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A A ECT NETI

The United States Government has rights in this invention
pursuant to Contract No. W-7405-ENG-48 between the United States
Department of Energy and the University of California for the operation
of Lawrence Livermore National Laboratory.

BACK E N

The invention relates generally to the characterization of
human speech using combined EM wave information and acoustic
information, for purposes of speech coding, speech recognition, speech
synthesis, speaker identification, and related speech technologies.
Speech Characterization and Coding:

The history of speech characterization, coding, and
generation has spanned the last one and one half centuries. Early
mechanical speech generators relied upon using arrays of vibrating reeds
and tubes of varying diameters and lengths to make human-voice-like
sounds. The combinations of excitation sources (e.g., reeds) and acoustic
tracts (e.g., tubes) were played like organs at theaters to mimic human
voices. In the 20th century, the physical and mathematical descriptions
of the acoustics of speech began to be studied intensively and these were
used to enhance many commercial products such as those associated
with telephony and wireless communications. As a result, the coding of
human speech into electrical signals for the purposes of transmission
was extensively developed, especially in the United States at the Bell
Telephone Laboratories. A complete description of this early work is
given by J. L. Flanagan, in “Speech Analysis, Synthesis, and Perception”,
Academic Press, N.Y., 1965. He describes the physics of speech and the
mathematics of describing acoustic speech units (i.e., coding). He gives
examples of how human vocal excitation sources and the human vocal
tracts behave and interact with each other to produce human speech.
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The commercial intent of the early telephone work was to
understand how to use the minimum bandwidth possible for
transmitting acceptable vocal quality on the then-limited number of
telephone wires and on the limited frequency spectrum available for
radio (i.e. wireless) communication. Secondly, workers learned that
analog voice transmission uses typically 100 times more bandwidth than
the transmission of the same word if simple numerical codes
representing the speech units such as phonemes or words are
transmitted. This technology is called “Analysis-Synthesis Telephony”
or “Vocoding”. For example, sampling at 8 kHz and using 16 bits per
analog signal value requires 128 kbps, but the Analysis Synthesis
approach can lower the coding requirements to below 1.0 kbps. In spite
of the bandwidth advantages, vocoding has not been used widely
because it requires accurate automated phoneme coding and resynthesis;
otherwise the resulting speech tends to have a "machine accent” and be
of limited intelligibility. One major aspect of the difficulty of speech
coding is adequacy of the excitation information, including the pitch
measurement, the voiced-unvoiced discrimination, and the spectrum of
the glottal excitation pulse.

Progress in speech acoustical understanding and
mathematical modeling of the vocal tract has continued and become
quite sophisticated, mostly in the laboratory. It is now reasonably
straightforward to simulate human speech by using differential
equations which describe the increasingly complex concatenations of
sound excitation sources, vocal tract tubes, and their constrictions and
side branches (e.g., vocal resonators). Transform methods (e.g. electrical
analogies solved by Fourier, Laplace, Z-transforms, etc.) are used for
simpler cases and sophisticated computational modeling on
supercomputers for increasingly complex and accurate simulations. See
Flanagan (ibid.) for early descriptions of modeling, and Schroeter and
Sondhi, “A hybrid time-frequency domain articulator speech
synthesizer”, IEEE Trans. on Acoustic Speech, ASSP 35(7) 1987 and
“Techniques for Estimating Vocal-Tract Shapes from the Speech Signal”,
ASSP 2(1), 1343, 1994. These papers reemphasize that it is not possible to
work backwards from the acoustic output to obtain a unique



WO 97/29482 PCT/US97/01490

10

15

20

25

56

35

mathematical description of the combined vocal fold--vocal tract system,
which is called the “inverse problem” herein. It is not possible to obtain
information that separately describes both the “zeros” in speech air flow
caused by glottal (i.e., vocal fold) closure and those caused by closed, or
resonant structures in the vocal tract. As a result, it is not possible to
use the well developed mathematics of modern signal acquisition,
processing, coding, and reconstructing to the extent needed.

In addition, given a mathematical vocal system model, it
remains especially difficult to associate it with a unique individual
because it is very difficult to obtain the detailed physiological vocal tract
features of a given individual such as tract lengths, diameters, cross
sectional shapes, wall compliance, sinus size, glottal size and
compliance, lung air pressure, and other necessary parameters. In some
cases, deconvolving the excitation source from the acoustic output can
be done for certain sounds where the “zeros” are known to be absent, so
the major resonant structures such as tract lengths can be determined.
For example, simple acoustic resonator techniques (see the 1976 US
patent 4,087,632 by Hafer) are used to derive the tongue body position by
measuring the acoustic formant frequencies (i.e., the vocal tube
resonance frequencies) and to constrain the tongue locations and tube
lengths against an early, well known vocal tract model by Coker, "A
Model of Articulatory Dynamics and Control”, Proc. of IEEE, Vol.64(4),
452-460, 1976. The problem with this approach is that only gross
dimensions of the tract are obtained, but detailed vocal tract features are
needed to unambiguously define the physiology of the human doing the
speaking. For more physiological details, x-ray imaging of the vocal
tract has been used to obtain tube lengths, diameters, and resonator areas
and structures. Also the optical laryngoscope, inserted into the throat, to
view the vocal fold open and close cycles, is used in order to observe
their sizes and time behavior.

The limit to further performance improvements in
acoustic speech recognition, in speech synthesis, in speaker
identification, and other related technologies is directly related to our
inability to accurately solve the inverse problem. Present workers are
unable to use acoustic speech output to work backwards to accurately
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and easily determine the vocal tract transfer function, as well as the
excitation amplitude versus time. The “missing” information about the
separation of the excitation function from the vocal tract transfer
function leads to many difficulties in automating the coding of the
speech for each speech time frame and in forming speech sound-unit
libraries for speech-related technologies. A major reason for the
problem is that workers have been unable to measure the excitation
function in real time. This has made it difficult to automatically identify
the start and stop of each voiced speech segments over which a speech
sound unit is constant. This has made it difficult to join (or to unjoin)
the transitions between sequential vocalized speech units (e.g., syllables,
phonemes or multiplets of phonemes) as an individual human speaker
articulates sounds at rates of approximately 10 phonemes per second or
two words per second.

The lack of precision in speech segment identification adds
to the difficulty in obtaining accurate model coefficients for both the
excitation function and the vocal tract. Further, this leads to
inefficiencies in the algorithms and the computational procedures
required by the technological application such as speech recognition. In
addition, the difficulties described above prevent the accurate coding of
the unique acoustic properties of a given individual for personalized,
human speech synthesis or for pleasing vocoding. In addition, the
“missing” information prevents complete separation of the excitation
from the transfer function, and limits accurate speaker-independent
speech-unit coding (speaker normalization). The incomplete
normalization limits the ability to conduct accurate and rapid speech
recognition and /or speaker identification using statistical codebook
lookup techniques, because the variability of each speaker’s articulation
adds uncertainty in the matching process and requires additional
statistical processing. The missing information and the timing
difficulties also inhibit the accurate handling of co-articulation,
incomplete articulation, and similar events where words are run
together in the sequences of acoustic units comprising a speech segment.

In the 1970s, workers in the field of speech recognition
showed that short “frames” (e.g., 10 ms intervals) of the time waveform
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of a speech signal could be well approximated by an all poles (but no
zeros) analytic representation, using numerical “linear predictive
coding” (LPC) coefficients found by solving covariance equations.
Specific procedures are described in B. S. Atal and S. L. Hanauer, “Speech
analysis and synthesis by linear prediction of the speech wave”, J.
Acoust. Soc. Am. 50(2), pp. 63, 1971. The LPC coefficients are a form of
speech coding and have the advantage of characterizing acoustic speech
with a relatively small number of variables-- typically 20 to 30 per frame
as implemented in today’s systems. They make possible statistical table
look up of large numbers of word representations using Hidden Markov
techniques for speech recognition.

In speech synthesizers, code books of acoustic coefficients
(e.g., using well known LPC, PARCOR, or similar coefficients) for each of
the phonemes and for a sufficient number of diphonemes (i.e. phoneme
pairs) are constructed. Upon demand from text-to-speech generators,
they are retrieved and concatenated to generate synthetic speech.
However, as an accurate coding technique, they only approximate the
speech frames they represent. Their formation and use is not based
upon using knowledge of the excitation function, and as a result they do
not accurately describe the condition of the articulators. They are also
inadequate for reproducing the characteristics of the given human
speaker. They do not permit natural concatenation into high quality
natural speech. They can not be easily related to an articulatory speech
model to obtain speaker-specific physiological parameters. Their lack of
association with the articulatory configuration makes it difficult to do
speaker normalization, as well as to deal with the coarticulation and
incomplete articulation problem of natural speech.

Present Example of Speech Coding:

Rabiner, in “Applications of Voice Processing to
Telecommunications” Proc. of the IEEE 82, 199 Feb. 1994 points out that
several modern text-to-speech synthesis systems in use today by AT&T
use 2000 to 4000 diphonemes, which are needed to simulate the
phoneme-to-phoneme transitions in the concatenation process for
natural speech sounds. Figure 1 shows a prior art open loop acoustic
speech coding system in which acoustic signals from a microphone are
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processed, e.g. by LPC, and feature vectors are produced and stored in a
library. Rabiner also points out (page 213) that in current synthesis
models, the vocal source excitation and the vocal tract interaction “is
grossly inadequate”, and also that “when natural duration and pitch are
copied onto a text-to-speech utterance, ... the quality of the ... synthetic
speech improves dramatically.” Presently, it is not possible to
economically capture the natural pitch duration and voiced air-pulse
amplitude vs. time, as well as individual vocal tract qualities, of a given
individual’s voice in any of the presently used models, except by very
expensive and invasive laboratory measurements and computations.

J. L. Flanagan, “Technologies for Multimedia
Communications”, Proc. IEEE 82, 590, April 1994, describes low
bandwidth speech coding: “At fewer than 1 bit per Nyquist sample,
source coding is needed to additionally take into account the properties
of the signal generator (such as voiced/unvoiced distinctions in speech,
and pitch, intensity, and formant characteristics)." There is no presently,
commercially useful method to account for the speech excitation source
in order to minimize the coding complexity and subsequent bandwidth.
EM Sensors and Acoustic Information:

The use of EM sensors for measuring speech organ
conditions for the purposes of speech recognition and related
technologies are described in copending U.S. Patent Application, Ser.
No. 08/597,596, filed 2/6/96, by Holzrichter. Although it has been
recognized for many decades in the field of speech recognition that
speech organ position and motion information could be useful, and EM
sensors (e.g. rf and microwave radars) were available to do the
measurement, no one had suggested a system using such sensors to
detect the motions and locations of speech organs. Nor had anyone
described how to use this information to code each speech unit and to
use the code in an algorithm to identify the speech unit, or for other
speech technology applications such as synthesis. Holzrichter showed
how to use EM sensor information with simultaneously obtained
acoustic data to obtain the positions of vocal organs, how to define
feature vectors from this organ information to use as a coding
technique, and how to use this information to do high-accuracy speech
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natural method of defining changes in each phoneme by measuring
changes in the vocal organ conditions, and he described a method to
automatically define each speech time frame. He also showed that
“photographic quality” EM wave images, obtained by tomographic or
similar techniques, were not necessary for the implementation of the
procedures he described, nor for the procedures described herein.
SUMMARY OF THE INVENTION

Accordingly it is an object of the invention to provide
method and apparatus for speech coding using nonacoustic information
in combination with acoustic information.

It is also an object of the invention to provide method and
apparatus for speech coding using Electromagnetic (EM) wave
generation and detection modules in combination with acoustic
information.

It is also an object of the invention to provide method and
apparatus for speech coding using radar in combination with acoustic
information.

It is another object of the invention to use micropower
impulse radar in conjunction with acoustic information for speech
coding.

It is another object of the invention to use the methods and
apparatus provided for speech coding for the purposes of speech
recognition, mathematical approximation, information storage, speech
compression, speech synthesis, vocoding, speaker identification,
prosthesis, language teaching, speech correction, language identification,
and other speech related applications.

The invention is a method and apparatus for joining
nonacoustic and acoustic data. Nonacoustic information describing
speech organs is obtained using Electromagnetic (EM) waves such as RF
waves, microwaves, millimeter waves, infrared or optical waves at
wavelengths that reach the speech organs for measurement. Their
information is combined with conventional acoustic information
measured with a microphone. They are combined, using a
deconvolving algorithm, to produce more accurate speech coding than
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obtainable using only acoustic information. The coded information,
representing the speech, is then available for speech technology
applications such as speech compression, speech recognition, speaker
recognition, speech synthesis, and speech telephony (i.e., vocoding).

Simultaneously obtained EM sensor and acoustic
information are used to define a time frame and to obtain the details of a
human speaker’s excitation function and vocal tract function for each
speech time frame. The methods make available the formation of
numerical feature vectors for characterizing the acoustic speech unit
spoken each speech time frame. This makes possible a new method of
speech characterization (i.e., coding) using a more complete and accurate
set of information than has been available to previous workers. Such
coding can be used for purposes of more accurate and more economical
speech recognition, speech compression, speech synthesis, vocoding,
speaker identification, teaching, prosthesis, and other applications.

The present invention enables the user to obtain the
transfer function of the human speech system for each speech time
frame defined using the methods herein. In addition, the present
invention includes several algorithmic methods of coding (i.e.,
numerically describing) these functions for valuable applications in
speech recognition, speech synthesis, speaker identification, speech
transmission, and many other applications. The coding system,
described herein, can make use of much of the apparatus and data
collection techniques described in the copending patent application Ser.
No. 08/597,596, filed 2/6/96, including EM wave generation,
transmission, and detection, as well as data averaging, and data storage
algorithms. The procedures defined in the copending patent application
are called NASR or NonAcoustic Speech Recognition. Procedures based
upon acoustic prior art are called CASR for Conventional Acoustic
Speech Recognition, and these procedures are also used herein to
provide processed acoustic information.

The following terms are used herein. An acoustic speech
unit is the single or multiple sound utterance that is being described,
recognized, or synthesized using the methods herein. Examples include
syllables, demi-syllables, phonemes, phone-like speech units (i.e., PLUs),
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diphones, triphones, and more complex sound sequences such as words.
Phoneme acoustic-speech-units are used for most of the speech unit
examples herein. A speech frame is a time during which speech organ
conditions (including repetitive motions of the vocal folds) and the
acoustic output remain constant within pre-defined values that define
the constancy. Multiple time frames are a sequence of time frames
joined together in order to describe changes in acoustic or speech organ
conditions as time progresses. A speech period, or pitch period is the
time the glottis is open and the time it is closed until the next glottal
cycle begins, which include transitions to unvoiced speech or to silence.
A speech segment is a period of time of sounded speech that is being
processed using the methods herein. Glottal tissue includes vocal fold
tissue and surrounding tissue, and glottal open/close cycles are the same
as vocal fold open/close cycles. The word functional, as used herein,
means a mathematical function with both variables and symbolic
parameter-coefficients, whereas the word function means a functional
with defined numerical parameter-coefficients.

The present methods and apparatus work for all human
speech sounds and languages, as well as for animal sounds generated by
vocal organ motions detectable by EM sensors and processed as
described. The examples are based on, but not limited to American
English speech.

1) EM Sensor Generator:

All configurations of EM wave generation and detection
modules that meet the requirements for frequency, timing, pulse
format, tissue transmission, and power (and safety) can be used. EM
wave generators may be used which, when related to the distance from
the antenna(s), operate in the EM near-field mode (mostly non-
radiating), in the intermediate-EM-field mode where the EM wave is
both non-radiating and radiating, and in the radiating far-field mode (i.e.
most radars). EM waves in several wavelength-bands between <108 to
>1014 Hz can penetrate tissue and be used as described herein. A
particular example is a wide-band microwave EM generator impulse
radar, radiating 2.5 GHz signals and repeating its measurement at a 2
MHz pulse repetition rate, which penetrates over 10 cm into the head or
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neck. Such units have been used with appropriate algorithms to
validate the methods. These units have been shown to be economical
and safe for routine human use. The speech coding experiments have
been conducted using EM wave transmit/receive units (i.e., impulse
radars) in two different configurations. In one configuration, glottal
open-close information, together with simultaneous acoustic speech
information, was obtained using one microphone and one radar unit.
In a second set of experiments, three EM sensor units and one acoustic
unit were used. In addition, a particular method is described for
improving the accuracy of transmitting and receiving an
electromagnetic wave into the head and neck, for very high accuracy
excitation function descriptions.

2) EM Sensor Detector:

Many different EM wave detector modes have been
demonstrated for the purpose of obtaining nonacoustic speech organ
information. A multiple pulse, fixed-range-gate reception system (i.e.,
field disturbance mode) has been used for vocal fold motion and nearby
tissue motion detection. Other techniques have been used to determine
the positions of other vocal organs to obtain added information on the
condition of the vocal tract. Many other systems are described in the
radar literature on EM wave detection, and can be employed.

3) Confi . dC 1S .

Many different control techniques for portable and fixed
EM sensor/acoustic systems can be used for the purposes of speech
coding. However, the processing procedures described herein may
require additional and different configurations and control systems. For
example, in applications such as high fidelity, “personalized” speech
synthesis, extra emphasis must be placed on the quality of the
instrumentation, the data collection, and the sound unit parsing. The
recording environments, the instrumentation linearity, the dynamic
range, the relative timing of the sensors (e.g. acoustic propagation time
from the glottis to the microphone), the A/D converter accuracy, the
processing algorithms’ speed and accuracy, and the qualities of play back
instrumentation are all very important.

y P ing Uni 1 Alzorithms :
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For each set of received EM signals and acoustic signals
there is a need to process and extract the information on organ positions
(or motions) and to use the coded speech sounds for the purposes of
deconvolving the excitation from the acoustic output, and for tract
configuration identification. For example, information on the positions
of the vocal folds (and therefore the open area for air flow) vs. time is
obtained by measuring the reflected EM waves as a function of time.
Similarly, information on the conditions of the lips, jaw, teeth, tongue,
and vellum positions can be obtained by transmitting EM waves from
other directions and using other pulse formats. The reflected and
received signals from the speech organs are stored in a memory and
processed every speech time frame, as defined below. The reflected EM
signals can be digitized, averaged, and normalized, as a function of time,
and feature vectors can be formed.

The present invention uses EM sensor data to
automatically define a speech time frame using the number of times
that the glottis opens and closes for vocalized speech, while the
conditions of other speech organs and the acoustics remain substantially
constant. The actual speech time frame interval used for the processing
(for either coding or reconstructing) can be adapted to optimize the data
processing. The interval can be described by one or several constant
single pitch periods, by a single pitch period value and a multiplier
describing the number of substantially identical periods over which little
sound change occurs, or it can use the pitch periods to describe a time
interval of essentially constant speech but with “slowly changing” organ
or acoustic conditions. The basic glottal-period timing-unit serves as a
master timing clock. The use of glottal periods for master timing makes
possible an automated speech and vocal organ information processing
system for coding spoken speech, for speech compression, for speaker
identification, for obtaining training data, for codebook or library
generation, for synchronization with other instruments, and for other
applications. This method of speech frame definition is especially useful
for defining diphones and higher order multiple sound acoustic speech
units, for time compression and alignment, for speaker speech rate
normalization, and for prosody parameter definition and



WO 97/29482 ‘ PCT/US97/01490

15

28

25

30

35

-12-

implementation. Timing can also be defined for unvoiced speech,
similarly to the procedures used for vocalized speech.

Once a speech time frame is defined, the user deconvolves
the acoustic excitation function from the acoustic output function. Both
are simultaneously measured over the defined time frame. Because the
mathematical problems of “invertability” are overcome, much more
accurate and efficient coding occurs compared to previous methods. By
measuring the human excitation source function in real time, including
the time during which the vocal folds are closed and the airflow stops
(i-e., the glottal "zeros"), accurate approximations of these very
important functional shapes can be employed to model each speech
unit. As a result of this new capability to measure the excitation
function, the user can employ very accurate, efficient digital signal
processing techniques to deconvolve the excitation function from the
acoustic speech output function. For the first time, the user is able to
accurately and completely describe the human vocal tract transfer
function for each speech unit.

There are three speech functions that describe human
speech: E(t) = excitation function, H(t) = transfer function, and I(t) =
output acoustics function. The user can determine any one of these
three speech functions by knowing the two other functions. The human
vocal system operates by generating an excitation function, E(t), which
produces rapidly pulsating air flow (or air pressure pulses) vs. time.
These (acoustic) pulses are convolved with (or filtered by) the vocal tract
transfer function, H(t), to obtain a sound output, I(t). Being able to
measure, conveniently in real time, the input excitation E and the
output I, makes it possible to use linear mathematical processing
techniques to deconvolve E from I. This procedure allows the user to
obtain an accurate numerical description of the speaker’s transfer
function H. This method conveniently leads to a numerical Fourier
transform of the function H, which is represented as a complex
amplitude vs. frequency. A time domain function is also obtainable.
These numerical functions for H can be associated with model
functions, or can be stored in tabular form, in several ways. The
function H is especially useful because it describes, in detail, each
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speaker’s vocal tract acoustical system and it plays a dominant role in
defining the individualized speech sounds being spoken.

Secondly, a synthesized output acoustic function, I(t), can be
produced by convolving the voiced excitation function, E(t), with the
transfer function, H(t), for each desired acoustic speech unit. Thirdly,
the excitation function, E, can be determined by deconvolving a
previously obtained transfer function, H, from a measured acoustic
output function, I. This third method is useful to obtain the modified-
white-noise excitation-source spectra to define an excitation function for
each type of unvoiced excitation. In addition, these methods can make
use of partial knowledge of the functional forms E, H, or I for purposes
of increasing the accuracy or speed of operation of the processing steps.
For example, the transfer function H is known to contain a term R
which describes the lips-to-listener free space acoustic radiation transfer
function. This function R can be removed from H leaving a simpler
function, H* , which is easier to normalize. Similar knowledge, based
on known acoustic physics, and known physiological and mechanical
properties of the vocal organs, can be used to constrain or assist in the
coding and in specific applications.

The Bases of the Methods:

1) The vocalized excitation function of a speaker and the
acoustic output from the speaker are accurately and simultaneously
measured using an EM sensor and a microphone. As one important
consequence, the natural opening and closing of a speaker’s glottis can
serve as a master timing clock for the definition of speech time frames.

2) The data from 1) is used to deconvolve the excitation
function from the acoustic output and to obtain the speaker’s vocal tract
transfer function each speech time frame.

3) Once the excitation function, the transfer function, and
the acoustic function parameters are determined, the user forms feature
vectors that characterize the speech in each time frame of interest to the
degree desired.

4) The formation procedures for the feature vectors are
valuable and make possible new procedures for more accurate, efficient,
and economical speech coding, speech compression, speech recognition,
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speech synthesis, telephony, speaker identification, and other related
applications.
Models and Coding of Human Speech:

It is common practice in acoustic speech technology as well
as in many linear system applications to use mathematical models of the
system. Such models are used because it is inefficient to retain all of the
information measured in a time-evolving (e.g., acoustic) signal, and
because they provide a defining constraint (e.g., a pattern or functional
form) for simplifying or imposing physical knowledge on the measured
data. Users want to employ methods to retain just enough information
to meet the needs of their application and to be compatible with the
limitations of their processing electronics and software. Models fall into
two general categories--linear and non-linear. The methods herein
describe a large number of linear models to process both the EM sensor
and the acoustic information for purposes of speech coding that have
not been available to previous practitioners of speech technology. The
methods also include coding using nonlinear models of speech that are
quantifiable by table lookup or by curve fitting, by perturbation methods,
or using more sophisticated techniques relating an output to an input
signal, that also have not been available to users.

The simultaneously obtained acoustic information can also
be processed using well known standard acoustic processing techniques.
Procedures for forming feature vectors using the processed acoustic
information are well known. The resulting feature vector coefficients
can be joined with feature vectors coefficients generated by the EM
sensor/acoustic methods described herein.

Vocal system models are generally described by an
excitation source which drives an acoustic resonator tract, from whence
the sound pressure wave radiates to a listener or to a microphone.
There are two major types of speech: 1) voiced where the vocal folds
open and close rapidly, at approximately 70 to 200 Hz, providing periodic
bursts of air into the vocal tract, and 2) “unvoiced” excitations where
constrictions in the vocal tract cause air turbulence and associated
modified-white acoustic-noise. (A few sounds are made by both
processes at the same time).
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The human vocal tract is a complex acoustic-mechanical
filter that transforms the excitation (i.e., noise source or air pressure
pulses) into recognizable sounds, through mostly linear processes.
Physically the human acoustic tract is a series of tubes of different
lengths, different area shapes, with side branch resonator structures,
nasal passage connections, and both mid and end point constrictions.
As the excitation pressure wave proceeds from the excitation source to
the mouth (and/or nose), it is constantly being transmitted and reflected
by changes in the tract structure, and the output wave that reaches the
lips (and nose) is strongly modified by the filtering processes. In
addition, the pressure pulses cause the surrounding tissue to vibrate at
low levels which affects the sound as well. It is also known that a
backward propagating wave (i.e. reflecting wave off of vocal tract
transitions) does travel backward toward the vocal folds and the lungs.
It is not heard acoustically, but it can influence the glottal system and it
does cause vocal tract tissue to vibrate. Such vibrations can be measured
by an EM sensor used in a microphone mode.

Researchers at Bell Laboratories (Flanagan, Olive, Sondhi
and Schroeter ibid.) and elsewhere have shown that accurate knowledge
of the excitation source characteristics and the associated vocal tract
configurations can uniquely characterize a given acoustic speech unit
such as a syllable, phoneme, or more complex unit. This knowledge can
be conveyed by a relatively small set of numbers, which serve as the
coefficients of feature vectors that describe the speech unit over each
speech time frame. They can be generated to meet the degree of accuracy
demanded by the applications. It is also known that if a change in a
speech sound occurs, the speaker has moved one or more speech organs
to produce the changed sound. The methods described herein can be
used to detect such changes, to define a new speech time frame, and to
form a new feature vector to describe the new speech conditions.

The methods for obtaining accurate vocal tract transfer
function information can be used to define coefficients that can be used
in the feature vector that describes the totality of speech tract
information for each time frame.
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One type of linear model often used to describe the vocal
tract transfer function is an acoustic-tube model (see Sondhi and
Schroeter, ibid). A user divides up the human vocal tract into a large
number of tract segments (e.g., 20) and then, using advanced numerical
techniques, the user propagates (numerically) sound waves from an
excitation source to the last tract segment (i.e., the output) and obtains an
output sound. The computer keeps track of all the reflections, re-
reflections, transmissions, resonances, and other propagation features.
Experts find the sound to be acceptable, once all of the parameters
defining all the segments plus all the excitation parameters are obtained.

While this acoustic tube model has been known for many
years, the parameters describing it have been difficult to measure, and
essentially impossible to obtain in real time from a given speaker. The
methods herein, describing the measuring of the excitation function, the
acoustic output, and the deconvolving procedures yields a sufficient
number of the parameters needed that the constrictions and conditions
of the physical vocal tract structure model can be described each time.
One-dimensional numerical procedures, based upon time-series
techniques, have been experimentally demonstrated on systems with up
to 20 tract segments to produce accurate models for coding and synthesis.

A second type of linear acoustic model for the vocal tract is
based upon electrical circuit analogies where excitation sources and
transfer functions (with poles and zeros) are commonly used. The
corresponding circuit values can be obtained using measured excitation
function, output function, and derived transfer-function values. Such
circuit analog models range from single mesh circuit analogies, to 20 (or
more) mesh circuit models. By defining the model with current
representing volume-air-flow (and voltage representing air pressure),
then using capacitors to represent acoustic tract-section chamber-
volumes, inductors to represent acoustic tract-section air-masses, and
resistors to represent acoustic tract-section air-friction and heat loss
values, the user is able to model a vocal tract using electrical system
techniques. Circuit structures (such as T's and/or Pi’s) correspond to the
separate structures of the acoustic system, such as tube lengths, tongue
positions, and side resonators of a particular individual. In principle,
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the user chooses the circuit constants and structures to meet the
complexity requirements and forms a functional, with unknown
parameter values. In practice it has been easy to define circuit analogs,
but very difficult to obtain the values describing a given individual and
even more difficult to measure them in real time. Using a one mesh
model, an electrical analog method has been experimentally validated
for obtaining the information needed to determine the feature vector
coefficients of a human in real time.

A third important model is based upon time series
procedures (a type of digital signal processing) using autoregressive,
moving average (ARMA) techniques. This approach is especially
valuable because it characterizes the behavior of a wave as it traverses a
series of transitions in the propagating media. The degree of the ARMA
functional reflects the number of transitions (i.e., constrictions and other
changes) in acoustic tracts used in the model of the individual. Such a
model is also very valuable because it allows the incorporation of
several types of excitation sources, the reaction of the propagating waves
on the vocal tract tissue media itself, and the feedback by backward
propagating wave to the excitation functions. The use of ARMA models
has been validated using 14 zeros and 10 poles to form the feature vector
for the vocal tract transfer function of a speaker saying the phoneme
/ah/ as well as other sounds.

A fourth method is to use generalized curve fitting
procedures to fit data in tables of the measured excitation-function and
acoustic-output processed values. The process of curve fitting (e.g.,
using polynomials, LPC procedures, or other numerical
approximations) is to use functional forms that are computationally
well known and that use a limited number of parameters to produce an
acceptable fit to the processed numerical data. Sometimes the functional
forms include partial physical knowledge. These procedures can be used
to measure and quantify arbitrary linear as well as non-linear properties
relating the output to the input.

The following devices can be used as part of a speech coding
system or all together for a variety of user chosen speech related
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applications. All of the following devices, except generic peripherals, are
specifically designed to make use of the present methods and will not
operate at full capability without these methods.

a) Telephone receiver/transmitter unit with EM sensors:
A unit, chosen for the application, contains the needed EM sensors,
microphone, speaker, and controls for the application at hand. The
internal components of such a telephone-like unit can include one or
more EM sensors, a processing unit, a control unit, a synthesis unit, and
a wireless transmission unit. -This unit can be connected to a more
complex system using wireless or transmission line techniques.

b) Control Unit: A specific device that carries out the
control intentions of the user by directing the specific processors to work
in a defined wayi, it directs the information to the specified processors, it
stores the processed data as directed in short or long term memory, it can
transmit the data to another specified device for special processing, to
display units, or to a communications devices as directed.

c) Speech Coding Unit: A specific type of a coding
processor joins information from an acoustic sensor to vocal organ
information from the EM sensor system (e.g., from vocal fold motions)
to generate a series of coefficients that are formed into a feature vector
for each speech time frame. The algorithms to accomplish these actions
are contained therein.

d) Speech Recognizer: Post processing units are used to
identify the feature vectors formed by the speech coding unit for speech
recognition applications. The speech recognition unit matches the
feature vector from c) with those in a pre-constructed library. The other
post-processing units associated with recognition (e.g., spell checkers,
grammar checkers, and syntax checkers) are commonly needed for the
speech coding applications.

e) Speech Synthesizer and Speaker: Coded speech can be
synthesized into audio acoustic output. Information, thus coded, can be
retrieved from the user’s recent speech, from symbolic information (e.g.,
ASCII symbol codes) that is converted into acoustic output, from
information transmitted from other systems, and from system
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communications with users. Furthermore, the coded speech can be
altered and synthesized into many voices or languages.

f) Speaker Identification: As part of the post processing, the
idiosyncratic speech and organ motion characteristics of each speaker can
be analyzed and compared in real time. The comparison is to known
records of the speaker's physical speech organ motions, shapes, and
language usage properties for a sequence of words. The EM sensor
information adds a new dimension of sophistication in the
identification process that is not possible using acoustic speech alone.

g) Encryption Units: Speech coded by the procedures
herein can be further coded (i.e., encrypted) in various ways to make
them difficult to use by other than an authorized user. The methods
described herein allow the user to code speech, with such a low
bandwidth requirement, that encryption information can be added to
the transmitted speech signal without requiring additional bandwidth
beyond what is normally used. , _

h) Display Units: Computer rendered speech information
must be made available to the user for a variety of applications. A video
terminal is used to show the written word rendition of the spoken
words, graphical renditions of the information, (e.g., the articulators in a
vocal tract), a speaker is used to play previously recorded and coded
speech to the user. The information can be displayed by printed using
printers or fax machines.

i) Hand Control Units: Hand control units can assist in the
instruction of the system being spoken to. The advantage of a hand
control unit (similar to a “mouse”) is that it can assist in communicating
or correcting the type of speech being inputted. Examples are to
distinguish control instructions from data inputting, to assist in editing
by directing a combined speech-hand-directed cursor to increase the
speed of identifying displayed text segments, to increase the certainty of
control by the user, to elicit play-back of desired synthesized phrases, to
request vocal tract pictures of the speakers articulator positions for
language correction, etc.

j) Language Recognizer and Trapslator Unit: As the

speaker begins to talk into a microphone, this device codes the speech
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and characterizes the measured series of phonemes as to the language to
which they belong. The system can request the user to pronounce
known words which are identified, or the system can use statistics of
frequent word sound patterns to conduct a statistical search through the
codebooks for each language.

It is also convenient to use this same unit, and the
procedures described herein, to accept speech recognized words from one
language and to translate the symbols for the same words into the
speech synthesis codes for the second language. The user may
implement control commands requesting the speaker to identify the
languages to be used. Alternatively, the automatic language
identification unit, can use the statistics of the language, to identify the
languages from which and to which the translations are to take place.
The translator then performs the translation to the second desired
language, by using the speech unit codes, and associated speech unit
symbols, that the system generates while the first language is spoken.
The speech codes, generated by the translator, are then converted into
symbols or into synthesized speech in the desired second language.

k) Peripheral Units: Many peripheral units can be attached
to the system as needed by the user making possible new capabilities. As
an example, an auxiliary instrument interface unit allows the
connection of instruments, such as a video camera, that require
synchronization with the acoustic speech and speech coding. A
communications link is very useful because it provides wireless or
transmission line interfacing and communication with other systems.
A keyboard is used to interface with the system in a conventional way,
but also to direct speech technology procedures. Storage units such as
disks, tape drives, semiconductor memories are used to hold processed
results or, during processing, for temporary storage of information
needed.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic diagram of a prior art open loop

acoustic speech coding system.
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Fig. 2 is a schematic diagram of a combined
nonacoustic/acoustic speech coding system using an EM sensor and a
microphone, including optional auxiliary instruments.

Fig. 3A shows a schematic diagram of a highly accurate and
flexible vocal tract laboratory measuring system for speech coding.

Fig. 3B shows a system for speech coding using three
micropower radars and an acoustic microphone.

Fig. 4 shows an EM sensor directing EM radiation into the
neck of a speaker with vocal folds shown in an open condition.

Fig. 5 is a flow chart showing the processing of
simultaneously recorded acoustic data and EM sensor data, and
subsequent deconvolution.

Fig. 6 is an acoustic and air flow model of vocal system
showing an EM sensor for vocal folds and a microphone acoustic
detector.

Fig. 7 is a continuous model of the vocal tract divided into
20 segments.

Fig. 8 is a schematic diagram of a speech coding system
using EM sensors and acoustic data. |

Figs. 9A,B are time domain data for the speech sound /ah/
using an acoustic pressure sensor and an EM glottal tissue sensor.

Figs. 10A,B are Fourier power spectra for the acoustic
microphone data and the EM sensor measurements of glottal cycles for
the sound /ah/.

Fig. 11A shows Fourier transfer function amplitude
coefficients obtained for the two-tube phoneme /ah/.

Fig. 11B shows Fourier transfer function amplitude
coefficients obtained for the single tube phoneme /ae/.

Fig. 12A shows a feature vector for the phoneme /ah/,

Fig. 12B shows the ARMA poles and zeros for Fig. 9A.

Fig. 12C shows the corresponding ARMA “a”'s and “b™'s
for the sound /ah/ represented in Fig. 11A.

Figs. 13A-F show images of vocal folds opening and closing
during one speech frame period, and characteristic dimensions.
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Figs. 14A,B show the substantially simultaneously recorded
acoustic signal and the corresponding EM sensor signal showing glottal
motion versus time for the phoneme /ah/.

Fig. 15A shows several acoustic speech segments for the
word “lazy”.

Fig. 15B shows speech time frames and EM sensor vocal
fold signals for the voiced and combination voiced/unvoiced unit /z/ in
the word “lazy”.

Fig. 16 is a source and impedance model that is an electrical
analog to an acoustic model.

Fig. 17A shows a single mesh electrical analog circuit that
models the first formant of the sound /ae/, using volume air flow as the
independent variable.

Fig. 17B shows a single mesh electrical analog circuit that
uses air pressure as the independent variable.

Fig. 18A shows a method of normalizing a speaker
dependent feature vector coefficient, measCn , to a normalized éoefficient,
normalCn .

Fig. 18B shows a method of quantization of a normalized
coefficient into one quantized value that represents a quantized band of
coefficients, over which no important sound changes occur.

Fig. 19 shows the comparison between the measured and
synthesized power spectra of the acoustic speech phoneme /ah/.

Fig. 20 shows a telephone hand-set vocoding apparatus
with receiver-speaker and microphone, including EM sensors for
coding, and a synthesizer for decoding.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
General Principles

Figure 2 shows a speech processing model based on an EM
sensor that is used to measure the motions of vocal fold interfaces and
glottal tissue. These motions can be related to the volume air flow or
glottal pressure, and can be measured simultaneously with the
accompanying speech. Knowledge of the voiced excitation input and
the acoustic output of a human vocal tract provides sufficient
information to accurately deconvolve the excitation from the output.
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The information from the sensors and from the deconvolving process
makes possible new methods to code human speech in real time, and in
an economical, safe, convenient, and accurate manner.

In Figure 2, signals from an acoustic microphone 1 are
processed in block 2 where the acoustic signals are digitized and feature
vectors are formed for selected time frames. Electromagnetic signals
from EM vocal fold sensor 3 are input into processing block 4 where the
signals are digitized and time units are defined and feature vectors are
formed. The acoustic and EM feature vectors from processing blocks 2
and 4 are input into processing block 5 where the EM signal is
deconvolved from the acoustic signal. Processing unit 4 also controls
timing unit 6, which sets the master timing and speech time frames, and
which is connected back to processing units 2 and 4. The deconvolved
output from unit 5 is input into unit 7 where the data is fit to a transfer
function, which is used to form a joint feature vector in unit 8, which is
then stored in a memory or code book in block 9. Optionally, additional
EM sensors 10 can be used to measure vocal tract conditions and other
sensors 11 can also be utilized. Feature vectors from sensors 10, 11 are
formed in blocks 12, 13 and the best transfer function for deconvollution
is selected in block 14, which is then input into unit 7. In addition,
feature vectors from block 2 can be sent directly to a CASR (conventional
acoustic recognition system), and feature vectors from blocks 12,13 can be
sent via block 15 for separate processing and subsequent use in the
applications described herein.

Figures 3A and Figure 3B show two types of laboratory
apparatus for measuring the simultaneous properties of several speech
organs using EM sensors and for obtaining simultaneous acoustic
information. Figure 3A, in particular, shows highly accurate laboratory
instrumentation assembled to obtain very high fidelity, linear, and very
large dynamic range information on the vocal system during each
speech time frame. Figure 3A shows a view of a head with three
antennas 21, 22, 23 and an acoustic microphone 24 mounted on a
support stand 25. Antennas 21, 22, 23 are connected to pulse generators
26a, b, ¢ through transmit/receiver switches 27a, b, ¢ respectively. Pulse
generators 26a, b, c apply pulses to antennas 21, 22, 23, which are directed
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to various parts of the vocal system. Antennas 21, 22, 23 pick up
reflected pulses, which are then transmitted back through switches 27a,
b, c to pulse receivers and digitizers (e.g., sample and hold units) 28a, b, c.
Acoustic information from microphone 24 is also input into pulse
receiver and digitizer 28d. Support stand 25 positions the antennas 21,
22, 23 to detect signals from various parts of the vocal tract, e.g., by using
face positioning structure 29 and chest positioning structure 30. As
shown, antenna 21 is positioned to detect the tongue, lip, velum, etc.
Antenna 22 is positioned to detect tongue and jaw motion and antenna
23 is position to detect vocal fold motion.

Figure 3B shows how presently available micro-impulse
radars have been used to obtain valuable speech organ information in a
controlled setting. The EM sensor signals from these EM sensors,
measuring vocal fold or other tissue motion, are related to the true
voiced excitation signal (i.e. volume air flow vs. time or pressure versus
time) using the methods herein. Figure 3B shows a view of a head with
three EM sensor transmit/receive modules 31, 32, 33 and an acoustic
microphone 34 mounted on a support stand 35. The configuration is
similar to that in Figure 3A except that entire EM motion sensors 31, 32,
33 are mounted on the stand 35 instead of just antennas with the
remaining associated electronics being mounted in a remote rack. Many
experiments referenced in this patent application were conducting using
apparatus similar to that shown in Fig. 3B.

Figure 4 shows how an EM wave from an electromagnetic
wave generator is used to measure the conditions of the vocal folds in a
human speaker’s neck. The wave is shown as radiated from the
antenna; however other measuring arrangements can use an EM wave
in the near field or in the intermediate field, in addition to the far field
radiated EM wave as used in most radars. The EM wave is generated to
measure the conditions of the vocal folds and the glottal tissue
surrounding the vocal fold structure as often and as accurately as needed
for the accuracy of the application.

Figure 5 shows a system in which knowledge of the
vocalized excitation function is used to deconvolve the speech vocal
tract transfer function information from measured acoustic speech
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output each time frame. All of the information gathered during each
speech time frame, including acoustics, EM sensor information, and
deconvolved transfer function information, can be processed,
normalized, quantized, and stored (along with control information) in a
feature vector representing the speaker’s voice during one or more
speech time frames. Similar deconvolving procedures are used with
unvoiced excitation functions. As shown in Figure 5, an EM sensor
control unit 40 drives a repetition rate trigger 41, which drives pulse
generator 42, which transmits one or more pulses from antenna 43. EM
sensor control unit 40 sets the pulse format, time frame interval,
integration times, memory locations, function forms, and controls and
initializes pulse generator 42. Control unit 40 and trigger 41 also actuate
switch 45 through delay 44 to range gate received pulses. Antenna 43 is
positioned to direct transmitted pulses towards the vocal organs and
receive pulses reflected therefrom. The received pulses pass through
switch 45 and are integrated by integrator 46, then amplified by amplifier
47, and passed through a high pass filter 48 to a processing unit 49.
Processing unit 49 contains an AD converter for digitizing the EM
signals and also includes zero location detector, memory detector, and
obtains glottal area versus time. The digitized and processed data from
unit 49 is stored in memory bins 50, from which excitation function
feature vectors are formed in block 51. Simultaneously, signals from an
acoustic microphone 52 are digitized by AD converter 53, which is also
controlled and synchronized by EM sensor control unit 40. The digitized
data from AD converter 53 is stored in memory bins 54 from which
acoustic feature vectors are formed in block 55. The digitized vocal fold
data from memory bins 50 is used to produce a glottal Fourier transform
56, while the digitized acoustic data in memory bin 54 is used to produce
an acoustic Fourier transform 57. The two Fourier transforms 56, 57 are
deconvolved in block 58 to produce a vocal tract Fourier transform 59
which is then fit to a prechosen functional form to form a vocal tract
feature vector in block 60.

Figure 6 shows a schematic of the human vocal system
from an acoustic perspective. Figure 6 also identifies the major
components utilized in speech, with an EM sensor 61 positioned to
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detect glottal motions ( including those of the vocal folds) which form
an excitation source for the vocal tract, and an acoustic sensor 62
positioned to receive acoustic output from the mouth. The physical
behavior of acoustic excitation pulses, after they are generated by the
vocal folds or after generation at air passage constrictions, and as they
traverse and are filtered by the varying tubes and chambers, are
measured as acoustic pressure waves by the acoustic sensor (e.g., a
microphone). Procedures described herein show how to describe the
consequences of all of the important vocal tract structures, how to
determine when they change to form a new sound, and how to code
such condition for subsequent applications. The condition of the
human speech organ structure is known to provide sufficient
information to identify the acoustic speech units being articulated by
that structure. In addition, it is known that these structures vary from
individual to individual, and the way they are shaped and moved to
articulate a sequential series of acoustic speech units varies from
language to language and from individual to individual. Knowledge of
such individual structural patterns, and their time sequencing to form
speech sounds, forms the basis for speaker identification and language
identification.

Figure 7 is a sketch of a cut through a human vocal system
showing transverse dimensions along the center plane. The dotted lines
and numbers show where one might approximate the vocal tract by
short approximately circular cylinder constant sections. At each dotted
interface, the cylinder would change diameter and, thus, a propagating
acoustic wave from the glottis to the lips and/or nose would be both
transmitted and reflected. In human vocal systems a cross section is not
circular and the transitions are smooth. By segmenting this structure
into a sufficient number of sub-structures (e.g., 20), each having a small
dimensional change from the neighbors, accurate descriptions of the air
flow (and pressure) can be obtained. Well known numerical and/or
time series (e.g.,, ARMA) techniques have been used to describe the
acoustic wave as it propagates from the excitation source to the
microphone (or human ear) detector. Time series analysis (e.g. Z
transform) procedures are especially useful for characterizing such
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systems, because their functional forms easily accommodate a series of
reflecting and transmitting structures. They are used herein to describe
many of the transfer function examples.

Figure 8 schematically illustrates a speech technology
system 70 using sensor 71, which includes both EM sensors and acoustic
detectors. Sensor 71 could be, for example, similar to the device shown
in Figure 3B or built into a telephone receive/transmit unit as in Figure
20. Sensor 71 is connected by a wireless (RF or optical) link or cable
communication line 72 to a coding unit 74, which has associated
therewith a control unit 73. Coding unit 74 is connected to language
recognizer and translator 75, speech synthesizer 76, speech recognizer 77,
and word spelling/syntax/grammar generator 78. A hand control unit
79 is connected to coding unit 74. Control unit 73 is connected to coding
unit 74 for switching units and for directing information flow. Other
peripheral equipment can be connected to coding unit 74 through
control unit 73. For example, a video terminal 80, a communications
link 81 to wires, cellular, wireless, fiber optics, etc., an encryptibn unit 82,
a speaker identification unit 83, an auxiliary instrument interface unit 84
with a video camera 85 connected thereto, a printer or fax 86, or a loud
speaker 87 can all be connected to control unit 73. Such a system makes
it possible to record and process speech information, to code the
information, and to use this coded information for applications such as
forming language codebooks, speech recognition, speech synthesis,
speaker identification, vocoding, language identification, simultaneous
translation, synchronization of speech with video systems and other
instruments, low bandwidth coding and encryption, speech correction
and prosthesis, and language learning.

The system represented in Fig. 8 can be simplified and
miniaturized for special applications. For example, Fig. 20 shows a
portable, specialized version for vocoding because it obtains EM sensor
plus acoustic information, processes it, codes it, and sends it into a
transmission system that carries the information to a similar handheld
unit for decoding and synthesizing of speech for the listener.

Deconvolving the Vocal System Excijtation Function:
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This method has been demonstrated using the EM glottal
opening (i.e., vocal fold) area information and acoustic information
measured for one or several sequential speech time frame periods to
deconvolve the vocal system volume air flow source function from the
measured acoustic speech output from a human speaker. Figures 9A,B
show raw acoustic microphone and glottal motion data. The Fourier
transforms of the data can be obtained and are shown in Figures 10A,B.
The numerical representations of these two functions allow the user to
obtain a numerical representation (i.e., a complex number coefficient
representation) of the transfer function representing the acoustic
filtering of the human vocal tract during the time frame or frames. The
deconvolving of the excitation function from the acoustic output can be
accomplished using real time techniques, time series techniques, fast
Fourier transform techniques, model based transform techniques, and
other techniques well known to experts in the field of data processing
and deconvolving. Examples are shown whereby the Fourier transform
of the acoustic output is divided by the excitation function inpht. Figure
11A shows the two tube sound /ah/ derived by using inputs from
Figures 9A,B and 10A,B. Figure 11B shows the transfer function for the
single tube sound /ae/ which is deconvolved using acoustic and vocal
fold data similar to that for the two tube sound /ah/.

By using other EM sensors (in addition to the glottal
sensor) to determine other speech organ location information, with or
without simultaneous acoustic data, one can determine the optimal
transfer functional structure to use for best convergence or for most
accurate fitting of the transfer function. (Herein, functional is used to
mean a specific function form, but with unspecified constants). An
example is to use a lip sensor to report that when the lips are closed,
during the articulation of a nasal phoneme /m/, the transfer functional
form must contain a spectral zero due to the closed mouth cavity.

An example is to choose an ARMA functional (i.e. time
series) description, with an appropriate number of poles and zeros, for
each speech time interval frame. The number of poles and zeros are
chosen to represent the complexity of the model and the desired
accuracy of the resultant coding.
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I(t), and E(t) are the measured acoustic output and EM
excitation respectively. The algebraic input/output relation using the
transfer function H(z) in the z-transform variable is:

I(z) = H(z)*E(z)
where H(z) is given in factored, pole-zero form, by:

H(z)= (z—z)(z-2)(z=2) (2~ 2,) .

(=P )z=P:)z=ps) (2= P)
Equivalently, the transfer function, functional form, can be written in
a/b notation, where a's and b's are the coefficients of the mth order
numerator and nth order denominator polynomials respectively.

Hz)= b, + blz'_‘1+ bzz’_z2+b3z“_33+- --+b,,,z‘_': |
a,+a,z +a,z " +a7 +--+a,z

By using well known deconvolving techniques for the
ARMA functionals one can divide the transformed microphone
acoustic pressure signal by the transformed excitation source signal
(using complex numbers) and thereby obtain the amplitude and phase of
the transfer function. The transfer function is defined by the poles and
zeros, or by the a and b coefficients in the two different ARMA
functionals shown above. Furthermore one can, if desired, deconvolve
the well known lip to microphone radiation function from the
microphone signal to obtain the volume air flow function or transfer
function at the lip and nose orifices. The ARMA approach, together
with appropriate functional definitions of the excitation function and
the acoustic data, makes possible the straightforward and automatic
definition of a speech feature vector each speech time segment. For
example, the algorithm stores the excitation function parameters
defining a triangular approximation of the glottal volume air-flow
versus time, it stores the transfer function using 14 poles and 10 zeros,
the time frame duration, the prosody, some useful acoustic features, and
the control values for subsequent speech technology purposes. For each
of the functional forms, the information can be stored as a real time
function, as a transformed function (e.g. Fourier transform) or as a
mixed function as needed.

The feature vector information for each speech time frame
can be normalized to a referenced speaker’s (or speakers’) feature vector
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for the speech sound spoken in the time frame. The normalization
method is to compare measured (and processed) vector coefficients to
those from both the user and from the reference speaker. Those of the
reference speaker have been recorded during earlier training sessions.
Normalization also removes variations in the interaction between the
EM-sensors and the individual qualities of each speaker, as well as
variations from one unit of equipment to another. In addition, the
continuous value-range of each individual’s coefficients, which
represent a vocal articulator’s range, can be quanitized to a smaller
number of values. The “quantized” values are chosen such that a
change, from one quantized coefficient value to the next, represents a
desired user-distinguishable effect on the application. An example is
that each quantized coefficient value represents a just-discernible change
in a synthetic speech sound. These methods, described below, make
possible the formation of speaker independent featured vectors for each
speech segment. The coefficients in each a vector can be time-length
independent, pitch normalized, rate normalized, articulator amplitude
normalized and quantized, and they contain important aspects of the
acoustic information. The methods described herein, make possible
great improvements in speech coding because of the completeness of the
vocal system information, the accuracy of coding the speech, the speaker
and instrument independence, and the computational simplicity of the
associated algorithms.

f Ti me Definiti v r Formation:

For a male speaker saying the sound unit /ah/ extending

over a time segment of 300 ms, the speech acoustic sensor and the vocal
fold signal from the EM sensor were sampled at 11 kHz. Figures 9A and
9B show real time acoustic and glottal amplitude versus time signals,
respectively. A transfer function was computed every 10 ms with a 32
ms Hamming window. Complex spectra, using both acoustic and glottal
motion channels, were obtained using a 256 point FFT (Fast Fourier
Transform). An ARMA model was used to best fit the input and output
data in a least mean squares sense. Fourteen poles and ten zeros
achieved the best fit. Such ARMA coefficients contain both magnitude
and phase information. Knowledge of the ARMA coefficients allowed
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the construction of a feature vector describing the sound /ah/ for each 10
ms speech frame. Those essentially-identical speech frames were
combined into a 300 ms multi-pitch-period speech time frame (i.e., thirty
speech frames, each 10 ms were joined into one multi-time speech
frame). The frequency response of the acoustic output and excitation
input functions are shown in Fig. 10A,B respectively; and the computed
transfer function amplitudes are shown in Fig. 11A. A similar process
was used to generate the transfer function amplitudes for the sound
/ae/, which are shown in Fig. 11B.

The feature vector shown in Fig. 12A for the sound /ah/,
was constructed using a total of p feature vector coefficients, 1 through
Cp, to describe the processed data. In this example, C1 is used to describe
the type of transfer functions used, e.g. "1" means the use of an ARMA
functional in the “pole” and “zero” formulation; C2 describes the
number of “poles” and €3 describes the number of “zeros” used for the
fitting; c4 indicates the kind of speech unit being spoken, e.g. “0” means
isolated phoneme; 5 describes the type of connection to a preceding
acoustic sound unit to be used, e.g. “0” means a connection to the silence
phoneme is needed; Cg describes the connection to the following unit,
e.g. “0” means a connection to a following silence phoneme is needed;
C7 describes the 300 ms multi-frame speech segment envelope; Cg is the
pitch (e.g., 120 vocal fold cycles/sec.); and €9 describes the bandwidth of
the fundamental harmonic. Other feature vector coefficients that
describe the relative ratios of the 2nd through the 10th harmonic power
to the first harmonic, are taken from the power transform of the vocal
excitation (Fig. 10B). In addition the fall of the harmonic excitation
power per octave, above 1 kHz, can be described by a line with
-12db/octave negative slope. The “pole” and “zero” coefficient data (Fig.
12B) are shown and stored as appropriate coefficients in the vector in
Fig. 12A. The last coefficient cp is the symbol for the sound, and the next
to last cp.1 is acoustic information from a CASR or similar system which
is the acoustic energy per frame. If the user desires to use the alternative
formulation of the ARMA transfer functional, the “a” and “b”
coefficients can be used (see Fig. 12C).
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An alternative approach to describe the feature vector for
the “long” speech segment /ah/ is to perform Fourier transformations
each 8.3 ms (the period for 120 Hz excitation), and to join 36 individual
pitch period frames into a 300 ms long multiple frame speech segment.
A second alternative approach would be to take the Fourier transform of
the entire 300 ms segment, since it was tested to be constant; however
the FFT algorithm would need to handle the large amount of data.
Because of the constancy of the acoustic phoneme unit /ah/, the user
chose to define the 300 ms period of constancy first, and to then process
(i.e., FFT) the repetitive excitation and output acoustic signal with a
convenient 10 ms period 30 times, and then average the results.

As a test (see Section below on Speech Synthesis) a
synthetic speech segment was reconstructed from information in a
vector like the one shown in Fig. 12A. The vocal fold excitation
function was first reconstructed using the harmonic amplitude and
phase information to generate a source term over an interval of 100 ms.
The excitation function was sampled at 11 kHz or higher. The time
sampled sequence was used to drive the ARMA model specified by a
difference equation with poles and zeros. The output of the ARMA
model was used to reconstruct the speech sound /ah/ as shown in the
section on Speech Synthesis (see Fig. 19), and a pleasing sound, /ah/, was
generated and heard by the user.

Applications of Preferred Embodiment:

The procedures to define speech time segments and to form
feature vectors allow many applications. First, the user-speaker or other
speakers, who serve as references, are asked to speak into a sensing and
recording system, such as are shown in Figs. 3A or 3B. Feature vectors
are formed for all single unit sounds in a language (e.g. syllables,
phonemes, PLUs, and acoustic speech units) and for as many
multisound unit sounds (e.g., diphonemes, triphonemes, words, and
phrases) as are needed by the user for the application. The identified
feature vectors, for the speech segment, can be normalized and
quantized as needed, and are stored in a codebook (i.e., library). The
identification of the stored feature vectors can be done in several ways.
They can be labeled by the frame position in a time sequence of frames
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or be labeled by a master timing clock. They can be labeled using known
labeling of each feature vector with user provided acoustic speech unit
names (e.g. Fig. 12A, last coefficient, Cp = ah, describes the phoneme
/ah/). They can also be automatically labeled using speech recognition
to add the missing acoustic speech unit label to the feature vector for the
speech segment. Because of the direct relationships between speech
organ positions, their rates of motion, and the sound units produced,
the methods described herein provide a more fundamental
parametrization of vocal system conditions during speech than has been
possible before. They make possible simplified but very accurate
descriptions of single acoustic speech units, as well as descriptions of
acoustic speech units that include multiple phonemes such as diphones,
triphones, whole words, and other well known combinations.

Once the speech segments are identified and stored, many
applications are possible. They include speech recognition, speech
synthesis, vocoding for telephony, speech prosthesis and speech
correction, foreign language identification and learning, and speaker
identification. For speech recognition, the user can perform direct
phonetic-template matching with previously stored feature vectors in a
library for the purposes of automatic speech unit identification.
Similarly, the user can use Hidden Markov Models, or neural networks,
or joint or exclusive statistical techniques for the identification of one or
several consecutively formed feature vectors using previously stored
information. For purposes of speech reconstruction (i.e., speech
synthesis) the coding procedures make possible the characterization of
any individual speaker’s sounds. Then, using methods for accurate
synthesis of each speech segment, many speech segments are joined
together. Synthesized speech can be altered as desired. Speaker
identification and language identification are made possible because the
speech coding reflects the specific properties of each user and the
properties of the language the user is speaking.

The preferred method is based upon air volume flow
through the vocal tract as the independent variable and air pressure as
the dependent variable. An EM sensor is positioned in front of the
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throat at the location of the vocal box (i.e., larynx). It measures the
change in EM wave reflection from the vocal folds and surrounding
glottal tissue as they open and close. The user can determine the
relative volume of air flow through the glottal opening during the
voicing of each voiced acoustic speech unit. This allows one to measure
and generate, in an automated fashion, an accurate voiced speech
excitation function of any speaker and to define the speech time frame
interval or intervals during which this function provides a constant,
periodic repetitive excitation.

One demonstrated method is to measure the change in EM
wave reflection level from the glottal region as the vocal folds open and
close using a “field disturbance” EM sensor optimized for glottal tissue
motion detection. By time filtering to allow a signal bandpass of
approximately 50 Hz to >2 kHz, the voiced glottal signal is easily
measured and separated from other signals in the neck and from those
associated with slower body motions moving the sensor relative to the
neck. The next step is to associate each reflection condition with the area
opening of the glottis. The area measurement methods are based upon
using known physics of EM wave scattering from dielectric materials, by
using mechanical and physiological models of the glottal tissues, and by
calibration of EM sensors signals against physical air flow and/or
pressure sensors. Then a model of air flow vs area, based upon fluid
dynamic principles, is used. For other applications, depending upon the
coding fidelity of speech needed, the EM sensor can be optimized to
generate more accurate data, wider bandwidth data, and data with
increased linearity and dynamic range.

Generalized methods of obtaining the vocalized excitation
function include procedures where the EM sensor amplitude versus
time signal is calibrated against laryngoscope pictures of glottal area vs.
time and/or air sensor amplitude vs. time signals (e.g., using air flow
and/or air pressure sensors). One method uses a laryngoscope to
optically photograph the area opening, versus time, simultaneously
with the EM sensor measurement of the EM reflection signals. Figs.
13A-F are examples of vocal fold opening and closing images of the
glottal area. Another method is to place air sensors in various vocal
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tract locations to calibrate the EM sensor signals against absolute air flow
versus time signals, or against pressure versus time signals. A direct
functional relationship between an EM-sensor signal-amplitude at a
given time and the associated air flow signal (or its dual pressure value)
at the same time is obtained by measuring both substantially
simultaneously under the needed conditions of use for the speech
vocabulary in the application. These methods are especially valuable for
obtaining the glottal open and closure times and the shape (i.e.,
derivatives) of the air flow versus time signal at the moments of glottal
opening and closure for coding applications needed for speech synthesis
applications. Normalization procedures are used to correct the signals,
and the relationships are stored in a lookup table or codebook, or the
relationships are approximated by model based or curve fitted functions.
Thus for each EM-sensor signal value from glottal tissue, an airflow or
air pressure value can be associated.

Experiments with excitation functions based upon air
volume flow were conducted to validate the methods. The data are
analytically described by using well known fluid flow equations, one of
which was described by Flanagan 1965 ibid on p.41, equation 3.46. The
resistance to airflow through the glottal opening, at constant lung
pressure, is given in equation (1) below. The resistance Rg is equal to the
difference in pressure on either side of the glottal opening (i.e. the
transglottal pressure Pg) divided by the total air flow U (i.e. volume air
flow). For this example, p= air density, 1 = length of glottal slit, and w =
transverse opening of glottal slit (see Fig. 13B). The viscous term in Eq.
(1) is neglected, because it is only needed for small openings, and was not
used for the validation experiments.

(1)  Rg=Ps/U = (viscous term) + 0.875 pU/2(lw)2

(2) Ps =U~= Rg

(3) Ps= 0.875 p U2/ 2(lw)2

(4) U= (lw)*(Ps/0.438p)1/2
The change in the glottal opening area, lw, is proportional to the change
in the EM wave reflection caused by the change in the local dielectric
value as the glottal tissue material moves. This example uses the
approximation that the reflected EM wave-signal changes in proportion
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to the reduction in glottal tissue mass as the glottis opens. This
interpretation works well for the “field disturbance” type of EM sensor
used in the experimental examples. Using knowledge about the shape
of the glottal opening, a further relationship is developed whereby the
tissue mass of the opening is reduced in proportion to w, the glottal
width, in equation (4). Thus measuring “w” directly with the field
disturbance EM sensor (or by using other sensor systems such as a range
gated EM sensor) the needed area value versus time is obtained. Then
using equation (4), the needed volume air flow signal, U, versus time is
obtained from the area value, lw. Figures 14 A,B show an
experimentally obtained acoustic signal and the associated EM sensor
signal from glottal tissue motions. Using the relationships just derived
between the EM sensor signal and the volume air flow, U, and assuming
constant transglottal pressure, Pg, the signal in Fig. 14B describes the
relative volume air flow, U, versus time.

The simplified analytical approach, used above for
modeling the air flow resulting from EM sensor measurements of the
glottal tissue motions, is employed to demonstrate the effectiveness of
having excitation function data, the clarity of the timing information,
and the directness of the deconvolving process. The experiments
assumed constant lung pressure and constant transglottal pressure
during each speech frame in this description of a short speech segment.
For most cases relative changes in air flow, U(t), are sufficient, and
slowly changing lung pressure does not matter. However, if lung
pressure is needed, an EM sensor can be employed to measure the lung
volume change or diaphragm motion to determine relative lung
volume change. In the cases of changing transglottal pressure over the
needed measurement periods, methods are described below. In
addition, the change in the amplitude envelope of acoustic speech
generated over several glottal periods can be recorded in a feature vector,
and provide a measure of relative change in air flow and thus in
excitation amplitude. Such amplitude changes provide important
prosodic information for speech recognition, speech synthesis, and are
especially valuable for speaker identification procedures where
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individualized intonation of identical spoken phrases is very
idiosyncratic.

The procedures used volume air flow as the independent
variable. However EM sensors optimized to sense the condition of
other glottal tissues, as they respond to changes in volume air flow or to
local pressure, can be used and their responses can be fed into an
equation (i.e., algorithm) which will provide a volume or a pressure
versus time vocalized speech source function for use in coding
procedures.

w Correction - Trans- 1 Pressure Variati

It is known that for most conditions, the glottal opening is
a high impedance air flow orifice, meaning that the glottal impedance is
substantially higher than the following post glottal impedance values.
In this approximation, post-glottal vocal tract changes do not affect the
transglottal pressure and the air flow through the glottal orifice.
However, in more realistic approximations, such air flow changes can be
important. The user may wish to describe, more accurately, the voiced
excitation function, and may wish to use one of the following methods
employing EM sensor signals plus noted algorithmic procedures. While
the above model of the air flow through the glottal orifice assumed
constant pressure on both sides of the vocal folds (i.e., constant
transglottal pressure), the effects of a postglottal pressure change during
the speech time frame can be estimated using well known
approximation techniques from electrical analogies and from physical
principles, or can be measured using tissue motions sensitive to local
pressure. These pressure corrections can be important because, from
Figure 16, when the post glottal pressure P] (represented as voltage V1)
becomes a significant fraction of the lung pressure Po (represented as
voltage Vo), then the use of glottal area to define volume air-flow
function, U, breaks down. An improved expression with the necessary
corrections must be used for applications where the highest quality
excitation function characterization is needed, e.g. during “obstruent”
articulation.

By using the EM-sensor for glottal motion, in a high
sensitivity mode, the user can measure low amplitude vocal-fold tissue
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motions (e.g., vibrations) that are known to be caused by air flow
pressure changes. Such pressure fluctuations are caused, for example, by
backward propagating acoustic signals. Vibrations that affect the glottal
opening can be distinguished from other surrounding tissue vibrations
being sensed by the same EM sensor. Fig. 14B shows examples of such
vibrations which slightly modulate the peak envelope-amplitude signal
of the glottal-opening versus time signal. These are known to be
associated with acoustic pressure waves, because when the low
frequency glottal envelope is electronically filtered away, leaving the
higher frequency vibration signals, the latter can be amplified and sent
to a loud speaker. The broadcasted signals are recognizable as being
nearly identical to the acoustic speech recorded by the microphone.
These signals are measured to be small, and calculations describing the
magnitude of these effects also indicate them to be small in most cases.
In applications where high coding fidelity is important and where the
compliance of the glottal tissue is needed for mechanical models or for
speaker identification, the following methods are used to provide the
needed additional information. Seven methods are described for
accommodating the variations in the glottal-air flow versus time, due to
transglottal pressure changes. They are used to form improved
vocalized excitation function descriptions over the defined time frames
of interest:

1) Make no changes to the glottal opening signal, even
though it is known that the air flow model is being perturbed by changes
in the transglottal pressure. Form a numerical approximation of the
volume air flow function vs. time assuming constant transglottal
pressure. Deconvolve the volume air flow function from the acoustic
signal. Using an appropriate transform functional, find the numerical
coefficients describing the transform function for the time frame.
Construct a feature vector for the time frame, using the uncorrected
excitation function, the related transfer function, and measured acoustic
signal parameters (as well as other coefficients described below under
feature vector formation). The three speech functions used in this
method, E(t), H(t), and I(t) are together self-consistent. They can be used
for real time feature vector formation and time frame definition, as well
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as to generate the needed application specific codebooks realizing that
many of the feature vector parameters (and thus the codebooks) are
imperfect but they are all self-consistent. For many applications, feature
vectors generated using this method are good enough.

2) Using physiological data of the individual speaker (or
using an average human vocal tract) together with an air flow speech
model of the transfer function, calculate the post glottal pressure from
the impedance of the transfer function looking from the glottis forward.
This procedure is well known to experts who model air flow and
pressure in speech tracts. (An additional EM sensor to measure various
vocal tract organ positions can be used to provide data to aid in choosing
a transfer functional and its consequent impedance). Use this
impedance to make a first order correction to the transglottal air
pressure and thus a correction to the air flow obtained from Equations 1-
4 above. Use the corrected volume air flow to form a corrected
excitation function feature vector.

3) Remove post-glottal pressure induced vibrations of
glottal tissue and nearby tissue from the EM sensor signal, and therewith
from the associated model of volume air flow versus sensor signal. Use
one of two related methods. Method 3A) Filter the raw EM sensor
excitation signal using transform or circuit techniques to remove the
acoustic pressure induced higher frequency noise, but preserve the
needed low frequency excitation function shape information for model
generated values of volume air flow and for subsequent feature vector
formation. Method 3B) Use the tissue vibration signal from the EM
sensor and the acoustic output (corrected for timing delays) to determine
the backward acoustic transfer function. Divide the Fourier transforms
of the vibration signal by that of the acoustic signal, and store the
numerical (or curve fit) transfer function information in memory for
recall as needed. Next, for each time frame, use the backward transfer
function to calculate the glottal tissue vibration level associated with the
measured output acoustic signal. Then subtract the backward
transferred acoustic signal from the EM-sensor generated and processed
signal, to obtain a “noise free” excitation function signal. This signal
represents a backward traveling acoustic sound wave that induces
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mechanical vibrations of glottal tissue and nearby air tract tissues in
directions transverse to the air flow. This acoustic wave has little effect
on the positions of the vocal fold edges, and thus it does not affect the
actual volume air flow, U. However, certain EM sensors do measure
this noise, and it shows up on the EM signal describing the excitation
function (see Fig. 14B for an example). This noise level is found to be
speaker specific. For high fidelity, speaker independent excitation
function coding, such vibration signals mixed with the gross air flow
values are undesirable.

4) Detect glottal tissue or nearby tract tissue motions that
are transverse to the air flow axis and that are proportional to local
pressure. Use, for example, a range gated EM sensor, optimized to
measure the motions of pressure sensitive tissue, in directions
transverse to the air flow axis. Calibrate using simultaneous signals
from an EM sensor and from an air pressure sensor located near the
pressure sensitive tissues. Use the EM sensor measured pressure, in
each time frame, to determine air flow corrections in Equation (4).
Correct those air flow values, due to post-glottal pressure variations that
exceed the error-limits (user-defined) of the constant transglottal
pressure approximation used in Equation (4).

5) Remove EM sensor measured noise on the glottal
opening signal, by removing all signals not consistent with the
mechanical equations of motion of the vocal folds (using known models
such as those in Schroeter, J., Lara, J. N., and Sondhi, M. M.,"Speech
Parameter Extraction Using a Vocal Tract/Cord Model," IEEE, 1987). Use
EM sensors to measure and set the constants in the physiological model
functions describing an individual’s vocal fold motions, as described
below in the section on physiological models. Use well known Kalman
or other model based filtering techniques to filter signal contributions
inconsistent with the model.

6) Insert an air flow sensor (and/or a pressure sensor) in
the post glottal air tract and, using essentially simultaneous EM sensor
signals, calibrate changes in transglottal air flow (and/or pressure) that
are inconsistent with the model shown above in Equations 1-4, or for
other models of air flow versus EM sensor signal. During training
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sessions, obtain this data for the vocal tract configurations and for the
frequencies where the effect is measured to be important for the
application at hand. Then form a table lookup or a curve fit to associate
each EM sensor signal value with a measured air flow value (and/or
pressure value). During the actual speech application of the methods
herein, obtain the EM sensor signal of glottal tissue motion. Associate
the sensor signal with model values of uncorrected air flow or pressure,
and then correct the air flow and/or pressure values as follows: 6A) Use
the table of EM sensor versus pressure data to correct each post glottal or
transglottal pressure estimate in the preferred model approach (e.g.,
Equations 1-4), or 6B) Use the table of EM sensor versus measured
volume flow to directly correct each raw value of the air flow excitation
function with a corrected value on a point by point basis. Describe the
corrected pressure or air flow signals as amplitude versus time, or as
Fourier amplitude and phase vs. frequency in transform space.

7) Change the model to make pressure the independent
variable in the mathematical equations that describe the speech tract (for
a circuit model example, see Figure 17B). Make volume air flow the
dependent variable. The interchanging of voltage and current (i.e.,
pressure and volume air flow) between being the independent and the
dependent variable in circuits and mathematical analogs is well known.
See Figures 16, 17A, and 17B. Construct a table of EM sensor signal
values versus measured pressure, for the range of vocal articulator
conditions needed in the application as described in paragraph 6) and/or
4) above.

In summary, the algorithms obtains the excitation
function, E(t), for each speech time frame, corrects it to the degree
needed by the application by one of the above seven methods. The next,
described below under the section on transfer functions, is to
deconvolve it from the acoustic output to obtain the transfer function
for the speech time frame and for the application. Experiments have
validated methods, 1), 3A) and 6) above. Method 1) has been used to
generate sufficiently accurate feature vectors for several speech
recognition and speech synthesis applications. Method 3A) has been
used to remove high frequency noise from the vocal fold area versus
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time signal and method 6) has been used to calibrate an EM sensor
against vocal tract air flow.
F . f Voiced F v .

The volume air flow function data provides, for the first
time, a valuable description of the human voiced excitation function
during each glottal open/close period of voiced speech. Most
importantly, it enables the user to obtain the exact shape of the air flow
vs. time and the duration of the vocal fold closure time (i.e., sometimes
called glottal “zeros”). Figures 14A,B show annotated experimental data
of measured glottal openings versus time. Typical triangular-like pulse
shapes are seen. The sequence of individual pitch periods (i.e. single
period speech time frames) are essentially all the same; thus a multi-
time frame feature vector is easily formed. Secondly, this data shows a
time offset between the acoustic signal and the EM sensor signal. This is
caused primarily by the time of flight difference in timing between an
EM signal reflected from the glottal tissues and the much slower acoustic
signal which travels a longer path from the glottis, out the mouth/nose
to the acoustic microphone. If timing corrections are needed, calibration
procedures can be employed using laryngoscopes, air flow or pressure
sensors, EM sensor calibration procedures, and/or accurate time
measurements.

The glottal air flow (or pressure) amplitude vs. time can be
used and coded in a variety of ways. They include describing the real
time amplitude versus time interval, taking the appropriate transform,
and/or approximating the shape by appropriate functions such as
polynomials, a one-half sine cycle, piece-wise polynomials such as a
triangle, and other similar functions. One example of coding the
excitation function for minimum bandwidth transmission is to measure
and store the excitation function feature vector as the parameters of a
triangular open/close glottal area function versus time. It is described by
the pitch period, the fraction of the period the folds are open (using the
convention that the glottis opens at the start of the pitch period), and the
location in the period of the peak opening and its magnitude (the peak
amplitude is normalized). This simple description is more accurate
than many presently used excitation functions and, for this example, is
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described by only 3 numbers of 4 to 8 bits each. Furthermore, if several
periods are measured to be “constant” in pitch period duration and
acoustic output, the sequence of such periods can be represented by the
single period plus one more number describing the number of periods
of constant acoustic output, defining a multiple pitch period time frame.

A more complex excitation function feature-vector
formation approach is to take the Fourier transform of the volume air
flow vs. time over one or more glottal periods during which the acoustic
speech units are constant and repetitive. An example is a long spoken
/ah/ phoneme that is vocalized over a 0.3 sec duration. The feature
vector and time frame are formed to describe the excitation function
over a 0.3 sec time duration of substantially constant speech. For
example, the user can record the frequency location of the highest
amplitude signal (which is the first harmonic) that is the pitch or pitch
period. In addition, the user can record the fractional amplitude levels
of the higher harmonics compared to the fundamental harmonic, the
phase deviation of the higher harmonics from the fundamental, and the
bandwidth of the fundamental. Higher harmonic (e.g., where n wg > 10
0o) amplitude intensity relationships to the fundamental can be
modeled knowing the mechanics of the vocal folds or by recording the
experimentally measured rate per octave of fall, usually -12db.

Multi-time-frame feature vectors are formed by testing for
constant or slowly changing waveform signals over several voiced
speech periods. Constant means the acoustic and excitation amplitudes
vs. time are nearly identical from one frame to the next, with nearly
identical being defined as the amplitude in each time interval being
within a chosen fractional value of a defined standard. This degree of
constancy to a standard can be easily defined by the user ahead of time
and automatically employed. The capability of this method to define
constancy over one or more speech time frames using automated
procedures is valuable because it enables economy of computing and
increased accuracy of the functional descriptions. The reason is that one
needs to only do one computation, using several speech frames with
more repetitive amplitude data in contrast to performing a separate
computation over each and every speech frame.
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In addition, the user can define a slowly changing function
that describes the change in volume-air-flow (or pressure) excitation
over several speech time frame intervals. Examples of decreasing pitch
periods occur during syllable emphasis or during a question. A feature
vector can be formed over a time frame of several pitch periods, which
contains the basic excitation function constant from a single period time
frame together with one or two numbers that describe the functional
change over the defined time frames. Fig. 14B shows the slight change
in constancy of a voiced excitation over several speech periods as the
speaker says the phoneme /ah/. This procedure also provides a means
of defining a feature vector based upon deviations from the voiced
excitation function of an average speaker or from the stored feature
vectors of a specific speaker. In this case, the feature vector contains the
deviations from average values, not the absolute values. This can be
done in real time or Fourier space, or using mixed techniques.

Figures 9A,B, 10A,B and 11A show data taken by a male
speaker saying the phoneme /ah/ for 36 consecutive glottal open/ close
speech periods, and derived speech functions. These figures illustrate
the amplitude vs. time signals from the acoustic microphone and a
glottal EM sensor (Figs. 9A,B), the Fourier power spectrum of each set of
sensor signals (Figs. 10A,B), and the speaker’s vocal tract transfer
function (Fig. 11A) obtained by deconvolving the data in Fig. 10B from
10A. Using the procedures described below, a feature vector was formed
over a time frame of 300 ms, in which the descriptors of the excitation
function were taken from the Fourier transformed glottal function in
Fig. 10B. The feature vector formation process is illustrated in Figures
12A,B. Experiments using data, as illustrated in Figs. 9A,B, show that
the computation time to obtain pitch values, using the methods herein,
is five times faster than by using conventional acoustic processing
techniques, and the pitch values are more accurate than conventional
acoustic-based techniques by over 20%.

Master Timing:

The method of measuring the glottal open-close cycle
allows the user to define master timing intervals or “frames” for the
automation of many speech technology applications. In particular, it
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allows the vocalized excitation function periods to be the master timing
intervals for the definition of time frames in the processing steps
described herein. This approach allows the user to define the beginning
and end of a glottal open/close cycle, and it provides a well defined
method to join the information from one such cycle to the next cycle. It
enables the concatenation of the information obtained in one speech
time frame to be joined to that obtained in the next speech time frame.
Figures 14A,B are illustrations of master timing, where each time frame
is defined as one glottal cycle (i.e., pitch period), and the associated
information is measured and labeled. Fig. 15B shows a sequence of
single pitch period speech time frames for the spoken word “LAZY”, and
Fig. 15A shows the simultaneously measured acoustic information. One
can define absolute pitch, the time frame duration, and characterize the
timing information and store it as part of the speech frame feature
vector which describes the acoustic speech unit spoken during the time
frame. The cases when unvoiced speech segments occur are discussed in
the section on unvoiced excitation.

The use of the glottal time period as the master timing
signal allows the user to define time frames consisting of several glottal
periods. See Figs. 14B and 15B for illustrations. The user sets
algorithmic criteria to define “constancy” of the speech features being
measured in order to determine how long the voiced speech time frame
lasts. Then the algorithm measures how many pitch periods were used
during which the “constancy” of feature values existed which are being
used to describe the acoustic speech unit just sounded by the speaker. In
the example above, the algorithm decided that 300 ms of constant
sounding of the phoneme /ah/ took place. In this example, one of the
“constancy” variables measured, and determined to be sufficiently
constant, was the repetition frequency of the 36 glottal open/close cycles.
The algorithm then defined a feature vector that described the time
frame duration, the excitation function amplitude versus time for one
period, and other information as shown in Figs. 12 A,B. Such a feature
vector describes the acoustic speech unit, to the degree needed by the
user, for the entire duration of the time frame. Because of the multiple
glottal periods, the algorithm can average information obtained over
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one or several of the included pitch periods, it can measure small period
to period feature coefficient variations (e.g., pitch period variations)
from the average which are useful for speaker identification, and it can
use Fourier (or other) transforms to determine the voiced excitation
function over as many or as few pitch period intervals as desired (or as
many as the Fourier transform algorithm allows).

In the case that the speech changes from voiced to
unvoiced, the last glottal open/close period of the voiced speech
sequence has no “next” glottal cycle to use to define its end of period. In
one approach, the algorithm continually tests the length of each glottal
closed-time in each time frame for excessive length (e.g. 20% longer than
the preceding glottal period closure-time). If the period is texted to be
too long, the algorithm terminates the period and assigns, for example, a
glottal-closure time-duration equal to the fractional closure time of the
glottal function measured in the preceding time frames.

This method of defining constancy of speech over several
glottal periods saves computation time and storage space in the
computing processors and memories needed for many applications. It
also allows the acoustic speech (and other instrument outputs) to be
timed in a speech time frame along with other feature vector
information obtained using the above timing procedures. For many
examples herein, the feature vector is timed by the start time of the first
glottal period provided by a master clock in the processor and its
duration is defined by the number of constant glottal periods. This
process automatically results in significant speech compression coding
because feature vectors defining periods of constancy, as defined herein,
can be shortened to one glottal period, plus a single number describing
the number of glottal periods used.

The procedures above allow the definition of a time frame
and the formation of feature vectors in which some of the coefficient
values are slowly and predictably changing over a sequence of glottal
pitch periods. An algorithm can define a time frame, over which slow
changes in feature values (i.e., coefficients) take place, as follows. It
measures the change in the coefficient value (e.g., pitch period) and fits
the sequence of changes over several glottal cycles to a predefined
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model. If the values do not fit the model, then a time frame with one or
more slowly changing feature vector coefficients is not formed. If the
coefficient values change too much, beyond the allowed range, an end of
the time frame is defined. For example, a linear decrease in pitch period
by 0.5 ms per cycle might be measured over 5 sequential glottal cycles, as
a speaker “inflects” the pitch during the sounding of a single phoneme,
when a question is asked. The algorithm also examines the other
feature vector coefficients being measured during the time frame, but
not being examined for slow change, to be certain that they remain
sufficiently constant as demanded by the algorithmic definition of a
speech time frame.

An example of such timing is shown in Fig. 14B where the
first speech frame time period is 8.5 ms, the second is 8.0 ms, the third is
8.0 ms. A master clock in the processor times the onset of the first frame
to be at 3.5 ms, the second at 12.0 ms, the third at 20.5 ms. The pitch
deviations, referenced to the first frame, are -0.5 ms/ frame referenced to
the first frame. The constant time offset between the fast closure of the
glottal folds and the onset of the acoustic set is 0.7 ms, which is caused
primarily by the differences in the distances and the speeds of signal
travel between the EM sensor signal and the later arriving acoustic
signal at the microphone. Such a time offset value does not influence
the Fourier deconvolution process, as used in these examples. Another
offset number is defined as the acoustic/EM frame-offset (or AEM
number) by this method. It has value for recording the acoustic signal
timing with respect to the EM signal timing. It allows the user to define
the zero time of the acoustic signal with respect to the speech frame start.
This characterization has value for speech to lip synchronization
applications where sound to lip or other facial motion synchronization
is required.

An example of a multiple pitch period time frame can be
defined using measured data shown in Fig. 14A for the phoneme /ah/.
By testing that the three measured pitch period changes referenced to the
first pitch period, are 0.5 ms or less, and defining that a 0.5 ms change is
constant enough for an application then a multi-period time frame can
be formed. The other information in the sequence of feature vectors
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must also be tested, and assuming it is also constant enough (for
example the acoustic information in Fig. 14A is constant enough), a
multi time frame can be formed into one feature vector describing a
time frame 3 glottal periods long. One particular method for defining
the pitch of the 3-pitch period vector is to use the average pitch period
over the three frames, which is 8.16 ms; the average pitch deviation can
also be measured and stored. Also in this example, the speaker was
slowly raising his pitch (i.e., the pitch period shortened by 0.5 ms) as
commonly occurs when stressing the end of a sound. This change can
also be identified by the algorithm and stored if desired.

Using these methods the user can associate with each
feature vector the start, duration, and stop times of the time frame using
a continuous timing clock in the processor. The user can also store the
absolute and relative timing information of the EM sensor information
relative to other information (e.g., the acoustic signal) as part of each
feature vector. Such timing information can be used to subsequently
reconstruct the acoustic and other information in the proper speech
order from the information contained in each single or multiple frame
vector. In cases where the acoustic signal from the combination of the
excitation and transfer function is known to last longer than a single
glottal period speech frame, the transfer function information obtained
allows the user to identify the part of the acoustic waveform that extends
into the next speech period. The user is able to use such acoustic signal
amplitude information in the time frame under consideration as
needed.

The methods herein allow the user to conduct additional
simultaneous measurements of speech organ conditions with
instruments other than EM sensors. The methods herein allow the user
to define “simultaneity” using the master timing information
procedures described above for such measurements as video, film,
electrical skin potential, magnetic-coil organ-motion detectors, magnetic
resonance images, ultrasonic wave propagation, or other techniques.
The methods herein allow synchronization, and incorporation into the
feature vector for each time frame as desired, of such instrumentation
output.
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Unvoiced Excitation:

Using the general methods described above for voiced
speech, one can determine the unvoiced excitation functions of the
speaker and define unvoiced transfer functions, as well as speech frame
timing and feature vector coefficient values. The method uses the
algorithmic techniques for voiced/unvoiced detection that are described
in the copending patent application Ser. No.08/597,596, filed 2/6/96.
This algorithm uses EM sensors, especially the vocal fold EM sensor
signals, to determine that acoustic speech is occurring without glottal
open/close motions. Speech without glottal cycling is unvocalized
speech.

The user selects (automatically or manually) an appropriate
modified “white noise” excitation function that has been validated by
listeners, by analysis, or derived using deconvolved functions as
described herein. Such noise functions are characterized by their power
spectrum per unit frequency interval. For excitation function feature
vector formation, either a pattern (or curve fit) of the spectrum can be
stored, or a numerical value can be stored which represents one of the
small number of unvoiced excitation spectra needed for the application.
Other EM sensors can be used (if available) to determine the source of
the vocal tract constriction (e.g., the tongue tip, lips, back of tongue,
glottis) and a modified white-noise excitation source appropriate to the
air turbulence source, with proper noise spectrum, can be chosen. Once
the source is defined, the chosen excitation function transform is
divided into the acoustic output transform to obtain the transform of
the transfer function of the vocal tract. The process to obtain the transfer
function is identical to methods described above for generation of voiced
transfer functions.

VOj i nd F Vectors:

Unvoiced excitation functions can be obtained by using the
methods described above in the section on processing units and
algorithms to deconvolve the transfer function from the output signal
to obtain the excitation function. The user first asks a speaker to speak
phoneme sequences in a training session, using unvoiced phonemes,
during which an acoustic signal is recorded. The user then uses general
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knowledge of the speaker’s acoustic tract, obtained from the literature or
by using transfer functions, obtained by using voiced versions of the
identically formed unvoiced phonemes. An example is to use the
transform function from the vocalized phoneme /g/ to obtain the
excitation function for the unvoiced phoneme /k/. The user performs a
deconvolving operation to obtain the transfer function by removing the
tract influence from the acoustic signal. The user then obtains the
unvoiced excitation function used by a given individual in the
measured speech frame. The user then stores the functional description
for the specific individual, as a set of coefficients in an excitation
function feature vector (i.e., to determine the noise generator spectrum),
either using real time, transform, or mixed techniques. Typical uses of
this and similar functions are for the deconvolving of acoustic output
(during real time speech) to obtain a transfer function for complete
feature vector formation, using processes as described in the section on

feature vector formation. The full or partial feature vector for each

unvoiced acoustic speech time frame is then available for the user
chosen application.

The following three methods can be used for forming
acoustic speech unit time frames when unvoiced speech is being
sounded.

1) The user measures the time duration that an unvoiced
excitation of acoustic speech units (e.g. phoneme or series of phonemes)
is being sounded, during which no “significant” change in the spectral
character occurs. This constancy definition for turbulence-induced
sound is usually measured in frequency space where relative amplitude
changes per predefined frequency intervals can be easily measured. For
this method, “no significant change” is defined by first setting variation
(i.e., constancy) limits within which the transform of signal levels must
remain. Then during speech processing, each appropriate signal, such as
the spectrum of acoustic output and other available EM-sensed organ-
motion signals, are examined to determine if “change has occurred”. A
simple example of “change” is to use an EM-sensed start of glottal
open/close motion to signal the algorithm that a transition to vocalized
speech has occurred, and thus unvoiced speech has stopped being the
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sole excitation. The duration of each unvoiced time frame is defined to
be the total time of constant unvoiced speech, until a sufficient change
in the acoustic or EM sensor signal occurs to signal the algorithm that a
new time frame is defined.

2) A default algorithm is defined to accumulate data as in
1) above for 50 ms (or other user chosen time), and to define a 50 ms
long speech frame and associated feature vector if no change in the
constancy of the feature vector coefficients has occurred. If acoustic
speech or a sufficient organ condition change occurs before 50 ms has
passed, then the frame is terminated and the elapsed time to the event is
the time frame duration. Otherwise, when a time period of 50 ms has
elapsed, the speech frame is terminated and defined to be 50ms in
duration.

3) An average vocalized pitch period of the user, taken
during a training session (or normal speech) using a series of voiced
words and phrases, is used as the default timing period for the unvoiced
speech segments. The unvoiced period can be a non-integer multiple of
such an average-defined time frame duration.

A method of defining slowly varying unvoiced speech is to
analyze the unvoiced acoustic spectra every 10 ms (or user chosen
minimal sampling period) to determine the degree of change per sample
time. If the changes in spectra are slow or of low amplitude, then the
longer time scale spectral variations can be characterized by a few
parameters that characterize slowly varying noise spectral weights, the
shorter term changes can be modeled by a few “dither-rate” spectral
composition parameters, and the overall on-off amplitude envelope by
an on-rate and off-rate parameter. These values, carried with the
fundamental noise spectral values, can be formed into a single feature
vector that characterized a time frame describing a relatively long
segment of unvoiced speech.

i Voi nd Unvoj h;

A small number of speech sounds are generated by using
both a voiced and unvoiced excitation function. An example is the
word “lazy” (see Figure 15) which transitions from a voiced-vowel
sound of the phoneme /e/ (i.e., the “a” in lazy), to the voiced /z/ which
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includes an additional fricative excitation in the oral cavity, and the
word finishes with an /i/ sound. In those cases where two excitation
sources are in play, the following procedure is used. The voiced
excitation is first measured and deconvolved from the acoustic signal.
However, since the Fourier transform of the transfer function still
contains wide band spectral-power caused by the modified white-noise
of the unvoiced sources, it may be removed as needed. Three
procedures are available to detect, process, and code such signals:

1) The transfer function is tested for a noise spectrum
which has an abnormally high frequency pattern showing it is not
caused by normal pole or zero transfer function filtering of the vocal
tract. If noise is detected, its spectral character is used to select an
unvoiced excitation function for storing in the feature vector. Using the
identified source, then a second deconvolution of the transfer function
is taken to remove the influence of the unvoiced excitation function.
The feature vector is formed for the time period and it includes
descriptions for two excitation functions as well as the twice
deconvolved transfer function, acoustic data, prosody parameters,
timing, and control numbers for the application at hand.

2) The voiced excitation function is measured using EM
sensors, and is deconvolved from the acoustic signal. No special test is
used to determine the unvoiced noise spectrum. The resulting transfer
function is fit with a predetermined functional and the nonvoiced
excitation function is incorporated as part of the fitting. The result may
have a higher-than-normal high frequency background in amplitude vs.
frequency space. The coefficients are stored in the feature vector for the
speech time frame. This procedure is adequate for most applications
except those where very high fidelity synthetic speech is required. A
variant on this method is to purposefully incorporate a noise functional
into the transfer functional that is used to obtain a numerical fit to the
deconvolved numerical transfer function.

3) Use one or more additional EM sensors to detect the
conditions of the vocal tract that may lead to a nonvoiced excitation. For
example if EM sensors, measuring the tongue-position, indicate that the
tongue body is closing the vocal tract against the palate behind the teeth,
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the tongue is in a position to cause turbulent air flow. An example is
the unvoiced sound /s/, which with voicing added, becomes a voiced-
fricative sound /z/. By using knowledge of the voiced excitation from
the glottal sensor and tongue location, the algorithm can select the
correct transform and deconvolve it from the acoustic waveform
transform and test for noise presence. The next step is to test the
transform for the noise spectral shape. If present, remove it with a
second transform as in 1) above. This provides an acoustic transfer
function transform, together with excitation function coefficients for
forming a feature vector. This method is valuable because the user may
not need to test every speech frame for the voiced/unvoiced excitation
conditions. Yet, when it occurs, the method accurately performs the
characterization as it is needed.

Transfer Functions:

The excitation of the human vocal system is modified by
the filtering properties of the vocal tract to produce output acoustic
speech. The filtering properties are mostly linear and are understood
(for the most part). They can be described by linear systems techniques,
as long as the necessary data is available. Traditional all-acoustic
procedures do not provide the needed data. The methods herein obtain
the necessary data and process it into very accurate descriptions of the
vocal system for the first time. In addition, the methods obtain the data
rapidly, in real time, and describe the human transfer function by a
small number of parameters (i.e., coefficients) for each speech tract
configuration. Additionally, the methods herein describe aspects of the
human vocal-tract transfer-function that are important for speech
quality but that are not well understood by experts. They enable a
description of rapidly changing vocal tract configurations associated with
rapidly articulated speech. They can obtain both the resonances and the
antiresonances of the speech tract filter function (i.e., the poles and zeros
of the transfer function), and information in real time, in frequency-
space, or using combined descriptions. They also make possible the
description of non-linear response as well as linear response transfer
functions, because the output as a result of input can be stored in tabular
form.
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ARMA technique:

The transfer function can be obtained using a pole-zero
approximation technique called the ARMA (auto regressive-moving
average) technique, which makes use of time series or Z transform
procedures well known to the signal processing community. This
method of speech coding, using ARMA, provides a very convenient,
well defined mathematical technique to obtain the coefficients defining
a transfer function. Such a transfer function describes the vocal tract for
each defined speech time frame. The ARMA deconvolving method
includes obtaining substantially simultaneously, EM sensor and
acoustic information, including amplitude, phase, intensity, and timing.
In particular, the method provides a feature vector describing the
transfer function by using the poles and zeros of the pole-zero ARMA
description for the speech time interval frame or frames being coded.
Alternatively, one forms a feature vector describing the transfer
function by using, as feature vector coefficients, the a and b values of the
a/b value description. (For signal processing references see Oppenheim
and Schafer “Discrete-Time Digital Signal Processing” Prentice-Hall
1984”, or Peled and Liu, “Digital Signal Processing: Theory, Design, and
Implementation” Wiley, 1976). The poles and zeros describe the
locations of the vocal tract filter resonances and antiresonances. The
methods herein provide fundamental information, for the first time,
describing the transmission “zero” frequencies of the vocal tract. The
pole and zero values, or alternatively the a and b values, give the
relative contributions of the resonances and antiresonances of the
human vocal tract to the output acoustic signal.

For example, an ARMA functional was used to select 10
zeros and 14 poles for the sound /ah/, by using a least squares fitting
routine. Figs. 9A,B show first the measured simultaneous acoustic and
vocal fold EM sensor signal. The vocal tract Fourier transform is
obtained by first taking the acoustic transform, see Fig. 10A, and dividing
it by the EM sensor glottal function transform, shown in Fig. 10B. The
deconvolved result is described by a series of complex numbers, or
amplitude and phase values. The transform amplitude versus
frequency, for the time frame, is shown in Fig. 11A. A 10 zero, 14 pole
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ARMA model was then fit to the resulting vocal-tract transfer-function.
Fig. 11A shows the numerical fit of the data to the ARMA functional,
and Fig. 12B shows the pole/zero values that fit the phoneme /ah/. Fig.
11B shows a similar fit to the phoneme /ae/.

A feature vector for the speech time frame, during which a
male speaker said the sound /ah/, was formed by obtaining, processing,
and storing the information needed to characterize the acoustic speech
unit to the accuracy desired, and is shown in Figures 12A,B. The feature
vector includes several types of information. It includes the type of
transfer function used. It indicates whether the segment includes a
single phoneme or multiple phonemes. It provides phoneme transition
information, for example the degree of isolation from previous and
following phonemes. It describes the total time of constant excitation
and counts the number of frames in the total vector. It also includes a
description of the excitation function using the Fourier amplitudes and
phases of the fundamental and the harmonics. This feature vector uses
a predefined ARMA functional based upon the pole and zero value
coefficients shown in Fig. 12B. An alternative functional description for
the ARMA approach could have used the “a” and “b” coefficients,
shown in Fig. 12C. Normalization and quantization methods were not
used to form the feature vector in Figure 12A.

For the first time the user can capture the essence of an
individual speaker’s voice to a very high accuracy, because the user of
the methods herein is able to approximate the actual data to a very high
degree of accuracy. The approximation process is conducted consistent
with the information content in the original signals and consistent with
the numerical methods used in the functional definition processes. The
ARMA method described here allows the user to capture filtering,
resonance and antiresonance, and feedback effects that have not been
previously available to the speech community, but which are known to
be necessary to capture human voices (e.g. especially women'’s and
children’s voices). Examples of structures that characterize an
individual’s voice are known to be associated with complex nasal
structures, non-circular vocal tubes, tissue compliance effects, mucous
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layers, feedback effects on membranes, and other acoustic physiological
interactions.
F ionals:

Once the ARMA functional representation is obtained to
the satisfaction of the user (depending upon the speech application and
market), the user can “freeze” the functional representation for use for
all work in a particular application environment. For example, the 14
pole, 10 zero ARMA functional may be the best one to use for a general
purpose speech recognition application; but a different functional or set
of functionals (e.g., 20 poles and 10 zeros for voiced nonnasal sounds, or
8 poles and 10 zeros for closed mouth voiced nasals) might be better
functional choices for another user’s application. The user could choose
to take data from many speakers of a similar type (e.g. adult male
American English speakers) using a fixed functional, but with differing
pole and zero locations and with differing a and b coefficients reflecting
their physiological differences. For many applications, the user will
choose to average the defining parameters for the functionals and use
them in a reference feature vector for code book formation. The user
could also decide to use a training or adaptive process by which the
system measures key physiological parameters (e.g. total tract length) for
each speaker, and uses these data to pre-define and constrain the
primary poles and zeros for each speaker. Using processes defined
below, these pole-zero values can be normalized to those obtained from
a reference set of speakers.

The user can use the procedures, and through
experimentation define “More-Important” and “Less-important” poles
and zeros in the ARMA expansion (where importance is a function of
the application and value). “More-important” values are fixed by the
well known major tract dimensions (e.g., glottal to lips dimension and
mouth length and area) which are easily identified in the transfer
function data and fit by automatic means. These values may vary from
individual to individual, but their pole and zero positions are easily
measured using the procedures herein. “Less-important” refers to those
pole or zero terms whose contributions to the numerical fitting of the
data are small. (One can use the “a” and “b” coefficients similarly).
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These “less important” (higher order) poles and zeros are associated
with the individual qualities of each speaker, and thus their values are
very dependent upon the special qualities of an individual’s tissues, tract
shapes, sinus structures, and similar physiology that are very difficult to
directly measure. This method of dividing the coefficients describing
the transfer function into “More-Important” and “Less-important”
categories makes it possible to generate feature vectors that are
simplified and useful for communications. For example, only the
“More-Important” values need to be sent each frame and the “Less-
important” values can be sent only once, and used to complete the
feature vector at the receiver end of a vocoder to improve the speaker’s
idiosyncratic qualities. Similarly, only the “More Important” values
need be sent, thereby minimizing the bandwidth needed for
transmission.

Finally one can associate (develop the mapping) from the
ARMA parameters to the parameters that are associated with
physiological, circuit analog, or other models which may be easier to use
for real time computations than the ARMA approach. These other
procedures are described below. This procedure is known to work
because the ARMA “b” coefficients represent the signals reflected from
the pre-defined vocal tract segments, and the “a” coefficients can be
associated with zeros of known and unknown resonances. The signal
reflections from vocal tract segments can be related to reflections from
circuit mesh segments, or physiological tract segments. The engineering
procedures for making such transformations from reflections to circuit
parameters are well known.

The constrained functional method makes use of speaker
training to limit the values of the poles and zeros (or a and b
coefficients) to be near previously measured values. These constraint
conditions are obtained by initial training using phoneme sounds that
are well known to be associated with known vocal tract conditions.
Adaptive training using a speech recognizer can also be employed to
identify phonemes to be used for the definition phase. Physiological
parameters are extracted from the transfer functions of phonemes
chosen for their close association with certain tract configurations. An
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example is to use the voiced phoneme /eh/ which is a single tube tract
from the glottis to the lips; its primary transfer function resonance
location provides a physiological measure of the speaker’s tube length.
With the total length known from the sound /eh/, the sound /ah/
allows the user to automatically define the division of the total tube
length into the two sections from the glottis to the tongue hump. A
series of these procedures are used to determine the dimensions of the
vocal tract. Once these values are known, they can be used to constrain
the ARMA functional variables during each natural speech frame. This
process leads to faster convergence of the method to obtain the feature
vector coefficients, because only a small number of fitting parameters
need be tested against the data from each speech frame. In addition,
these physiological parameters contribute numerical dimensions
describing each individual speaker’s vocal tract which contributes to
speaker identification.

ARMA feature vector difference coding:

The difference feature vector method of coding allows one
to define a feature vector by storing differences in each feature vector
coefficient, Cn. The differences are formed by subtracting the value
measured and obtained in the frame under consideration from the same
coefficient formed during a previous time frame. For minimum
bandwidth coding (also speech compression) the comparison is usually
to values obtained during an earlier frame in the same segment when
the algorithm noted that one or several important coefficients stopped
changing. For the application of comparing a user’s speech to that of a
reference speaker or speakers, the reference feature vectors are obtained
from a codebook using an additional recognition step. This method of
forming such difference feature vectors is valuable because it
automatically identifies those coefficients, cn , that have not changed
from a present frame to a reference frame. Consequently the
information needed to be transmitted or stored is reduced.

If the reference values are predefined for the application, a
complete difference vector can be formed (except for those control and
other non-changing coefficients). Examples of reference speaker’s
feature vectors are those that describe the acoustic speech units of an
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American English male speaker, an American English woman speaker,
or child, or a foreign speaker with a typical dialect when speaking
American English. The identification of the type of speaker makes
possible the selection of appropriate functionals for more effectively
coding the user’s speech. Similarly, the speaker’s own coefficients can be
measured at an earlier time and stored as a reference set for
identification applications at a later time. However if an application
such as minimum information generation, is being used, a “mixed”
algorithmic approach can be chosen by the user, wherein a complete,
new coefficient value is stored in the vector location in the first time
frame it appears, and then in the following sequence of time frames that
show no change or slow change of the coefficient, only a zero or small
change value is stored.

The procedure of forming difference vectors is conducted
on each speech frame. The processor automatically compares the
obtained feature vector to the defined reference vector, subtracts the
differences for each coefficient and stores the differences as a new
difference feature vector. This procedure requires that the reference
procedure be previously defined for the acoustic speech unit vector
under consideration.

The simplest method subtracts the appropriate feature
vector coefficients obtained in the present time frame tj from those in a

frame measured at an earlier time ti-q- Each coefficient difference, ACn,
is placed in the “n” location of the difference vector for time frame t;.
ACn(i,q) = Cn(ti) - Cn(tiq)

In the special case that q=1, and if the coefficient difference Acp is less
than a predefined value, a zero value can be assigned to this nth
coefficient in the difference feature vector, e.g., ACn(i,i-1)=0. Similarly,
differences of vector coefficients from values stored in vectors from any
preceding or following time frame, e.g. tj-q for q<i as well as for g>i, are
straightforward to generate, and, if needed, can be tested for difference
value levels.

For reconstruction, the identically zero value tells a
subsequent application algorithm to look to the first preceding time
frame, e.g. tf with f<i-q, in which the examined feature vector
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coefficient, Cn(tf), is non-zero. Upon finding a non-zero value, the
coefficient value Acq(tf) is substituted for cn(tj) for use by the subsequent
application. If the application algorithm needs absolute values of the
Cn’s, then the full value feature vector must be reconstructed by using
the predefined decisions for first finding the reference coefficient value.
When using the difference vectors, the algorithm adds the difference
coefficient value from the difference vector to the reference coefficient
value to generate the coefficient Cp(tj), in the frame under consideration.

In the application where the measured coefficient vector
values must be compared to those of a reference vector coefficient, two
approaches are possible. Either known speech segments are spoken by
the speaker for which references have been previously recorded, or a
speech recognition step must be employed to first identify the feature
vector under consideration and to then find the associated reference
feature vector. In this way the subtraction of coefficients can occur and
difference coefficients can be used to form a difference vector describing
the acoustic speech unit or units in the time frame.

This method of differences is valuable to minimize the
amount of information needed for storage or for transmission because
many of the vector coefficients will be zero. Consequently they will take
less storage space, computation time, and transmission bandwidth. The
absolute feature vector for the speaker can be reconstructed at a later
time as long as a definition standard for the coefficient zeros (or other
no-change symbols) is known or is transmitted along with the feature
vector, e.g. the identical zero code described above. An example of
importance to telephony is to first store a standard speaker’s feature
vector values, for all phonemes and other acoustic units needed in the
application. These data are placed in both the recognizer processor and
in the synthesizer processor codebooks. Then, whenever an acoustic
speech unit is to be transmitted over the medium, only the unit symbol
and the deviations of the user speaker from the reference speaker need
be transmitted. Upon synthesis, the average speaker coefficients stored
in the receiver, plus the deviation coefficients, form more accurate
vectors for reconstructing the text symbol into speech.
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Another important application is that this automatic
method of determining deviations from standard speakers saying
known sounds, enables algorithms to self adapt the system. When
certain reference sounds are pronounced and certain difference vector
coefficients exceed a predetermined level, the algorithm can trigger an
automatic “normalization” of the speaker’s feature vector to that of a
reference speaker for more accurate recognition or other applications.
Conversely, if the differences become too large, over a short time period,
the algorithm could signal appropriate persons that a personnel change
in the user of the system has occurred.

Electrical Analog of the Acoustic System:

The excitation function and the transfer function may be
approximated as defined above, using well known electrical analogs of
the acoustic system. See Flanagan 1965 for an early, but thorough
description. Figure 16 shows a simplified electrical analog of the human
acoustic system showing an excitation function, a vocal tract transfer
function impedance, and a free air impedance. By fitting the circuit
parameters of the equivalent electrical circuit, each time frame, to the
measured excitation function and transfer function data, automated
algorithms can determine the “circuit” parameter values. The
advantage of this approach is that the relatively small number of types
of human vocal tract resonator conditions (10 to 20) can each be modeled
by a set of circuit elements -- with only the specific parameter values to
be determined from the speech information each time frame.

For example, Figs. 17A,B show an electrical analog of a
straight tube human acoustic system with electrical analog values, e.g.,
the L, C, R’s, which represent the acoustic coefficients of a single tube
system which is used for the acoustic speech sound /ae/. Using the
deconvolving approach illustrated in Fig. 5 and using the transfer
function values in Fig. 11B, the impedance values shown in Fig. 16 and
the circuit values shown in Figs. 17A,B can be determined for the sound
/ae/ using algorithms to fit the circuit values to the transfer function
data. Feature vector coefficients can be defined by using the electrical-
analog transfer function as the functional representation and by using
the electric circuit parameters to represent the transfer function. The



WO 97/29482 ‘ PCT/US97/01490

-62-

parameters are easily fit to the well defined transfer functions because
the methods herein show how to separate the excitation source from the
vocal tract transfer function in real time for each speech time segment.
In addition to the methodology of forming a feature vector, the electrical
9  analog circuit parameter values are useful in describing the

physiological vocal tract values because the L’s represent air masses, the
R’s and G's represent acoustic resistance and conductance, and the C’s
represent air volumes. These physiological parameters can also be used
as feature vector coefficients.

10 For the single mesh circuit in Fig. 17A, the air volume
velocity transfer function between glottal and mouth is given by the
following expression, which includes radiation load:

U, _ _cosh(y,L)
U, cosh(y+vy,)L

where Y and Yr are related to the mesh circuit parameters as given in
15 Figure 17A and are defined as: ‘

NG RORTG), 7= ] G

A 2 3

m
At and Am are the area of the throat and mouth opening respectively,

and k is the wave number of the sound, and a is the radius of the mouth
opening. For the case of a simple tube such that At = A, (i.e., the case of

28  equal glottal and mouth area) the poles of the transfer function are

given by:
S =F(a,L) _(ac+a2(02)+ (2n+1)mc
n = V7Y )
where
3xL
F(aL)= —————
(a,L) 3nL +8a

n=0,1,2,.. (1)
25
The physical parameters in Eq. (1) are: L, the vocal track length; a, the
mouth opening radius; and o, the vocal tract wall resistance. Typical
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numbers are: F(a,L) ~ 0.94; a ~ 5.2e"4 cm~1; and the speed of sound ¢ =
3.5¢4 cm/sec. The low order poles can be determined. They can be used
to constrain the physiological variables using the equations below. The
three physical parameters can be estimated from measurements of the
first two pole locations on the S-plane. They are 1, r1, @9, and @, the
corresponding real and imaginary parts of the first two poles of the
transfer function. Then the three physical parameters can be
determined from the following relations:
21c*|r, —r,|
a= > > (2)
(wl - wo)(wl —Q, )

_ 1 3n’c?
3r (wl - 0)0)

L —8a |. (3)

and

a_l(rl(Bn'L-kSa)_a a),) @)

c 3nL 2Lc
iological

The methods used for obtaining the information described
above can be used to generate a feature vector using the physiological
parameters of the human speaker vocal tract as the coefficients to
describe the acoustic speech unit spoken during the speech time frame.
The transfer function parameters used to define the ARMA models, the
electrical analog model values, and those obtained from real time
techniques described herein, define physiological parameters such as
tract length, mouth cavity length, sinus volume, mouth volume,
pharynx dimensions, and air passage wall compliance. In addition to
the physiological parameters, the feature vectors would contain, for
example, the excitation function information, the timing information,
and other control information.
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One can then use this physiological information as
coefficients of a feature vector, or they can be include in the ARMA or
other transfer functional forms to constrain the coefficient values. For
example, once one knows the tract length from glottis to lips by saying
the phoneme /ae/, one knows the basic resonance of the speaker’s vocal
tract and it serves as a constraint on data analysis by defining the lowest
frequency formant for the speaker.

An example of the data that is available using the methods
herein is to use the pole zero numerical fit to the transfer function data
for the sound /ae/ shown in Fig. 11B. The lowest formant pole, f1, is at
516 Hz, and using the simple expression, neglecting the radiation term,
one finds the vocal tract length:

¢ _3.5¢*cm/sec
4f,  4*516
Similarly, the pole zero data for the sound /ah/ in Fig. 11A provides the
data for the glottis to tongue hump plus tongue hump to lip data.

An important application of the physiological values is that
they provide a method to normalize each unique speaker’s transfer

L= =17cm

function to that of an appropriate average speaker. In this manner, each
formant value, obtained through deconvolving methods herein, can be
transferred to a new value by using measured physiological values and
instant reference values.

Another important use of physiological parameters is to
measure the glottal and vocal fold mechanical properties as phonemes
are voiced. The EM sensor that measures the glottal structure motion,
enables the user to constrain the mechanical values of the glottal
mechanisms. These values include opening amplitudes, spring and
mass constants from the pitch, and damping, and compliance from
sympathetic tissue vibration due to backward propagating acoustic
waves (i.e., low pressure acoustic waves). Special phonemes are chosen
for calibration purposes, such as those with the low post glottal pressure
(e.g., open tube phonemes) like /uh/ or /ah/.

The differences in physiological conditions and in
excitation functions for well known phonemes allow an automatic
identification of several attributes of the speaker. This can be used for
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identification purposes as discussed above, but also can be used to
automatically select the best types of transfer functional forms to be used
to fit each user’s physiology. Examples are to identify gross features of
the speaker vocal tract dimension, e.g. an adult male, an adult female, a
child, and other variations well known to the speech practitioner.
Speech Coding:

The purpose of recording and coding EM sensor and
acoustic information is to use it for specific user defined applications.
The methods herein include processes to define the characterizing
parameters for a variety of physical, engineering, and mathematical
models that are valuable and useful for all EM sensor/acoustic based
speech technologies. They include processing procedures, which include
time frame definition, coefficient averaging, normalization,
quantization, and functional fitting to convert the EM sensor/acoustic
data to form feature vectors. These methods are mostly linear
procedures, but are not limited to linear techniques. Examples of
nonlinear procedures include, but are not limited to, taking the
logarithm of the acoustic data or the transfer function to reflect the
human hearing function, or to compress the frequency scale of the
transformed data in a linear or nonlinear way (e.g., “Mel” or “Bark”
scales) before the functional fitting techniques are used. Such processing
depends upon the application. Feature vectors for appropriate time
frames can be formed by fitting linear or nonlinear functional
coefficients to the processed data, and such feature vectors can be stored
into code books, memories, and/or similar recording media.

The vast amount of data generated by the methods herein,
measured over a wide frequency range for every speech frame, enable
the definition of the coefficients used to fix the functional forms into
functions that fit the data. For example, the EM sensor data shown in
Figs. 9B and 10B for the phoneme /ah/ was generated at 2 MHz and the
simultaneous acoustic data (Figs. 9A and 10A) were digitized at 11 kHz
(using 16 bits). This provides 250 EM data points per acoustic point,
which are averaged to match the accuracy of the 16 bit acoustic data. In
each nominal 10 ms speech frame, this leads to 80 averaged data points
per EM sensor and 80 acoustic data points to define a set of functional
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coefficients. In principle between 80 and 160 unknown coefficients can
be determined. However experts skilled in the art of fitting functional
forms to data know how to use such large data sets to define a smaller
number of coefficients associated with simpler model-based functional-
forms. In particular, the flexibility of the techniques described herein
make it possible to design the EM and acoustic data collection systems
that work well over a very wide range of data accuracy and detail.
- i-Time- Vv

Using the methods herein the user can describe the
excitation function, the transfer function, the speech time frame
parameters, acoustic parameters, prosodic information such as pitch or
amplitude envelope shapes (obtained during one or a series of time
frames), and control information (e.g. types of transfer functionals and
frame clock times). The user can easily assemble this information into a
feature vector for each speech time frame. These individual time-frame
feature-vectors can be joined together to describe concatenated vectors
describing several acoustic speech units occurring over two or more
time frames (e.g. diphoneme or triphoneme descriptors). Such a multi-
time-frame feature-vector can be considered as being a “vector of
vectors”. These multi-time-frame feature vectors can be constructed for
all phonemes, diphonemes, triphonemes, multiphonemes (e.g. whole
words and phrases) in the language of choice. They can be stored in a
data base (e.g., library or code book) for rapid search and retrieval, for
comparison to measured multi-time-frame feature-vectors, and for
synthetic speech and other applications. The capacity to form a feature
vector describing the variations in speech units over many time frames
is valuable because the time varying patterns of the sequences of the
individual vector coefficients are captured by the corresponding
sequence of speech frames. This approach is especially valuable for
storing diphone and triphone information, and for using Hidden
Markov Speech Recognition statistics on defined sequences of many
(e.g., 10 or more) acoustic speech units.

A specific example of describing a long duration, multi-
phoneme speech segment is to “sample” and define the feature
coefficients every time a change in coefficient condition is detected, as
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described above for single time frame vector formation. At each time of
condition change, tj, a feature vector of p coefficient values, Cn(ti), where
n=1 to p, is obtained (see Fig. 12A). This procedure produces a sequence
of sets of feature vector coefficients that are obtained at the specific times
of change noted by the values ti, t2,...tj,...,tk... For example, the time
values, t1, denote the start time of the speech frame. However the tj's
can also denote a sequential frame number noting the frame position in
a sequence of frames. Because the time frame duration is usually
included in the feature vector as the pitch period or the number of pitch
periods (or other notational forms), the total time taken by a frame or a
sequence of frames (i.e., comprising a speech segment) can be
reconstructed. For example, below is a set of sequences of p coefficients
c1(ti), C2(ti), Ca(ti), .- Cp(t) for each start time tj =ty ta, .., ti.

c1(ta), ca(t1), €3(t1), .- Cp(t1), ci(t2), Ca(t2), Ca(t2, .. Cp(t2), ..,

C1(tk), c2(tk), €3(tk) , - Cp(ti)

This method describes an adaptive procedure for capturing the essential
speech articulator information throughout a speech segment, without
requiring a frame definition every 10 ms as many acoustic (CASR)
recognition systems do. These patterns of coefficient sets form a multi-
time-frame feature vector that describes an entire speech segment that
begins at time t] and ends at time tk + (last frame duration time). Such
vectors, which can include pause times (i.e., silence phonemes) are very
unique for each speaker. They time compress the coded speech
information, and they store all of the information needed for the
application by choice of “change” condition definitions, and by choice of
sensors, accuracies, and other considerations described herein.
N lizati 10 TR

N ization:

The methods described herein can code any type of acoustic
speech unit, including coarticulated or incompletely-articulated speech
units. The coding methods provide very high quality characterization of
each spoken phoneme for each spoken speech segment, but if the
articulation of the user-speaker is different from those speakers whose
acoustic speech units, or sequences of speech units, were used to
generate the reference code book, then the recognition or other process
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loses some accuracy. The unique ability of the methods herein to
characterize the physiological and neuro-muscular formation of each
speakers articulators makes it possible to normalize each unique
speaker’s transfer function to that of an appropriate reference speaker.
These normalization methods reduce the variability of the feature
vectors formed during each time frame by normalizing the feature
vector coefficients (or sequence of units) to those of a reference speaker
or speakers.

During a training session, the user speaks a series of speech
units or speech unit sequences into systems like those shown in Figs.
3A,B. A group of feature vectors are selected by asking the user to speak
a desired vocabulary, or by using speech recognition during natural
speech to select the desired vocabulary. The coefficients of each speech
vector, for every selected speech time frame, are compared to the feature
vector coefficients from the same reference words generated by a
reference speaker at an earlier time. In this way, all the feature vectors
for the acoustic speech units needed in the reference vocabulary are
measured and placed in a reference codebook at an earlier time.

The process begins as the algorithm compares each
measured vector coefficient, Cp, to that of the reference speaker each
time frame. If it differs by a predefined level (e.g., a user chosen 20%
value), then either the coefficient in the reference codebook or the one
in the speaker’s feature vector is to be changed. This process of
normalization is carried out for each speech time frame, using one of
the three following methods:

1) Codebook Modification: All feature vectors listed in the
codebook and which relate to the tested acoustic speech units in the
limited vocabularies, have their coefficients changed to be those of the
speaker specific feature vector. Also included is a process for altering
those multi-phone sound-unit sequences in the code book, which
contain individual word sounds in need of correction. Acoustic sound
units that are correctable, e.g. phonemes, diphonemes, and triphonemes,
contain coefficients that are often associated with “misarticulated”
phonemes. The specific coefficients of the multiphone feature vectors
are altered to reflect the idiosyncratic articulation of the associated single
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speech unit as determined during training. For example if the speaker
misarticulates the sound /th/ as in “the”, then all diphonemes,
triphonemes, etc. that have /th/ in them such as /th/ /a/ /t/ in the
word “that” are corrected to the speaker’s feature vector. Similarly,
multiphoneme units can be spoken, compared, and changed in the
codebook as defined by this algorithmic prescription. This procedure
leads to the construction of a speaker specific codebook.

2) Key Sound-Sequence Modification: During the training
session, the speaker articulates special acoustic sound sequences that are
known to be poorly pronounced by speakers of the language. The
acoustic sound unit sequences are measured using methods herein and
feature vectors are formed. The measured feature vector coefficients for
these multi-unit articulator conditions are stored in place of similar
feature vector coefficients in the predefined codebook locations. This
provides a partially “individualized” multi-phoneme codebook.

3) Method of Extremes: The speaker says a series of
training acoustic speech units that require the speaker to use his
articulators in their extreme positions or rates (e.g., highest to lowest
position, fastest to slowest rate, front-most to back-most posiﬁon). By
finding the feature vector representations for these extremes, using both
direct EM sensor methods and the deconvolving methods, one obtains
two extreme limits on the coefficients describing each feature vector
coefficient. The extreme coefficient values, for each coefficient Cp are
represented by minCn and maxCn. These two extreme values can be used,
for example, to represent the longest and shortest vocal fold periods and
the largest and smallest of each transfer function coefficient for acoustic
speech units. Other values, such as the average value of the extremes,
aveCn = (minCn + maxCn)/2 for each coefficient in the feature vector
coefficient location, Cp, , can also be obtained. These special values are
stored in a separate, but “parallel” codebook that contains the “user
extremes”, user averages, and other useful values that correspond to
each user coefficient, Cp , that will be used in the formation of
normalized feature vectors for the application.

The next step in the method of extremes is to generate the
needed reference speaker extremes, averages, and other useful values as



WO 97/29482 PCT/US97/01490

10

15

20

25

30

35

-70-

well. Each reference speaker (or speakers) is asked to articulate the set of
identical sound units for the training cycle of the speaker being
normalized. Next, the sets of reference coefficient extremes (as well as
other information such as averages) are associated with each coefficient
Cn for each acoustic sound unit in the separate, but “parallel” codebook.
An exampie of other useful values are those that represent special
articulator conditions that define intermediate articulator coefficient
values. These are valuable to aid in non-linear or guided interpolation
procedures.

During normal usage of these methods, when the speaker
speaks any sound unit, a time frame is defined and a feature vector is
generated. Each measured coefficient, measCn, of this feature vector is
compared to the maximum (maxCn) and minimum (minCn) range of the
speaker’s coefficient extension for this coefficient cp.

The fraction of distance, fn, of the measured coefficient
between the two extremes of the speakers range is calculated, using as an
example a linear approach as illustrated in Figure 18:

fn = measCn / (maxCn - minCn)

The coefficient measCn is then replaced with the coefficient

normalCn as follows, using the minimum and maximum ranges of the

reference speaker.

— refm *( ref ref

normalCn inCn + fn maxCn - "*'minCn )
In this equation, fn contains the information from the user's own
measured Cp value, and from the “parallel” code book of extremes
containing the user’s and the reference speaker’s extreme values (and
other useful values) associated with each feature vector coefficient, Cp.
In this way the fraction of the user’s articulator coefficient range is
mapped to that fraction of the reference speaker’s range.

This procedure is very easy to implement because the
acoustic speech unit in each time frame is characterized with a relatively
small number of coefficient values that require normalization (e.g., a
sub-set of the coefficients c1 through cp in Fig. 12A). It is well known
that other interpolation techniques for fn can be used as desired, besides
the linear one described above. In addition, it is clear that control
coefficients such as timing and phoneme symbols whose numerical
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values are contained in one or more of each feature vector’s coefficient
values are not normalized as described above.

The above normalization methods enable the user to
correct for incomplete articulation because the feature vector coefficients
associated with incomplete articulator positioning are normalized to the
correct coefficient values articulated and recorded by reference speakers.
In addition, coarticulation is corrected by normalization of multi-speech-
frame vectors that describe diphonemes, triphonemes, and similar
acoustic units where coarticulation most commonly occurs. It is
important to note that the extreme values (i.e., target values) for each
phoneme in a multiphone sequence as determined from a reference
speaker or speaker group will be different than for individual phonemes
or other primitive speech units from the same reference persons. That
is, the speech organ articulators do not reach the same extreme values of
Cn associated with isolated phonemes when they speak the same
phonemes imbedded in di-, tri-, or higher order multiphones.

The voiced pitch value of an individual speaker is an
important coefficient that can be normalized to those of the reference
speaker or speakers as described above. The procedure is to normalize
the appropriate excitation feature vector coefficient, Cn, which represents
the pitch value (i.e., the reciprocal of the pitch period) of the speaker for
the voiced speech frame under consideration. The pitch value extremes
for both the speaker and the reference code book contain maximum
pitch, minimum pitch, and intermediate pitch values as needed (e.g., a
pitch value for each of the major vowel groups). The normalization of
the excitation function pitch-value coefficient proceeds as described
above for generalized coefficients.

Since a person’s physiological tension level, as well as
external stress or health factors, can change a user’s pitch, rate of speech,

and degree of articulation, it is important that they be corrected as often

as the application allows. Daily pitch normalization is available using
the first words a user speaks to turn on the machine or to “log in”.
Adaptive updating, using easily recognized vowels can be used to correct
the maximum and minimum levels, as well as the intermediate
normalization values as shown in Figure 18A. As the day progresses,
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and the user tires or becomes stressed, adaptive correction based on
automatically recognized acoustic speech units can be used.

Ouantizati ( F v Coefficients:

It is known from speech research that the vocal articulators
must move or change some condition a minimal amount for a
perceived change in the speech sound to occur. (See references by
Stevens, “Quantal Nature of Speech: Evidence from Articulatory -
Acoustic Data” in “Human Communication--A Unified View” eds.
David & Denes, McGraw Hill, 1972.) Thus changes in the values of these
feature coefficients and pitch values that do not cause a perceived
difference in the application (e.g., recognition or synthesis) can be
grouped together in a “band” of constant value. As a consequence,
during training and synthesis experiments, the user can determine the
bands of coefficient values, using a reference speaker or speaker groups,
over which no perceptible speech changes are detectable for the
application at hand. Once these bands of constant speech perception are
determined, for each applicable feature vector coefficient, including
excitation function coefficients, the measured coefficient values, Cp, can
be quantized into the value of the band. As speech takes place, each
measured feature vector coefficient is first normalized, and then
“quantized” or “binned” into one of only a few “distinguishable” values.
Figure 18B shows such a procedure based upon the normalization
procedures described above and illustrated in Figure 18A.

The algorithm proceeds as follows. First, the feature vector
coefficients are measured for each speech time frame. Second, each
coefficient is normalized to a reference speaker’s value for the coefficient
as shown in Figure 18A. Third, each normalized coefficient value is
quantized into one value that represents a band of constant acceptability
over which the coefficient can vary in value, but produce no discernible
change as defined by the user. Thereby a continuum of coefficients can
be mapped into only a few values, representing a few bands. The band
coefficient value is usually chosen as the central value of the band. If
the normalized coefficient, normalCn, is in the range spanned by the
second band of the reference speaker’s discernible bands, then the
measured value measCn is mapped first to normalCn, then into the
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quantized value 2cp”. The double accent * means the coefficient is
quantized and the superscript 2 refers to the second of the bands
spanning the total range of the normalized feature vector coefficients
normalCn-

If the user wishes, quantized band values obtained during
reference generation and during use can be further normalized. For
example each of the n bands can be associated with a fractional value
ranging from 0 to 1 (or over another range of the user’s choice) for
numerical convenience. For example, it may be desirable to quantize
pitch rate into 3 values, such as 1, 2, and 3, representing low, middle,
and high frequency pitch of any speaker, and to not use absolute pitch
frequencies such as, for example, 70 Hz and 150 Hz, or similar physically
meaningful values. This method of normalizing quantized values is
valuable because it removes all apparatus and speaker specific values,
and it enhances table lookup speed and accuracy.

Real Time Measuring, Recording. and Deconvolving: The methods
described herein permit the user to select the appropriate techniques for
sensing, processing, and storing the information with an almost
arbitrary degree of linearity, dynamic range, and sampling bandwidth for
the desired application. They can be used in a variety of configurations
depending upon the costs, the value of the data, and the need for
portability and convenience. Because of the flexibility of these methods
to meet the needs of a wide variety of applications they are very
valuable.

The method of using real time information to relate
excitation-source signal-features to related acoustic-output signal-
features, is valuable for obtaining physiological information for several
applications. For example, these procedures can be incorporated into a
training sequence when a user first begins to use systems based upon the
methods herein. By requesting the user to speak a known series of
phonemes, the algorithm can be automatically adapted to the user (or by
using speech recognizers that recognize key phonemes from which the
desired timing information can be extracted). For example, the methods
allow the determination of the acoustic tube lengths of an individual as
known phonemes are spoken. The phoneme /ae/ is known to be
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caused primarily by a voiced, single tube resonance from glottis to lips to
the microphone. The time it takes for an excitation signal to travel the
length and appear as an acoustic signal can be measured and used to
determine parameters used in the vocal models of an individual’s
speech tract. (see Figs. 14A,B for.an example of time duration). The
knowledge of the length permits faster numerical model fitting, because
one of the major tract filtering properties is constrained. It is also
valuable in speaker identification, by providing a physiological
measurement that contributes to the definition of a unique speaker.

Similarly, in other speech tract configurations, such as a
nasal /m/, the sound travels from the glottis through the nasal passage,
as well as into the closed mouth resonator. The sum of the two signals
exits the nose to the microphone. An acoustic echo (canceling certain
frequencies in the speech output) will be caused by the closed mouth
resonator. Other phonemes are caused by similar combinations of tubes
and resonators. The glottal excitation travels differing paths, have
differing time delays. The real time methods described herein enable
the measurement of these other tract dimensions as well.

This method provides for deconvolving, in real time, the
excitation source from the acoustic output to obtain useful vocal tract
information. The dimensions and other characteristic values of the
user’s vocal tract segments, obtained for each speech segment, can be
used to form a feature vector to describe the vocal tract for subsequent
applications. Experiments have provided physiological values for the
phonemes /ah/ and /ae/.

Applications:

Speech Compression: The methods provide a natural and physically
well described basis for speech time compression. The methods defined
above for difference feature vector formation, for multi-time-frame
feature-vector formation, for multiple glottal period time frames, for
slowly varying feature vector time-frames, and for unvoiced time frame
determination show algorithmic descriptions of accurately coding
speech segments using much less time than real time spoken speech.
Simple extensions of these methods show how to collapse both the
silence PLU e.g., pause speech segments) to one vector and relatively
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long unvoiced speech segments to one vector. These methods enable
one to collapse time segments of essentially constant speech into one
time frame and one representative (i.e., compressed) feature vector. The
compressed vector contains only a few additional coefficients that
describe how to “uncollapse” the speech back to real time as needed.
Additional compression can be attained using grammatical and syntax
rules that remove redundancy of sound patterns, such as a “u” always
following a “q” in American English. These simplified patterns can be
undone during speech synthesis, during reconstruction of transmitted
speech symbols, or from speech stored in memory.

Speaker Identification: The methods of feature vector formation herein
enable a user to compare a feature vector from one or several speech
segments to the same speech segments as spoken by a reference speaker,
and stored in a codebook for the purposes of speaker identification. The
coding and timing methods for this purpose can be performed
automatically, by defining the feature vector over each time frame or
sequence of time frames. The identification operation can be conducted
using the feature vectors from isolated time frames or using multi-
phoneme time segments. The user is able to make identifying
comparisons using previously agreed upon speech segments (e.g.,
names or PIN numbers) presented to a user by the system for his vocal
repetition. Alternatively, speech recognition can be used to extract key
speech segments from natural speech. The identified feature vector
patterns (i.e., multi-time frame feature vectors) are compared to those in
the reference codebook.

In addition to the frame by frame comparisons against
reference frames described directly above, additional information on the
average pitch and the pitch variations of the user, the physiological
parameters of the user’s vocal organs, and the EM wave reflection
strength from the user (tests water and tissue composition) are available.
These parameters are obtained from initial sound requests to the user by
the system and are initially obtained as the user “logs in”. They are then
used for comparison against values known, by the system, to represent
the true speaker.
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The identification process uses a measurement algorithm
that compares the distance of the measured feature vector coefficients
from those stored in the codebook each time segment. At a normal
speaker’s rate of speaking 5 to 10 phonemes per second, a twenty to thirty
phoneme sequence, with time spacing and prosody values, can be
obtained within a few seconds. For very sophisticated recognition as
much as a few minutes of speech may be required; and for very high
value work, continuous recognition may be employed using speech
recognition for continuous key pattern identification and verification of
the speaker throughout the use period. During the sampling time,
statistical algorithms process the data and obtain the probability of
correct identification.

In addition to the acoustic and EM sensor patterns, physical
parameters of the user can be obtained using the methods herein. The
physiology of the vocal organs such as sizes, positions, normal positions
(e.g. normal pitch), and tissue compliances can be obtained. Also the
quality of articulation of each acoustic sound unit, as well as the rates of
formation are obtained. Each speaker’s unique articulation qualities are
exaggerated when combinations of rapidly spoken sounds such as
diphonemes or triphonemes, etc. are measured and compared to
previously stored data. The methods herein describe how such
multiphone feature vectors are formed, measures of distance formed,
and measures are used for comparison. The organ dimension,
articulation positions, and their time patterns of motion in conjunction
with acoustic speech information, taken over a sequence of acoustic
speech sounds, are very idiosyncratic to each speaker of any language.

This method makes possible the use of the feature vector
coefficients to define a distance metric between the user’s characteristics
and those defined when the validated speaker spoke the same acoustic
unit from which the vectors were formed and stored in a pre-defined
library. One example measurement process is to obtain the distance
between all the measured and stored vector coefficients (control and
other special coefficients excepted):

ACn(ti) = measCn (ti) - refCn(ti)
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for all time frames denoted by the time of the frame, tj. The algorithm
then takes the square root of the sum of the squares of all the coefficient
differences, ACn(tj), for all speech time frames in the sound sequence. If
the measure is less than a pre-defined value, based upon previous
experiments by the user, the user speaker is accepted as validated. This
example method is a uniform distance metric applied equally to all
appropriate coefficients. Other methods which use non-uniform
coefficient weighting methods, non-linear measure processes, and
which use differing statistical testing are well known.

Other applications use similar comparison procedures that
are made between the speaker and reference libraries of vectors with
coefficients obtained from averaged (or other types of reference speakers)
to determine the physiological or linguistic type of speaker. For example
a male American English speaker, female American English speaker,
child, or foreign speaker with a specific dialect can be identified for
various purposes. ,
Language Identification: The patterns of feature vectors vs. time (i.e.,
multi-time frame feature vectors) are very indicative of the language
being spoken by the speaker. A method to determine the language being
spoken by a speaker is as follows. It uses the procedures described above
for speaker identification, except that a separate normalized (and
quantized if need be) language codebook is previously formed for every
language in the set of languages for use in the application. As the user
speaks known test sounds, or by using real time recognition techniques
to extract test sounds from the natural speech, the algorithm forms
feature vectors for each speech period using the individual glottal period
feature vectors as the basis. The vectors can be normalized and/or
quantized as needed. The algorithm then forms these basic patterns into
more complex patterns and it searches each one of the several language
code books for the measured patterns. The patterns are chosen to
contain the unique identifying sound patterns of each language. The
algorithm then uses the statistics of appearance times of multi-time
frame feature vectors, of specific vocal articulator positioning
represented by specific or small groups of feature vector coefficients
(especially glottal pitch patterns), and it searches for the appearance of
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those unique sound patterns associated only with a given language.
Several methods of measuring multi-component vector distances, are
available to test for the best fit and are described above in the section on
speaker identification. When a best fit of the speech segments to one of
the language codebooks is found, the language of speech is identified
and the probability values of the recognition are available as needed.

S hR ition:

The methods described herein make possible the
identification of all spoken acoustic speech units in any given language
in a new and powerful way. This new type of speech recognition is
based upon using the feature vectors defined above using processed
information from the excitation function, the deconvolved transfer
function, simultaneously recorded and processed acoustic information,
and the timing information. The feature vectors are more accurate than
those based upon acoustic techniques alone. The reason is that they are
directly tied to the phonemic formation of sound segments. They are
more accurate than other approaches because both poles and zeros can be
accurately modeled, the pitch can be accurately and rapidly measured,
and the feature vector coefficients can be readily normalized and
quantized, removing speaker variability. The vectors describe the
condition of a speech unit with sufficient information, including
redundancy and model constraints, that the phoneme (or other acoustic
speech units) can be defined, with very high probability, in an
automated fashion for each speech time frame. An identification results
when the measured and processed phoneme feature vectors from a
speech segment are associated with a stored reference vector containing
the symbol or symbols of the acoustic speech unit. The acoustic speech
unit identification results in a recognized symbol (e.g., a letter,
pictogram, series of letters, or other symbol). Once the speech segment’s
identification symbols are available, they can be automatically coded to
ASCII (or other computer coding) or to telephony codes for transmitting
letters, pictograms, or text symbols over communications channels.
Such procedures to convert recognized acoustic speech symbols into
“technological codes” are known to practitioners of communication
technologies.
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Methods for normalizing tract feature vectors and
excitation functions, for time independent acoustic description, for
normalizing rates (i.e., time warping), for dealing with coarticulation,
incomplete articulation, and phoneme transitions can be used to
simplify the variability of measured patterns of speech information
between individuals and by the same individual at different times.
These make possible more rapid and accurate code-book “look-up” of
the correct acoustic-speech -unit symbol.

Table Lookup and

A training process is used by algorithms described herein to
ask a speaker (or speakers) to articulate a known vocabulary of speech
segments into a system similar to one shown, for example, in Figs. 3A or
3B, 8, or 20. The segments can range in complexity from simple
phonemes to continuous natural speech. The training process enables
one to build up known associations of measured feature vectors with
symbols for known acoustic speech units by using the instruments
shown in the representative systems and the methods described herein.
The system designer can select the appropriate processing algorithms
from those described herein, including normalization, quantization,
labeling and other necessary operations to form and store the feature
vectors for each trained sound segment into a code book location or
library locations (i.e., a data base). These code-book data-sets serve as
references for most of the applications described herein. Methods of
associating a measured speech feature vector with a similarly formed set
of vectors in a code book make use of well known procedures for data
base searches. Such procedures allow the algorithm to rapidly find the
locations in the data base where the measured vector matches stored
vectors. Procedures are described and to rapidly calculate vector
distances to determine the best match, and to determine probabilities of
association. Accurately formed feature vectors, normalized and
quantized, allow for very rapid data base searches.

Matchi ch Recognition:

The feature vectors can be used for phonetic template (i.e.,
pattern) matching and associated acoustic speech unit identification.
Each acoustic speech unit symbol is uniquely associated with a specific
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articulator configuration (i.e., a phonetic articulator pattern). The
formed vectors, which describe these patterns, are then compared
against the library data and an identification is made using the
“distance” from the code book feature vectors, and using logical
operations, such as “on” or “off” for the glottal motions. In the case of
speech segments with multi-phonemes, similar methods of measuring
vector distances can be used. One procedure is to use the square root of
the sum of the squares of all relevant vector coefficient differences.
(Control coefficient distances are not used). When the distance is within
a value defined by the user, an identification is defined and the related
probability based upon the distance measure can be attached to the
identification unit as desired. The use of a logical test operation is well
known. Well defined normalization and quantization techniques for
feature vectors make for well defined code book comparisons because
the vectors can be instrument and speaker independent. An additional
advantage is that individual-speaker rates of phoneme sequence
articulation can be normalized and time aligned speech frames can be
produced.

nition:

The methods of forming speech unit feature vectors by
deconvolving the EM sensor measurement of the excitation function
from the acoustic output can be used to form vectors of data from
sequences of speech frames representing sequences of phonemes. They
describe the coding of many sequential acoustical units, e.g., sequences of
phonemes, diphones and other multi-phones. Such vectors are
especially useful for the purposes of identifying symbols for natural
spoken speech using an EM/Acoustic Hidden Markov Model (HMM)
method. Many human speech segments consist of many phonemes run
together, and are therefore many acoustic units long before word-breaks
occur. Sequences of single speech frame feature vectors as well as one or
more multiple speech frame feature vectors can be treated as patterns of
numerical values that can be tested against combinations of the pre-
stored patterns of the limited reference feature vector data set. HMM
statistical techniques can associate these measured and formed sequences
of feature vectors with test patterns constructed, as needed by the
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algorithm, from only a limited number of feature vectors in a code book.
Typical code books contain pre-recorded and processed feature vectors
for 50 PLUs and 1000 to 2000 diphones.

An EM Sensor/Acoustic HMM allows the user to
statistically identify a phoneme or a pattern of phonemes by comparing
the probability of observing such a series of feature vectors representing
known words or phrases. This procedure requires a learning phase, as is
well known in the art for the acoustic vector HMM approach, to build
up the test patterns of combinations of feature vectors for the words in
the vocabulary being used. The methods herein make the HMM
method of speech recognition very valuable, because the data is so
accurate and well defined. The methods herein provide very accurate
procedures to rationally identify feature vectors by deconvolving,
normalizing, quantizing, time aligning, and modeling the recorded
information. The algorithm then forms a sequence (i.e., matrix) of as
many feature vectors as needed for the specific EM/Acoustic HMM in
use. As a consequence most of the ambiguity of individual speaker
variations is removed and the patterns of speech units have little
variability from speaker to speaker making HMM a very accurate
identification technique.

ural Netw h f Speech Recognition:

Neural network algorithms are useful for associating a
pattern described by a feature vector with a symbolic representation of
one or more acoustic speech units. This method uses the training
period method to cause the adjustable parameters within neural
network algorithms to be associated with the EM/Acoustic input feature
vectors. Because these are speaker independent and instrumentation
independent), the vectors defined during speech by a user as well as by
reference groups of speakers during codebook generation have little
variance for the same acoustic speech unit. The associating of the real-
time, input feature-vectors is conducted using well known neural
network algorithms (e.g., back propagation using two or more layers) to
associate each input with a known acoustic speech unit, e.g., phonemes,
words or other speech units. For the procedures herein, each feature
vector may be 150 coefficients in length, which when taken three time
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frames at a time, require nearly 450 inputs to the neural network.
(control and similar feature vector coefficients are not used as inputs).
Once trained, off line using a computation process of needed power, the
network algorithm can be loaded into the user’s processor to provide a
rapid association from an input feature vector to an unambiguous
output speech unit. (see for example Papcun et al., J.Acoust. Soc. Am. 92,
pt- 1, p. 688 (Aug. 1992) for “micro beam” x-ray detection of speech organ
motions for an approach well known to practitioners of neural network
applications). Because of the unique association of a speech sound
symbol with vocal articulator positions, as represented by the feature
vector coefficients, an accurate identification of the symbol associated
with each feature vector can be made.

Recognition using the method of joint probability can
produce increased speech recognition accuracy. It is based upon jointly
using the deconvolving approaches together with conventional speech
recognition (i.e., CASR) information, and using pure EM sensor based
recognition information (i.e., NASR).

Step 1: The user chooses a conventional acoustic (CASR)
system to examine an acoustic speech unit or speech unit series (e.g.,
phoneme series). The CASR system selects one or more identifications
(e.g. phoneme symbols such as /ah/) which meet the criteria of
identification. A first set of all such identified units, with probabilities of
identification exceeding a user-chosen level (e.g., 80%), are formed.

Step 2: The deconvolving process, plus other information
as described herein, is used to form a feature vector. One of the
statistical techniques (e.g., HMM, phonetic template, or neural networks)
is used to identify the symbols for one or more acoustic speech units
associated with the feature vector formed during the speech frame being
examined. If the identification is within the predefined probability band,
it is associated with the identified sound unit symbol (and its actual
probability of identification is also recorded) and it is added to a second
set of identified acoustic sound units. Other potential unit
identifications from this step, with differing but acceptable probabilities
of recognition, are included in the second set as well.
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Step 3: The user select data from an EM sensor system in
use, and generates a NASR feature vector each speech time frame. The
NASR system estimates symbols for one or more acoustic speech units
that meet the probability criteria of NASR identification procedures. A
third set of symbols of identified acoustic speech units is formed, with
attached probabilities of recognition.

Step 4: Steps 1, 2, and 3 are each repeated to generate
probabilities of identification for those symbols identified in the other
steps that were not found the first time through. That is, an identified
unit from step 1 with probability (for example) greater than 80%, could
have been un-recognized in step 2, because its probability was below a
cutoff value. For the joining of probabilities each symbol from each step
must have a probability of identification from the other 2 steps. In the
second cycle through, if a symbol is not easily assigned a probability in
any one of the procedural steps, it can be assigned a probability of zero.

Step 5: An algorithm joins the separate probabilities from
step 1 and/or step 2, and/or step 3, in a fashion weighted by their
probabilities to obtain the most likely recognized sound unit. One
algorithm is to find the joined probability by taking the square root of
the sums of the squares of the probabilities for the symbol obtained from
each step 1, 2, and 3.

The important and valuable addition provided by the
deconvolved feature vector data, and other procedures herein, is that it
is a mixing of acoustic with EM sensor data which provides an
additional degree of data correlation that is sufficiently different in a
statistical measurement sense that the joint probability of the data
described above will be better than if only one or two separate sets of data
were used. This approach works well with one EM sensor and
microphone, but is especially valuable when the user chooses to employ
two or more EM sensors with an acoustic microphone. This approach
also works very well with multiple sets of very precise, but often
incomplete data.

An example of a two EM sensor system uses an EM glottal
motion sensor and an under-jaw, upward-looking EM sensor. With
these the sensors, the user obtains three data sets from: 1) a single EM
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velum signals each time frame, 2) glottal motion data from an EM
sensor measuring the excitation function and 3) acoustic microphone
data. Probabilities of symbol identification, using the data three sets can
be joined together naturally by a single software processing system using
standard statistical algorithms. Each individual sensor, plus the
deconvolving of 2) from 3), offers very unique and precise features that
lead to a high probability for certain sets of symbols and a very low
probability value for all other symbols. Using all three sets together, the
algorithm form a very high probability of identification of a unique
symbol. The user has the option with such a combined system to use
each sensor and algorithm in its most economical and accurate way for
the recognition application. This approach leads to economical
computing, and rapid convergence to the identified sound unit.

i ili

The method of exclusive probability uses methods of
formation of three sets of feature vectors described above in stéps 1to3
in the section on joint probability speech recognition. It uses a sequential
procedure to statistically reject identifications made by any one of the
three types of recognition systems. It uses logical tests to exclude (i.e.,
reject) symbols not meeting certain criteria.

Step 1: Use the CASR approach to identify the acoustic
sound units for the speech time frame or frames under consideration, as
long as the probability of symbol identification exceeds a user defined
value, e.g. 80%. At this stage, the probability criteria is set to retain
symbol identifications that may have similar probabilities of
identification by the CASR data at hand. Subsequent steps are be used to
eliminate ambiguous identifications from this step.

Step 2: Use the deconvolved feature vector set to reject
those identified sound units from 1) that meet the probability criteria of
definition (by CASR) but fall below the user-set levels of acceptable
probabilities for identifications of symbols based upon the probability of
identification using the feature vectors formed by the EM/Acoustic
methods herein.
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Step 3: Use one or more of the NASR EM sensor
identification methods to check the probability of each remaining
identified acoustic unit symbol from step 2. Identify those acoustic
speech units that do not meet the probability criteria of the NASR
system, and reject them. Leave the remaining, highly probable acoustic
units and their probabilities of identification in the data set.

Step 4: Use a standard statistical algorithm to join the
probabilities of those identified acoustic units that remain in the set,
after Step 3. This leads to a small number of acoustic speech units,
usually one, that meets the “exclusion” criteria of the sequence of three
steps.

This process rapidly eliminates those ambiguous
identifications, caused by insufficient data at each step. Symbols that
have low probabilities of identification are rejected early in the process
and thereby reduce computational processing later in the process. This
process causes the one or few remaining acoustic speech unit symbols,
which pass the three sequential sensor/algorithm tests, to have a very
high probability of correct identification. This method can be applied to
the data by permuting the order of techniques for identifying the feature
vector. For example, the deconvolving technique might be used in Step
1, while the CASR technique could be used in step 2. The method of
exclusion can also work with two rather than three identification steps.
This method is very valuable for using partial information from
auxiliary sensors or as “by-products” of the major sensors. It provides a
more accurate identification of the acoustic sound unit than either an all
acoustic system, or an all EM/acoustic feature vector system could
accomplish without the additional information. For example, the
presence of one or more fast tongue tip motions measured with a
tongue EM sensor indicates that the acoustic unit identified by the
deconvolving process must be a phoneme consistent with such tongue
motion, e.g. in English /th/ as in “the”, or a rolled /r/ as in “rosa” in
Spanish or Italian. If the feature vector coefficient from step 3, for
example, does not describe rapid tongue tip motion, the symbol
identification is rejected.
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If two speech units symbols remain, that have sufficiently
high probabilities, both placed in a set with their associated probabilities.
The user can choose to use only the highest probability unit or the
system can automatically ask the speaker to repeat the sound or phrase if
both probabilities are similar or below desired certainties. If no
recognized symbol meets the probability criteria, then a signal can be
sent to the control unit that the acoustic speech unit is ambiguous, and
the identified acoustic units are shown in order of certainty with
probabilities attached. The algorithm can be programmed to
automatically ask the speaker to repeat for clarification under such
circumstances.

Speech Synthesis:

The methods provide for the synthesis of high quality,
idiosyncratic speech from stored EM sensor/acoustic data obtained from
an individual speaker or from an averaged set of speakers. Individual
speaker means any individual, ranging from a normal office dictation
worker to a famous actor. The speech encoding process to be used for
subsequent synthesis depends upon how the original feature vectors
were coded and stored in a code book. The methods herein can be used
to form a set of feature vectors optimized for speech synthesis. They
may be based upon an average speaker or a particularly desirable speaker
whose acoustic speech is quantified and stored in a codebook.

Step 1: Form a reference codebook by recording the acoustic
speech units of a desirable speaker or group of speakers for each acoustic
speech unit needed for the synthesis application of the user. Form
feature vectors of all of the acoustic units that will be used based upon
the procedures herein, and use the master timing techniques herein to
define the beginning and end of these vectors.

Step 2: Use a commercial text-to-speech translator that
identifies all of the required speech units (phonemes, diphones,
triphones, punctuation rules, indicated intonation, etc.) from written
text for the purpose of their retrieval.

Step 3: Use an automatic search and retrieval routine to
associate the sound units from Step 2 with a code book location
described in step 1.
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Step 4: Select the feature vector to be used from the code
book location described in step 3. The feature vector information, in
addition to excitation function and transfer function, includes the
timing of the sound units, the joining relations from frame to frame,
and the prosody information.

Step 5: If phoneme to phoneme transitions are not called
out by step 2, generate the transition acoustic sound units using one or
more of the following: Two sequential voiced sound units are joined at
the glottal closed times (i.e., the glottal zeros) of voiced speech frames,
while unvoiced frames (or unvoiced-voiced frames) are joined at
acoustic amplitude zeros. If transition rules are present that describe the
rate of interpolation between voiced phoneme units, they are used to set
the transition time frame durations and to interpolate excitation and
transfer function coefficients that are modified by their relationship to
another articulator condition in the preceding or following time frame.
Another method of interpolation is to use diphoneme or triphoneme
acoustic speech patterns, pre-stored in a code book, which are |
normalized to the proper intensity and speech period and which are
placed, automatically between any two phonemes called for from step 2.

Step 6: Provide the prosody for the acoustic sounds
generated during each speech time frame or combination of speech time
frames. For example, use prosody rules to set the rate of sound level
amplitude increase, period of constancy, or rate of amplitude decrease
over several speech frames. Use prosody rules to set the pitch change
from the beginning of the speech sequence to the end, as defined by
phrasing and punctuation rules. Such prosody information is obtained
from the text-to-speech converter, in step 2, and is used to alter the
frame vectors as they are taken from the code book to meet the demands
of the text being synthesized into speech.

Step 7: Convolve the excitation function and the transfer
function, together with the intensity levels, and generate a digital output
speech representation for the time frames of interest. This procedure
can produce acoustic signals that extend into the next speech time frame.
The signal from one frame can be joined to the acoustic signal (i.e.,
amplitude versus time) generated in the next frame by procedures of
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adding wave amplitudes and then squaring (coherent addition) or by
squaring amplitudes and adding to obtain intensities (incoherent
procedure). Combinations of these approaches, with “dithering” or
varying feature vector coefficients from frame to frame, may be
employed to simulate the short term variations in human speech. This
digital representation is converted to analog, via a D/A converter, and
broadcast as desired.

Figure 19 shows data for the reconstructed acoustic speech
unit /ah/, which experimentally produced a pleasing sound. The
originally recorded acoustic data is shown by the points on the curve and
the line is the reconstructed sound spectrum, formed according the steps
2 through 7 above. The sound /ah/ was manually chosen.

Methods to Alter Synthesized Speech:

The methods of coding and storing speech feature vectors
can be used to alter the original coding to meet the speech synthesis
objectives of the user. The methods described herein provide the user
with well defined and automated procedures to effect the desired speech
changes. For example, the original speech pitch can be changed to a
desired value and the rate of delivery of acoustic speech units can be
changed to a desired rate. In each speech feature vector, several
coefficients describe the excitation function. By changing the duration of
the excitation function, either in real time (for example by compressing
or expanding the individual glottal triangular functional shape to take
less time) or in transform space (by moving the transformed excitation
amplitude values to higher or lower frequency bins), one can change the
pitch to be higher or lower. These procedures increase the number of
glottal open and close cycles per unit time, and then by convolving this
higher (or lower) pitch excitation function with the unchanged vocal
tract transfer functions for each newly defined speech time frame
interval, one obtains a new higher (or lower) pitch voiced output. To
implement prosody rules, that describe pitch change, the algorithm can
cause a rate-of-change of pitch to occur during a segment of speech,
containing several pitch periods. The algorithm slowly changes the
excitation function pitch for each frame, from an initial pitch value to a
slightly higher (or lower) one in the following frame. Also, the
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algorithm can “dither” the glottal period duration for each constructed
time frame to provide a more natural sounding synthesized speech.

These new methods provide a very important procedure
for joining sequential excitation functions during their periods of glottal
closure. In this manner, no abrupt changes (i.e., no signal derivative
discontinuities) takes place in the real time acoustic output signal. In a
similar fashion, the user can simply add (or subtract) extra time frames
or extend a multiframe transfer function (i.e., with constant excitation
function and transfer function, just more periods) to adjust the length of
each speech unit. Using these methods, one can extend the time it takes
to say something or speed up the speaking to finish words sooner, but
maintain excellent quality speech using the basic, speech-frame
“building blocks” provided by the methods herein.

An important application of these methods is to
synchronize the rate of an actor’s speech recorded in a sound studio,
with his or her facial motions (e.g., lips) on video (and/or film) media.
The obtaining of facial vocal motion requires the use of an EM sensor to
record lip motions and a video image analyzer to track key facial
motions (e.g., lips) on video or film media associated with known
speech frame features obtained using the EM sensor information. Image
analysis systems are commercially available that can follow patterns
within a video or film image. The methods herein allow the user to
synchronize the speech track by synthesizing new speech, at correct rates,
to follow the facial motions in the sequence of images. The algorithms
herein can alter the excitation function length by stretching or
compressing the time frame, by adding or deleting additional frames, by
shifting frames in time by adding or deleting silence phonemes, by
introducing pauses, by keeping certain frame patterns constant and by
stretching others, and in such a manner that the apparent speech is
unchanged except that it matches the facial motions and/or other
gestures of the speakers.

The user may also alter the transfer function of the speaker
as desired. The user can modify the physiological parameters and
construct a new transfer function using physiological or equivalent
circuit models. Examples are lengthening the vocal tract, changing the
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glottis to mouth diameter ratio, or increasing the size of the nasal cavity.
The methods also allow almost arbitrary changes in transfer functional
construction for amusement, for simulating animal sounds, for
research, or for special “attention-grabbing” communication applications
by “playing” with the coefficients and synthesizing the resulting speech.
Once a modified transfer function is formed, as a consequence of altering
the physiological models or by using empirically determined
coefficients, the user then makes the corresponding changes in the code
book. All feature vector coefficients in the code book that correspond to
the altered transfer function are changed to make a new code book. The
methods herein enable such automatic modifications because the
several functionals described above for defining vocal tract transfer
functions, e.g., the ARMA, equivalent circuit parameters, or
physiological based functionals, are well determined and easily
modified. For synthesizing the modified speech, the user proceeds
according the speech synthesis steps described above. Each selected
acoustic speech-unit, is associated with a feature vector that includes the
modified transfer function information, the excitation, prosody, timing
changes, and control information (including synchronization data).
Another method of altering the data stored in a code book
that was derived from one person or from an average person is to
substitute the excitation function coefficient descriptors in a given
feature vector by those from a more desirable speaker. Similarly, one
can exchange the transfer function, or the prosody pattern from an
original speaker with those from a more desirable speaker. The user
then performs, upon demand, the convolving of the excitation function
with the transfer function to produce a new unit of sound output for the
purposes of the user. For consistency, such changes must be performed
on all relevant feature vector coefficients that are stored in the code book
being used. For example, all excitation function coefficient descriptors
in all feature vector coefficients must be changed according to the
prescription if one person’s glottal characteristics are substituted for
another’s. This is easy to do because all feature vector formats are
known and their locations in memory are known; thus, algorithmic
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procedures allow the user to alter a known set of codebook vectors and
their specific coefficients.

These methods for altering and reconstituting speech make
it possible to generate synthetic excitation functions and transfer
functions that are very unusual. Methods of change include generating
animal speech by using animal vocal system models, constructing
physically impossible open-close glottal time functions or transfer
functions, shifting pitch periods to create very high pitched voicing (e.g.,
dolphin speech at 100kHz), or changing the excitation functions in
response to external stimulus such as to follow musical sounds or notes.
That is, a poor singer could sing into systems similar to those herein,
and a musically corrected voice would be synthesized and broadcast. Or
an animal trainer could speak into a processor and have his speech
sounds transformed to those frequency bands and patterns optimized for
the animal being trained. These techniques can easily create physically
unrealizable feature vectors, based upon exaggerated physiological
parameters. The technique can also create feature vector alterations to
obtain amusing sounds (e.g. chipmunk voices) or desirable prosody
patterns. These special effects can be used for purposes of entertainment
or research, or other specially desired effects can be easily created using
the techniques. Since the coding methods are both fundamental and
convenient to use, these methods are very useful and valuable.

Speech Telephony
- i -

The methods of speech recognition and speech synthesis
described herein provide a valuable and new method of speech coding
and decoding for the purposes of real-time Analysis-Synthesis
Telephony (i.e., Vocoding). It is particularly convenient to use the
feature vector generating process because the speech segment feature
vectors are in a form immediately usable for synthetic speech and for
telephony transmission. One method of analysis-synthesis telephony
(i.e., vocoding) starts with a speaker speaking into a microphone while
an EM sensor measures glottal tissue motions. Figure 20 shows a view
of a head with a cutaway of a vocoding telephony handset 90. Handset
90 holds three EM sensors 91, 92, 93 and an acoustic microphone 94. EM
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sensors 91, 92, 93 are preferably micropower radars optimized for specific
organ condition sensing, and direct EM waves toward and receive
reflected EM waves from various speech organs. For example, sensor 93
is positioned for vocal fold and glottal motion measurements. Handset
90 also includes a transmitting and receiving unit 95, which is connected
externally through wired or wireless connection 96. Transmitting and
receiving unit 95 is connected to a control unit and master clock 97,
which controls a speech coding processor, recognizer code book and
memory unit 98 to which EM sensors 91, 92, 93 and microphone 94 are
connected. Control unit 97 is also connected to a decoder processor,
speech synthesizer, memory and code book unit 99, which is connected
to a receiver loud speaker 100. Unit 99 and speaker 100 are mounted in
an ear piece 101 of handset 90 so that the speaker 100 is positioned over
the person’s ear. Several system functions illustrated in Fig. 20 are
similar to those shown in Figure 8.

The speech is analyzed by deconvolving the excitation
function from the acoustic output, and feature vectors are formed
describing each time frame of the speech output. The numerical
coefficients of these feature vectors can be transmitted directly using
standard telephony coding and transmission techniques. Alternatively,
the speech sound unit can be speech recognized, and the symbols for the
recognized unit (e.g. in ASCII or other well known code) can be
transmitted. Additional control or speaker characterization information
can be transmitted as desired. The methods for the formation of
“difference feature vectors” and for the identification of “More
Important” and “Less Important” transfer function coefficients are
especially useful for telephony because their use reduces the bandwidth
needed for sending coded voice information.

At the receiving end of the telephony link, the transmitted
signal is reconstituted into speech. The synthesis procedure may use the
transmitted feature vectors, it may synthesize new speech from
transmitted speech symbols, and using its internal code books of stored
feature vectors in a “text-to-speech” process. The user may choose a
combined approach using partial speaker information to “personalize”
the synthesized speech to the degree desired. Alternatively, the
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receiver’s controller may recognize incoming coded speech, and direct
the recognized symbolic information to a local computer system for
processing or storage purposes, to a fax system or printer to print the
received symbols, or to an analog recording system for later use by the
intended receiver.

The method of vocoding herein includes the process of
attaching additional information to the transmitted speech information-
packet for each speech frame. This additional information can be used
by the receiver to perform speaker identification, to do speech alteration,
to translate to a foreign language, to encrypt the data, or to minimize the
bandwidth. The transmission of the feature vectors thus formed can
occur in real time over transmission systems such as wire, optical fiber,
acoustic (e.g., underwater communication) or over wireless systems.
The method then includes synthesizing the feature vectors into acoustic
speech representing the speaker, for the purposes of broadcasting the
rendered acoustic sounds through the telephony receiver to the listener.
The speech synthesis part of the vocoding system can be designed to use
average speaker qualities, or it can be designed to transmit very high
fidelity speaker-idiosyncratic speech. High fidelity transmission will use
relatively higher bandwidth for the transmission of the more accurate
description of the feature vector information, than the minimum
possible, but it will require much less bandwidth than present high
fidelity voice transmission. Conversely, minimum bandwidth systems
remove all information about the speaker except for that needed to
communicate minimal voice information.

When the speaker in a vocoding communication system
becomes the listener, and the listener the speaker, the vocoding system
works in the same fashion as described above except for the interchange
of speaker to listener, and listener to speaker. In addition the process can
operate in real time, which mean that the recognizing, coding,
recognition (if needed), and synthesizing can take place while users are
speaking or listening. Real time means that the time delay associated
with coding, transmitting, and resynthesizing is short enough for the
user to be satisfied with the processing delay. The computationally
efficient methods of coding, storing, altering, and timing, which have
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been described herein, make possible the needed rapid coding and
synthesis. Elements of such a system have been demonstrated
experimentally by coding several spoken basic speech sounds and
acoustically synthesizing them using the coded information.
ini ransmissi
Minimum transmission coding is made possible using the
identification and coding procedures described herein. One method is to
use the speech compression methods described above. Another is made
possible when the speech recognition part of the system results in a
word identification and/or the sending of minimal speaker idiosyncratic
information. By using speech identification in a system, such as the one
shown in Fig. 20, each acoustic speech unit is translated to a word
character computer code (e.g. in ASCII) is then transmitted along with
little or no speaker voice characterization information, for the purpose
of minimizing the bandwidth of transmission. The symbol
transmission technique is known to use 100 fold less transmission
bandwidth than real time speech telephony. Thus the value of this
transmission bandwidth compression technique is very high. The
speech compression techniques described above using the coding
procedures herein, is less effective at bandwidth minimization, but it is
simpler to use, retains most of the speaker’s speech qualities, and is
calculated to use 10 fold less bandwidth than real time speech.
Reductions in bandwidth (i.e., bandwidth minimization)
can be attained using many of the well known coding techniques in
present communications, most of which are based upon the principle of
only transmitting changes in information that are discernible to the user
and they do not retransmit information every “frame”. The “difference
feature vector” method described above is very useful for this
application. In addition, bandwidth minimization is further enhanced
by using the minimum quality of speech characterization needed for the
application. The methods for the characterization and reconstruction of
speech are especially suitable for these procedures of bandwidth
minimization, because these methods herein show how to measure and
characterize the simplest units of speech possible. For example, partial
information on the speaker’s physiology can be sent to the receiver’s
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process and incorporated into the synthesis model for more
personalized speech reconstruction. Once obtained, these speech
“building” blocks of excitation and transfer function can be
approximated and used in many ways. In particular, well defined
decisions on the “change information” needed to update the next frame
of speech, consistent with the user’s needs, can be made before the
information is sent off through the transmission medium. Because the
coding and resynthesis techniques are so intimately and naturally
linked, the initial coding for transmission and subsequent decoding and
resynthesis is straightforward and economical. These methods are
valuable because they provide important means to save valuable and
expensive transmission bandwidth that reduce costs. Another valuable
use of the method is to allow additional information, such as encryption
“overhead” or speaker identification, to be transmitted along with the
sound information on present fixed bandwidth systems.

Tr i

The methods herein for real time speech coding,
recognition, and resynthesis in a vocoding system are valuable for real
time speech translation from one language to another.

Step 1: The user speaks into a system such as shown in
Figs. 8 and 20. The system codes each acoustic speech unit.

Step 2: The system recognizes the coded speech units and
forms symbolic text of the letters, words, or other language units such as
pictograms.

Step 3: The system uses a commercial language A to
language B translation system, which takes the symbolic text of the
recognized acoustic language units from Step 2 and translates them into
symbol text for the language B.

Step 4: The system uses a commercial (or other) text to
speech converter to convert the symbols in language B into feature
vectors, together with prosody rules.

Step 5: The system synthesizes the translated symbols into
acoustic speech in language B. ,

A variant on this method is, in step 2 above, to associate
with each recognized word in the codebook, the associated foreign word.
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Thus the translation step 3 and the text-to-speech in step 4 is avoided for
simple translations applications. This language translation system can
work in real time and be very compact. It can be packaged into a portable
megaphone (e.g., Fig. 20 but with a translation unit and a megaphone
attached) where the user speaks one language and another language
comes out. For more complex and more accurate translation
applications, it can be built into a stationary system as shown in Figure 8.
Presentation and Teaching:

This method of feature vector formation makes it possible
to display the information received for each speech unit for feedback to
the user. The display information can be graphical on a screen (e.g.,
images of the speaker’s vocal tract), or the information can be sounded,
printed, or transmitted to a user via tactile or electrical stimulation. The
use of feature vectors based upon physiological parameters aid in the
visual display of the sizes and positions of the vocal tract articulators of
the speaker. These can be used for purposes of speech correction, real
time speech assistance, and speech education because the information
can be used to illustrate the problems with the positioning of the
speaker’s vocal organs for the attempted sounds. Conversely, the
methods herein enable the illustration of the corrected vocal organ
positioning for the desired sound, using reference codebooks of correct
feature vectors. These procedures are very valuable for speech
correction and for foreign language teaching. The capacity to recognize
the user’s speech and to communicate the characteristics of the speech
back to a disabled user, in real time, is of great value to speech impaired
persons. For example, a deaf speaker can receive feedback stimulus, via
tactile or electrical signals to his skin or to his inner organs, on the
quality of their articulation.

Conclusion

The invention includes a method of measuring and
generating in an automatic manner an accurate speech excitation
function of any speaker for one or several sequential speech time frame
intervals. Simultaneously, the acoustic signal is measured and the
excitation function is deconvolved from it, leading to a speech tract
transfer function for one or several sequential speech time frame
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intervals. The invention includes methods of accurately timing, coding
these data into feature vectors, and storing the information into code
books.

There are two types of excitation functions--voiced and
unvoiced--and a few sounds use both together. To generate the voiced
excitation function, the volume air flow through the glottis, or the post-
glottal pressure, is measured by measuring glottal tissue locations using
EM waves. Air flow through the area of the glottal opening can be
measured during voiced speech by using EM sensors to measure the
change in reflection level of the glottal region as the vocal folds open
and close, and then using calibrations and modeis to obtain the air flow.
Similarly, pressure can be measured. EM sensors measure reflection
changes from the front or sides of the speaker’s voice box (Adam'’s
apple). An analytic calculation of the area opening is derived from a
model functional dependence of EM reflectivity from the opening. A
second technique to obtain the area is to correlate the reflected EM signal
with measured optical images of the area of the opening of a
representative set of speakers’ glottises. A third technique is to use one
or more range gated EM sensors to accurately follow the reflection from
one or both edges of the glottal opening, in the sensors’ line of sight, and
to calibrate such signals with optical images. A fourth method is to
construct a table of EM signals versus calibrated, in situ, air flow or
pressure sensor signals on representative speakers during a training
period.

Known equations or calibrations defining the volume air
flow through the glottal opening (between the vocal folds), under
conditions of constant transglottal pressure, can be used to define
volume air flow vs. time in an absolute or relative fashion. This
volume air flow function provides a new and valuable description of
the human vocal tract voiced excitation function for each time frame of
voiced speech. Similarly, post glottal air pressure can be calibrated and
obtained, as needed, for correction of transglottal pressure estimates and
other applications.

The change in the air flow as a function of time for the
voiced excitation function can be estimated in cases when the
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transglottal pressure is not constant during the time frame of
estimation. This process makes use of calculated back pressure from the
estimated transfer function, which is then used to make a first order air
flow correction. The estimation uses models of the allowed glottal
motion to determine valid glottal motions due to changes in back
pressure as a function of frequency. or it uses direct measurement of
tissue motions due to the pressure variations.

Acoustically generated noise can be removed from the
glottal signal by using microphone information to subtract the noise
signal, or by using Fourier transform techniques to filter out acoustic
signals from the glottal motion signals.

The functional shape of the volume air flow excitation
function in real time, and in transform space (Fourier or Z transform),
can be approximated, including the glottal zero (or closed) time. An
excitation feature vector is constructed by defining an approximation
functional (or table) to the measured excitation function and by
obtaining a series of numerical coefficients that describe the functional
fitting to the numerical data for the defined time frame(s).

The number of speech frame time intervals dui‘ing which
both the excitation function and the acoustic output remain constant is
determined. Constant is defined as the signal remaining within a band
of acceptable change in real time or transform space. A feature vector
can be defined describing both the excitation function and the defined
number of time frames during which the two functions remain
constant.

A slowly changing functional form (such as pitch period) of
the volume air flow excitation function, and corresponding acoustic
output, over several speech time frame intervals can also be
determined, and a feature vector defined describing the excitation
function and the functional changes for the defined time frames. Other
slow changes such as amplitude can be similarly described.

The measured excitation function, including noise and
back pressure terms, can be compared to an average speaker and a
feature vector defined based upon deviations (i.e., differences) from the
voiced excitation function of an average speaker or of a specific speaker.
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This can be done in real time or Fourier space. Similarly, difference
feature vectors can be formed by comparing a recently obtained featured
vector to one obtained from an earlier time frame.

The invention also includes using the voiced excitation
function periods as master timing units for the definition of time frames
during speech processing. This includes defining the beginning and end
of a glottal open-close cycle, obtaining the times of glottal closure (i.e., no
air flow) within the cycle, and joining one such cycle to the next for
concatenation of all information obtained in one speech time frame to
that obtained in the previous or next time frame.

Single or multiple time frame timing unit measurements
can be made of simultaneous speech organ conditions and other
conditions such as video, electrical skin potential, air flow, magnetic
resonance images, or ultrasonic wave propagation.

The invention includes characterizing and storing as part
of a feature vector the automatically generated time frame information;
associating each speech time frame with a continuous timing clock, and
storing this absolute timing information as part of a feature vector; and
using such defined time frames for the purposes of speech
reconstruction, speech synchronization with visual images,
visualization of vocal organ conditions for training or speech prosthesis,
speaker identification, foreign language translation, and coded
telephony.

The invention includes methods to estimate the unvoiced
excitation functions of the speaker during defined speech time frames,
by determining that speech is occurring without vocal fold motion. A
“modified white noise” excitation function is then selected from a
functional form that has been validated by listeners and by analysis to
provide an accurate excitation function to excite the known transfer
functions of average speakers (in the language of the speaker) to
simulate the measured acoustic output for known sounds. A second
method is to deconvolute the known transfer function for the unvoiced
sound from the acoustic output and obtain a measured unvoiced
excitation function source.



WO 97/29482 \ PCT/US97/01490

15

20

25

30

-100-

Speech unit time frames are defined when unvoiced
speech is being sounded by the speaker during the speech time frames of
interest. The algorithm is to simply measure the time duration over
which the acoustic spectrum is constant and record that time to be the
frame duration; or, using spectral constancy, and times defined by
extrapolated or interpolated voiced-speech time frame duration from
the preceding or following voiced speech periods; or by using pre-
defined time frame periods, e.g. 50 ms.

A preferred unvoiced-excitation-function feature-vector is
defined by the Fourier transform for one or more speech time frame
intervals during which the excitation function is constant or slowly
varying. The number of unvoiced speech frames during which a
constant or slowly changing unvoiced excitation of the vocal tract is
occurring is determined, and a feature vector is defined that describes
the excitation function, the time frame duration, and the slow changes
in the excitation function over the defined time frames. '

The invention includes a method of measuring and
recording the acoustic output of the human speaker, simultaneously
with the EM sensor signals, during one or more speech time frames and
storing the information with sufficient linearity, dynamic range, and
sampling bandwidth for the user’s application .

The microphone voltage amplitude vs. time signal
recorded during the speech time interval frame or frames is
characterized in real time or in Fourier frequency space for the purpose
of deconvoluting the excitation function from the recorded acoustic
output function. Information is selected from the recorded microphone
voltage vs. time signal that is statistically valid and characterizes the
sound pressure amplitude vs. time or the sound pressure Fourier
amplitude and phase vs. frequency during the desired time frame (s) for
the purposes of subsequent processing. The lip-to-microphone acoustic
radiation transfer function can be deconvoluted, in Fourier space or in
real time space, to remove instrument artifacts, to simplify the transfer
function, and to enable more rapid convergence of deconvolution
procedures in subsequent processing steps.
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The invention includes a method of using EM speech
organ position or velocity information (e.g., vocal folds) for one or
several sequential speech time frames to deconvolve the vocal system
source function from the measured acoustic speech output from a
human speaker. This makes possible an accurate numerical
representation of the transfer function of the human vocal tract in use
during the time frame(s) over which deconvolution is performed.
Deconvolving can be done by real time, by time series techniques, by fast
Fourier transform techniques, by model based transform techniques, and
other techniques well known to experts in the field of data processing
and deconvolution.

A human speaker’s vocal tract transfer function used
during one or more speech time interval frames is obtained by using
well known deconvolution techniques (such as that associated with the
ARMA approach) by dividing the transformed microphone acoustic
pressure signal by the transformed excitation source signal. The lip to
microphone transfer function, or other known functionals, can be
obtained as needed by deconvolving, fitting to known functionals, or
other well known numerical techniques.

Additional information on the positions of individual
organ locations, and thus the shape of the vocal tract, can be obtained
through the use of other EM sensor data, with or without simultaneous
acoustic data, to determine the optimal transfer function functional
structure for best convergence or most accurate fitting. An example is to
choose the appropriate number of poles and zeros in the ARMA
functional description for each speech time interval frame.

A speech transfer-function feature-vector can be defined
from the amplitude and phase vs. frequency intervals from the
deconvolving of the excitation function from the acoustic output
function, using Fourier transform or other techniques. The function
can be defined by a table of numerical values or be fit by a known
functional form and associated numerical parameter coefficients.

The invention includes a method of approximating the
transfer function by using the well known pole-zero (or time series a, b
coefficient) approximation techniques such as used by the auto
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regressive-moving average (ARMA) technique. Transfer function
feature vectors are formed for the speech time interval frame or frames,
including obtaining amplitude, phase, type of functional form, defining
functional coefficients, time duration of feature vector, and other
necessary information.

A feature vector describing the transfer function is formed
by using the pole and zero representation or the a, b representation of
the ARMA description for the speech time interval frame or frames of
interest. A feature vector describing the transfer function is also formed
by using defined ARMA functional forms which are based upon fixing
the numbers of poles and zeros to be used (or alternatively the a, b
values) of the ARMA description for the speech time interval frame or
frames of interest.

The invention includes defining a difference “Pole-Zero”
(or a, b) feature vector by storing differences in each vector element from
a previously defined known type of speaker or by storing differences
from past time frames during a constant period of use. It also includes
the definition of “more important” pole-zero (or a,b) values which
define major tract dimensions, and “less important” values which
define the idiosyncratic sounds of an individual human speaker.

The invention includes approximating the transfer
function by using well known electrical and/or mechanical analogies of
the acoustic system which are predefined by foreknowledge of the
human vocal tract acoustic system, including transfer function “feature-
vector” formation for the speech time interval frame(s). Feature vectors
describing the transfer function are formed by using the impedances,
(i.e., the Z's), or circuit values (e.g. L's, C’s, R’s, G’s) in the electrical
analog models. A feature vector can be defined by storing differences in
each vector element from a previously defined known type of speaker,
or from coefficients obtained in a previous time frame.

The feature vector and excitation function information can
be used to define the physiological parameters of the human speaker.
The transfer function parameters are used to define the electrical analog
models and are associated with physiological parameters such as tract
length, mouth cavity length, sinus volume, mouth volume, pharynx
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dimensions, air passage wall compliance, and other parameters well
known to acoustic speech experts. The excitation function information
can be used to define the masses, spring constants, and damping of the
glottal membranes.

A feature vector describing the transfer function can be
formed by using the physiological dimensions of the speaker that are
defined by the measured and derived transfer functions for the vocal
tract configurations and used by the speaker during the speech time
interval frame or frames of interest. A feature vector is also formed by
storing differences in each feature vector element from a previously
defined known type of speaker as a feature vector, or from coefficients
taken in a previous time frame.

The invention includes a method of defining for each time
frame and for multiple time frames, a sound feature vector that is a
“vector of vectors”. It is comprised of the user defined needed
information from the excitation function feature vectors, vocal tract
transfer function feature vectors, prosody feature vectors, acoustic
feature vectors, timing information, and control information for all
acoustic sound units, over as many time frames as needed, for the
application in the language of use. It includes obtaining and storing
such vectors in a data base (i.e. library or code book) during training
sessions. The data bases are designed for rapid search and retrieval
during real time usage. This method includes defining each unique
speaker, defining reference speakers using individuals or averaged
speaker groups, or translating coefficients to a hypothetical speaker
using normalization, or artificial modifications of the functionals and
their coefficients. It also includes forming such a vector over one or
more defined speech frames, which includes the formation of the above
for all syllables, phonemes, PLUs, diphones, triphones, multiphones,
words, phrases, and other structures as needed in the language of use
and for the application.

The stored feature vector information, contained in the
type of functional and the defining feature vector coefficients on a given
speaker can be used to normalize the output of the subject speaker to
that of an average speaker. This normalization method recognizes the
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differences of an individual by comparing his individual excitation
function and transfer function coefficients for known sounds, to those of
a reference speaker’s excitation function and transfer function
coefficients, for the same sound during training sessions. The simplest
method is the method of replacement of reference speaker feature
vectors with those of the user and a second method is to replace feature
vectors describing difficult sound combination. These personalize the
code books and make comparison more accurate, and retrieval of vectors
very individualized. A third method is a method of extremes, in which
a mapping is made from the extremal values of each coefficient in the
feature vector of the user to those a reference speaker. The values
include the coefficient range-extremes for all necessary sound units for
the application, and are obtained during training. Then feature vector
coefficients obtained each time frame are normalized to those of the
reference speaker by using a linear fractional mapping. This approach
removes much of each individual’s articulation variability, and allows
the formation of a speaker independent feature vector for each time
frame. In this manner, a speech sound can be associated with a sound
symbol in a stored library with very low ambiguity and very high
probability of identification. This approach also removes instrument
variations.

The method includes quantizing the normalized feature
vector coefficients into a limited set of values that reflect bands-of-
distinguishability for the application. It is known that articulators must
change their position or condition a certain amount for a noticeable
speech difference to be considered important by the user. The bands of
coefficient values that are perceived to be constant, are measured during
system set-up and during training. As each normalized coefficient is
obtained, it is mapped into one of a few values that reflect the
“quantized” aspects of the speech articulator. This approach makes
possible very rapid table look up, using the coefficients themselves to
directly access codebook addresses for the corresponding stored reference
feature vector .

The complete feature vector for several time frames, over
which slow change or no change at all in the vector coefficients, can be
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collapsed to a feature vector describing one speech frame. In addition,
the collapsed feature vector contains a few additional coefficients
describing the total recorded duration of the sequence of constant time
frames, plus some that define a model of the slow changes in one or a
few coefficients over the entire sequence. This procedure is a method of
speech compression that removes redundant information, and yet
retains as many of the speaker’s qualities as desired for the application.

The complete feature vectors, for one or more time frames,
can be compared to stored information on a known human for the
purpose of speaker identification, and providing statistics of
identification. Such comparisons can be performed automatically over
several time frame units, isolated time frame units, or on sequences of
units where stored information on the desired speaker's identity is
available from a preformed library. The speaker can speak prearranged
words or can respond to information presented by the system, or the
system can recognize sequences of units, using speech recognition, and
compare them to stored information on the desired speaker's identity
obtained from a pre-formed library.

The invention provides a method to code an individual’s
speech, not knowing the language being spoken, and to search through a
series of code books for one or more languages to identify the language
being spoken. The process makes use of the statistics of each language’s
sounds, sound patterns, and special unique sounds to obtain the
language recognition.

The invention includes a method of speech recognition
based upon using the feature vectors for the purposes of identifying all
sound units in a given language. The simplest recognition technique,
directly applicable with the methods herein because of their accuracy, is
often called a phonetic template approach. A feature vector describes the
condition of a speech unit with sufficient information, including
redundancy and model constraints, that the phoneme (or other simple
speech sound unit) of speech can be defined for the time period and be
directly matched to a pre-formed vector stored in a codebook.

The sound unit under consideration, once identified with
very high probability, is associated with a symbol. Symbols can be letters,
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ASCII computer code, pictogram symbols, telephony code, or other
coding known to practitioners of speech recognition, synthesis,
telephony and similar activities.

The invention includes a second method of speech
recognition that uses Hidden Markov Model (HMM) techniques on a
multi-time-frame feature-vector to statistically identify the sequence of
phonemes being spoken in the examined time frames. The feature
vectors are so accurate that this approach becomes fast, accurate, and
accommodates large natural language, continuous speech vocabularies.
This includes a learning phase as is well known for the HMM approach
to conventional speech recognition. HMM techniques can be used to
identify the diphones, triphones, multiphones, words, and word
sequences in the examined time frame.

The invention includes a method of using joint probability
on the feature vectors to statistically identify the phoneme being spoken
in the examined time frame using muitiple sensor input. Joint
probability includes the use of a conventional speech recognition
technique for the first step. It estimates the identify of one or more
sound units and it records its probabilities of identification for the next
step. The second step is to use the EM/acoustic defined feature vectors,
obtained by deconvolving, to estimate separately the identity of the
sound unit, and to assign a second set of probability estimates for the
nonacoustic case. A third step uses EM sensor information alone and a
third set of identified speech units and their probabilities are formed.
The final step is to join the probabilities of each estimate to obtain a
more accurate identification of the word unit than either an all acoustic
system, an EM/acoustic, or an all EM feature vector system could
accomplish by themselves. The joint probability technique can identify
the diphones, triphones, multiphones, words, and word sequences in
the examined time frame.

The invention also includes a method of using exclusive
probability on the feature vectors to statistically differentiate between
acoustically similar phonemes being spoken in the examined time
frame using several different sensor information sets. Exclusive
probability means starting, for example, with a conventional speech



WO 97/29482 PCT/US97/01490

10

15

208

25

30

-107-

recognition technique to estimate the identity of one or more sound
units. They may have similar probabilities of being defined using
conventional acoustic techniques alone (i.e. there remains ambiguity in
a statistical sense). The second step is to use, for example, the
EM/acoustic defined feature vectors of each of the one or more
acoustically identified phonemes to estimate separately the identity of
the sound units, and to assign an estimate of the probability based on
EM/acoustic generated vectors for each ambiguous sound unit. Any
sound unit from the first step that does not meet a minimum
probability from the second step, is removed from further consideration
(i.e., it is excluded). This reduces computational time, because those
units that are rejected early, are no longer considered. A third step can
use EM sensor information alone, to test the remaining sound units
from steps 1 and 2, and if they do not meet the criteria, they are rejected.
A final step is to join the probabilities of each estimate to obtain the
most accurate identification of the remaining word unit or units, than
either an all acoustic system, or an all EM/acoustic feature vector system
could accomplish. In this manner, one can exclude all of the units
identified from the first step (e.g., acoustically identified sound units in
this example) except for one that meets the criteria defined by
comparison with the library of stored feature vectors for the following
steps. The order of sensor approach can be interchanged. The exclusive
probability technique can identify the diphones, triphones, multiphones,
words, and word sequences in the examined time frame.

The invention includes a method of using neural network
algorithms to associate a pattern described with the feature vectors in
conjunction with the symbolic representation of the corresponding
sound units. This method uses the usual training methods for neural
networks (including normalization and quantization of input feature
vectors), the averaging of speakers (one or more), and associating the
inputs though the neural network algorithms (back propagation, two or
more layers, etc.) with known words or other speech units. Once
trained, the networks provide a rapid association of an input feature
vector to an identified output speech unit symbol because the input data
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from the methods are so well defined, speaker independent, and
accurate.

The invention includes a method of synthesizing high
quality, idiosyncratic speech from stored EM sensor obtained data for an
individual speaker. Individual speaker means coding the speech of an
average office dictation worker or a famous actor. The quality of the
speech depends upon the quality of the coding of the original feature
vectors, their storage in a code book, and the retrieval methods and
concatenation methods. First the needed speech units are recorded,
coded, and stored with associated symbols in a code book. Second, a
commercial text to speech translator is used that identifies all of the
required speech units (phonemes, diphones, triphones, etc.) from
written text for the purpose of retrieving the desired speech feature
vectors from the code book. Next the sound units to be used, the timing
of the units, and the prosody are selected. The units are joined together
by convoluting the excitation functions with the transfer functions to
produce the output sound function, and using, in the preferred
embodiment, the period of glottal closure as the timing “mark” for
joining speech interval segments. Finally prosody is provided for each
speech unit or combination of speech units; in particular it sets the
sound level, and the pitch change from the beginning of the unit to the
end as defined by phrasing and punctuation. Other concatenation
approaches can be used as well, because the procedures allow easy
selection of function values and derivatives.

The invention includes a method of altering the
synthesized speech by altering the stored speech feature vectors. The
pitch is changed by modifying the excitation function feature vector by
increasing the number of glottal open and close cycles per unit time, and
then convoluting this higher pitch excitation with the vocal tract
transfer functions for each defined length feature time interval. This is
done by compressing the descriptors of the excitation function so that a
similar, but shortened pattern, in time, is derived. The individual
speech feature vector can be altered to a predefined normalized speech
vector. In addition, speech duration can be shortened or lengthened by
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adding or subtracting speech frames, including silence periods, in units
of glottal periods.

The transfer function of the speaker can be altered in a
known way by altering the physiological parameters in a known way,
such as lengthening the vocal tract or increasing the size of the nasal
cavity based upon the automatically derived data. Once the
physiological parameters are changed, then a new transfer function
feature vector (along with excitation and prosody vector elements) is
formed based upon the new physiology of the vocal tract for the time
frame being investigated.

The excitation function of a more desirable speaker, or the
transfer function, or the prosody pattern for a given speaker can be
substituted, before performing the convolution, upon demand, for the
purpose of improved speech synthesis.

Synthetic excitation functions (e.g. unphysical open-close
shapes, or very high pitch) can be generated, or non-physical modified
transfer functions (e.g. based upon exaggerated physiological parameters)
or amusing or desirable prosody patterns for the purposes of
entertainment, speech research, animal research or training, or specially
desired effects.

The invention includes using these coding techniques for
the purposes of coding the feature vectors of a speaker speaking into a
telephony set transmitter microphone. This coding includes attaching
additional information as desired such as speaker identification, speech
alteration if needed, and translating the feature vectors into appropriate
code for transmission. The real time speech recognition of the speech
can occur and the corresponding symbol can be identified, and
transmitted with dramatic drop in bandwidth. These methods allow
simplified encryption, foreign language translation, and minimal
bandwidth coding for the transmission of the coded units via wire,
optical fiber, or wireless in real time. The methods include how to
synthesize the coded speech (e.g., symbols or feature vectors) into
acoustic speech representing the speaker for broadcasting the rendered
acoustic sounds through the telephony receiver to the listener. The
speech synthesis can also be designed to use for identifying, sending,
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and/or synthesizing prestored average speaker qualities, to send
“difference feature vectors”, to send partial information using “most
important” and “less important” functional fitting terms. It can be
designed to transmit very high fidelity speaker idiosyncratic speech, and
thereby use relatively higher bandwidth for the transmission of the
more accurate description of the feature vector information, or minimal
quality to minimize bandwidth.

The inverse communication channel works in the same
fashion, except the listener becomes the speaker and the speaker the
listener. Real time means that the recognizing, coding, and synthesizing
can take place while speakers are speaking or while speech is being
synthesized and with a time delay that is short enough for the users to
be satisfied.

The invention also includes telephone coding using
identification procedures where the speech recognition results in a word
identification. The word character computer code (e.g. ASCII) is
transmitted along with none or minimal speaker voice characterization
information for the purpose of minimizing the bandwidth of
transmission. Word (i.e., language symbols such as letters, pictograms,
and other symbols) transmission is known to be about 100 fold less
demanding of transmission bandwidth than present speech telephony;
thus the value of this transmission is very high.

The methods include communication feedback to a user for
many applications because the physiological as well as acoustic
information is accurately coded and available for display or feedback.
For speech correction or for foreign language learning, displays of the
vocal organs show organ mispositioning by the speaker. For deaf
speakers, mis-articulated sounds are identified and fed back using visual,
tactile, or electrical stimulus units.

Changes and modifications in the specifically described
embodiments can be carried out without departing from the scope of the
invention which is intended to be limited only by the scope of the
appended claims.
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THE INVENTION CLAIMED IS
1. A method for characterizing speech, comprising:
directing EM radiation toward speech organs of a speaker;
detecting EM radiation scattered from the speech organs to
obtain speech organ information;
5 detecting acoustic speech output from the speaker to obtain
acoustic speech information;

combining the EM speech organ information with the
acoustic speech information using a speech coding algorithm to obtain
the speaker's excitation function and speech tract transfer function.

2. The method of Claim 1 further comprising defining a
speech time frame.

3. The method of Claim 2 further comprising defining the
time of start, stop, and duration of the speech time frame.

4. The method of Claim 2 further comprising forming
feature vectors for each speech time frame.

5. The method of Claim 1 further comprising
deconvolving the speech excitation function from the acoustic speech
information to produce a deconvolved transfer function.

6. The method of Claim 5 further comprising forming a
feature vector by fitting the deconvolved transfer function to a
mathematical model.

7. The method of Claim 6 wherein the feature vector is
formed by one of numerical table look-up, Fourier transform, an ARMA
model technique, an electrical or mechanical analog model of the
acoustic system, or an organ-dimension physiological/acoustic-model of

5 the acoustic system.
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8. The method of Claim 6 further comprising choosing the
transfer function mathematical model using EM sensor information
describing the dimensions and locations of vocal organs.

9. The method of Claim 8 further comprising obtaining the
transfer function using real time measurements.

10. The method of Claim 1 wherein the EM radiation is
directed to and reflected from the glottal region and is sensed in the near
field mode, the intermediate field mode, or the far field mode.

11. The method of Claim 2 wherein the speech time frame
is defined by measuring glottal opening and closing using reflected EM
waves.

12. The method of Claim 11 further comprising defining a
composite time frame from two or more glottal opening and closing
time frames.

13. The metnod of Claim 11 further comprising
precalibrating an EM sensor so that the EM signals can be converted to
either pressure and/or volume air flow in real time.

14. The method of Claim 11 wherein a voiced excitation
function feature vector is described by numerical table values or by
fitting a mathematical functional model to the numerical table values.

15. The method of Claim 2 comprising obtaining the
excitation function for unvoiced speech.

16. The method of Claim 15 comprising defining an
unvoiced speech time frame by the absence of EM detected glottal
opening/closing and the presence of acoustic output.

'17. The method of Claim 11 comprising forming the
feature vector for combined voiced and unvoiced speech time frames.

18. The method of Claim 4 further comprising forming
difference feature vectors.

19. The method of Claim 6 further comprising dividing the
transfer function into “important” pole-zero terms describing major
vocal tract configurations and “less-important” pole-zero terms
describing idiosyncratic speaker’s vocal organ physical and acoustical
conditions.

20. The method of Claim 4 further comprising comparing a
feature vector to stored feature vector information to identify a speaker.

21. The method of Claim 4 further comprising comparing a
feature vector to stored feature vector information in many language
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codebooks to identify the language being used by the speaker for the
formation of acoustic speech units.

22. The method of Claim 4 further comprising
normalizing the feature vector of a speaker to that of one or more
reference speakers.

23. The method of Claim 4 further comprising quantizing a
continuous coefficient-value band of a feature vector to a small number
of distinct coefficient values representing a small number of distinct
user-discernible, application-related speech conditions defined by each
coefficient.

24. The method of Claim 4 further comprising defining
acoustic speech unit feature vectors by combining one or more excitation
function feature vectors, vocal tract transfer function feature vectors,
prosody feature vectors, timing, algorithm control coefficients,
neighboring frame connectivity coefficients, and acoustic feature vectors
for all acoustic units in a language.

25. The method of Claim 24 further comprising generating
said combined feature vectors with identifying symbols for all acoustic
speech units used in a language and storing them in a library, codebook
or data base.

26. The method of Claim 24 further comprising averaging
feature vector coefficients from the excitation, transfer, acoustic, prosody,
and timing functions of one or more speakers to form a reference
speaker acoustic sound unit feature vector and storing them in a
codebook or data base.

27. The method of Claim 24 further comprising modifying
feature vector coefficients and functional representations of the
excitation, transfer, acoustic, prosody, neighboring frame connectivity,
and timing functions of one or more speakers to form a modified
acoustic sound unit feature vector and storing them in a codebook or
data base.

28. The method of Claim 25 further comprising associating
a foreign language word or phrase symbol in a second language with
each unit of a first language coded by a speaker or speakers and storing
them in a codebook or data base.

29. The method of Claim 24 further comprising storing the
acoustic speech unit feature vectors in a library, code book, or database.
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30. The method of Claim 4 further comprising identifying
all sound units in a language from the feature vectors.

31. The method of Claim 30 further comprising identifying
all acoustic speech units in a language by a method selected from the
group consisting of template matching techniques, HMM techniques,
neural network techniques, a method of joint probabilities of two or
more identifying algorithms, and a method of exclusion to reject
identified units in a sequence of tests by two or more identifying
algorithms.

32. The method of Claim 30 further comprising identifying
each acoustic speech unit with a symbol of the language unit identified.

33. The method of Claim 1 further comprising
synthesizing speech from the EM and acoustic speech organ
information.

34. The method of Claim 33 wherein speech is synthesized
by:

generating a code book of reference speaker feature vectors
and identifying symbols;

identifying speech units for synthesis using a text to speech
translator;

selecting the sound units and timing;

providing selected sound feature vectors from a stored data
base; )

concatenating the sound units in speech sound sequences;

modifying feature vector coefficients or sequences of
feature vector coefficients using prosody rules;

modifying the time duration of individual sounds; and

generating sound feature vectors by convolving the
modified excitation functions with the modified transfer functions to
produce an output sound function.

35. The method of Claim 34 further comprising measuring
positions on an excitation function amplitude versus time function to
join speech interval segments together.

36. The method of Claim 35 further comprising using a
time during glottal closure as a timing marker for joining speech frame
segments.
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37. The method of Claim 1 further comprising coding
acoustic speech units, transmitting the codes to a receiver system, and
reconstructing the transmitted codes to acoustic speech.

38. The method of Claim 37 wherein the codes are
symbolic codes. \

39. The method of Claim 37 further comprising modifying
the codes to transmit minimal information, and reconstructing the
codes to acoustic speech using locally stored code books of reference
speakers.

40. The method of Claim 37 further comprising obtaining
an associated foreign language symbol or speech code, transmitting the
foreign language code to the receiver system, and reconstructing to
acoustic speech in the foreign language.

41. The method of Claim 37 further coding the acoustic
speech units in a first language, transmitting the coded information
from the first language, recognizing the transmitted coded units,
obtaining associated language symbols or speech codes in a second
language from a system codebook at the receiver system, and
reconstructing acoustic speech in the second language at the receiver
system.

42. The method of Claim 4 further comprising
communicating back to the speaker or to others speech organ
articulation qualities, which are coded in the feature vectors for the
speech time frames, by using communication vehicles selected from the
group consisting of visual images, printed information, acoustic
messages, and tactile and/or electrical stimulus.

43. The method of Claim 24 where a speech segment is
compressed by:

forming a sequence of feature vectors for each sequential
time frame in the speech segment;

comparing sequential changes in the feature vector
coefficients, for each feature vector in the sequence, against a predefined
model describing change in one or more of the coefficients over the
sequential time frames;

forming a single representative feature vector for several
time frames over which the coefficients meet the criteria of the
predefined model;
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adding to the representative feature vector extra coefficients
describing the predefined model and a parametric fit to the model;
adding the total duration time of the several time frames to
15  the representative, multi-time frame feature vector as an extra
coefficient;
storing or transmitting the compressed segment
electronically.
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