analog having an insertion of one or more amino acids.

Other exemplary analogs includes for example:

- 5 - A SEQ ID NO.1 analog which may have the formula I : X₁-SEQ ID NO.:1-X₂
- An Angiopep-1 analog which may have the formula II : X₁-Angiopep-1-X₂ and
- An Angiopep-2 analog may have the formula III : X₁-Angiopep-2-X₂

X₁ and X₂ may independently be an amino acid sequence of from between 0 to 10 about 100 (e.g., from between 0 to about 30 to 50) amino acids. X₁ and X₂ may be derived from consecutive amino acids of aprotinin or aprotinin analogs (homologous amino acid sequence) or may be any other amino acid sequence (heterologous amino acid sequence). A compound of either formula I, II or III may also comprises an amino acid substitution, deletion or insertion within the amino acid sequence of Angiopep-1, Angiopep-2 or SEQ ID NO.1. The analog however would preferably be biologically active as determined by one of the assays described herein or by any similar or equivalent assays.

A biologically active polypeptide (e.g., carrier) may be identified by using one of 20 the assays or methods described herein. For example a candidate carrier may be produced by conventional peptide synthesis, conjugated with Taxol as described herein and tested in an *in vivo* model as described herein. A biologically active carrier may be identified, for example, based on its efficacy to increase survival of an animal which has been injected with tumor cells and treated with the conjugate 25 compared to a control which has not been treated with a conjugate. Also a biologically active carrier may be identified based on its location in the parenchyma in an *in situ* cerebral perfusion assay.

It is to be understood herein, that if a "range" or "group of substances" is 30 mentioned with respect to a particular characteristic (e.g., temperature, concentration, time and the like) of the present invention, the present invention relates to and explicitly incorporates herein each and every specific member and combination of sub-ranges or sub-groups therein whatsoever. Thus, any specified range or group is to be understood as a shorthand way of referring to each and

every member of a range or group individually as well as each and every possible sub-ranges or sub-groups encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein. Thus, for example,

5 - with respect to a length of from 10 to 18 amino acid I, is to be understood as specifically incorporating herein each and every individual length, e.g., a length of 18, 17, 15, 10, and any number therebetween etc.; Therefore, unless specifically mentioned, every range mentioned herein is to be understood as being inclusive. For example, in the expression from 5 to 10 amino acids long is to be as including 5 and 10;

10 - and similarly with respect to other parameters such as sequences, length, concentrations, elements, etc...

It is in particular to be understood herein that the sequences, regions, portions defined herein each include each and every individual sequences, regions, portions described thereby as well as each and every possible sub-sequences, sub-regions, sub-portions whether such sub-sequences, sub-regions, sub-portions is defined as positively including particular possibilities, as excluding particular possibilities or a combination thereof; for example an exclusionary definition for a region may read as follows: "provided that said polypeptide is no shorter than 4, 5, 6, 7, 8 or 9 amino acids. Yet a further example of a negative limitation is the following; a sequence comprising SEQ ID NO.: X with the exclusion of a polypeptide of SEQ ID NO. Y; etc. An additional example of a negative limitation is the following; provided that said polypeptide is not (does not comprise or consist of) SEQ ID NO.:Z.

25

BRIEF DESCRIPTION OF THE DRAWINGS

In drawings which illustrates exemplary embodiments of the invention,

30 Fig. 1 illustrates an example of analysis using Tricine gels;

Fig. 2 illustrates the method of attachment of the vector or carrier of the present invention to paclitaxel;

Fig. 3 illustrates the effect of treatment of glioblastoma model in Lewis rats with paclitaxel conjugated to aprotinin;

Fig. 4 illustrates the effect of treatment of glioblastoma model in nude mice with paclitaxel conjugated to AngioPep-1;

5 Fig. 5 illustrates the protocol used to conjugate aprotinin with IgG using cross-linker BS³;

Fig. 6 illustrates the protocol used to conjugate aprotinin with IgG using cross-linker sulfo-EMCS;

Fig. 7 illustrates the brain penetration for IgG-aprotinin conjugates;

10 Fig. 9 illustrates the effect of treatment of Taxol-Angiopep-2 conjugate on the survival of glioblastoma-implanted mice (athymic, nude mice) and;

Fig. 9 illustrates the structure of exemplary polypeptides of the present invention.

15

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to new molecules that can act as vectors or carriers for transporting an agent, medicine or other molecule to the brain and/or central nervous system (CNS). Agents, medicines or other molecules which are unable 20 or ineffective at crossing the blood-brain barrier by themselves, will be transported across the blood-brain barrier when attached or coupled (conjugated) to the vector or carrier. Alternatively, an agent that is able to cross the blood-brain barrier by itself may also see its transport increase when conjugate to the carrier of the present invention. Such conjugates can be in the form of a composition, such as 25 a pharmaceutical composition, for treatment of a condition or disease.

Design of Candidate Molecules as Carrier Vectors

In international publication no. WO2004/060403, the inventors have disclosed that AngioPep-1 (SEQ ID NO.:67) and aprotinin (SEQ ID NO.:98) are effective vectors

for transporting desirable molecules across the blood brain barrier. The inventors herein demonstrate that other molecules could also be used as carriers for transporting an agent across the blood brain barrier. Accordingly, peptides having similar domains as aprotinin and Angiopep-1 and a modified form of Angiopep-1 5 (amidated, peptide no.67) were therefore conceived as potential carrier vectors. These derived peptides resemble aprotinin and Angiopep-1 but comprise different amino acid insertions and bear different charges. Thus far, 96 peptides presented in Table 2 as well as additional peptides listed in the sequence listing were tested for their potential as carrier.

10 It is to be understood herein that in the following experiments, peptides have been selected based on their higher activity compared to others. Those which have not been selected for further experimentations are by no means being disclaimed and are not intended to be regarded as non-functional. These peptides show substantial activity and have utility as (biologically active) carriers and are also 15 encompassed by the present invention.

20

25

Table 2 Design of 96 peptides from similar domain to aprotinin and Angiopep-1 with different charges and amino acid insertions

Proteins Characteristics		96 PEPTIDES ORDERED AT SYNPEP (California, USA)																			
Aprot-synth	#Pept	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Bikunin H2-30	1	T	F	V	G	G	C	R	G	N	R	N	F	K	V	T	E	E	D		
Amlyloid	2	T	P	F	Y	G	G	C	G	G	N	R	N	F	D	T	E	E	E		
Kunitz-Inhib 1	3	S	T	F	Y	G	G	C	L	G	N	N	F	Y	K	R	A	E	E		
Peptides CHARGE (+6)	4	S	T	F	Y	G	G	C	R	A	K	R	N	N	F	K	R	A	K		
	5	T	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K		
	6	T	F	F	Y	G	G	C	R	A	K	R	N	N	F	K	R	A	K		
	7	T	F	F	Y	G	G	C	R	A	K	R	N	N	F	K	R	A	K		
	8	T	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K		
	9	T	F	Q	Y	G	G	C	R	A	K	R	N	N	F	K	R	A	K		
	10	T	F	Q	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K		
CHARGE (+5)	11	T	F	F	Y	G	G	C	L	G	K	R	N	N	F	K	R	A	K	Y	
	12	T	F	F	Y	G	G	C	L	G	K	R	N	N	F	K	R	A	K	Y	
	13	P	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K	Y	
	14	T	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K	Y	
	15	P	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K	Y	
	16	T	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K	Y	
	17	P	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K	Y	
	18	T	F	F	Y	G	G	C	R	G	K	R	N	N	F	K	R	A	K	Y	
CHARGE (+4)	19	T	F	F	Y	G	G	C	R	A	K	R	N	N	N	D	R	A	K	Y	
	20	T	F	F	Y	G	G	C	R	G	A	R	N	N	N	D	R	A	K	Y	
	21	P	F	F	Y	G	G	C	R	G	A	R	N	N	N	D	R	A	K	Y	
	22	T	F	F	Y	G	G	C	R	G	G	K	N	N	N	D	R	A	K	Y	
	23	T	F	F	Y	G	G	C	R	G	G	K	N	N	N	D	R	A	K	Y	
	24	T	F	F	Y	G	G	C	R	G	G	K	N	N	N	D	R	A	K	Y	
	25	T	F	F	Y	G	G	C	R	G	G	K	N	N	N	D	R	A	K	Y	
CHARGE (+3)	26	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
	27	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
	28	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
	29	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
	30	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
	31	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
	32	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
	33	T	F	F	Y	G	G	C	L	G	N	G	N	N	N	F	K	R	A	K	Y
CHARGE (+2)	34	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
	35	P	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
	36	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
	37	S	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
HUMAN	38	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
HUMAN	39	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
HUMAN	40	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
HUMAN	41	P	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
HUMAN	42	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
HUMAN	43	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	K	Y
CHARGE (+1)	44	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
	45	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
	46	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
	47	P	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
	48	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
	49	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
HUMAN	50	P	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
HUMAN	51	S	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
HUMAN	52	P	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
HUMAN	53	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
HUMAN	54	S	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
HUMAN	55	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	L	T	A	K	Y
CHARGE (+0)	56	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	E	Y
	57	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	E	Y
	58	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	E	Y
HUMAN	59	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	E	Y
HUMAN	60	T	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	E	Y
HUMAN	61	P	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	E	Y
HUMAN	62	P	F	F	Y	G	G	C	R	G	N	G	N	N	N	F	V	T	A	E	Y
Aprotinin vs APROTININ M-term (1 helix α , A-term) (2 β sheets, Y-term) (1 α , 1 β)	63	M	R	P	D	F	C	L	E	P	P	A	Y	T	K	G	P	C	V	I	G
	64	A	R	I	C	R	Y	C	R	Y	N	A	Y	T	K	G	P	C	V	I	G
	65	Y	G	G	C	R	A	P	R	N	A	Y	T	K	G	P	C	V	I	G	
	66	P	D	F	C	L	E	P	R	Y	N	A	Y	T	K	G	P	C	V	I	
AngioPep	67	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
AngioPep1 (lysine)	68	K	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
AngioPep1 (4Y)	69	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
cys bridge	70	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
cys-Nterminal	71	C	T	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
cys-C-terminal	72	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
pro	73	C	T	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+3)	74	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+3)-cys	75	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+4)	76	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+4)-cys	77	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+5)	78	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+5)-cys	79	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+6)	80	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (+7)	81	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (0)	82	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
permut cys(-)	83	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
permut cys(+)	84	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (-4)	85	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
charge (-4)-cys	86	T	F	F	Y	G	G	C	R	G	K	R	N	N	N	F	K	T	E	Y	C
Q instead of F	87	T	F	F	Q	Y	G	G	T	F	N	T	K	G	N	C	E	R	T	E	Y
ANGIOPEP scramble	88	Y	N	K	E	F	G	G	T	F	N	T	K								

Selection With *In Vitro* Model

An *in vitro* model was used for screening assay and for mechanistic studies of drug transport to the brain. This efficient *in vitro* model of the blood-brain barrier was developed by the company CELLIAL™ Technologies. Yielding reproducible 5 results, the *in vitro* model was used for evaluating the capacity of different carriers to reach the brain. The model consists of a co-culture of bovine brain capillary endothelial cells and rat glial cells. It presents ultrastructural features characteristic of brain endothelium including tight junctions, lack of fenestration, lack of transendothelial channels, low permeability for hydrophilic molecules and a 10 high electrical resistance. Moreover, this model has shown a good correlation coefficient between *in vitro* and *in vivo* analysis of wide range of molecules tested. To date, all the data obtained show that this BBB model closely mimics the *in vivo* 15 situation by reproducing some of the complexities of the cellular environment that exist *in vivo*, while retaining the experimental advantages associated with tissue culture. Many studies have validated this cell co-culture as one of the most reproducible *in vitro* model of the BBB.

The *in vitro* model of BBB was established by using a co-culture of BBCECs and 20 astrocytes. Prior to cell culture, plate inserts (Millicell-PC 3.0 μ M; 30-mm diameter) were coated on the upper side with rat tail collagen. They were then set in six-well microplates containing the astrocytes and BBCECs were plated on the upper side 25 of the filters in 2 mL of co-culture medium. This BBCEC medium was changed three times a week. Under these conditions, differentiated BBCECs formed a confluent monolayer 7 days later. Experiments were performed between 5 and 7 days after confluence was reached. The permeability coefficient for sucrose was measured to verify the endothelial permeability.

Primary cultures of mixed astrocytes were prepared from newborn rat cerebral cortex (Dehouck M.P., Meresse S., Delorme P., Fruchart J.C., Cecchelli, R. An Easier, Reproducible, and Mass-Production Method to Study the Blood-Brain Barrier In Vitro. *J.Neurochem*, 54, 1798-1801, 1990). Briefly, after removing the 30 meninges, the brain tissue was forced gently through an 82 μ m nylon sieve. Astrocytes were plated on six-well microplates at a concentration of 1.2×10^5 cells/mL in 2 mL of optimal culture medium (DMEM) supplemented with 10% heat inactivated fetal bovine serum. The medium was changed twice a week.

5 Bovine brain capillary endothelial cells (BBCECs) were obtained from Cellial Technologies. The cells were cultured in the presence of DMEM medium supplemented with 10% (v/v) horse serum and 10% heat-inactivated calf serum, 2 mM of glutamine, 50 µg/mL of gentamycin, and 1 ng/mL of basic fibroblast growth factor, added every other day.

Originally, at a first level of selection, 96 peptides as described in Table 2 were tested as carrier with the *in vitro* model of the BBB. Each peptide was added to the upper side of the inserts covered or non-covered with endothelial cells for 90 minutes at 37°C. After the incubation, the peptides in the lower side of the 10 chambers were resolved by electrophoresis. Electrophoresis gels were stained with Coomassie blue to visualize the peptides as illustrated with some peptides (without limitation) in Fig. 1. AngioPep-1 (either SEQ ID NO.:67 or peptide no.67 (amidated form)) is often used herein as a reference or for comparison purpose. In Fig. 1, each initial peptide applied to the upper side of the filters was loaded on 15 electrophoresis gel (ini) as control. After 90 minutes of transcytosis, a volume of 50 µl from the basolateral side of the filters covered with endothelial cells (+) or non-covered (-) was also loaded on Tricine gels. To visualize the peptides gels were stained with Coomassie blue.

Following the first level of screening, peptides detected in the lower side of the 20 chambers by Coomassie blue staining (5, 8, 45, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 90 and 91) were selected for further study with the iodinated peptides. Briefly, the selected peptides were iodinated with standard procedures 25 using iodo-beads from Sigma. Two iodo-beads were used for each protein. These beads were washed twice with 3 ml of phosphate buffer (PB) on a Whatman™ filter and resuspended in 60 µl of PB. ^{125}I (1 mCi) from Amersham-Pharmacia biotech was added to the bead suspension for 5 min at room temperature. The iodination for each peptide was initiated by adding 100 µg (80-100 µl) of the bead 30 suspension. After an incubation of 10 min at room temperature, the supernatants were applied on a desalting column prepacked with 5 ml of cross-linked dextran™ from Pierce and ^{125}I -proteins were eluted with 10 ml of PBS. Fractions of 0.5 ml were collected and the radioactivity in 5 µl of each fraction was measured. Fractions corresponding to ^{125}I -proteins were pooled and dialyzed against

Ringer/Hepes buffer, pH 7.4. The efficiency of radiolabeling was between 0.6 - 1.0 x 10⁸ cpm/100 µg of protein.

The iodinated peptides were also investigated with the *in vitro* model of the BBB. Each peptide was added to upper side of the inserts covered or non-covered with 5 endothelial cells for 90 minutes at 37°C. After the incubation, peptides in the lower side of the chambers were TCA precipitated. Results were expressed as cpm ratios. For each [¹²⁵I]-peptide the number of cpm in the bottom chamber was divided by the total number of cpm added to filter covered with endothelial cells (+cells/initial) or uncovered (-cells/initial). The ratio between the number of [¹²⁵I]- 10 peptide found in the bottom chamber of filters covered with or without endothelial cells was also calculated (+cells/-cells). A very low -cells/initial ratio indicates that filters may interfere with the peptides (peptides 5 and 8). A high +cells/initial and +cells/-cells ratio indicate a better passage of the peptides across the brain endothelial cells. The results for the previously selected 18 peptides are shown in 15 Table 3.

Table 3**Results of the peptide screening following the second screening level**

#Peptides	Ratios		
	- cells /initial	+ cells /initial	+cells /-cells
5	0.111	0.051	0.46
8	0.086	0.039	0.46
45	0.163	0.049	0.30
67	0.403	0.158	0.39
70	0.143	0.032	0.23
71	0.072	0.027	0.37
72	0.209	0.029	0.014
73	0.056	0.017	0.30
74	0.146	0.036	0.24
75	0.207	0.087	0.42
76	0.222	0.084	0.38
77	0.224	0.063	0.28
78	0.125	0.075	0.60
79	0.194	0.078	0.40
81	0.203	0.088	0.43
82	0.120	0.043	0.36
90	0.284	0.134	0.47
91	0.406	0.158	0.30
Aprotinin	0.260	0.022	0.08

From these results, 12 peptides with +cells/-cells ratios generally higher than 0.35
5 were selected namely; 5, 8, 67, 75, 76, 77, 78, 79, 81, 82, 90 and 91. Peptides
#91 and #77 were also selected for further investigation because of their +cells/-
cells ratios (>0.2).

The 12 selected peptides were then investigated by assessing their permeability
coefficients using the *in vitro* BBB model. The effect of each selected peptide at
10 250 nM on the BBB integrity was determined by measuring [¹⁴C] sucrose
permeability in the BBB model on BBCEC monolayers grown on filters in the
presence of astrocytes. To achieve this test, brain endothelial cell monolayers
grown on inserts were transferred to 6-well plates containing 2 mL of Ringer-
Hepes per well (basolateral compartment) for two hours at 37 °C. Ringer-Hepes
15 solution was composed of 150 mM NaCl, 5.2 mM KCl, 2.2 mM CaCl₂, 0.2 mM
MgCl₂, 6 mM NaHCO₃, 5 mM Hepes, 2.8 mM Hepes, pH 7.4. In each apical
chamber, the culture medium was replaced by 1 mL Ringer-Hepes containing

the labeled [¹⁴C]-sucrose. At different times, inserts were placed into another well. [¹⁴C] sucrose passage was measured at 37°C, on filters without cells or with filters coated with BBCEC cells. The peptides are added at the start of the experiment at time zero. The results were plotted as the sucrose clearance (μl) as 5 a function of time (min).

$$\text{Clearance } (\mu\text{l}) = \frac{[C]A \times VA}{[C]L} \quad \begin{aligned} [C]A &= \text{Abluminal tracer concentration} \\ VA &= \text{Volume of abluminal chamber} \\ [C]L &= \text{Luminal tracer concentration} \end{aligned}$$

10 The slope of the linear variation (μl/min) is the sucrose permeability coefficient for the filter without cells (Ps_f) and one with coated with BBCEC cells (Ps_{St}) in the presence of the peptide.

The permeability coefficient (Pe) was calculated as:

$$1/Pe = (1/Ps_{St} - 1/Ps_f) / \text{filter area (4.2 cm}^2\text{)}$$

The peptides with highest Pe were selected: 67, 76, 90, 91, 5, 79, 8, and 78.

15 The *in situ* cerebral perfusion (in mice) was used as the fourth level of selection to select the best peptides. This procedure also distinguishes between compounds remaining in the brain vascular compartment from those having crossed the abluminal endothelial membrane to enter the brain parenchyma. Indeed, the technique of post-perfusion capillary depletion allows to measure whether the 20 molecule really crosses the endothelium to enter the brain parenchyma. Using this technique it is demonstrated herein that specific peptides tend to accumulate in the brain parenchyma fraction (see Table 4).

Table 4

#Peptides	Volume of distribution (perfusion 5min)					
	Homogenate		Capillaries		Parenchyma	
	(ml/100g)	(ml/100g)	%	(ml/100g)	%	
5	312	217	73	95	27	
5	8	250	204	82	46	18
	25	1141	1082	95	60	5
	67	38	13	34	25	65
	76	40	16	40	24	60
	78	198	181	90	16	10
	79	70	52	74	18	26
	90	87	76	88	11	12
	91	47	24	59	23	41

Four peptides, namely 5, 67, 76 and 91, showed the highest levels of distribution in the parenchyma with a volume higher than 20 ml/100g and which represents at least 25% of the volume found for the total brain (homogenate), thus showing the highest potential as carrier for use as transport vectors. Peptide 79 was eliminated because of its lower volume of distribution in the brain parenchyma (18 ml/100g). Peptide 67 represents the amidated form of AngioPep-1 described in the previous application that the inventors filed. Amidation of a peptide affect the overall charge of the peptide. As is apparent in Tables 2 and 3, two peptides having a different charge do not have necessary the same activity.

The vector or carrier of the present invention may thus be used in a method for transporting an agent across the blood-brain barrier comprises administering to an individual an agent that comprises an active ingredient or a pharmaceutical agent attached to a carrier, such as aprotinin or a functional derivative thereof (i.e., an aprotinin analog, an aprotinin fragment, an aprotinin derivative, an analogue of an aprotinin fragment).

The carrier and conjugate may be administered intra-arterially, intra-nasally, intra-peritoneally, intravenously, intramuscularly, sub-cutaneously, transdermally or *per os* to the patient. The agent may be, for example, an anti-angiogenic compound. The agent may have a maximum weight of 160,000 Daltons. As discussed 5 herein, the agent may be a marker or a drug such as a small molecule drug, a protein, a peptide or an enzyme. The drug may be adapted to treat, for example, a neurological disease or a central nervous system disorder of a patient. The drug may be a cytotoxic drug and the marker may be a detectable label such as a radioactive label, a green fluorescent protein, a histag protein or β -galactosidase. 10 The agent may be delivered, for example, into the central nervous system of a patient.

According to another embodiment, the uses, methods, compounds, agents, drugs or medicaments therein mentioned may not alter the integrity of the blood-brain barrier of the patient.

15 According to a further embodiment of the present invention the peptide may be selected from the group consisting of aprotinin, an aprotinin fragment (SEQ ID NO.:1) and any one of the peptides defined in SEQ ID NO.:1 to 97, 99, 100 or 101.

For example, peptides 5, 76, 91, 97 and 97 as well as peptide 67 may be used in 20 the present invention by linking them to an agent or a compound for transporting the agent or compound across the blood-brain barrier of a patient. The agent or compound may be adapted to treat a neurological disease or to treat a central nervous system disorder.

The carrier of the present invention, such as for example, peptides 5, 76, 91 and 25 97 as well as peptide 67 may be linked to or labelled with a detectable label such as a radioimaging agent, such as those emitting radiation, for detection of a disease or condition, for example by the use of a radioimaging agent-antibody-carrier conjugate, wherein the antibody binds to a disease or condition-specific antigen. Other binding molecules besides antibodies and which are known and 30 used in the art are also contemplated by the present invention. Alternatively, the carrier or functional derivative thereof of the present invention or mixtures thereof

may be linked to a therapeutic agent, to treat a disease or condition, or may be linked to or labelled with mixtures thereof. Treatment may be effected by administering a carrier-agent conjugate of the present invention to an individual under conditions which allow transport of the agent across the blood-brain barrier.

5 A therapeutic agent as used herein may be a drug, a medicine, an agent emitting radiation, a cellular toxin (for example, a chemotherapeutic agent) and/or biologically active fragment thereof, and/or mixtures thereof to allow cell killing or it may be an agent to treat, cure, alleviate, improve, diminish or inhibit a disease or condition in an individual treated. A therapeutic agent may be a synthetic product

10 or a product of fungal, bacterial or other microorganism, such as mycoplasma, viral etc., animal, such as reptile, or plant origin. A therapeutic agent and/or biologically active fragment thereof may be an enzymatically active agent and/or fragment thereof, or may act by inhibiting or blocking an important and/or essential cellular pathway or by competing with an important and/or essential naturally

15 occurring cellular component.

Examples of radioimaging agents emitting radiation (detectable radio-labels) that may be suitable are exemplified by indium-111, technetium-99, or low dose iodine-131.

20 Detectable labels, or markers, for use in the present invention may be a radiolabel, a fluorescent label, a nuclear magnetic resonance active label, a luminescent label, a chromophore label, a positron emitting isotope for PET scanner, chemiluminescence label, or an enzymatic label. Fluorescent labels include but are not limited to, green fluorescent protein (GFP), fluorescein, and rhodamine. Chemiluminescence labels include but are not limited to, luciferase

25 and β -galactosidase. Enzymatic labels include but are not limited to peroxidase and phosphatase. A histag may also be a detectable label.

30 It is contemplated that an agent may be releasable from the carrier after transport across the blood-brain barrier, for example by enzymatic cleavage or breakage of a chemical bond between the carrier and the agent. The release agent may then function in its intended capacity in the absence of the carrier.

The present invention will be more readily understood by referring to the following examples which are given to illustrate the invention rather than to limit its scope. The following examples have been given with aprotinin. However, it has been demonstrated herein the molecules of the present invention share common properties with aprotinin with respect to their potential as carrier for transporting an agent across the blood brain barrier. These examples thus apply to the molecules of the present invention.

EXAMPLE I

10

Strategies for drug conjugation (paclitaxel)

For conjugation, paclitaxel (TAXOL™) has 2 strategic positions (position C2' and C7). Fig. 2 illustrates the method of attachment of the vector or carrier of the present invention to paclitaxel. Briefly, paclitaxel is reacted with anhydride succinic pyridine for 3 hours at room temperature to attach a succinyl group in position 2'. Such 2'-succinyl paclitaxel has a cleavable ester bond in position 2' which upon cleavage can simply release succinic acid. This cleavable ester bond can be further used for various modifications with linkers, if desired. The resulting 2'-O-succinyl-paclitaxel is then reacted with EDC/NHS in DMSO for 9 hours at room temperature, followed by the addition of the carrier or vector in Ringer/DMSO for an additional reaction time of 4 hours at room temperature. The reaction of conjugation depicted in Fig. 2 is monitored by HPLC. Each intermediate, such as paclitaxel, 2'-O-succinyl-paclitaxel and 2'-O-NHS-succinyl-paclitaxel, is purified and validated using different approaches such as HPLC, thin liquid chromatography, NMR (^{13}C or ^1H exchange), melting point, mass spectrometry. The final conjugate is analyzed by mass spectrometry and SDS-polyacrylamide gel electrophoresis. This allows determining the number of paclitaxel molecules conjugated on each vector.

Transcytosis capacity of Aprotinin-Paclitaxel conjugate was determined and is reported below in Table 5.

Table 5

**Determination of aprotinin-Taxol
conjugate transcytosis capacity across
the BBB**

	Transcytosis (Pe 10 ⁻³ cm/min)	Sucrose Integrity (Pe 10 ⁻³ cm/min)
Control		
Aprotinin	0.2	0.28
Aprotinin-Taxol	0.21	0.24
		0.22

- **Conjugation does not affect the aprotinin capacity to cross the barrier**
- **The integrity of the barrier is also maintained**

As seen in Table 5, conjugation of paclitaxel to aprotinin still was able to cross the *in vitro* model of the blood brain barrier without affecting the sucrose integrity, thus 5 proving that the molecules (also referred herein as vectors or carriers) of the present invention still retain their activity when conjugated to a large chemical entity such as paclitaxel.

Survival study in the rat brain tumor model was then conducted to verify whether the paclitaxel that was conjugated is still active *in vivo*. For the rat brain tumor 10 model, rats received an intra-cerebral implantation of 50 000 CNS-1 glioma cells. Three (3) days after, animals received treatment with vehicle (aprotinin), Paclitaxel (5mg/kg) or Paclitaxel-Aprotinin (5mg/kg) by intravenous injection. Treatment was then administered every week until animal was sacrificed (see Fig. 3). Rats were monitored every day for clinical symptoms and weight loss. According to the 15 protocol of good animal practice, animals were sacrificed when a weight loss was observed for 3 consecutive days or before if the weight loss was more than 20% of the animal initial weight.

Using the same experimental protocol, paclitaxel when injected alone at the maximal tolerated dose (54mg/kg) was unable to increase mouse survival (Laccabue et al., 2001 Cancer, 92 (12): 3085-92).

5 Survival study was also conducted in mice implanted with a human brain tumor xenograft. For the mice brain tumor model, mice received an intra-cerebral implantation of 500 000 human U87 glioma cells. 3 days after implantation animals received treatment with Paclitaxel-Angiopep1 (5mg/kg) or vehicle by intravenous injection. Treatment was then administered every week until animal was sacrificed. Mice were monitored every day for clinical symptoms and weight 10 loss. According to the protocol of good animal practice, animals were sacrificed when a weight loss was observed for 3 consecutive days or before if the weight loss was more than 20% of the animal initial weight. It was now observed that the medium survival for the control group was 19 ± 2 days. For the statistical analysis a 20% increase in survival was considered significant. As can be seen in Fig. 4, 15 the conjugate Paclitaxel-AngioPep-1 retained its activity, having a statistically significant effect. The survival time of the paclitaxel-angioPep1 treated animals is significantly extended when compared to control group ($p < 0.05$, $n=8$).

Results obtained in the two survival studies indicate that the conjugation of paclitaxel with the vector of the present invention increases the animal survival.

20

EXAMPLE II
Strategies for antibodies conjugation

Since proteins generally have several amino groups available for conjugation, 25 amine coupling using sulfo-NHS/EDC activation is be used to cross-link therapeutic antibodies with the vectors (carriers) of the present invention. This approach was chosen because it is a fast, simple and reproducible coupling technique, because the resulting conjugate is stable while still retaining the biological activity of the antibody and it has a high conjugation capacity that can be reliably controlled and a low non-specific interaction during the coupling 30 procedures.

Antibodies or antibody fragments (Fab and Fab'₂) have been conjugated with the vector of the present invention to increase their delivery to the brain. Various conjugation approaches have been used to first conjugate IgGs with aprotinin, having proven that the carriers of the present invention behave exactly as aprotinin.

Different cross-linkers, such as BS³ [Bis(sulfosuccinimidyl)suberate], NHS/EDC (N-hydroxysuccinimide and N-ethyl-N'(dimethylaminopropyl)carbodimide or Sulfo-EMCS ([N-e-Maleimidocaproic acid]hydrazide) have been tested for the conjugation of IgG. BS³ is a Homobifunctional N-hydroxysuccinimide ester that targets accessible primary amines. NHS/EDC creates a conjugation of primary amine groups with carboxyl groups. Sulfo-EMCS are heterobifunctional reactive groups (maleimide and NHS-ester) that are reactive toward: sulfhydryl and amino groups.

Conjugation of IgG with aprotinin using the cross-linker BS³ (Fig. 5) or sulfo-EMCS (Fig. 6) was first assessed.

Transport of IgG or IgG-conjugates across the BBB was then tested. The uptake of [¹²⁵I]-IgG to the luminal side of mouse brain capillaries was measured using the *in situ* brain perfusion method adapted in the inventor's laboratory for the study of drug uptake in the mouse brain (Dagenais et al., 2000, J. Cereb. Blood Flow Metab. 20(2):381-386). The BBB transport constants were determined as previously described by Smith (1996, Pharm. Biotechnol. 8:285-307). IgG uptake was expressed as the volume of distribution (Vd) from the following equation:

$$Vd = Q^*br / C^*pf$$

where Q*br is the calculated quantity of [¹²⁵I]-IgG or [¹²⁵I]-IgG-aprotinin conjugate per gram of right brain hemisphere and C*pf is the labelled tracer concentration measured in the perfusate.

The results of this experiment indicate that there is higher brain uptake for [¹²⁵I]-IgG-aprotinin conjugate than that of unconjugated [¹²⁵I]-IgG (see Fig. 7).

The conjugation of IgGs with aprotinin increases their accumulation in the brain parenchyma *in vivo*.

5

EXAMPLE III

Effect of Taxol-Angiopep-2 conjugate on mice survival

This study with Taxol-Angiopep-2 (herein referred to peptide no. 97 (**angiopep2 is not amidated**) was conducted to determine whether conjugation of Taxol to Angiopep-2 could increase mice survival. The structure of Angiopep-2 is illustrated 10 in SEQ ID NO.:97. For this experiment, mice received an intra-cerebral implantation of 500 000 human U87 glioma cells. After 3 days following implantation, animals were treated with the vehicle (DMSO/Ringer-Hepes 80:20 v/v (i.e., control)) or Taxol-Angiopep-2 conjugate (3:1, i.e., ratio of 3 Taxol molecules for each peptide; TxIAn2 (5 mg/kg)) by tail vein injections (Fig. 8). Mice 15 were monitored every day for clinical symptoms and weight loss. Treatments were administered until animals were sacrificed. As shown in Table 6, we observed that the median survival was 18 days for the control group whereas the median survival for mice receiving the Taxol-Angiopep-2 conjugate was 21 days (Fig. 8). Survival curve obtained for mice treated with Taxol-Angiopep-2 conjugate (in red) 20 indicates that the median survival was significantly increased by 17% (Fig. 8). The statistical analysis presented also in Table 6 indicates that administration of Taxol-Angiopep-2 conjugate significantly increased survival by 17% (p values = 0.048).

25

Table 6. Results summary of the survival study

a. Median survival	Days	Increased (%)	Mice (n)
Control	18.0	-	7
TxIAn2 conjugate	21.0	+17	7
b. Statistical analysis	(p values)		Stat. differences
Control vs TxIAn2 conjugate	p = 0.048		Yes

The content of each publication, patent and patent application mentioned in the present application is incorporated herein by reference.

5 Although the present invention has been described in details herein and illustrated in the accompanying drawings, it is to be understood that the invention is not limited to the embodiments described herein and that various changes and modifications may be effected without departing from the scope or spirit of the present invention.

10

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such 15 departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

20

SEQUENCES

SEQ ID

NO. :

1 T F V Y G G C R A K R N N N F K S A E D
2 T F Q Y G G C M G N G N N F V T E K E
3 P F F Y G G C G G N R N N N F D T E E Y
4 S F Y Y G G C L G N K N N Y L R E E E
5 T F F Y G G C R A K R N N N F K R A K Y

Peptide no. 5 comprises the amino acid sequence defined in SEQ ID NO.:5 and is amidated at its N-terminus (see for example Fig. 9)

6 T F F Y G G C R G K R N N N F K R A K Y
7 T F F Y G G C R A K K N N N Y K R A K Y
8 T F F Y G G C R G K K N N N F K R A K Y
9 T F Q Y G G C R A K R N N N F K R A K Y
10 T F Q Y G G C R G K K N N N F K R A K Y
11 T F F Y G G C L G K R N N N F K R A K Y
12 T F F Y G G S L G K R N N N F K R A K Y
13 P F F Y G G C G G G K K N N N F K R A K Y
14 T F F Y G G C R G K G N N N Y K R A K Y
15 P F F Y G G C R G K R N N N F L R A K Y
16 T F F Y G G C R G K R N N N F K R E K Y
17 P F F Y G G C R A K K N N N F K R A K E
18 T F F Y G G C R G K R N N N F K R A K D
19 T F F Y G G C R A K R N N N F D R A K Y
20 T F F Y G G C R G K K N N N F K R A E Y
21 P F F Y G G C G A N R N N N F K R A K Y
22 T F F Y G G C G G G K K N N N F K T A K Y
23 T F F Y G G C R G N R N N N F L R A K Y
24 T F F Y G G C R G N R N N N F K T A K Y
25 T F F Y G G S R G N R N N N F K T A K Y
26 T F F Y G G C L G N G N N N F K R A K Y
27 T F F Y G G C L G N R N N N F L R A K Y

28 T F F Y G G C L G N R N N F K T A K Y
29 T F F Y G G C R G N G N N F K S A K Y
30 T F F Y G G C R G K K N N F D R E K Y
31 T F F Y G G C R G K R N N F L R E K E
32 T F F Y G G C R G K G N N F D R A K Y
33 T F F Y G G S R G K G N N F D R A K Y
34 T F F Y G G C R G N G N N F V T A K Y
35 P F F Y G G C G G K G N N Y V T A K Y
36 T F F Y G G C L G K G N N F L T A K Y
37 S F F Y G G C L G N K N N F L T A K Y
38 T F F Y G G C G G N K N N F V R E K Y
39 T F F Y G G C M G N K N N F V R E K Y
40 T F F Y G G S M G N K N N F V R E K Y
41 P F F Y G G C L G N R N N Y V R E K Y
42 T F F Y G G C L G N R N N F V R E K Y
43 T F F Y G G C L G N K N N Y V R E K Y
44 T F F Y G G C G G N G N N F L T A K Y
45 T F F Y G G C R G N R N N F L T A E Y
46 T F F Y G G C R G N G N N F K S A E Y
47 P F F Y G G C L G N K N N F K T A E Y
48 T F F Y G G C R G N R N N F K T E E Y
49 T F F Y G G C R G K R N N F K T E E D
50 P F F Y G G C G G N G N N F V R E K Y
51 S F F Y G G C M G N G N N F V R E K Y
52 P F F Y G G C G G N G N N F L R E K Y
53 T F F Y G G C L G N G N N F V R E K Y
54 S F F Y G G C L G N G N N Y L R E K Y
55 T F F Y G G S L G N G N N F V R E K Y
56 T F F Y G G C R G N G N N F V T A E Y
57 T F F Y G G C L G K G N N F V S A E Y
58 T F F Y G G C L G N R N N F D R A E Y
59 T F F Y G G C L G N R N N F L R E E Y
60 T F F Y G G C L G N K N N Y L R E E Y
61 P F F Y G G C G G N R N N Y L R E E Y

62 P F F Y G G S G G N R N N N Y L R E E Y
 63 M R P D F C L E P P Y T G P C V A R I
 64 A R I I R Y F Y N A K A G L C Q T F V Y G
 65 Y G G C R A K R N N Y K S A E D C M R T C G
 66 P D F C L E P P Y T G P C V A R I I R Y F Y
 67 T F F Y G G C R G K R N N F K T E E Y

The peptide no. 67 comprises the amino acid sequence defined in SEQ ID NO.:67 and is amidated at its N-terminus (see for example Fig. 9)

68 K F F Y G G C R G K R N N F K T E E Y
 69 T F Y Y G G C R G K R N N Y K T E E Y
 70 T F F Y G G S R G K R N N F K T E E Y
 71 C T F F Y G C C R G K R N N F K T E E Y
 72 T F F Y G G C R G K R N N F K T E E Y C
 73 C T F F Y G S C R G K R N N F K T E E Y
 74 T F F Y G G S R G K R N N F K T E E Y C
 75 P F F Y G G C R G K R N N F K T E E Y
 76 T F F Y G G C R G K R N N F K T K E Y

The peptide no. 76 comprises the amino acid sequence defined in SEQ ID NO.:76 and is amidated at its N-terminus (see for example Fig. 9).

77 T F F Y G G K R G K R N N F K T E E Y
 78 T F F Y G G C R G K R N N F K T K R Y
 79 T F F Y G G K R G K R N N F K T A E Y
 80 T F F Y G G K R G K R N N F K T A G Y
 81 T F F Y G G K R G K R N N F K R E K Y
 81 T F F Y G G C G G N G N N F L T A K Y
 82 T F F Y G G C R G N R N N F L T A E Y
 83 T F F Y G G C R G N G N N F K S A E Y
 84 P F F Y G G C L G N K N N F K T A E Y
 85 T F F Y G G C R G N R N N F K T E E Y
 86 T F F Y G G C R G K R N N F K T E E D
 87 P F F Y G G C G G N G N N F V R E K Y

88 R F K Y G G C L G N M N N F E T L E E
 89 R F K Y G G C L G N K N N F L R L K Y
 91 R F K Y G G C L G N K N N Y L R L K Y

Peptide no. 91 comprises the amino acid sequence defined in SEQ ID NO.:91 and is amidated at its N-terminus (see for example Fig. 9).

92 K T K R K R K K Q R V K I A Y E E I F K N Y
 93 K T K R K R K K Q R V K I A Y
 94 R G G R L S Y S R R F S T S T G R
 95 R R L S Y S R R R F
 96 R Q I K I W F Q N R R M K W K K
 97 T F F Y G G S R G K R N N F K T E E Y
 98 M R P D F C L E P P Y T G P C V A R I
 I R Y F Y N A K A G L C Q T F V Y G G
 C R A K R N N F K S A E D C M R T C G G A

 99 T F F Y G G C R G K R N N F K T K E Y
 100 R F K Y G G C L G N K N N Y L R L K Y
 101 T F F Y G G C R A K R N N F K R A K Y
 102 N A K A G L C Q T F V Y G G C L A K R N N F
 E S A E D C M R T C G G A

 103 Y G G C R A K R N N F K S A E D C M R T C G
 G A

 104 G L C Q T F V Y G G C R A K R N N F K S A E
 105 L C Q T F V Y G G C E A K R N N F K S A

SEQ ID NO.: 106

5 atgagaccag atttctgcct cgagccgccc tacactgggc cctgcaaagc tcgttatcatc
 cgttacttct acaatgcaaa ggcaggcctg tgtcagacacct tcgtatacgg cggctgcaga
 gctaaggcgtaa acaacttcaa atccgcggaa gactgcatgc gtacttgccgg tggtgcttag

WHAT IS CLAIMED IS:

1. A biologically active polypeptide able to cross a cell layer mimicking a mammalian blood brain barrier in an *in vitro* assay, said polypeptide being selected from the group of;
 - a) an aprotinin fragment comprising the amino acid sequence defined in SEQ ID NO.:1,
 - b) an aprotinin fragment consisting of SEQ ID NO.:1,
 - c) a biologically active analogue of SEQ ID NO.:1,
 - d) a biologically active fragment of SEQ ID NO.:1, and;
 - e) a biologically active fragment of a SEQ ID NO.:1 analogue.
2. A biologically active polypeptide able to cross a cell layer mimicking a mammalian blood brain barrier in an *in vitro* assay, said polypeptide being selected from the group of;
 - an aprotinin fragment of from 19 to 50 amino acid long, which may comprise SEQ ID NO.:1,
 - an aprotinin fragment consisting of SEQ ID NO.:1,
 - a biologically active analogue of SEQ ID NO.:1 of from about 19 to 50 amino acids long, provided that said analogue does not comprise SEQ ID NO.: 102, 103, 104 or 105 and provided that when said analogue consists of SEQ ID NO.:67 said analogue is amidated,
 - a biologically active fragment of SEQ ID NO.:1 of from 10 to 18 amino acids, and;
 - a biologically active fragment of a SEQ ID NO.:1 analogue of from about 10 to 18 amino acids.
3. The polypeptide of claim 1 or 2, wherein said biologically active analogue of SEQ ID NO.:1 is selected from the group consisting of;
 - a) a SEQ ID NO.:1 analogue comprising at least 35 % identity with the amino acid sequence of SEQ ID NO.:1,
 - b) a SEQ ID NO.:1 analogue comprising at least 40 % identity with the amino acid sequence of SEQ ID NO.:1,

- c) a SEQ ID NO.:1 analogue comprising at least 50 % identity with the amino acid sequence of SEQ ID NO.:1,
- d) a SEQ ID NO.:1 analogue comprising at least 60 % identity with the amino acid sequence of SEQ ID NO.:1,
- e) a SEQ ID NO.:1 analogue comprising at least 70 % identity with the amino acid sequence of SEQ ID NO.:1,
- f) a SEQ ID NO.:1 analogue comprising at least 80 % identity with the amino acid sequence of SEQ ID NO.:1,
- g) a SEQ ID NO.:1 analogue comprising at least 90 % identity with the amino acid sequence of SEQ ID NO.:1 and;
- h) a SEQ ID NO.:1 analogue comprising at least 95 % identity with the amino acid sequence of SEQ ID NO.:1.

4. The polypeptide of claim 1, wherein said biologically active analogue of SEQ ID NO.:1 comprises an amino acid sequence selected from the group consisting of an amino acid sequence defined in SEQ ID NO.:2 to SEQ ID NO.: 62, SEQ ID NO.: 68 to SEQ ID NO.: 93 and SEQ ID NO.:97.

5. The polypeptide of claim 1, wherein said biologically active analogue of SEQ ID NO.:1 comprises the amino acid sequence defined in SEQ ID NO.:67.

6. The polypeptide of claim 5, wherein said polypeptide is amidated.

7. The polypeptide of claim 1, wherein said biologically active analogue of SEQ ID NO.:1 comprises the amino acid sequence defined in SEQ ID NO.:99, 100 or 101.

8. The polypeptide of any one of claims 1 to 4 or 7, wherein said amino acid sequence is amidated.

9. The polypeptide of claim 1, wherein said aprotinin fragment is from 10 to 50 amino acids in length.

10. The polypeptide of claim 10, wherein said aprotinin fragment is from 10 to 50 amino acids in length.
11. The polypeptide of any one of claims 4 to 7, wherein said amino acid sequence comprises of from between 1 to 12 amino acid substitutions.
12. The polypeptide of any one of claims 4 to 7, wherein said amino acid sequence comprises of from between 1 to 10 amino acid substitutions.
13. The polypeptide of any one of claims 4 to 7, wherein said amino acid sequence comprises of from between 1 to 5 amino acid substitutions.
14. The polypeptide of claim 11, wherein said amino acid substitution is non-conservative.
15. The polypeptide of claim 11, wherein said amino acid substitution is a conservative amino acid substitution.
16. The polypeptide of claim 3, wherein at least one amino acid of said analogue which is non-identical to a correspondingly located amino acid of SEQ ID NO.:1 is a conservative amino acid substitution.
17. The polypeptide of claim 1, wherein said biologically active fragment of SEQ ID NO.:1 is from 10 to 18 amino acids in length.
18. The polypeptide of claim 1, wherein said biologically active fragment of SEQ ID NO.:1 analog is from 10 to 18 amino acids in length.
19. The polypeptide of claim 17, wherein said biologically active fragment of SEQ ID NO.:1 comprises at least 10 amino acids of SEQ ID NO.1.
20. The polypeptide of claim 17, wherein said biologically active fragment of a SEQ ID NO.:1 analogue comprises at least 10 amino acids of said SEQ ID NO.:1 analogue.

21. A conjugate comprising;

- a) a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 and;
- b) an agent selected from the group consisting of a drug, a detectable label, a protein, protein-based compound and a polypeptide.

22. A conjugate comprising;

- a) a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20, provided that when said carrier consists of SEQ ID NO.:67 said carrier is amidated, and;
- b) an agent selected from the group consisting of a drug, a detectable label, a protein, protein-based compound and a polypeptide.

23. The conjugate of claim 21 or 22, wherein said detectable label is a radioimaging agent.

24. The conjugate of claim 21 or 22, wherein said protein-based compound is an antibody or an antibody fragment thereof.

25. The conjugate of claim 21 or 22, wherein said agent is small molecule drug.

26. The conjugate of claim 25, wherein said small molecule drug is an anticancer drug.

27. The conjugate of claim 26, wherein said anticancer drug is selected from the group consisting of paclitaxel, vinblastine, vincristine, etoposide, doxorubicin, cyclophosphamide, taxotere, melphalan, chlorambucil and combination thereof.

28. The use of a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27,

for transporting a agent across a blood brain barrier of a mammal in need thereof.

29. The use of a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27, for transporting a agent across a blood brain barrier of a mammal in need thereof, provided that when said carrier consist in SEQ ID NO.:67, said carrier is amidated.
30. The use as defined in claim 28 or 29, wherein said agent is a detectable label.
31. The use as defined in claim 28 or 29, wherein said detectable label is a radioimaging agent.
32. The use as defined in claim 28 or 29, wherein said agent is a protein-based compound.
33. The use as defined in claim 32, wherein said protein-based compound is an antibody or an antibody fragment thereof.
34. The use as defined in claim 28 or 29, wherein said agent is small molecule drug.
35. The use as defined in claim 34, wherein said small molecule drug is an anticancer drug.
36. The use as defined in claim 35, wherein said anticancer drug is selected from the group consisting of paclitaxel, vinblastine, vincristine, etoposide, doxorubicin, cyclophosphamide, taxotere, melphalan, chlorambucil and combination thereof.
37. The use of a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27

in the manufacture of a medicament for treating a brain or neurological disease or for the diagnostic of a brain or neurological disease.

38. The use of a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27 in the manufacture of a medicament for treating a brain or neurological disease or for the diagnostic of a brain or neurological disease, provided that when said carrier consist of SEQ ID NO.:67, said carrier is amidated.
39. The use as defined in claim 37 or 38, wherein said neurological disease is selected from the group consisting of a brain tumor, a brain metastasis, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke and blood-brain barrier related malfunctions.
40. The use as defined in claim 39, wherein said blood-brain barrier related malfunction disease is obesity.
41. A method for treating a patient having a neurological disease comprising administering a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27.
42. A method for treating a patient having a neurological disease comprising administering a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27, provided that when said carrier consist in SEQ ID NO.:67, said carrier is amidated.
43. A method for diagnosing a neurological disease in a patient in need thereof comprising administering a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27.

44. A method for diagnosing a neurological disease in a patient in need thereof comprising administering a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27, provided that when said carrier consist in SEQ ID NO.:67, said carrier is amidated.

45. The use of a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27 for treating a mammal having a neurological disease or for the diagnosis of a neurological disease in a mammal in need thereof.

46. The use of a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27 for treating a mammal having a neurological disease or for the diagnosis of a neurological disease in a mammal in need thereof, provided that when said carrier consist in SEQ ID NO.:67, said carrier is amidated.

47. The use as defined in claim 45 or 46, wherein said neurological disease is selected from the group consisting of a brain tumor, a brain metastasis, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke and blood-brain barrier related malfunctions.

48. The use as defined in claim 47, wherein said blood-brain barrier related malfunction disease is obesity.

49. A pharmaceutical composition comprising

- a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21 to 27, and;
- a pharmaceutically acceptable carrier.

50. A pharmaceutical composition comprising

- a carrier selected from the group consisting of the polypeptide of any one of claims 1 to 20 or the conjugate of any one of claims 21

to 27 provided that when said carrier consist in SEQ ID NO.:67,
said carrier is amidated and;

b) a pharmaceutically acceptable carrier.

51. The pharmaceutical composition of claim 49 or 50, wherein said pharmaceutical composition is used for the treatment of a neurological disease.

52. The pharmaceutical composition of claim 49 or 50, wherein said pharmaceutical composition is used for the diagnosis of a neurological disease.

53. A nucleotide sequence encoding any one of the polypeptide of claims 1 to 4 or 7.

54. The nucleotide sequence of claim 43, wherein said sequence is composed of a nucleotide selected from the group consisting of a ribonucleotide, a deoxyribonucleotide and nucleotide analogs thereof.

1 / 9

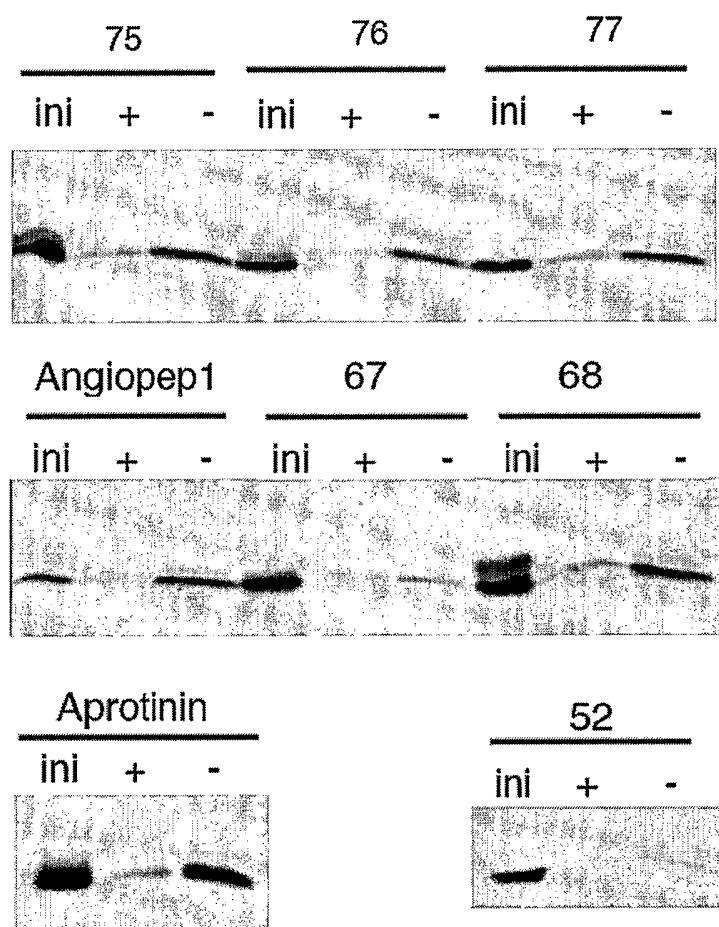


Fig. 1

2 / 9

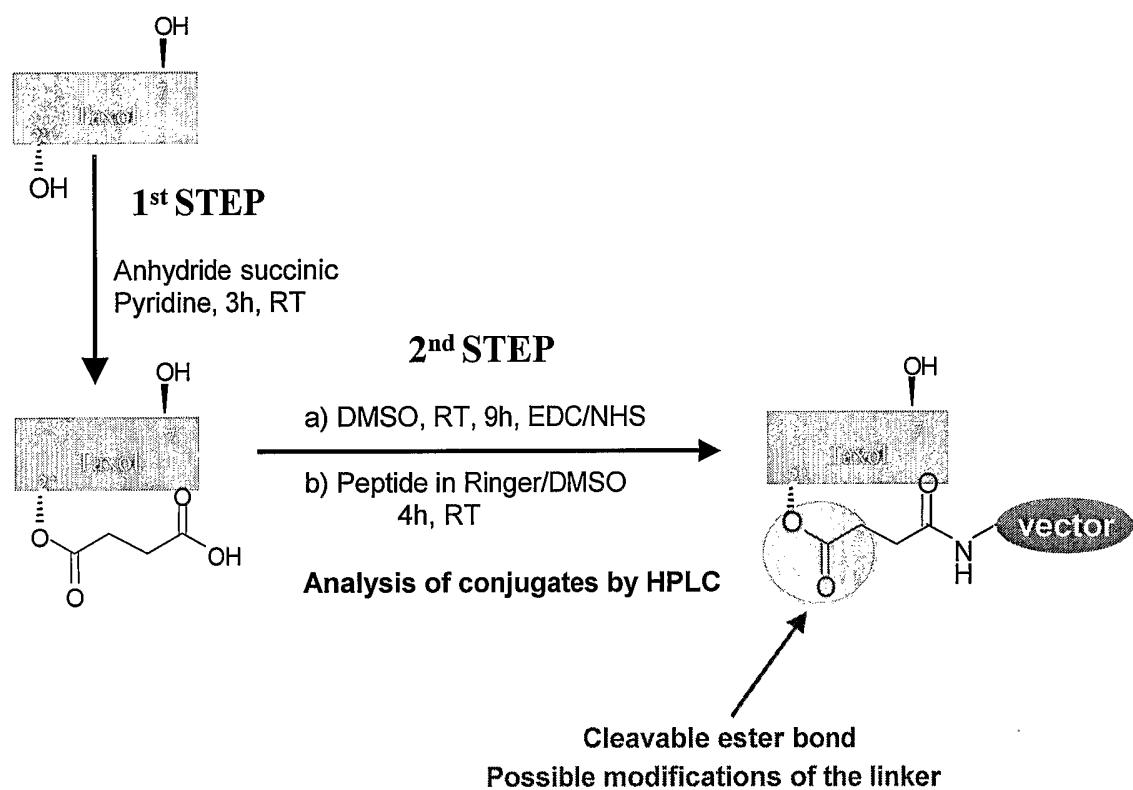


Fig. 2

3 / 9

**Survival study 1: CNS-1 glioblastoma model in Lewis rats
Effect of taxol and taxol- aprotinin treatment (IV injection)
(april 04)**

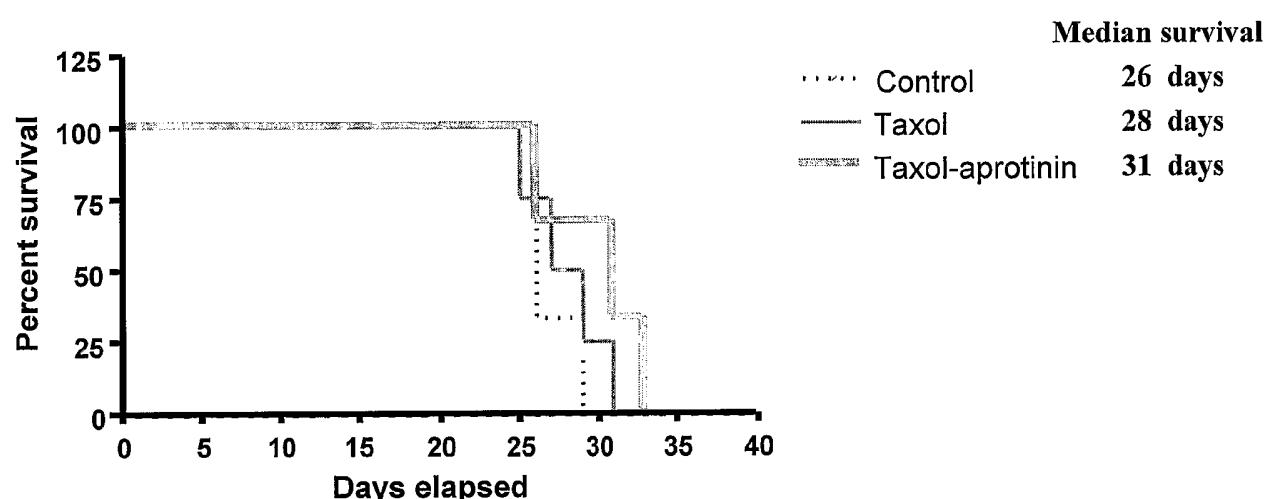


Fig. 3

4 / 9

Survival study 2: Human U87 glioblastoma model in nude mice. Effect of taxol-Angiopep1 treatment (IV injection)
(May 04)

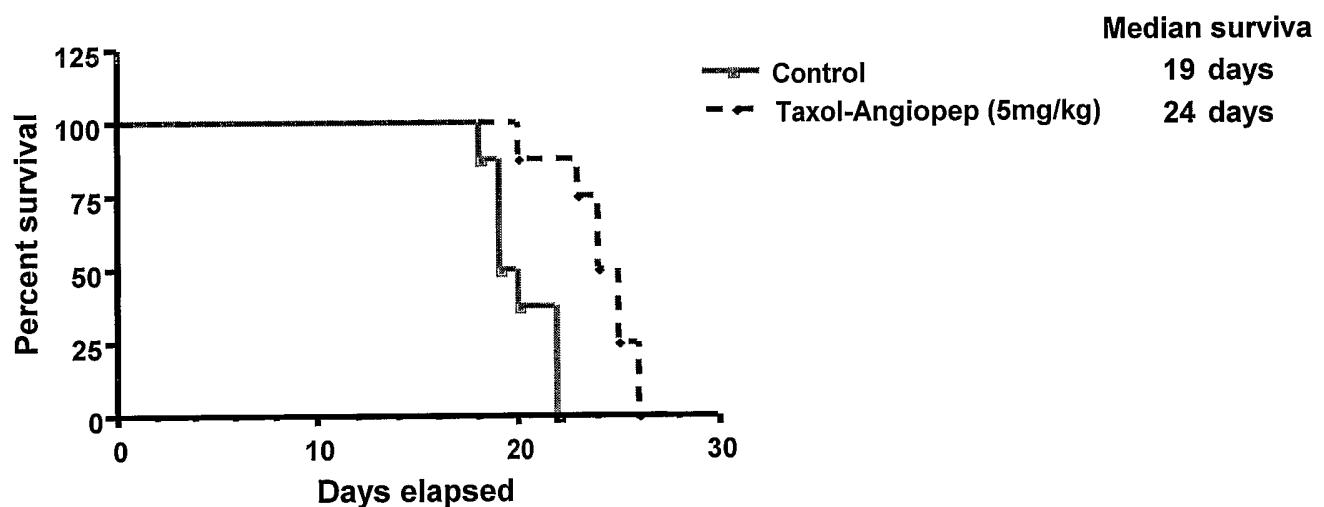


Fig. 4

5 / 9

Cross-linker: BS³

Ratio 40:1

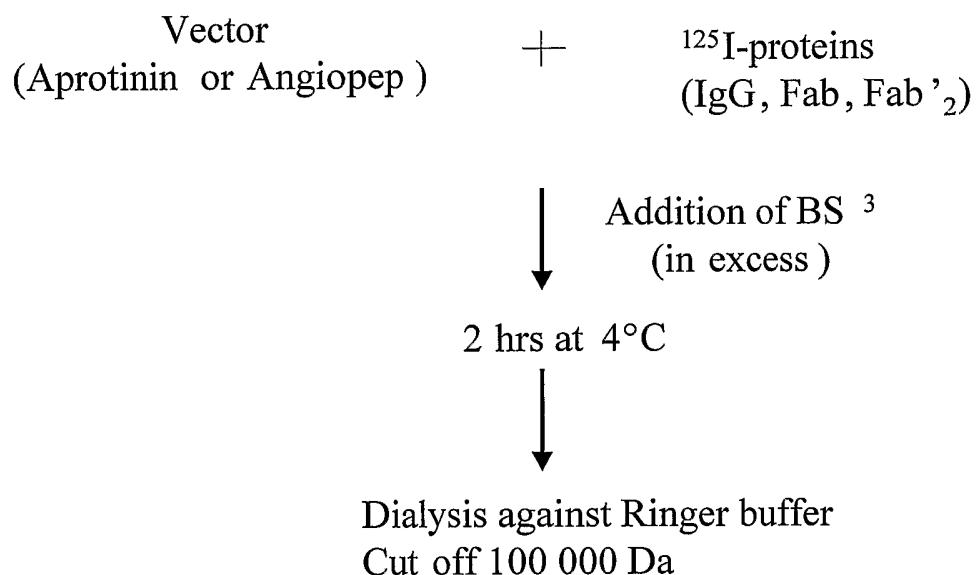


Fig. 5

6 / 9

Cross-linker: sulfo-EMCS

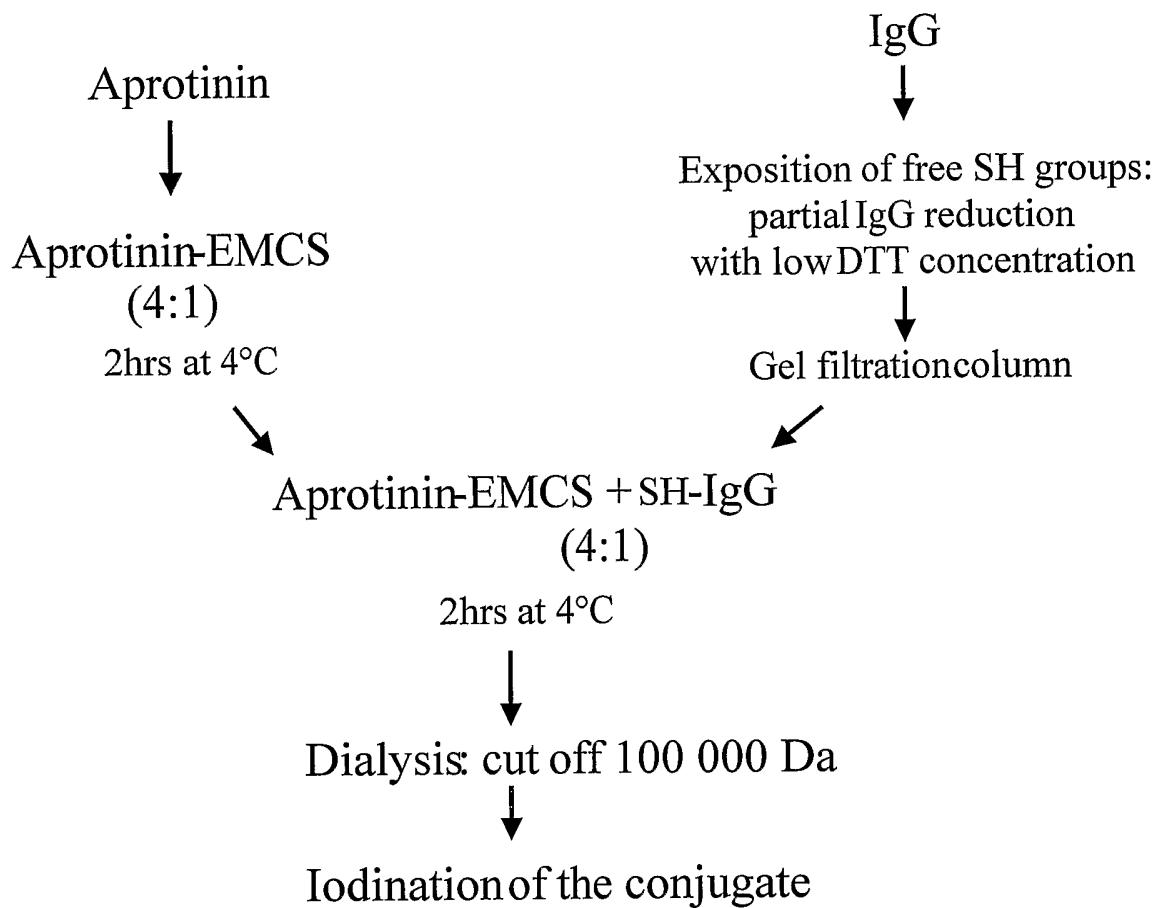
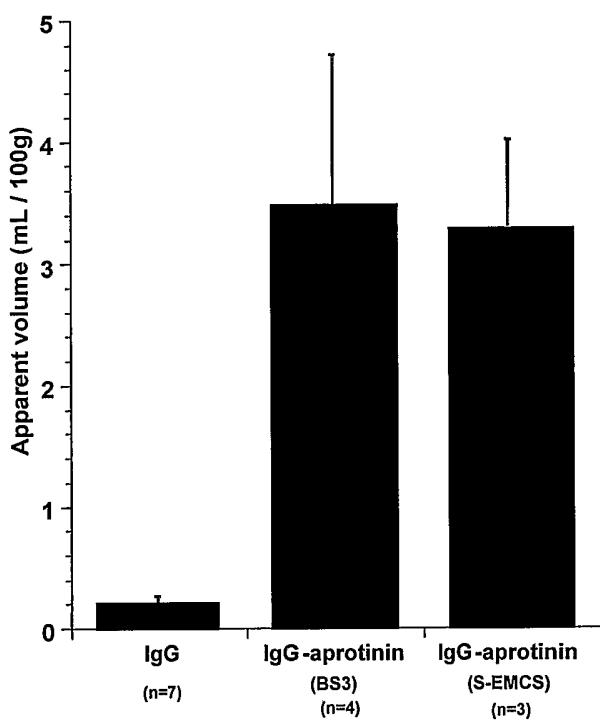



Fig. 6

7 / 9

Higher brain penetration for IgG-aprotinin conjugates

Ratios : IgG / IgG-aprotinin (BS3) = 17.4
IgG / IgG-aprotinin (S-EMCS) = 16

Fig. 7

8 / 9

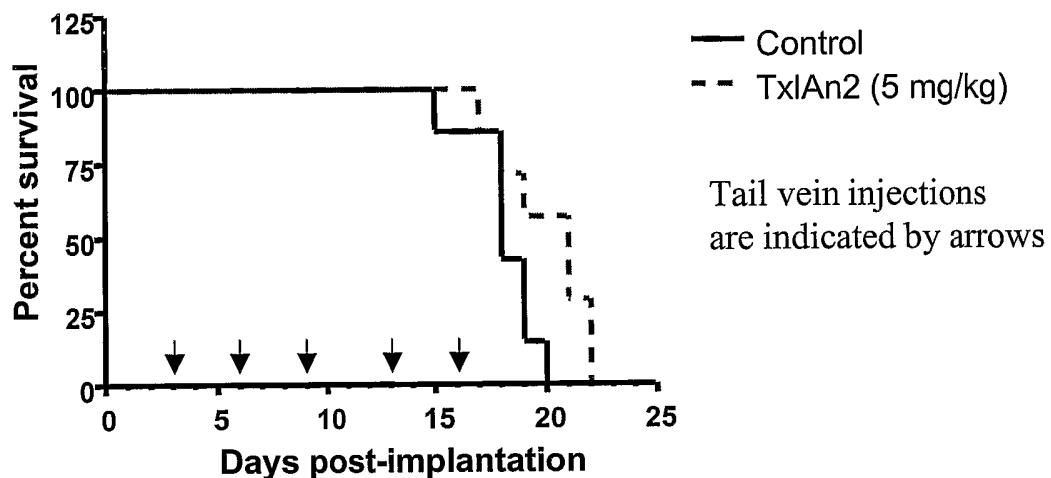

Survival study 4 : Effect of Taxol-Angiopep-2 conjugate (5 mg/kg)

Fig. 8

9 / 9

Peptide	Amino acid sequence	Charge
Angiopep	TFFYGGCRGKRNNFKTEEY	+2
# 67	TFFYGGCRGKRNNFKTEEY-amide	+2
# 76	TFFYGGCRGKRNNFKTKEY-amide	+3
# 91	RFKYGGCLGNKNNYLRALKY-amide	+5
# 5	TFFYGGCRAKRNFKRAKY-amide	+6

Charge + : lysine (K), arginine (R)
 Charge - : glutamic acid (E), aspartic acid (D)

Fig. 9

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2005/001158

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7): C12N 15/15, C07K 14/81, A61K 47/48, A61K 47/42, A61K 51/08, A61K 49/14, A61P 25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(7): C12N 15/15, C07K 14/81, A61K 47/48, A61K 47/42, A61K 51/08, A61K 49/14, A61P 25/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Delphion, Canadian Patent Database, Pubmed, GenomeQuest Keywords: Aprotinin, Angio-pep-1, amyloid B, Kunitz domain, membrane, blood-brain barrier, transport, drug, neurological disease, conjugate

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO2004060403 A2 (TRANSFERT PLUS)	1-5, 9-16, 21, 23-28, 30-37, 39-41, 43, 45, 47-49 and 51-52
Y	22 July 2004 pages 21-35, figures 16-17 and claims cited in application	6-8, 17-20, 22, 29, 38, 42, 44, 46, and 50
X	WO9636788 A2 (SCIOS INC.)	1, 3, 4, 11-16 and 53-54
Y	14 November 1996 whole document	6-8, 17-20, 22, 29, 38, 42, 44, 46, and 50
X	WO9733996 A2 (BAYER CORPORATION)	1, 3, 4, 11-16 and 53-54
Y	18 September 1997 whole document	6-8, 17-20, 22, 29, 38, 42, 44, 46, and 50
X	EP0393431 A1 (BAYER AG) 05 April 1990 whole document	1, 3, 4, 11-16 and 53-54

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international filing date

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"O" document referring to an oral disclosure, use, exhibition or other means

"&" document member of the same patent family

"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

14 November 2005 (14-11-2005)

Date of mailing of the international search report

15 November 2005 (15-11-2005)

Name and mailing address of the ISA/CA

Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT

50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001(819)953-2476

Authorized officer

Nicole Harris (819) 997-4541

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2005/001158

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons :

1. Claim Nos. : 41-44
because they relate to subject matter not required to be searched by this Authority, namely :
Although claims 41-44 encompass methods of treatment and methods of diagnosis of a human or animal which this Authority is not obliged to search under Rule 39.1(iv) of the PCT, the search has been carried out based on the alleged use of the compounds referred to therein.
2. Claim Nos. :
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically :
3. Claim Nos. :
because they are dependant claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows :

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos. :
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim Nos. :

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/CA2005/001158

Patent Document Cited in Search Report	Publication Date	Patent Family Member(s)	Publication Date
WO2004060403 A2	22-07-2004	AU2004203682 A1 EP1583562 A2 WO2004060403 A2	22-07-2004 12-10-2005 22-07-2004
WO9635788 A2	14-11-1996	AU5854096 A CA2220497 A1 EP0827539 A2 IL118187D D0 JP11504938T T US5962266 A US6376648 B2 US6613890 B2 US6906033 B2 WO9635788 A2 ZA9603619 A	29-11-1996 14-11-1996 11-03-1998 31-10-1996 11-05-1999 05-10-1999 23-04-2002 02-09-2003 14-06-2005 14-11-1996 22-11-1996
WO9733996 A2	18-09-1997	AU716923 B2 AU2207797 A BR9708021 A CA2247888 A1 CA2407668 A1 CN1154725C C EP0891426 A2 HK1026232 A1 HR970144 A1 HU9902698 A2 ID16224 A IL126115D D0 IN189770 A1 JP3469584B2 B2 JP2004000208 A NZ331540 A PL188387B B1 RU2218353 C2 TR9801794T T2 TW555764 B US6583108 B1 US2003194398 A1 WO9733996 A2 ZA9702084 A	09-03-2000 01-10-1997 27-07-1999 18-09-1997 18-09-1997 23-06-2004 20-01-1999 17-12-2004 30-04-1998 29-11-1999 11-09-1997 09-05-1999 19-04-2003 25-11-2003 08-01-2004 28-10-1999 31-01-2005 10-12-2003 21-07-2000 01-10-2003 24-06-2003 16-10-2003 18-09-1997 11-09-1998
EP0393431 A1	24-10-1990	DE3912638 A1 EP0393431 A1 JP3041095 A	31-10-1990 24-10-1990 21-02-1991
:			