DEMANDE DE BREVET D’INVENTION

Date de dépôt : 01.06.07.

Demandeur(s) : AIRBUS FRANCE Société par actions simplifiée — FR.

Inventeur(s) : BAZILE JEROME.

Titulaire(s) :

Mandataire(s) : CABINET SCHMIT CHRETIEN SCHIHIN.

PROCEDE ET DISPOSITIF DE DETERMINATION DE LA MARGE DE STABILITE DYNAMIQUE D’UN AVION.

Suivant le procédé de détermination d’une marge de stabilité dynamique M_{SD} d’un avion, la position longitudinale X_{MP} d’un point de manœuvre MP est calculée, pour trouver la distance entre le point de manœuvre et la position X_{CG} du centre de gravité CG de l’avion, en fonction de la pulsation α_0 d’une oscillation d’incidence de l’avion, pulsation mesurée pendant le vol de l’avion.

Un dispositif (50) apte à déterminer la marge de stabilité dynamique M_{SD} ou la position X_{MP} du point de manœuvre MP comporte des moyens (51) d’acquisition de données (53, 54) et de calcul de la marge de stabilité dynamique (55).

Les premiers moyens (51) reçoivent des données pour élaborer :
- la masse m et l’inertie en tanguage I_{yy} de l’avion;
- la vitesse de vol V;
- la pulsation α_0 de l’oscillation d’incidence au point de vol considéré;
- un coefficient C_{α}

représentatif du C_{α} d’un modèle “quasi-statique” de l’avion.

Les lois de commande de vol de l’avion sont le cas
Procédé et dispositif de détermination de la marge de stabilité dynamique d'un avion

La présente invention appartient au domaine des qualités de vol des avions.
En particulier l'invention concerne la détermination de la marge de stabilité dynamique d'un avion, marge qui détermine la stabilité du vol et la sécurité de manœuvres en vol.

Pour les besoins de la présente description les notations utilisées sont les notations conventionnellement dans le domaine de l'aérodynamique et des qualités de vol des avions.

Ces principales notations sont rappelées sur la figure 1 qui présente les axes principaux du repère avion conventionnel :
- un axe X correspondant à l'axe longitudinal de l'avion, orienté positivement vers l'avant de l'avion ;
- un axe Z dans un plan de symétrie de l'avion, perpendiculaire à l'axe X et orienté positivement vers le bas par rapport à l'avion ;
- un axe Y perpendiculaire au plan de symétrie de l'avion et orienté positivement vers la droite de l'avion.

La marge de stabilité dynamique à laquelle s'intéresse l'invention concerne la stabilité longitudinale de l'avion, c'est à dire essentiellement la stabilité en rotation autour d'un axe de tangage, c'est à dire autour d'un axe parallèle à l'axe Y du repère lié à l'avion.

Les mouvements de l'avion autour de l'axe de tangage sont pilotés par une gouverne dite gouverne de profondeur en modifiant un angle de braquage noté δg de ladite gouverne.

S_{ref} représente une surface de référence de l'avion, en général une surface de l'aile de l'avion et L_{ref} une longueur de référence de l'avion, en général la longueur d'une corde aérodynamique moyennes dite mac de l'aile de
l'avion. S_{ref} et L_{ref} sont utilisés dans les équations de la mécanique du vol pour rendre des coefficients ou des paramètres utilisés sans dimension.

De manière générale, la marge de stabilité dynamique d'un avion est définie comme une distance suivant l'axe longitudinal X de l'avion séparant le centre de gravité CG de l'avion d'un point caractéristique MP désigné "point de manoeuvre".

En notant X_{CG} la distance suivant X du centre de gravité à un point de référence de l'axe X et X_{MP} la distance suivant X du point de manoeuvre au même point de référence, la distance du centre de gravité CG au point de manoeuvre MP est donc donnée par $X_{CG} - X_{MP}$. Rapporté à la longueur de la corde aérodynamique moyenne, la distance s'exprime alors $X_{CG} / L_{ref} - X_{MP} / L_{ref}$.

Pour des conditions de vol données, le point de manoeuvre MP est par principe défini comme la position suivant l'axe longitudinal X que devrait avoir le centre de gravité CG de l'avion pour qu'une accélération verticale suivant une direction Z dans des axes liés à l'avion, la dite accélération verticale étant le plus souvent divisée par l'accélération g du champ de pesanteur terrestre pour être exprimée sous la forme adimensionnel d'un facteur de charge vertical nz de l'avion, soit indépendante de l'angle de braquage δq de la gouverne de profondeur de l'avion, gouverne utilisée dans des conditions normales de vol pour contrôler le facteur de charge vertical nz.

Lorsque le centre de gravité CG est à la même position suivant la direction X que le point de manoeuvre MP, le rapport $\delta q / nz$, parfois désigné "braquage par g", est égal à zéro, situation pour laquelle l'avion n'est plus pilotable.

La détermination de la marge de stabilité dynamique et donc de la position du point de manoeuvre s'avère donc essentielle pour des raisons de sécurité, le centre de gravité ne devant pas atteindre le point de manoeuvre
pour qu'il soit toujours possible de contrôler l'avion autour de l'axe Y de rotation en tангage.

De manière connue, la position du point de manoeuvre d'un avion est déterminée de manière théorique, confirmée par essais en vol, puis le domaine autorisé pour la position en X du centre de gravité est défini en incorporant des marges de sécurités pour tenir compte des incertitudes sur la position évaluée du point de manoeuvre MP.

Si \(\frac{X_F}{L_{ref}} \) représente la position réduite d'un point neutre de stabilité statique en incidence \(\alpha \), le foyer en incidence, de façon connue la position réduite du point de manoeuvre est calculée en utilisant la relation :

\[
\frac{X_{MP}}{L_{ref}} = \frac{X_F}{L_{ref} \alpha} - \frac{Cm_q}{\mu}
\]

ou bien en utilisant la relation :

\[
\frac{X_{MP}}{L_{ref}} = \frac{X_F}{L_{ref} \alpha} - \frac{Cm_q}{\mu - Cz_q}
\]

relations dans lesquelles \(Cmq \) représente le coefficient de moment de tангage dû à la vitesse de tангage, \(Czq \) représente le coefficient de portance dû à la vitesse de t앙age et \(\mu \) représente une masse réduite : \(\mu = \frac{2m}{\rho S_{ref} L_{ref}} \),

\(m \) représentant dans ce cas la masse de l'avion et \(\rho \) la masse volumique de l'air.

Ces relations sont utilisées en considérant que l'avion est indéformable, hypothèse dite d'avion rigide, et que les coefficients \(Cmq \) et \(Czq \) sont constants.

Un inconvénient de ces méthodes vient du fait que la position obtenue du point de manoeuvre est variable en fonction du centrage.
Dans des cas pratiques, il est constaté que, suivant la position du centre de gravité \(\text{CG} \), la position obtenue pour le point de manœuvre \(\text{MP} \) varie de l'ordre de 0,4% de la longueur \(L_{\text{ref}} \), ce qui correspond à environ 2% de la plage de centrage autorisé d'un avion conventionnel.

Pour résoudre ces difficultés, le procédé suivant l'invention détermine la marge de stabilité dynamique \(\text{MSD} \) d'un avion en vol dans lequel une position \(\text{XMP} \) suivant un axe longitudinal de l'avion, dit axe \(\text{X} \), d'un point de manœuvre \(\text{MP} \) est calculée pour trouver la distance entre ledit point de manœuvre et une position \(\text{XCG} \) suivant l'axe \(\text{X} \) d'un centre de gravité \(\text{CG} \) de l'avion par la mesure d'une pulsation \(\omega_0 \) d'une oscillation d'incidence de l'avion.

Plus particulièrement la position \(\text{XMP} \) est déterminée par la relation

\[
\left(\frac{X_{\text{MP}}}{L_{\text{ref}}} \right) = \left(\frac{X_{\text{CG}}}{L_{\text{ref}}} \right) - \left(\frac{I_{\text{yy}}}{mVL_{\text{ref}}} \right) \left(\frac{\phi_0}{C_\phi^*} \right)
\]

expression dans laquelle :

- \(L_{\text{ref}} \) est une longueur de référence de l'avion, les termes \(\text{XMP}/L_{\text{ref}} \) et \(\text{XCG}/L_{\text{ref}} \) représentant des valeurs réduites respectivement de \(\text{XMP} \) et de \(\text{XCG} \);
- \(I_{\text{yy}} \) est l'inertie de l'avion autour d'un axe de rotation en tangage parallèle à un axe \(\text{Y} \) du repère avion perpendiculaire à un plan de symétrie verticale de l'avion ;
- \(m \) est la masse de l'avion ;
- \(V \) est la vitesse aérodynamique vraie de l'avion au point de vol considéré pour la mesure de la pulsation \(\omega_0 \);
- \(C_\phi^* \) est un coefficient de la matrice d'état \(A \) d'un modèle "quasi-statique" de l'avion.

Pour l'application du procédé un dispositif apte à déterminer la marge de stabilité dynamique \(\text{MSD} \) d'un avion et ou la position \(\text{XMP} \) du point de
manoeuvre MP comporte des premiers moyens d’acquisition de données et de calcul de la marge de stabilité dynamique.

Les dits premiers moyens reçoivent des données correspondant à ou suffisant pour élaborer :

- une masse actuelle \(m \) de l’avion ;
- une inertie actuelle \(I_{yy} \) de l’avion autour d’un axe de rotation en tangage parallèle à un axe \(Y \) du repère avion perpendiculaire à un plan de symétrie verticale de l’avion ;
- une vitesse actuelle \(\mathbf{V} \), vitesse aérodynamique vraie de l’avion au point de vol considéré ;
- une pulsation \(\omega_0 \) d’une oscillation d’incidence de l’avion au point de vol considéré ;
- un coefficient \(C_a^* \) de la matrice d’état \([A] \) d’un modèle “quasi-statique” de l’avion.

Avantageusement les premiers moyens déterminent la marge de stabilité dynamique comme la valeur résultat, dans une forme réduite divisée par un terme \(L_{ref} \) où \(L_{ref} \) représente une longueur de référence de l’avion, de l’application de la formule

\[
\left(\frac{I_{yy}}{mVL_{ref}} \right) \left(\frac{\omega_0}{C_a^*} \right)
\]

Le dispositif comporte de préférence des seconds moyens d’acquisition de données et de calcul de la position \(\mathbf{X}_{MP} \) du point de manoeuvre MP.

Les seconds moyens reçoivent des données correspondant à ou suffisant pour élaborer une position \(\mathbf{X}_{CG} \) suivant l’axe \(X \) d’un centre de gravité CG de l’avion et déterminent la position \(\mathbf{X}_{MP} \) du point de manoeuvre MP comme la valeur résultat, dans une forme réduite \(\mathbf{X}_{MP/L_{ref}} \), de la formule

\[
\frac{X_{MP}}{L_{ref}} = \frac{X_{CG}}{L_{ref}} \quad \text{Marge de stabilité dynamique réduite établie par les premiers moyens (51)}
\]

Afin notamment de générer des alarmes lorsque les conditions de stabilité dynamique se dégradent, les seconds moyens élaborent des données
fonction de l’écart entre la valeur de la marge de stabilité dynamique et une ou des valeurs de seuils prédéfinies.

Pour améliorer les qualités de vol d'un avion notamment lorsque des lois de pilotages normales assurant certaines protections ne sont plus actives, un avion comporte avantageusement un système de commande de vol apte à recevoir les données élaborées par le dispositif de détermination de la marge de stabilité dynamique et ou du point de manœuvre et à modifier des lois de pilotage en fonction des dites données reçues.

La description détaillée de l'invention est faite en référence aux figures qui représentent :

Figure 1 : les axes principaux du repère conventionnel avion et des notations correspondantes ;

Figure 2 : un schéma de principe d'un dispositif suivant l'invention

Suivant le procédé de l'invention une marge de stabilité dynamique \(\text{Msd} \) le long d'un axe longitudinal \(X \) d'un avion est déterminée à partir d'une valeur de la pulsation \(\omega_0 \) d'une oscillation d'incidence.

La marge dynamique est définie comme la distance suivant la direction \(X \) entre le centre de gravité \(\text{CG} \) de l'avion et un point de manœuvre \(\text{MP} \).

Suivant le procédé, des coefficients caractéristiques de l'avion dans les conditions de vol courantes sont déterminés, une valeur de la pulsation \(\omega_0 \) est établie et la marge de stabilité dynamique \(\text{Msd} \) est obtenue par la relation :

\[
\text{Msd} = \left(\frac{X_{\text{MP}}}{L_{\text{ref}}} \right) + \left(\frac{L_{\text{ref}}}{L_{\text{ref}}} \right)^2 \left(\frac{\text{Cg}_a + \mu}{\text{Cg}_a} \right) \theta_0^2 \quad (9b)
\]

expression dans laquelle les symboles ont les significations générales données dans les équations de la mécanique du vol, déjà explicitées ou qui seront explicitées ultérieurement.
La formulation de la marge de stabilité dynamique \(M_{SD} \) en fonction de la pulsation \(\omega_0 \) est établie à partir des équations générales qui régissent les mouvements longitudes de l'avion.

Pour stabiliser une manoeuvre correspondant à une augmentation d'un facteur de charge vertical d'une valeur \(\Delta n_z \), l'avion voit un angle d'incidence \(\Delta \alpha \) de l'aile modifié d'une valeur \(\Delta \alpha \) et le braquage \(\delta q \) de gouvernes de profondeur de l'avion modifié d'une valeur \(\Delta \delta q \).

Les valeurs de \(\Delta n_z \), \(\Delta \alpha \), et \(\Delta \delta q \) sont liées par les équations connues de la mécanique du vol :

\[
\Delta \alpha = \left(\frac{g L_{ref}}{V^2} \right) \left(\frac{C_{z_{\delta q}} C_{m_q} + C_{m_{\delta q}} (\mu - C_{z_{\delta q}})}{C_{z_q} C_{m_{\delta q}} - C_{m_q} C_{z_q}} \right) \Delta n_z \tag{1a}
\]

\[
\Delta \delta q = - \left(\frac{g L_{ref}}{V^2} \right) \left(\frac{C_{z_q} C_{m_q} + C_{m_q} (\mu - C_{z_q})}{C_{z_{\delta q}} C_{m_{\delta q}} - C_{m_{\delta q}} C_{z_{\delta q}}} \right) \Delta n_z \tag{1b}
\]

équations dans lesquelles de façon conventionnelle dans le domaine des calculs de l'aérodynamique des avions :

- \(g \) représente l'accélération du champ de pesanteur terrestre ;
- \(L_{ref} \) représente une longueur de référence de l'avion tel qu'une longueur de corde aérodynamique moyenne d'une aile ;
- \(V \) représente la vitesse relative de l'écoulement par rapport à l'avion ;
- \(\mu \) représente une masse réduite de l'avion suivant l'expression déjà introduite ;
- \(C_{z_{\delta q}} \) représente la dérivée \(dCz/d\delta q \), \(Cz \) étant un coefficient de portance de l'avion ;
- \(C_{m_q} \) représente la dérivée \(dCm/dq \), \(Cm \) étant un coefficient de moment de tangage de l'avion et \(q \) la vitesse de tangage de l'avion c'est à dire une vitesse de rotation autour d'un axe de tangage parallèle à l'axe Y du repère avion ;
8

- C_{zq} représente la dérivée dCz/dq ;

- C_{ma} représente la dérivée dCm/da, Cm étant un coefficient de moment de tangeage et α une incidence aérodynamique de l'avion;

- $C_{m\delta q}$ représente la dérivée $dCm/d\delta q$;

- C_{za} représente la dérivée dCz/da .

Tous ces coefficients aérodynamiques de l'avion étant ici pris par rapport au centre de gravité CG comme dans la suite de la description.

Conformément à la définition générale le point de manœuvre correspond à la position du centre de gravité suivant l'axe longitudinal de l'avion pour lequel

$$\left(\frac{\Delta \delta q}{\Delta n_z} \right) = 0$$

ce qui permet d'établir à partir des équations (1a) et (1b) lorsque :

$$C_{zq} C_{mq} + C_{m\delta q}(\mu - C_{zq}) = 0 \quad (2)$$

La position X_{CG} (X_{CG}/L_{ref} en valeur réduite) du centre de gravité CG pour laquelle cette relation est vérifiée se déduit de la connaissance des valeurs de chaque coefficient aérodynamique en fonction de la position du centre de gravité.

Le coefficient de moment de tangeage $C_{m\alpha}$ dû à l'incidence α et le coefficient de portance C_{zq} dû à la vitesse de tangeage q sont des fonctions de la position du centre de gravité.

Pour trouver une solution à la relation (2), le coefficient $C_{m\alpha}$ doit également être identifié comme une fonction de la position du centre de gravité CG.

Le moment de tangeage C_{mq} dû à la vitesse de tangeage s'exprime par la relation :
\[C_{m_q} = - C_{z_q} \left(\frac{X_{cg}}{L_{ref}} \right)^2 - \left(\frac{X_{cg}}{L_{ref}} \right)_a \left(\frac{X_F}{L_{ref}} \right)_q + \left(\frac{X_F}{L_{ref}} \right)_a \left(\frac{X_F}{L_{ref}} \right)_q \] \hspace{1cm} (3)

avec \(\left(\frac{X_F}{L_{ref}} \right)_a \) et \(\left(\frac{X_F}{L_{ref}} \right)_q \) qui représentent respectivement la position réduite du point neutre de stabilité statique en incidence, dit point neutre, et du point d'application des forces induites par la vitesse de tangage.

Il doit être noté que seuls les positions suivant l'axe longitudinal \(\mathbf{X} \) de l'avion du centre de gravité \(\mathbf{CG} \) et des points neutres de stabilité statique et de manoeuvre interviennent dans cette expression (3).

Tous les termes de cette expression sont connus dans la littérature traitant des questions de stabilité et de contrôle du vol des avions à l'exception du terme

\[\left(\frac{X_F}{L_{ref}} \right)_{a,q} \]

qui, à la connaissance de l'inventeur, n'est pas mis en évidence par des documents publiés.

Il est également connu que le moment de tangage \(C_{m_s} \) du à l'angle d'incidence s'exprime

\[C_{m_s} = C_{z_s} \left(\frac{X_{cg}}{L_{ref}} \right) - \left(\frac{X_F}{L_{ref}} \right)_q \]

et que le gradient de portance \(C_{z_q} \) du à la vitesse de tangage s'exprime

\[C_{z_q} = - C_{z_s} \left(\frac{X_{cg}}{L_{ref}} \right) - \left(\frac{X_F}{L_{ref}} \right)_q \cdot \]

En rapportant dans la relation (2) l'expression du moment de tangage \(C_{m_q} \) du à la vitesse de tangage par son expression (3) il est obtenu une nouvelle expression de la valeur de \(X_{MP} \) (\(X_{MP/Lref} \) en valeur réduite) :

\[\left(\frac{X_{MP}}{L_{ref}} \right) = \left(\frac{X_F}{L_{ref}} \right)_a \left(\frac{C_{z_s}}{\mu} \right) \left(\frac{X_F}{L_{ref}} \right)_q \left(\frac{X_F}{L_{ref}} \right)^2 \left(\frac{X_F}{L_{ref}} \right)_a \left(\frac{X_F}{L_{ref}} \right)_q \] \hspace{1cm} (4)
dans laquelle \(\mu \) est la masse réduite exprimée précédemment.

La comparaison du gradient aérodynamique avec le point neutre conduit alors à :

\[
\left(\frac{X_{MP}}{L_{ref}} \right) = \left(\frac{X_C}{L_{ref}} \right) - \left(\frac{1}{\mu C_{zq}} \right) \left(C_{zq} C_{m_q} - C_{m_q} C_{zq} \right) \tag{5}
\]

Dans l'hypothèse de l'avion rigide (en un point de vol donné), il se déduit de la relation (4) que la position du point de manoeuvre dans le repère avion est indépendante de la position du centre de gravité ce qui implique que le dernier terme entre parenthèses dans la relation (5) précédente est constant, c'est à dire que :

\[
C_{zq} C_{m_q} - C_{m_q} C_{zq} = C_0 \tag{6}
\]

Toutefois la position du centre de gravité CG est mieux connue en pratique que les données du point neutre et la détermination du point de manoeuvre MP dans l'hypothèse d'un avion rigide est de préférence établie au moyen de la relation :

\[
\left(\frac{X_{MP}}{L_{ref}} \right) = \left(\frac{X_C}{L_{ref}} \right) - \left(\frac{1}{\mu C_{zq}} \right) \left(C_{zq} C_{m_q} + C_{m_q} (\mu - C_{zq}) \right) \tag{7}
\]

Il est connu qu'un avion en vol soumis à une perturbation, par exemple une perturbation verticale ou une perturbation de tangage, est naturellement soumis à des mouvements dont une oscillation en incidence correspondant à un mouvement de tangage de l'avion avec une période, relativement courte, de pulsation principale \(\omega_0 \).

Ce lien est déterminé par une racine d'un modèle d'avion rigide ou "quasi statique" et s'exprime de manière connue par l'expression :

\[
\omega_0^2 = -\left(\frac{V}{L_{ref}} \right)^2 \left(\frac{C_{m_q} C_{zq} + C_{m_q} (\mu - C_{zq})}{\eta (C_{zq} + \mu)} \right) \tag{8}
\]
expression dans laquelle $\frac{\eta}{\eta}$ est une inertie réduite $\eta = \left(\frac{2I_{pp}}{\rho S_{ref} L_{ref}} \right)$ d'une inertie I_{yy} de l'avion autour d'un axe de rotation en tangage parallèle à l'axe Y du repère avion, expression dans laquelle Cz_α représente la dérivée $dCz/d\dot{\alpha}$ de Cz par rapport à la vitesse $\dot{\alpha}$ de variation de l'incidence α.

Des relations (7) et (8), il est déduit une expression du point de manoeuvre comme fonction de la première pulsation ω_0 du mode d'oscillation en incidence de l'avion :

$$\left(\frac{X_{MP}}{L_{ref}} \right) = \left(\frac{X_{cz}}{L_{ref}} \right) + \left(\frac{L_{ref}}{V} \right)^2 \left(\frac{\eta}{\mu} \right) \left(Cz_\alpha + \frac{\mu}{Cz_\alpha} \right) \dot{\alpha}^2 \frac{\dot{\alpha}}{\alpha} \tag{9}$$

De cette dernière relation il est constaté que la pulsation ω_0 du mode d'oscillation en incidence est proportionnelle à la distance entre le centre de gravité et le point de manoeuvre et n'est pas proportionnel à la distance entre le centre de gravité et le point neutre.

Lorsque ω_0 est égal à zéro cela signifie que le centre de gravité CG a atteint le point de manoeuvre MP ou que le point de manoeuvre a atteint le centre de gravité.

La relation (9) donne donc une expression de la marge de stabilité dynamique de l'avion.

Une expression dérivée et équivalente de la marge de stabilité dynamique s'exprime également :

$$\left(\frac{X_{MP}}{L_{ref}} \right) = \left(\frac{X_{cz}}{L_{ref}} \right) - \left(\frac{I_{yy}}{mVL_{ref}} \right) \left(\frac{\dot{\alpha}}{C_\alpha} \right) \tag{9a}$$

expression dans laquelle :

- C_α est un coefficient de la matrice d'état $[A]$ du modèle "quasi-statique" de l'avion donné par :
\[
\begin{bmatrix}
C^* \\
D^*
\end{bmatrix} =
\begin{bmatrix}
C^*_e & C^*_q \\
D^*_e & D^*_q
\end{bmatrix}
\]

Ledit terme \(C^*_e \) est représentatif du \(Cz_a \) de l'avion dont la valeur est avantageusement déterminée en un point de vol donné à partir de mesures réalisées pendant le vol.

- \(\omega_0 \) est la fréquence naturelle d'oscillation en incidence du premier mode d'oscillation en avion rigide avec : \(\omega_0^2 = C^*_e D^*_q - D^*_e C^*_q \)

Un avantage de l'expression (9a) réside dans la possibilité de calculer dans certaines simulations numériques plus facilement un modèle linéarisé "quasi-statique" délivrant la matrice \([A]\) et il est alors possible de calculer au cours d'un vol de l'avion, pour chaque point de vol et pour chaque masse de l'avion, la marge de stabilité dynamique \(M_{sp} \) à partir de la mesure de la pulsation \(\omega_0 \), valeur facilement obtenue par des mesures en vol au moyen de systèmes tels que des gyromètres ou des accéléromètres utilisés dans l'avion par exemple dans des centrales à inertie.

Suivant le procédé proposé, des coefficients aérodynamiques de l'avion, la masse de l'avion et l'inertie \(I_{yy} \) sont déterminés dans une première étape par des méthodes et moyens conventionnels pour des conditions de vol données.

Dans une deuxième étape, la pulsation \(\omega_0 \) de l'oscillation d'incidence, déclenchée par une perturbation naturelle ou par une perturbation provoquée, est mesurée au point de vol considéré.

Enfin dans une troisième étape la position du point de manœuvre \(MP \) suivant l'axe \(X \) et ou la marge de stabilité dynamique \(M_{sp} \) sont calculées par une des relations (9) ou (9a) ou (9b).

Un avantage du procédé est relatif à la méthode en elle-même qui utilise pour la détermination de la marge recherchée un paramètre, \(\omega_0 \), dont la mesure est très accessible avec une grande précision, ce qui n'est pas le cas pour les paramètres nécessaires à l'application des méthodes connues.
Un autre avantage du procédé est une précision améliorée de la détermination de la position du point de manoeuvre et de la marge recherchée.

Un autre avantage du procédé est l'absence de sensibilité de la position du point de manoeuvre à la position du centre de gravité de l'avion, ce qui est conforme à la théorie et ce qui n'est pas le cas des méthodes connues.

Ces avantages du procédé proposé par rapport aux méthodes connues ressort de la comparaison des relations (10) et (11) mises en œuvre dans les méthodes connues avec celles établies pour les besoins du procédé suivant l'invention.

La relation (5) vue précédemment s'exprime également sous la forme :

\[
\frac{X_{mp}}{L_{ref}} = \frac{X_C}{L_{ref}} - \left(\frac{Cm_x}{\mu} \right) + \left(\frac{Cm_x Cz_x}{\mu Cz_x} \right) \tag{12}
\]

ce qui permet d'établir que la relation (10) connue est une approximation dans laquelle le terme \(\frac{Cm_x Cz_x}{\mu Cz_x} \) est négligé.

En pratique ce terme est légitimement négligé lorsque la marge statique devient petite, i.e. \(Cm_x = 0 \).

Toutefois lorsque ce terme est négligé dans la relation (12) la position du point de manoeuvre obtenue est dépendante de la position du centre de gravité.

Une manière pour rendre la détermination de la position du point de manoeuvre indépendante de la position du centre de gravité dans cette expression consiste à considérer que \(Cm_x \) est constant, ce qui n'est pas satisfaisant pour la précision des résultats comme il peut être déduit de la relation (3).

La seconde expression connue (11) est obtenue à partir de l'expression (2) définissant le point de manoeuvre en faisant l'hypothèse que le moment de tangage \(Cm_x \) dû à la vitesse de tangage et le gradient de portance \(Cz_x \) dû à la
vitesse de tangage sont indépendants de la position du centre de gravité ce qui
conduit à considérer que \(\frac{Cm_q}{Cz_q} \left(\mu - Cz_q \right) = -Cm_q \).

La relation (11) est alors déduite de l'expression de \(Cm_q \).

Du fait de l'hypothèse considérant \(Cm_q \) et \(Cz_q \) constants, les
expressions (10) et (11) conduisent à des estimations moins précises de la
position du point de manoeuvre que celles obtenues par la relation (5).

Ces résultats seront mieux appréciés à l'analyse des exemples
numériques suivants de calcul de la position du point de manoeuvre d'un avion
civil de transport.

Pour comparer les résultats obtenus au moyen des procédés proposés
par l'art antérieur et par l'invention, (10), (11), (7)), il convient de considérer
un premier modèle d'avion "quasi statique" (dans lequel les effets de flexibilité
statique sont pris en considération) dans le cas d'un centrage arrière au point
de vol défini par :

- un nombre de Mach de vol: \(M = 0.515 \)
- une vitesse Air vraie: \(V = 175 \text{ (m/s)} \)
- une altitude: \(H = 0 \text{ (ft)} \)
- une position du centre de gravité \(X_{cg} = 43.9 \text{ (%) mac} \)

Dans l'exemple considéré et avec ces conditions, les valeurs des
coefficients aérodynamiques sont :

<table>
<thead>
<tr>
<th>Coefficient avion</th>
<th>Rigide</th>
<th>"Quasi-statique"</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CZ_e)</td>
<td>5.4388</td>
<td>4.7759</td>
</tr>
<tr>
<td>(CM_e)</td>
<td>-0.2732</td>
<td>0.1648</td>
</tr>
<tr>
<td>(CZ_q)</td>
<td>3.9685</td>
<td>3.1271</td>
</tr>
<tr>
<td>(CM_q)</td>
<td>-6.2623</td>
<td>-5.0289</td>
</tr>
</tbody>
</table>
La position obtenue pour le point de manœuvre en utilisant les différents procédés est alors :

<table>
<thead>
<tr>
<th>Procédé défini par</th>
<th>Avion Rigide</th>
<th>Avion "Quasi-static"</th>
</tr>
</thead>
<tbody>
<tr>
<td>relation (10)</td>
<td>55.907 (%/mac)</td>
<td>46.038 (%/mac)</td>
</tr>
<tr>
<td>relation (11)</td>
<td>56.240 (%/mac)</td>
<td>46.247 (%/mac)</td>
</tr>
<tr>
<td>Relation proposée (5)</td>
<td>55.682 (%/mac)</td>
<td>46.16 (%/mac)</td>
</tr>
</tbody>
</table>

Il ressort de ces exemples que les divers procédés conduisent à des résultats différents.

Si l'on considère un cas de vol du même avion ne différant que par la position du centre de gravité placé en position avant par rapport au cas précédent :

centre de gravité à $X_{cg} = 36.72\text{(%/mac)}$,

les coefficients aérodynamiques à prendre en considérations sont alors :

<table>
<thead>
<tr>
<th>Coefficient avion</th>
<th>Rigide</th>
<th>"Quasi-statique"</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{z_a}</td>
<td>5.4388</td>
<td>4.8316</td>
</tr>
<tr>
<td>$C_{m_{y}}$</td>
<td>-0.6583</td>
<td>-0.2051</td>
</tr>
<tr>
<td>C_{z_q}</td>
<td>4.3536</td>
<td>3.4903</td>
</tr>
<tr>
<td>$C_{m_{q}}$</td>
<td>-6.5899</td>
<td>-5.2809</td>
</tr>
</tbody>
</table>

La position obtenue pour le point de manœuvre en utilisant les différents procédés est alors :

<table>
<thead>
<tr>
<th>Procédé défini par</th>
<th>Avion Rigide</th>
<th>Avion "Quasi-static"</th>
</tr>
</thead>
<tbody>
<tr>
<td>relation (10)</td>
<td>56.278(%/mac)</td>
<td>46.938 (%/mac)</td>
</tr>
<tr>
<td>relation (11)</td>
<td>56.664 (%/mac)</td>
<td>47.184 (%/mac)</td>
</tr>
<tr>
<td>Relation proposée (5)</td>
<td>55.682 (%/mac)</td>
<td>46.77 (%/mac)</td>
</tr>
</tbody>
</table>
La comparaison des résultats obtenus pour les deux différents centrages montre que la relation (5) de l'invention donne exactement la même position du point de manœuvres dans le cas de l'hypothèse d'un avion rigide, ce qui n'est pas le cas avec les relations (10) et (11) connues.

Ainsi le procédé suivant l'invention conduit dans ce cas, contrairement aux procédés connus, à des résultats pour la position du point de manœuvre qui sont indépendants de la position du centre de gravité.

Dans l'hypothèse d'un avion "quasi-statique", le procédé de l'invention donne des résultats légèrement différents conséquences des effets sur le modèle "quasi statique" des différences de la répartition des masses de l'avion.

Pour les procédés connus, les différences sont toutefois plus importantes.

La marge de stabilité dynamique à partir de la relation (9a) est établie en considérant un cas de centrage arrière avec les conditions de vol de l'avion suivantes:

\[
\begin{align*}
\text{Nombre de Mach} & \quad M = 0.5 \\
\text{Vitesse air vraie} & \quad V = 175 \text{ (m/s)} \\
\text{Masse} & \quad m = 560 \text{ (t)} \\
\text{Inertie} & \quad I_{yy} = 74000000 \text{ (kg m2)} \\
\text{Centrage} & \quad X_{cg} = 43.8(\% \text{ mac})
\end{align*}
\]

Dans ces conditions, la matrice d'état $[A]$ est:

\[
[A] = \begin{bmatrix}
-0.8081 & 0.9734 \\
0.3637 & -1.5426
\end{bmatrix}
\]

et suivant la relation donnant la pulsation de l'oscillation d'incidence

$\omega_0 = C_i^s D_q^* - D_i^* C_q^*$, la dite pulsation est $\omega_0 = 0.89 (\text{rad} / \text{s})^2$,

ce qui conduit à une position du point de manœuvre par rapport au centre de gravité de :

$X_{MP} = 50.63(\% \text{ mac})$
On a donc dans ce cas de position du centre de gravité, le centre de gravité situé en avant suivant l'axe X avion du point de manœuvre et donc un avion dynamiquement stable avec une marge de stabilité dynamique M_{sd} égale à 6,83% (50,63 – 43,8) de la mac.

Le procédé suivant l'invention, en mettant en œuvre une nouvelle expression du coefficient de tanganage C_{m}, dû à la vitesse de tanganage, permet de déterminer la position du point de manœuvre et de la marge de stabilité dynamique d'un avion en vol par des moyens de mesure précis et aisément accessibles sans présenter les limitations des procédés connus.

Avantageusement le procédé est mis en œuvre au cours de vols d'essais dans le cadre des vérifications nécessaires pour établir le manuel de vol et la certification d'un avion.

Dans une application embarquée sur un avion en exploitation, un dispositif 50 utilisant le procédé permet de déterminer la marge de stabilité dynamique en vol, en particulier dans le cas de commande vol fonctionnant avec des asservissements en boucle ouverte soit par conception soit en raison d'un fonctionnement en mode dégradé.

Un tel dispositif 50 comporte avantageusement des premiers moyens 51 d'acquisition de données et détermination de la position du point de manœuvre.

Les données nécessaires peuvent être considérées en deux familles.

Une première famille 53 correspond aux données caractéristiques du point de vol, il s'agit par exemple d'une information de vitesse issue de données de capteurs de l'avion, de la pulsation de l'oscillation d'incidence et de données élaborées par exemple le coefficient de d'état C_{a^*}.

Une seconde famille 54 correspond à des données propres à l'avion non directement liées au point de vol. Ces données correspondent notamment à la masse m de l'avion et à son inertie autour de l'axe de tanganage, données qui nécessite d'être élaborées en fonction de la répartition des masses qui est le plus souvent variable en vol.
Les données de la première et de la seconde familles sont transmises par tout moyen de communication entre les systèmes de l'avion, en particulier par des bus numériques de communication. Les données proprement dites sont le plus souvent des données émises par des moyens plus ou moins spécialisés de l'avion qui élabore en permanence ce type de données à partir d'informations primaires.

A partir des données ainsi reçues ou élaborées localement les premiers moyens 51 détermine la position X_{MP} du point de manoeuvre suivant le procédé de l'invention et cette position est transmise 55 à un second moyen 52 qui reçoit 56 une information de position X_{CG} du centre de gravité.

Les dits seconds moyens élaborent alors une marge dynamique de stabilité, et le cas échéant des alarmes, qui sont transmises 57 vers des dispositifs de présentation des informations (non représentées) et ou vers des systèmes de commandes de vol (non représentés) dont les gains des lois de contrôle sont le cas échéant modifiés en fonction de la valeur de marge dynamique de stabilité.

Dans ce cas la connaissance en temps réel de la marge de stabilité dynamique est avantageusement exploitée par un dispositif de commande de vol pour agir sur des gains de pilotage afin de limiter les conséquences d'une marge de stabilité dynamique réduite et pour déclencher des alarmes à destination d'un équipage de conduite de l'avion pour informer ledit équipage lorsque la marge de stabilité dynamique est inférieure à une valeur seuil prédéfinie.
REVENDICATIONS

1 – Procédé de détermination d'une marge de stabilité dynamique MSD d'un avion en vol dans lequel une position XMP suivant un axe longitudinal de l'avion, dit axe X, d'un point de manœuvre MP est calculée pour trouver la distance entre ledit point de manœuvre et une position XCG suivant l'axe X d'un centre de gravité CG de l'avion caractérisé en ce que la position XMP suivant X du dit point de manœuvre MP est déterminée en fonction d'une pulsation \(\omega_0 \) d'une oscillation d'incidence de l'avion, ladite pulsation étant mesurée pendant le vol de l'avion.

2 – Procédé suivant la revendication 1 dans lequel la position XMP est déterminée par la relation

\[
\left(\frac{X_{MP}}{L_{ref}} \right) = \left(\frac{X_{CG}}{L_{ref}} \right) - \left(\frac{I_{yy}}{mVL_{ref}} \right) \left(\frac{\theta^2}{C^*_\theta} \right)
\]

expression dans laquelle :

- \(L_{ref} \) est une longueur de référence de l'avion, les termes \(X_{MP}/L_{ref} \) et \(X_{CG}/L_{ref} \) représentant des valeurs réduites respectivement de XMP et de XCG ;
- \(I_{yy} \) est une inertie représentant l'inertie de l'avion autour d'un axe de rotation en tangage parallèle à un axe Y du repère avion perpendiculaire à un plan de symétrie verticale de l'avion ;
- \(m \) est une masse représentant la masse de l'avion ;
- \(V \) est une vitesse représentant la vitesse aérodynamique vraie de l'avion au point de vol considéré pour la mesure de la pulsation \(\omega_0 \) ;
- \(C^*_\theta \) est un coefficient de la matrice d'état \([A]\) d'un modèle "quasi-statique" de l'avion.
3 – Dispositif (50) apte à déterminer une marge de stabilité dynamique M_{sd} d'un avion et ou une position X_{MP} suivant un axe longitudinal de l'avion, dit axe X, d'un point de manœuvre MP caractérisé en ce que ledit dispositif comporte des premiers moyens (51) d'acquisition de données (53, 54) et de calcul de la marge de stabilité dynamique M_{sd} (55), les dits premiers moyens recevant des données correspondant à ou suffisant pour élaborer :

- une masse actuelle m de l'avion ;
- une inertie actuelle I_{yy} de l'avion autour d'un axe de rotation en tangage parallèle à un axe Y du repère avion perpendiculaire à un plan de symétrie verticale de l'avion ;
- une vitesse actuelle V, vitesse aérodynamique vraie de l'avion au point de vol considéré ;
- une pulsation ω_0 d'une oscillation d'incidence de l'avion au point de vol considéré ;
- un coefficient C_a de la matrice d'état $[A]$ d'un modèle "quasi-statique" de l'avion.

4 – Dispositif (50) suivant la revendication 3 dans lequel les premiers moyens (51) détermine la marge de stabilité dynamique M_{sd} comme la valeur résultat, dans une forme réduite divisée par un terme L_{ref} où L_{ref} représente une longueur de référence de l'avion, de l'application de la formule

\[
\left(\frac{I_{yy}}{mVL_{ref}} \right) \left[\frac{\omega_0^2}{C_a^*} \right]
\]

5 - Dispositif (50) suivant la revendication 3 ou la revendication 4 comportant des seconds moyens (52) d'acquisition de données et de calcul de la position X_{MP} du point de manœuvre MP, les dits second moyens recevant
des données (56) correspondant à ou suffisant pour élaborer une position X_{CG} suivant l'axe X d'un centre de gravité CG de l'avion et déterminant la position (57) X_{MP} du point de manoeuvre MP comme la valeur résultat, dans une forme réduite X_{MP}/L_{ref} où L_{ref} est une longueur de référence de l'avion, de la formule

$$\left(\frac{X_{MP}}{L_{ref}}\right) = \left(\frac{X_{CG}}{L_{ref}}\right) - \text{Marge de stabilité dynamique réduite établie par les premiers moyens (51)}$$

6 – Dispositif (50) suivant la revendication 5 dans lequel les seconds moyens élaborent des données fonction de l'écart entre la valeur de la marge de stabilité dynamique MSD et une ou des valeurs de seuils prédéfinies.

7 – Avion comportant un dispositif de commande de vol apte à recevoir les données (56, 57) élaborées par le dispositif (50) suivant l'une des revendications 3 à 6 et à modifier des lois de pilotage en fonction des dites données reçues.
RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 341 247 B1 (HREHA MARK A [US] ET AL) 22 janvier 2002 (2002-01-22) * abrégé * * colonne 3, ligne 47 - colonne 10, ligne 15; figures 1-3 * -----</td>
<td>1-7</td>
<td>G05D01/04 B64D43/00</td>
</tr>
<tr>
<td>X</td>
<td>US 4 797 829 A (MARTORELLA ROMEO P [US] ET AL) 10 janvier 1989 (1989-01-10) * abrégé * * colonne 2, ligne 22 - colonne 5, ligne 5; figures 1-4 * -----</td>
<td>1-7</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINE(S) TECHNIQUE(S)

- RECHERCHES (IPC)
- G05D

Date d'achèvement de la recherche: 28 février 2008

Examinateur: Helot, Henri
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 28-02-2008
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6341247 B1 22-01-2002 AUCUN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1501461 T</td>
<td>25-05-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8804444 A1</td>
<td>16-06-1988</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82