(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
30. Mai 2002 (30.05.2002)

(51) Internationale Patenklassifikation: C07D 471/04, A61K 3/1415, A61P 9/00 // (C07D 471/04, 231:00, 221:00)

(21) Internationales Aktenzeichen: PCT/EP01/12969

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
100 57 753.9 22. November 2000 (22.11.2000) DE
101 31 987.8 2. Juli 2001 (02.07.2001) DE

(72) Erfinder: und

(75) Erfinder/Anmelder (nur für US): STASCH, Johannes-Peter [DE/DE]; Alfred-Nobel-Str. 109, 42651 Solingen (DE); FEURER, Achim [DE/DE]; Schlinghofener Str. 36, 51519 Odenthal (DE); WEIGAND, Stefan [DE/DE]; Rückertweg 35, 42115 Wuppertal (DE); STAHL, Elke [DE/DE]; Reuterstr. 124, 51467 Bergisch Gladbach (DE); FLUBACHER, Dietmar [DE/DE]; Waldkris. 352, 40724 Hilden (DE); ALONSO-ALVARO, Cristina [ES/ES]; August-Macke-Weg 3, 42781 Haan (DE); WUNDER, Frank [DE/DE]; Viktoriustr. 91, 42115 Wuppertal (DE).

(74) Gemeinsamer Vertreter: BAYER AKTIENGESELLSCHAFT; 51368 Leverkusen (DE).

Veröffentlicht: mit internationalem Rechenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: NOVEL PYRIDINE-SUBSTITUTED PYRAZOLOPYRIDINE DERIVATIVES

(54) Bezeichnung: NEUE PYRIDIN-SUBSTITUIERTE PYRAZOLOPYRIDINDERIVATE

(54) Abstract: The invention relates to novel pyrazolopyridine derivatives of the formula (I), wherein R¹ represents 4-pyridinyl or 3-pyridinyl; R² represents H, NH₂ or halogen, and to the salts, isomers and hydrates thereof as stimulators of the soluble guanylate cyclase and for the use as agents for treating cardiovascular diseases, hypertonie, thromboembolic diseases and ischemias, sexual dysfunction or inflammations and for treating diseases of the central nervous system.

(54) Zusammenfassung: Die vorliegende Erfindung betrifft neue Pyrazolopyridinderivate der Formel (I), worin R¹ für 4-Pyridinyl oder 3-Pyridinyl steht; R² für H, NH₂ oder Halogen steht, sowie Salze, Isomere und Hydrate davon als Stimulatoren der löslichen Guanylatcyclase und zur Verwendung als Mittel zur Behandlung von Herz-Kreislauf-Erkrankungen, Hypertonie, von thromboembolischen Erkrankungen und Ischämien, sexueller Dysfunktion oder Entzündungen sowie zur Behandlung von Erkrankungen des Zentralnervensystems.
Neue Pyridin-substituierte Pyrazolopyridinderivate

Die vorliegende Erfindung betrifft neue chemische Verbindungen, welche die lösliche Guanylatcyclase stimulieren, ihre Herstellung und ihre Verwendung als Arzneimittel, insbesondere als Arzneimittel zur Behandlung von Herz-Kreislauf-Erkrankungen.

Durch die Bildung von cGMP und der daraus resultierenden Regulation von Phosphodiesterasen, Ionenkanälen und Proteinkinasen spielt die Guanylatcyclase eine entscheidende Rolle bei unterschiedlichen physiologischen Prozessen, insbesondere bei der Relaxation und Proliferation glatter Muskelzellen, der Plättchenaggregation und -adhäsion und der neuronalen Signalübertragung sowie bei Erkrankungen, welche auf einer Störung der vorstehend genannten Vorgänge beruhen. Unter patho-
physiologischen Bedingungen kann das NO/cGMP-System supprimiert sein, was zum Beispiel zu Bluthochdruck, einer Plättchenaktivierung, einer vermehrten Zellproliferation, endothelialer Dysfunktion, Atherosklerose, Angina pectoris, Herzinsuffizienz, Thrombose, Schlaganfall und Myokardinfarkt führen kann.

Eine auf die Beeinflussung des cGMP-Signalweges in Organismen abzielende NO-unabhängige Behandlungsmöglichkeit für derartige Erkrankungen ist aufgrund der zu erwartenden hohen Effizienz und geringen Nebenwirkungen ein vielversprechender Ansatz.

Weiterhin sind in der WO 98/16507, WO 98/23619, WO 00/06567, WO 00/06568, WO 00/06569 und WO 00/21954 Pyrazolopyridinderivate als Stimulatoren der löslichen Guanylatcylase beschrieben. In diesen Patentanmeldungen sind auch Pyrazolopyridine beschrieben, welche einen Pyrimidinrest in 3-Position aufweisen. Derartige Verbindungen weisen eine sehr hohe in vitro Aktivität bezüglich der Stimulation der

Es war daher die Aufgabe der vorliegenden Erfindung, weitere Pyrazolopyridinderivate bereitzustellen, welche als Stimulatoren der löslichen Guanylatcyclase wirken, aber nicht die vorstehend aufgeführten Nachteile der Verbindungen aus dem Stand der Technik aufweisen.

Diese Aufgabe wird gemäß der vorliegenden Erfindung durch die Verbindungen gemäß Anspruch 1 gelöst. Diese neuen Pyrazolopyridinderivate zeichnen sich durch einen Pyrimidinrest in 3-Position aus, der ein bestimmtes Substitutionsmuster aufweist, nämlich einen Pyridinrest in 5-Position des Pyrimidinrings sowie eine Aminogruppe in 4-Position des Pyrimidinrings.

Im einzelnen betrifft die vorliegende Erfindung die Verbindungen der Formel (I)

![Chemische Strukturformel](image)

worin

R¹ für 4-Pyridinyl oder 3-Pyridinyl steht;
R² für H, NH₂ oder Halogen steht;
sowie Salze, Isomere und Hydrate davon.

Gemäß einer alternativen Ausführungsform betrifft die vorliegende Erfindung Verbindungen der Formel (I), bei denen

\[R^1 \] für 4-Pyridinyl oder 3-Pyridinyl steht;

\[R^2 \] für H, NH₂ oder Cl steht;

sowie Salze, Isomere und Hydrate davon.

Gemäß einer weiteren alternativen Ausführungsform betrifft die vorliegende Erfindung Verbindungen der Formel (I), bei denen

\[R^1 \] für 4-Pyridinyl oder 3-Pyridinyl steht;

\[R^2 \] für H steht;

sowie Salze, Isomere und Hydrate davon.

Die erfindungsgemäßen Verbindungen der Formel (I) können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Basen oder Säuren genannt.

Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindung können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, p-Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essig-
säure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoësäure.

Die erfindungsgemäßen Verbindungen können in tautomeren Formen vorliegen. Dies ist dem Fachmann bekannt, und derartige Formen sind ebenfalls vom Umfang der Erfindung umfasst.

Weiterhin können die erfindungsgemäßen Verbindungen in Form ihrer möglichen Hydrate vorkommen.

Halogen steht im Rahmen der Erfindung für Fluor, Chlor, Brom und Iod.

Die erfindungsgemäßen Verbindungen der Formel (I) können hergestellt werden durch die Umsetzung der Verbindung der Formel (II)
A) mit einer Verbindung der Formel (III)

\[
\begin{align*}
\text{N} & \quad \text{CN} \\
\text{R}^1 & \\
\end{align*}
\]

(III)

wobei

R\(^1\) wie vorstehend definiert ist;

gegebenenfalls in einem organischen Lösungsmittel unter Erhitzen zur

Verbindung der Formel (I);

oder

B) mit einer Verbindung der Formel (IV)

\[
\begin{align*}
\text{H}_3\text{C}_2\text{O} & \quad \text{O} \\
\text{O} & \quad \text{OC}_2\text{H}_5 \\
\text{R}^1 & \\
\end{align*}
\]

(IV)

wobei

R\(^1\) wie vorstehend definiert ist;

in einem organischen Lösungsmittel unter Erhitzen zu Verbindungen der

Formel (V)
wobei

\[R^1 \text{ wie vorstehend definiert ist;} \]

anschließend mit einem Halogenierungsmittel zu Verbindungen der Formel (VI)

\[\text{(VI)} \]

wobei

\[R^1 \text{ wie vorstehend definiert ist;} \]

\[R^2 \text{ für Halogen steht;} \]
sowie abschließend mit wässriger Ammoniaklösung unter Erhitzen und erhöhtem Druck.

Die Verbindung der Formel (II) lässt sich gemäß folgendem Reaktionsschema herstellen:

\[
\text{NC} \quad \text{O} \quad \text{O} \quad \xrightarrow{+} \quad \text{F} \quad \text{HNNNH}_{2} \quad \text{H}_{2}\text{N} \quad \text{NH} \quad \text{O} \\
\text{(Na-Salz)} \\
\]

entsprechenden Nitrildervat, Umsetzung des Nitrildervats mit Natriumethylat und abschließende Reaktion mit Ammoniumchlorid in die Verbindung der Formel (II) überführt.

Die Verbindungen der Formel (III) können aus den (z.B. bei Aldrich) käuflich erhaltlichen Verbindungen t-Butoxybis(dimethylamino)methan und 4-Pyridylacetonitril beziehungsweise 3-Pyridylacetonitril durch Umsetzung dieser Reaktanden vorzugsweise in äquimolaren Mengen vorzugsweise bei Normaldruck und Rühren der Reaktionslösung für mehrere Stunden, beispielsweise 2 Stunden, bei erhöhter Temperatur, beispielsweise 60-130°C, vorzugsweise 80-120°C, insbesondere 100°C hergestellt werden.

Die Umsetzung der Verbindungen der Formeln (II) und (III) zu den Verbindungen der Formel (I) kann durch Einsatz der Reaktanden in äquimolaren Mengen beziehungsweise unter Verwendung der Verbindung der Formel (III) im leichten Überschuss in einem organischen Lösungsmittel, beispielsweise einem Kohlenwasserstoff, vorzugsweise einem aromatischen Kohlenwasserstoff und insbesondere Xylol, vorzugsweise in Gegenwart von 0,1-1 Äquivalenten, vorzugsweise 0,3 Äquivalenten einer Lewis-Säure wie beispielsweise BF₃·Et₂O oder Trimethylsilyltriflor-sulfonat (TMSOTf), vorzugsweise bei Normaldruck und Rühren der Reaktionslösung für mehrere Stunden, beispielsweise 12 Stunden, bei erhöhter Temperatur, beispielsweise 80-160°C, vorzugsweise 100-150°C, insbesondere 140°C, durchgeführt werden.

Die Verbindungen der Formel (IV) sind kommerziell erhältlich (z.B. bei Mercachem) oder können auf dem Fachmann bekannte Weise dargestellt werden.

Die Umsetzung der Verbindungen der Formeln (II) und (IV) zu den Verbindungen der Formel (V) kann durch Einsatz der Reaktanden in äquimolaren Mengen beziehungsweise unter Verwendung der Verbindung der Formel (IV) im leichten Überschuss in einem organischen Lösungsmittel, beispielsweise einem Kohlenwas-

Die Umsetzung der Verbindungen der Formel (V) zu Verbindungen der Formel (VI) kann durch Reaktion der Verbindungen der Formel (V) mit einem Halogenierungsmittel, gegebenenfalls in einem für derartige Reaktionen herkömmlich verwendeten organischen Lösungsmittel wie beispielsweise Dimethylformamid (DMF), vorzugsweise bei Normaldruck und Rühren der Reaktionslösung für mehrere Stunden, beispielsweise 3 Stunden, bei erhöhter Temperatur, beispielsweise 80-160°C, vorzugsweise 100-120°C, durchgeführt werden. Erfindungsgemäß bevorzugt kann als Halogenierungsmittel POCl₃ eingesetzt werden.

Die Umsetzung der Verbindungen der Formel (VI) zu den erfindungsgemäßen Verbindungen der Formel (I) kann durch Reaktion der Verbindungen der Formel (VI) mit wässriger Ammoniaklösung vorzugsweise bei erhöhtem Druck, beispielsweise durch Ablauf der Reaktion in einem Autoklaven so dass die Reaktion unter dem Eigendruck der Reaktionsmischung verläuft, und Rühren der Reaktionslösung für mehrere Stunden, beispielsweise 12 Stunden, bei erhöhter Temperatur beispielsweise 80-160°C, vorzugsweise 100-150°C, insbesondere 140°C, durchgeführt werden.

Die erfindungsgemäßen Verbindungen der Formel (I) zeigt ein nicht vorherschbares, wertvolles pharmakologisches Wirkspектrum.

Die erfindungsgemäßen Verbindungen der Formel (I) führen zu einer Gefäßrelaxation, Thrombozytenaggregationshemmung und zu einer Blutdrucksenkung sowie zu einer Steigerung des koronaren Blutflusses. Diese Wirkungen sind über eine direkte Stimulation der löslichen Guanylatzyklase und einem intrazellulären cGMP-Anstieg vermittelt. Außerdem verstärkt die erfindungsgemäße Verbindung der Formel (I) die Wirkung von
Substanzen, die den cGMP-Spiegel steigern, wie beispielsweise EDRF (Endothelium derived relaxing factor), NO-Donatoren, Protoporphyrin IX, Arachidonsäure oder Phenylhydrazinderivate.

Die in der vorgelagenden Erfindung beschriebenen Verbindungen der Formel (I) stellen auch Wirkstoffe zur Bekämpfung von Krankheiten im Zentralnervensystem dar, die durch Störungen des NO/cGMP-Systems gekennzeichnet sind. Insbesondere sind sie geeignet zur Verbesserung der Wahrnehmung, Konzentrationsleistung, Lernleistung, oder Gedächtnisleistung nach kognitiven Störungen, wie sie insbesondere bei Situationen/Krankheiten/Syndromen auftreten wie „Mild cognitive impairment“, Alternsassozierte Lern- und Gedächtnisstörungen, Alternsassozierte Gedächtnisverluste, Vaskuläre Demenz, Schädel-Hirn-Trauma, Schlaganfall, Demenz, die nach Schlaganfällen auftritt („post stroke dementia“), post-traumatisches Schädelf-Hirn-Trauma, allgemeine Konzentrationsstörungen, Konzentrationsstörungen in Kindern mit Lern- und Gedächtnisproblemen, Alzheimerische Krankheit, Vaskuläre Demenz, Demenz mit Lewy-Körperchen, Demenz mit Degeneration der Frontallappen einschließlich des Pick’s Syndroms, Parkinsonsche Krankheit, Progressive nuclear palsy, Demenz mit corticobasaler Degeneration, Amyolateralsklerose (ALS), Huntingtonische Krankheit, Multiple Sklerose, Thalamische Degeneration,

Weiterhin eignet sich die Wirkstoffe auch zur Regulation der cerebralen Durchblutung und stellt somit wirkungsvolle Mittel zur Bekämpfung von Migräne dar.

Auch eignen sie sich zur Prophylaxe und Bekämpfung der Folgen cerebraler Infarktgeschehen (Apoplexia cerebri) wie Schlaganfall, cerebraler Ischämien und des Schädel-Hirn-Traumas. Ebenso können die erfindungsgemäßen Verbindungen der Formel (I) zur Bekämpfung von Schmerzzuständen eingesetzt werden.

Zudem besitzen die erfindungsgemäßen Verbindungen antiinflammatorische Wirkung und können daher als entzündungshemmende Mittel eingesetzt werden.

Darüber hinaus umfasst die Erfindung die Kombination der erfindungsgemäßen Verbindungen der Formel (I) mit organischen Nitraten und NO-Donatoren.

Organische Nitrate und NO-Donatoren im Rahmen der Erfindung sind im allgemeinen Substanzen, die über die Freisetzung von NO bzw. NO-Species ihre therapeutische Wirkung entfalten. Bevorzugt sind Natriumnitroprussid, Nitroglycerin, Isosorbid-dinitrat, Isosorbidmononitrat, Molsidomin und SIN-1.

Außerdem umfasst die Erfindung die Kombination mit Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) inhibieren. Dies sind insbesondere Inhibitoren der Phosphodiesterasen 1, 2 und 5; Nomenklatur nach Beavo und Reifsnyder (1990) TiPS 11 S. 150 bis 155. Durch diese Inhibitoren wird die Wirkung der erfindungsgemäßen Verbindungen potenziert und der gewünschte pharmakologische Effekt gesteigert.
Biologische Untersuchungen

Gefäßrelaxierende Wirkung in vitro

Kaninchen werden durch Nackenschlag betäubt und entblutet. Die Aorta wird entnommen, von anhaftendem Gewebe befreit, in 1,5 mm breite Ringe geteilt und einzeln unter einer Vorspannung in 5 ml-Organebäder mit 37°C warmer, carbogetester Krebs-Henseleit-Lösung folgender Zusammensetzung (mM) gebracht: NaCl: 119; KCl: 4,8; CaCl₂ x 2 H₂O: 1; MgSO₄ x 7 H₂O: 1,4; KH₂PO₄: 1,2; NaHCO₃: 25; Glucose: 10. Die Kontraktionskraft wird mit Statham UC2-Zellen erfasst, verstärkt und über A/D-Wandler (DAS-1802 HC, Keithley Instruments München) digitalisiert sowie parallel auf Linienschreiber registriert. Zur Erzeugung einer Kontraktion wird Phenylephrin dem Bad kumulativ in ansteigender Konzentration zugesetzt. Nach mehreren Kontrollzyklen wird die zu untersuchende Substanz in jedem weiteren Durchgang in jeweils steigender Dosierung untersucht und die Höhe der Kontraktion mit der Höhe der im letzten Vordurchgang erreichten Kontraktion verglichen. Daraus wird die Konzentration errechnet, die erforderlich ist, um die Höhe des Kontrollwertes um 50 % zu reduzieren (IC₅₀). Das Standardapplikationsvolumen beträgt 5 µl, der DMSO-Anteil in der Badlösung entspricht 0,1 %. Das Ergebnis ist nachstehend in Tabelle 1 aufgeführt:

<table>
<thead>
<tr>
<th>Beispiel Nr.</th>
<th>IC₅₀ [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,66</td>
</tr>
<tr>
<td>4</td>
<td>1,21</td>
</tr>
</tbody>
</table>

Tabelle 1: Gefäßrelaxierende Wirkung in vitro

Bestimmung der Leberclearance in vitro

Ratten werden anästhesiert, heparinisert, und die Leber in situ über die Pfortader perfundiert. Ex vivo werden dann aus der Leber mittels Collagenase-Lösung die
primären Ratten-Hepatozyten gewonnen. Es wurden 2106 Hepatozyten pro ml mit jeweils der gleichen Konzentration der zu untersuchenden Verbindung bei 37°C inkubierte. Die Abnahme des zu untersuchenden Substrates über die Zeit wurde bioanalytisch (HPLC/UV, HPLC/Fluoreszenz oder LC/MS/MS) an jeweils 5 Zeitpunkten im Zeitraum von 0-15 min nach Inkubationsstart bestimmt. Daraus wurde über Zellzahl und Lebengewicht die Clearance errechnet.

Bestimmung der Plasmaclearance in vivo

Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nicht-toxischen, inerten pharmazeutisch geeigneten Trägerstoffen die erfindungsgemäße Verbindung der Formel (I) enthält sowie Verfahren zur Herstellung dieser Zubereitungen.

Der Wirkstoff kann gegebenenfalls in einem oder mehreren der oben angegebenen Trägerstoffe auch in mikroverkapselter Form vorliegen.

Die therapeutisch wirksame Verbindung der Formel (I) soll in den oben aufgeführten pharmazeutischen Zubereitungen in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew.-%, der Gesamtmischung vorhanden sein.
Die oben aufgeführten pharmazeutischen Zubereitungen können außer der erfindungsgemäßen Verbindung der Formel (I) auch weitere pharmazeutische Wirkstoffe enthalten.

Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den erfindungsgemäßen Wirkstoff in Gesamtmengen von etwa 0,01 bis etwa 700, vorzugsweise 0,01 bis 100 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Ergebnisse zu verabreichen. Eine Einzelgabe enthält den erfindungsgemäßen Wirkstoff vorzugsweise in Mengen von etwa 0,1 bis etwa 80, insbesondere 0,1 bis 30 mg/kg Körpergewicht.

Die vorliegende Erfindung wird nachstehend anhand von nicht einschränkenden bevorzugten Beispielen näher dargestellt. Soweit nicht anderweitig angegeben, beziehen sich alle Mengenangaben auf Gewichtsprozente.

Beispiele

Abkürzungen:

5 RT: Raumtemperatur
EE: Essigsäureethylester
MCPBA: m-Chlorperoxybenzoesäure
BABA: n-Butylacetat/n-Butanol/Eisessig/Phosphatpuffer pH 6
(50:9:25.15; org. Phase)
10 DMF: N,N-Dimethylformamid

Laufmittel für die Dünnschichtchromatographie:

15 T1 E1: Toluol - Essigsäureethylester (1:1)
T1 EtOH1: Toluol – Methanol (1:1)
C1 E1: Cyclohexan – Essigsäureethylester (1:1)
C1 E2: Cyclohexan – Essigsäureethylester (1:2)

Methoden zur Ermittlung der HPLC-Retentionszeiten bzw. präparative Trennmethoden:

Methode A = (LC-MS):

Eluent:
A = Acetonitril + 0.1% Ameisensäure,
B = Wasser + 0.1% Ameisensäure

Fluss: 25 ml/min
Temperatur: 40°C
Packungsmaterial: Symmetry C 18, 50x2.1 mm, 3.5 µm.
<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>4.0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>6.0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>6.1</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>90</td>
</tr>
</tbody>
</table>

Methode B (präparative HPLC):

Eluent:
- A = Milli-Q-Wasser + 0.6g konzentrierte Salzsäure auf 11 H₂O
- B = Acetonitril

Fluss:
50 ml/min

Temperatur:
Raumtemperatur

Packungsmaterial: YMC-Gel ODS-AQS 11 μm 250 x 30 mm

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>34.01</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>38</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>
Ausgangsverbindungen:

I. Synthese von 4-[(Dimethylamino)methylen]-pyridinacetonitril (E/Z-Gemisch)

4-Pyridylacetonitril 7.52 g (63.7 mmol) und tert-Butoxybis(dimethylamino)methan 11.09 g (63.7 mmol) wurden bei 100°C für 2 h gerührt. Dabei wurde frei werdendes Dimethylamin und t-Butanol mittels einer Vakuumpumpe durch leichten Unterdruckstrom zur Atmosphäre abgeführt. Flash-Chromatographie (CH₂Cl₂/Ethylacetat 50:1 -> 20:1) lieferte die Titelverbindung.

Ausbeute: 10.2 g (93 %)
Rₐ-Wert: 0.29 (CH₂Cl₂/EE 20/1)

¹H-NMR: (300 MHz, D₆-DMSO), δ = 3.25 (s, 6 H, 2 x CH₃), 7.25 (d, 2 H, Ar-H), 7.80 (s, 1 H, Ar-H), 8.33 (d, 2 H, Ar-H).

MS: (ESI pos.), m/z = 174 ([M+H]+)

II. Synthese von 3-[(Dimethylamino)methylen]-pyridinacetonitril (E/Z-Gemisch)

3-Pyridylacetonitril 3.00 g (25.4 mmol) und tert-Butoxybis(dimethylamino)methan 4.23 g (25.4 mmol) wurden bei 100°C für 2 h gerührt. Dabei wurde frei werdendes

Dimethylamin und t-Butanol mittels einer Vakuumpumpe durch leichten Unterdruckstrom zur Atmosphäre abgeführt. Nach dem Abkühlen filtrierte man vom ausgefallenen Feststoff, wusch diesen mit wenig H₂O und erhielt so die Titelverbindung.

Ausbeute: 4.23 g (96 %)

R_f-Wert: 0.27 (CH₂Cl₂/MeOH 40/1)

¹H-NMR: (300 MHz, D₆-DM SO), δ = 3.08 (s, 3 H, CH₃), 3.25 (s, 3 H, CH₃), 7.29 (dd, 1 H, Ar-H), 7.57 (s, 1 H, =C-H), 7.66 (dt, 1 H, Ar-H), 8.26 (d, 1 H, Ar-H), 8.54 (d, 1 H, Ar-H).

LCMS: Ret.-zeit: 0.33 min (Säule: Symmetry, C-18, 3.5 µm, 50X2.1 mm, Fluss 0.5 ml/min, 40°C, Gradient: Wasser (+0.1 % Ameisensäure):Acetonitril (+0.1 % Ameisensäure) bei 0 min: 90:10, bei 7.5 min 10:90); MS: (ESI pos.), m/z = 174 ([M+H]^+)

III. Synthese von 1-(2-Fluorbenzyl)1H-pyrazolo[3,4-b]pyridin-3-carboamidin

IIIA) 5-Amino-1-(2-fluorbenzyl)-pyrazol-3-carbonsäureethylester

100 g (0.613 mol) Natriumsalz des Cyanobenztraubensäureethylester (Darstellung analog Borsche und Manteuffel, Liebigs Ann. 1934, 512, 97) werden unter gutem Rühren unter Argon in 2.5 l Dioxan bei Raumtemperatur mit 111.75 g (75 ml, 0.98 mol) Trifluoresigsäure versetzt und 10 min gerührt, wobei ein großer Teil des Eduktes in Lösung geht. Dann gibt man 85.93 g (0.613 mol) 2-Fluorbenzylhydrazin hinzu und kocht über Nacht. Nach Abkühlen werden die ausgefallenen Kristalle des
Natriumtrifluoracetats abgesaugt, mit Dioxan gewaschen und die Lösung roh weiter umgesetzt.

IIIB) 1-(2-Fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carbonsäureethylester

Die aus 3A) erhaltene Lösung wird mit 61.25 ml (60.77 g, 0.613 mol) Dimethylaminoacrolein und 56.28 ml (83.88 g, 0.736 mol) Trifluoressigsäure versetzt und unter Argon 3 Tage lang gekocht. Anschließend wird das Lösungsmittel im Vakuum verdampft, der Rückstand in 2 l Wasser gegeben und dreimal mit je 1 l Essigester extrahiert. Die vereinigten organischen Phasen werden mit Magnesiumsulfat getrocknet und einrotiert. Man chromatographiert auf 2.5 kg Kieselgel und eluiert mit einem Toluol / Toluol-Essigester=4:1-Gradienten. Ausbeute: 91.6 g (49.9 % d.Th. über zwei Stufen).

Smp. 85°C

R_f(SiO₂, TlE1): 0.83
III C) 1-(2-Fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carboxamid

5 10.18 g (34 mmol) des in Beispiel 3B) erhaltenen Esters werden in 150 ml mit Ammoniak bei 0 - 10°C gesättigtem Methanol vorgelegt. Man rührt zwei Tage bei Raumtemperatur und engt anschließend im Vakuum ein.
R_f (SiO_2, T1E1): 0.33

III D) 3-Cyano-1-(2-fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin

36.1 g (133 mmol) 1-(2-Fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carboxamid aus Beispiel 3C) werden in 330 ml THF gelöst und mit 27 g (341 mmol) Pyridin versetzt. Anschließend gibt man innerhalb von 10 min 47.76 ml (71.66 g, 341 mmol) Trifluoresigsäureanhydrid hinzu, wobei die Temperatur bis auf 40°C ansteigt. Man rührt über Nacht bei Raumtemperatur. Anschließend wird der Ansatz in 1 l Wasser gegeben und dreimal mit je 0.5 l Essigester extrahiert. Die organische Phase wird mit gesätt-
tigter Natriumhydrogencarbonatlösung und mit 1 N HCl gewaschen, mit MgSO4 getrocknet und einrotiert.
Ausbeute: 33.7 g (100 % d.Th.)
Smp: 81°C

Rf (SiO2, T1E1): 0.74

III E) *(2-Fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carboximidsäuremethylester*

Man löst 30.37 g (562 mmol) Natriummethyld in 1.5 l Methanol und gibt 36.45 g (144.5 mmol) 3-Cyano-1-(2-fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin (aus Beispiel 3D) hinzu. Man rührt 2 Stunden bei Raumtemperatur und setzt die erhaltene Lösung direkt für die nächste Stufe ein.

III F) *1-(2-Fluorbenzyl)1H-pyrazolo[3,4-b]pyridin-3-carboxamidin*
Die aus Beispiel 2E) erhaltene Lösung von (2-Fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carboximidäuremethylster in Methanol wird mit 33.76 g (32.19 ml, 562 mmol) Eisessig und 9.28 g (173 mmol) Ammoniumchlorid versetzt und über Nacht unter Rückfluss gerührt. Man verdampft das Lösungsmittel im Vakuum, verreibt den Rückstand gut mit Aceton und saugt den ausgefallenen Feststoff ab.

1H-NMR (d$_6$-DMSO, 200 MHz): δ = 5.93 (s, 2H); 7.1-7.5 (m, 4 H); 7.55 (dd, 1H); 8.12 (dd, 1H); 8.30 (dd, 1H); 9.5 (bs, 4H-austauschbar) ppm.

MS (EI): m/z = 270,2 (M-HCl)

IV. Synthese von 2-[1-(2-Fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-pyridinyl)-4,6-pyrimidindiol

3.27 g (12.1 mmol) 1-(2-Fluorbenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carboximidamid aus Bsp. III werden in 40 ml Toluol suspendiert, mit 2.88 g (12.1 mmol) Diethyl 2-(4-pyridinyl)malonat (kommerziell erhältlich bei Mercachem) versetzt und über Nacht bei 140°C gerührt. Zur Aufarbeitung saugt man den ausgefallenen Feststoff ab und trocknet im Hochvakuum.
Ausbeute: 2.43 g (43 %)

LC-MS: \(R_t = 2.69 \text{ min (Methode A).} \)

\(\text{MS (ESI pos.), } m/z = 415 ([M+H]^+). \)

V. Synthese von 3-[4,6-Dichloro-5-(4-pyridinyl)-2-pyrimidinyl]-1-(2-fluorobenzyl)-1H-pyrazolo-[3,4-b]pyridin

2.39 g (5.77 mmol) 2-[1-(2-Fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-pyridinyl)-4,6-pyrimidindiol aus Bsp. IV werden in 10 ml Phosphorylchlorid gelöst. Dazu gibt man 3 Tropfen DMF und läßt 3h unter Rückfluß rühren. Zur Aufarbeitung engt man die Reaktionslösung ein und trocknet am Hochvakuum.

Ausbeute: 0.67 g (24 %)

LC-MS: \(R_t = 4.34 \text{ min (Methode A).} \)

\(\text{MS (ESI pos.), } m/z = 451 ([M+H]^+, \text{Cl}_1). \)
Beispiele

1. 2-[[2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-pyridinyl)-4-pyrimidinamin

0.50 g (1.9 mmol) 1-(2-Fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carboximidamid aus Bsp. III und [(Dimethylamino)methylene]-pyridineacetonitril (0.32 g, 1.9 mmol) aus Bsp. I wurden in Xylol suspendiert und mit BF₃*OEt₂ (71 µl, 79 mg, 0.56 mmol, 0.3 Äquiv.) versetzt. Nach 19 h bei 140°C ließ man auf Raumtemperatur abkühlen und engte im Vakuum ein. Die Titelverbindung konnte durch Flash-Chromatographie an Kieselgel (CH₂Cl₂:MeOH 20:1) und anschließendes Ausrühren in Acetonitril gereinigt werden.

Ausbeute: 0.24 g (33 %)
Rf-Wert: 0.17 (EE/MeOH 20:1)
Fp: 254°C
Retentionzeit: 2.7 min (Säule: Symmetry, C-18, 3.5 µm, 50X2.1 mm, Fluss 0.5 ml/min, 40°C, Gradient: Wasser (+0.1 % Ameisensäure):Acetonitril (+0.1 % Ameisensäure) bei 0 min: 90:10, bei 7.5 min 10:90))
1H-NMR: (300 MHz, D₂-DMSO), δ = 5.81 (s, 2H, CH₂), 7.0-7.6 (m, 9 H, Ar-H, NH₂), 8.64 (m, 3 H, Ar-H), 9.05 (d, 1 H, Ar-H)

MS: (ESI pos.), m/z = 398 ([M+H]⁺), (ESI neg.), m/z = 396 ([M-H]⁻)

2. 2-[1-[(2-Fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-pyridinyl)-4-pyrimidinamin

4.00 g (14.9 mmol) 1-(2-Fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-carboximidamid aus Bsp. III und 3-[(Dimethylamino)methylen]-pyridinacetonitril (2.57 g, 14.9 mmol) aus Bsp. II wurden in Xylol suspendiert. Nach 12 h bei 120°C ließ man auf Raumtemperatur abkühlen und filtrierte vom ausgefallenen Niederschlag. Die Mutterlauge wurde per präparativer HPLC (Säule: Cromsil 120 ODS, C-18, 10 μm, 250x30 mm, Fluss 50 ml/min, Raumtemperatur, Gradient: Wasser Acetonitril bei 0 min: 90:10, bei 28 min 5:95) gereinigt. Der Reinigungsvorgang musste wiederholt werden.

Ausbeute: 0.024 g (0.4 %)

Rf-Wert: 0.17 (EE/MeOH 20:1)

1H-NMR: (200 MHz, D₂-DMSO), δ = 5.81 (s, 2H, OCH₂), 6.95-7.6 (m, 8 H, Ar-H, NH₂), 7.92 (dt, 1 H, Ar-H), 8.21 (S, 1H, Ar-H), 8.6-8.75 (m, 2 H, Ar-H), 9.03 (dd, 1 H, Ar-H).
LCMS: Ret.-zeit: 2.66 min (Säule: Symmetry, C-18, 3.5 μm, 50X2.1 mm, Fluss 0.5 ml/min, 40°C, Gradient: Wasser (+0.1 % Ameisensäure):Acetonitril (+0.1 % Ameisensäure) bei 0 min: 90:10, bei 7.5 min 10:90); MS: (ESI pos.), m/z = 398 ([M+H]^+), (ESI neg.), m/z = 396 ([M-H]^+)

3. 6-Chloro-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-pyridinyl)-4-pyrimidinylamin

![Chemical Structure](image)

200 mg (0.443 mmol) 3-[4,6-Dichloro-5-(4-pyridinyl)-2-pyrimidinyl]-1-(2-fluorobenzyl)-1H-pyrazolo-[3,4-b]pyridin aus Bsp. V werden in 5 ml 25 %iger wäfigriger Ammoniaklösung, suspendiert und im Autoklaven bei 140 °C und Eigendruck über Nacht gerührt. Die Mischung wurde dreimal mit Dichlormethan, extrahiert und die vereinigten Extrakte über Magnesiumsulfat getrocknet und zur Trockne eingeengt. Der Rückstand wurde über Kieselgel mit Dichlormethan/Methanol 30:1 chromatographiert. Zur weiteren Reinigung wurde das Rohprodukt über eine präparative HPLC gereinigt (Methode B).

Ausbeute: 34 mg (15 %)

R_f 0.45 (CH₂Cl₂/Methanol 20:1)
4. 2-[1-(2-Fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-pyridinyl)-4,6-pyrimidindiamin

200 mg (0.443 mmol) 3-[4,6-Dichloro-5-(4-pyridinyl)-2-pyrimidinyl]-1-(2-fluorobenzyl)-1H-pyrazolo-[3,4-b]pyridin aus Bsp. V werden in 5 ml 25%iger wässriger Ammoniaklosung suspendiert und im Autoklaven bei 140 °C und Eigendruck über Nacht gerührt. Die Mischung wurde dreimal mit Dichlormethan, extrahiert und die vereinigten Extrakte über Magnesiumsulfat getrocknet und zur Trockne eingegengt. Der Rückstand wurde über Kieselgel mit Dichlormethan/Methanol 30:1 chromatographiert. Zur weiteren Reinigung wurde das Rohprodukt über eine préparative HPLC gereinigt (Methode B).

Ausbeute: 45 mg (20 %)

Rf 0.30 (CH₂Cl₂/MeOH 20:1)
1H-NMR: (300 MHz, D$_6$-DMSO), δ = 5.82 (s, 2H, CH$_2$), 6.02 (br.s, 4H, NH$_2$), 7.08-7.48 (m, 7H, Ar-H), 8.57 – 8.68 (m, 3H, Ar-H), 9.13 (dd, 1H, Ar-H).

LC-MS: $R_t = 2.55$ min (Methode A).

5 MS (ESI pos.), $m/z = 413.3$ ([M+H]$^+$), 847.8 ([2M+Na]$^+$).
Patentansprüche

1. Verbindungen der Formel (I)

![Chemical Structure](image)

worin

\[R^1 \quad \text{für} \ 4\text{-Pyridinyl oder} \ 3\text{-Pyridinyl steht;} \]

\[R^2 \quad \text{für} \ H, \text{NH}_2 \text{oder Halogen steht;} \]

sowie Salze, Isomere und Hydrate davon.

2. Verbindungen nach Anspruch 1,

worin

\[R^1 \quad \text{für} \ 4\text{-Pyridinyl oder} \ 3\text{-Pyridinyl steht;} \]

\[R^2 \quad \text{für} \ H, \text{NH}_2 \text{oder Cl steht;} \]

sowie Salze, Isomere und Hydrate davon.
3. Verbindungen nach Anspruch 1,

worin

\[R^1 \] für 4-Pyridinyl oder 3-Pyridinyl steht;

\[R^2 \] für H steht;

sowie Salze, Isomere und Hydrate davon.

4. Verfahren zur Herstellung der Verbindung der Formel 1, umfassend die Umsetzung der Verbindung der Formel (II)

\[
\begin{array}{c}
\text{H}_{2}\text{N} \\
\text{N}
\end{array}
\]

\[
\begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\]

\[
\begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\]

\[
\begin{array}{c}
\text{F} \\
\end{array}
\]

(II)

A) mit einer Verbindung der Formel (III)

\[
\begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\]

\[
\begin{array}{c}
\text{CN} \\
\end{array}
\]

\[
\begin{array}{c}
\text{R}^1
\end{array}
\]

(III)

wobei

\[R^1 \] wie vorstehend definiert ist;
gegebenenfalls in einem organischen Lösungsmittel unter Erhitzen zur Verbindung der Formel (I);

oder

5

B) mit einer Verbindung der Formel (IV)

\[
\begin{align*}
\text{H}_8\text{C}_2\text{O} & \quad \text{O} \\
& \quad \text{O} \\
& \quad \text{OC}_2\text{H}_5 \\
\end{align*}
\]

(IV)

wobei

10

\(R^1 \)

wie vorstehend definiert ist;

in einem organischen Lösungsmittel unter Erhitzen zu Verbindungen der Formel (V)

\[
\begin{align*}
\text{F} & \quad \text{N} \\
& \quad \text{N} \\
& \quad \text{N} \\
& \quad \text{OH} \\
R^1 & \\
\end{align*}
\]

(V)

wobei

20

\(R^1 \)

wie vorstehend definiert ist;
anschließend mit einem Halogenierungsmittel zu Verbindungen der Formel (VI)

![Chemical Structure](image)

(VI)

wobei

\(R^1 \) wie vorstehend definiert ist;

\(R^2 \) für Halogen steht;

sowie abschließend mit wässriger Ammoniaklösung unter Erhitzen und erhöhtem Druck.

5. Verbindung der Formel (I) zur Behandlung von Krankheiten.

6. Arzneimittel enthaltend mindestens die Verbindung der Formel (I) gemäß Anspruch 1.

7. Verfahren zur Herstellung von Arzneimitteln, dadurch gekennzeichnet, dass man die Verbindung der Formel (I) gemäß Anspruch 1, gegebenenfalls mit üblichen Hilfs- und Zusatzstoffen in eine geeignete Applikationsform überführt.
8. Arzneimittel enthaltend die Verbindung der Formel (I) gemäß Anspruch 1 in Kombination mit organischen Nitraten oder NO-Donatoren.

9. Arzneimittel enthaltend die Verbindung der Formel (I) gemäß Anspruch 1 in Kombination mit Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) inhibieren.

11. Verwendung der Verbindung der Formel (I) gemäß Anspruch 1 bei der Herstellung von Arzneimitteln zur Behandlung von Hypertonie.

13. Verwendung der Verbindung der Formel (I) gemäß Anspruch 1 bei der Herstellung von Arzneimitteln zur Behandlung von sexueller Dysfunktion.

16. Verwendung gemäß einem der Ansprüche 8 bis 13, wobei die Verbindung der Formel (I) gemäß Anspruch 1 in Kombination mit organischen Nitraten oder
NO-Donatoren oder in Kombination mit Verbindungen, die den Abbau von cyclischen Guanosinmonophosphat (cGMP) inhibieren, eingesetzt wird.
INTERNATIONAL SEARCH REPORT

PCT/EP 01/12969

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D/471/04 A61K31/415 A61P9/00 //C07D471/04, 231:00,
221:00)

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)
EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 198 34 044 A (BAYER AG) 3 February 2000 (2000-02-03) cited in the application</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>Seite 17, Verbindungen B</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DE 198 34 047 A (BAYER AG) 3 February 2000 (2000-02-03) cited in the application</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>example 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DE 199 20 352 A (BAYER AG) 9 November 2000 (2000-11-09) claim 1</td>
<td>1,7</td>
</tr>
<tr>
<td>Y</td>
<td>DE 198 34 045 A (BAYER AG) 3 February 2000 (2000-02-03) claim 1</td>
<td>1,7</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claims) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 X later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 X document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 X document member of the same patent family

Date of the actual completion of the international search
15 February 2002

Date of mailing of the International search report
07/03/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HJ Rijswijk
Tel: (+31-20) 340-2000, Tx. 31 651 epo nl,
Fax: (+31-20) 340-3016

Authorized officer
Bakboord, J

Form PCT/ISA/210 (second sheet) (July 1984)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,Y</td>
<td>STRAUB A ET AL: "NO-Independent stimulators of soluble guanylate cyclase" BIOORIGINIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 11, no. 6, 26 March 2001 (2001-03-26), pages 781-784, XP004230931 ISSN: 0960-894X page 782, column 2, line 2 - line 4</td>
<td>1,7</td>
</tr>
<tr>
<td>P,A</td>
<td>DE 100 21 069 A (BAYER AG) 31 October 2001 (2001-10-31) claim 1</td>
<td>1,7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 19834044 A</td>
<td>03-02-2000</td>
<td>DE 19834044 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5284099 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 105177 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9912562 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1317005 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0006569 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1102768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20010149 A1</td>
</tr>
<tr>
<td>DE 19834047 A</td>
<td>03-02-2000</td>
<td>DE 19834047 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5283999 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0006568 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4554500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0066582 A</td>
</tr>
<tr>
<td>DE 19834045 A</td>
<td>03-02-2000</td>
<td>DE 19834045 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5160499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0006567 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1104421 A1</td>
</tr>
<tr>
<td>DE 10021069 A</td>
<td>31-10-2001</td>
<td>DE 10021069 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0183490 A1</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

IPK 7 C07D A61K A61P

Recherchierte aber nicht zum Mindestsprüfstoff gehörende Veröffentlichungen, sowohl diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und erst. verwendete Suchbegriffe)

EPO-Internal, WIPO Data, CHEM ABS Data

C. ALS WESENTLICH ANGESEHEN UNTERTAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 198 34 044 A (BAYER AG) 3. Februar 2000 (2000-02-03) in der Anmeldung erwähnt Seite 17, Verbindung B</td>
<td>1,7</td>
</tr>
<tr>
<td>Y</td>
<td>DE 198 34 047 A (BAYER AG) 3. Februar 2000 (2000-02-03) in der Anmeldung erwähnt Beispiel 1</td>
<td>1,7</td>
</tr>
<tr>
<td>Y</td>
<td>DE 198 34 045 A (BAYER AG) 3. Februar 2000 (2000-02-03) Anspruch 1</td>
<td>1,7</td>
</tr>
</tbody>
</table>

[X] Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

[X] Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 L Veröffentlichung, die geprüft ist, einem Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch das das Veröffentlichungsdatum einer anderen im Fachkennzeichensystem genannten Veröffentlichung beeinflusst werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeliefert)
 O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Erfindung oder auf andere Maßnahmen bezieht
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem internationalen Erfinderdatum veröffentlicht worden ist

* Spätspätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht korreliert, sondern nur zum Verständnis der Erfindung zugrundelegendem Prinzip oder der ihr zugrundeliegenden Theorie angegeben ist
* K Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nur aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
* Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wobei die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
* S Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche
15. Februar 2002

Abendsdatum des internationalen Recherchenberichtes
07/03/2002

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.O. 5616 Patentlaan 2
NL - 2500 HV The Hague
Tel. (+31-70) 340-2040, Fax. +31-70) 340-3016

Bevollmächtigter Bediensteter
Bakboom, J

Förderamt PCT/SA/210 (Bild 2) (2000)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,Y</td>
<td>STRAUB A ET AL: "NO-Independent stimulators of soluble guanylate cyclase" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, Bd. 11, Nr. 6, 26. März 2001 (2001-03-26), Seiten 781-784, XP004230931</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>Seite 782, Spalte 2, Zeile 2 - Zeile 4</td>
<td></td>
</tr>
<tr>
<td>P,A</td>
<td>DE 100 21 069 A (BAYER AG) 31. Oktober 2001 (2001-10-31) Anspruch 1</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Formular PCT/EP/01/211 (Fortsetzung von Sitz 2) (Juli 1992)
<table>
<thead>
<tr>
<th>Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Patentinventar</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 19834044 A</td>
<td>03-02-2000</td>
<td>DE 19834044 A1</td>
<td>03-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5284099 A</td>
<td>21-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 105177 A</td>
<td>30-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9912562 A</td>
<td>02-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1317005 T</td>
<td>10-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0006569 A1</td>
<td>10-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1102768 A1</td>
<td>30-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20010149 A</td>
<td>26-03-2001</td>
</tr>
<tr>
<td>DE 19834047 A</td>
<td>03-02-2000</td>
<td>DE 19834047 A1</td>
<td>03-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5283999 A</td>
<td>21-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0006568 A1</td>
<td>10-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4554500 A</td>
<td>17-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0066582 A1</td>
<td>09-11-2000</td>
</tr>
<tr>
<td>DE 19834045 A</td>
<td>03-02-2000</td>
<td>DE 19834045 A1</td>
<td>03-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5160499 A</td>
<td>21-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0006567 A1</td>
<td>10-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1104421 A1</td>
<td>06-06-2001</td>
</tr>
<tr>
<td>DE 10021069 A</td>
<td>31-10-2001</td>
<td>DE 10021069 A1</td>
<td>31-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0183490 A1</td>
<td>08-11-2001</td>
</tr>
</tbody>
</table>