发明名称
喷墨记录装置

摘要
本发明的目的在于提供一种喷墨记录装置，通过防止由吸墨件收集的混合墨变浓或固化，即使当彼此反应的这些墨在吸取恢复操作中通过相同盖进行吸取时，也能够长时保持吸墨件的充分吸收性。该喷墨记录装置具有：用于从黑墨排出部分(13)和彩墨排出部分(14)排出墨的恢复单元8和(62)，该黑墨排出部分(13)用于排放黑墨并且该彩墨排出部分(14)用于排放与黑墨反应的彩墨；吸墨件(31)，其用于收集由恢复单元排出的墨并且将该墨分成固态部分(41)和液态部分(42)；以及墨引入单元(7)，用于将由恢复单元排出的墨引入吸墨件内。
1. 一种喷墨记录装置，其通过在图像信息的基础上从记录头排放墨到记录介质上而记录图像，包括：用于从黑墨排出部分和彩墨排出部分排出墨的恢复单元，该黑墨排出部分用于排放黑墨并且该彩墨排出部分用于排放与黑墨反应的彩墨；吸墨件，其用于收集由恢复单元排出的墨并且将该墨分成固态部分和液态部分；以及墨引入单元，用于将由恢复单元排出的墨引入吸墨件内。

2. 如权利要求1所述的喷墨记录装置，进一步包括废墨收集单元，其是容纳在框架中的吸墨件。

3. 如权利要求2所述的喷墨记录装置，进一步包括转移构件，其不直接吸收由墨引入单元引入的墨，而是传送墨到吸墨件。

4. 如权利要求3所述的喷墨记录装置，其中转移构件和框架由相同材料制成。

5. 如权利要求3所述的喷墨记录装置，其中转移构件具有向上凸起的形状。

6. 如权利要求3所述的喷墨记录装置，其中转移构件具有三角形横截面。

7. 如权利要求3所述的喷墨记录装置，其中转移构件独立地布置在墨引入单元的出口以下。

8. 如权利要求3所述的喷墨记录装置，其中吸墨件布置在转移构件的下部中。

9. 如权利要求3所述的喷墨记录装置，其中转移构件处理成疏水的。

10. 如权利要求1所述的喷墨记录装置，其中吸墨件独立地布置在墨引入单元的出口以下。

11. 如权利要求1所述的喷墨记录装置，其中吸墨件具有朝向下部展开的斜面。

12. 如权利要求1所述的喷墨记录装置，其中吸墨件具有弧形横
截面。

13. 如权利要求 10 所述的喷墨记录装置，其中吸墨件使得其在出口以下的部分低于该吸墨件的其它部分。

14. 如权利要求 1 所述的喷墨记录装置，其中黑墨是颜料墨并且彩墨是染料墨。
喷墨记录装置

技术领域
本发明涉及一种喷墨记录装置，其在图像信息的基础上从记录头排放墨从而记录图像，并且特别涉及提供有墨收集机构的喷墨记录装置，该墨收集机构用于收集从恢复单元排出的墨。

背景技术
记录装置用于具有诸如打印机、复印机和传真机功能的记录装置；包括计算机和文字处理器的多功能设备；或者工作站的输出设备。记录装置构成在图像信息的基础上在诸如纸和塑料薄片之类的记录介质上记录图像。记录装置根据记录系统能够分成喷墨打印类型、针点打印类型、热印类型、热打印类型和激光打印类型。记录装置也能够根据扫描系统分为串型和线型。串型记录装置通过组合沿着记录介质移动记录头的水平扫描和进记录介质的垂直扫描而记录图像。线型记录装置仅仅通过在记录介质运送方向上垂直扫描而记录图像，同时通过使用在记录介质横向上伸展的记录头由一个操作来记录相应于一条线的信息。

喷墨打印型记录装置（喷墨记录装置）在图像信息的基础上从喷墨记录头排放墨到记录介质上以便记录图像。该喷墨记录装置具有诸如低噪音水平、低运行成本以及容易小型化和着色的优点，并因此广泛应用于打印机、传真机和复印机。在喷墨记录装置中用作记录单元的记录头提供有用于排放墨的排出口（通常，喷嘴的端部开口）。该喷墨记录装置驱动记录头，并且通常相应于基于从诸如个人电脑之类的主设备发送的记录数据的排放信号，使得记录头从排出口排放墨滴。排出口（或者喷嘴）当是圆形时，例如具有几十微米的直径，并且由于最近几年记录图像的画面质量变得更高而进一步精细和致密。由于最近几年记录图像的质量变得更高，例如需要如下这种记录头：打印
更浓的黑字符等、打印彩色、打印更精细图像（更高解析度）并且具有提高的耐水性。

通常，串型喷墨记录装置在支架上安装记录头，并且使得记录头根据支架的往复运动投放墨并且在记录介质上形成点。在串型喷墨记录装置中的记录头的实例，其不昂贵地满足提高记录图像质量的需求，并且包括具有如图3中所示的构造，该构造将在后面作为实施例进行讲述。具体地说，记录头3在记录头3的公共排放面17上平行于记录头的扫描方向构造用于黑墨的排出口阵列13、用于黄墨的排出口阵列14、用于洋红墨的排出口阵列15和用于青墨的排出口阵列16。在以上构造中，随着高精密度的趋势，以相应于600 dpi（点每英寸）的间距并且进一步甚至以相应于1200 dpi的间距布置在每个排出口阵列中的排出口。在各个排出口阵列之间的间距也降低，以便小型化记录头并因此小型化该装置。

顺便提及，具有能够应付高质量记录的记录头，其采用例如在黑墨和其它彩墨之间引起化学反应的墨，并且通过化学反应使染料等不溶解，以便提高耐水性并且防止颜色之间的模糊。具体地说，例如，黑墨具有阳离子性能并且其它彩墨具有阴离子性能。另外，日本专利申请公开No.2000-063719 揭示了如下的墨：其采用使用颜料作为着色材料的墨组合物以及用于使得在墨组合物中的着色材料不稳定的反应液体，通过使用在两种液体之间的反应而使得着色材料凝固，并且阻止墨在普通纸上引起模糊或颜色混合（渗色）。另外，日本专利申请公开No.2000-198955揭示了如下的墨和墨组：其采用颜料作为着色材料，进一步添加特定盐到墨中，并且阻止渗色。

最近几年，已经通常使用包含作为黑墨的颜料组件的墨，以便提高在文本文档等中使用的黑字符的质量。

顺便提及，喷墨记录装置通过从精细的排出口投放墨而记录图像，使得在排出口附近的墨的状态趋于受到诸如湿度之类的环境因素影响。例如，墨能够由变干燥而固化和凝固。那么，墨不能以规则定时排放，这损害图像质量。为此原因，这种类型的喷墨记录装置提供有
盖，该盖紧密接触记录头的排放面（在其上排列有排出口的面）以便密封排出口（用于阻断外部空气）。在串型记录装置的情况下，盖布置在记录区域以外预定位置处（例如，记录头的原位）。从而，该记录装置防止在记录装置不打印时排出口中（喷嘴中）的墨通过蒸发和变干而变浓和固化。

另一方面，喷墨记录装置会引起排出口中的阻塞。为了防止阻塞，通过使用诸如吸取泵之类的负压源，从排出口通过盖吸取（排出）墨，这是吸取恢复操作。换句话说，通过将吸取泵连接到盖的操作，并且在被加压以便在盖中形成负压的状态下操作吸取泵，从排出口有力地吸取墨。该操作作用新墨更换排出口中的墨，并因此能够防止或溶解（恢复）排出口中的阻塞。用于产生负压的可用泵例如包括活塞气缸型泵或管泵。活塞气缸型泵使用在气缸中活塞的运动。管泵通过用辊挤压连接到盖上的弹性管并且使用弹性管的返回力而在管中产生负压。

喷墨记录装置也用诸如橡胶片之类的擦拭器擦拭排放面，以便去除诸如沉积在排放面上的墨和脏物之类的外部材料。通过排放在记录时不从排出口导入墨池的墨，该喷墨记录装置也用新鲜墨更换排出口中的墨，这是初步排放操作。该喷墨记录装置通过上述吸取操作、擦拭操作和初步排放操作而保持或恢复记录头的墨排放性能，这是恢复处理。

对墨的性能已经进行了不同研究和研发，以便相应于高解析度记录的需求。用于阻止墨在普通纸等记录介质上引起模糊和颜色混合（渗色）的第一种研发的墨是示出如下这些性能的墨：用于形成记录图像的黑墨和彩墨彼此反应，并且固化和变浓。虽然执行上述恢复操作，但这种类型的墨会在管或墨池中变浓和固化，并且会影响恢复操作正常执行。出于此原因，如在日本专利申请公开 No.2002-225312 中揭示的，例如，恢复单元分开地放在黑墨排出部分（排出口）和彩墨排出部分（排出口）的每一个中，使得墨不在盖或恢复管中变浓和固化。

由上述恢复处理已经排出的墨（废墨）通过放在吸取泵的下游侧的管而被引入放在记录装置的主体中的吸墨件内，并且由该吸墨件吸
收集并收集。另一方面，通过促进墨中颜色材料在纸表面上的凝固，存在当在普通纸上记录图片时获得高质量图片的方法。该方法也提高在恢复处理过程中排出墨也即在记录中不用的废墨的凝固性能。因此，重要的是吸墨件通过恢复处理收集废墨，以便有效吸收具有快速凝固性能的墨。对于储存废墨的传统结构来说，例如，日本专利申请公开No.2000-127439 揭示容纳吸墨件的废墨槽，其具有凹处，该凹处延伸到包括在其内形成废墨进口的位置。另外，日本专利申请公开No.2001-105626 揭示容纳废墨吸收管的废墨槽，其具有通孔，废墨通过该通孔逐滴排放，并且从该通孔竖向形成的切割通道。

然而，在日本专利申请公开 No.2002-225312 中讲述的结构需要在用于黑墨和彩墨的每个排出口阵列中分开地安装加压单元，需要增大记录头尺寸，并因此增加制造喷墨记录装置的成本。作为解决记录头需要增大尺寸问题的方法，设想通过使用彼此不反应的黑颜料墨和彩色染料墨的墨而防止上述变浓物质形成的方法。即使当两种墨从在内布置颜料墨的排出口阵列和染料墨的排出口阵列的一个排出口面同步和预先排放时，这种方法也使得颜料墨和染料墨能够被吸走和储存而同时防止两种墨的混合物变浓、沉淀或固化。然而，当在普通纸上记录图像时，这种方法引起黑墨和彩墨在它们之间产生渗色（模糊或颜色混合）的技术问题。

当前发明人在改进墨方面进行广泛的研究，同时目标在于进一步提高图像性能，例如图像密度和阻止渗色的能力，并因此，已经阐明不断降低其分散稳定性并且由于水蒸发而增加粘度的墨也显示更高的图像性能。以上类型的墨引起粘度增加（粘度上升）不是通过诸如在阴离子和阳离子之间产生的静电中和反应之类的快速凝固反应，而是通过在墨液体中的水减少，并因此仅仅在后一情况下显示大的效果。因此，即使在其上一起布置有用于颜料墨的排出口阵列和用于染料墨的排出口阵列的记录头，即使通过使用通常的吸取单元，也能够吸取包含颜料和染料的混合墨而不引起混合墨的变浓、沉淀或固化，并且能够恢复自身。换句话说，只要混合墨不由于水的蒸发或扩散而变干，
混合墨就不降低其分散稳定性，因此保持在低粘度并且不引起吸取和恢复的任何问题。然而，由于水的蒸发而不断降低分散稳定性的墨（废水）比传统墨具有更低的吸墨件吸收性。因此，具有传统废水吸收件不能充分吸收废水的情况。

日本专利申请公开 No.2002-225312 和 2000-127439 揭示了通过在吸墨件中形成从包括废水引入部分的位置延伸的凹处或切割通道，吸墨件能够阻止废水在废水引入部分附近蒸发并且能够避免废水丧失流动性。然而，当由于水的蒸发而墨具有不断降低分散稳定性的性能时，在墨中的颜料在墨逐滴排放到废水槽内的位置处固化和凝固。换句话说，当废水降低流动性之前废水接触废水吸收件时，在废水中的颜料沉淀并且在接触位置处凝固。因此，具有如下情况：废水逐滴排放沉积在作为芯的凝固物质上的位置处，并最终堵塞废水流动到凹处或切割通道。因此，具有如下情况：在整个凹处或切割通道得到最大使用之前，废水从废水引入点附近溢出，并且不能有效使用整个废水吸收件。

发明内容

相对于这种技术问题设计了本发明。本发明的目的在于提供一种喷墨记录装置，即使当彼此反应的这些墨在记录头的吸取恢复操作中通过相同盖进行吸取时，其也能够防止由吸墨件收集的混合墨变浓或固化。本发明的另一目的在于提供一种喷墨记录装置，其能够长时间保持吸墨件的充分吸收性。

本发明涉及一种喷墨记录装置，其通过在图像信息的基础上从记录头排放墨到记录介质上而用于记录图像。根据本发明的喷墨记录装置具有：用于从黑墨排出部分和彩墨排出部分排出墨的恢复单元，该黑墨排出部分用于排放黑墨并且该彩墨排出部分用于排放与黑墨反应的彩墨；吸墨件，其用于收集由恢复单元排出的墨并且将该墨分成固态部分和液态部分；以及墨引入单元，用于将由恢复单元排出的墨引入吸墨件内。

根据本发明的喷墨记录装置能够在吸墨件上蒸发颜料墨和染料墨
的混合墨的水，上述颜料墨从黑墨排出部分排出，上述染料墨从彩墨排出部分排出并且与颜料墨具有反应性。藉此，该喷墨记录装置能够将排出的墨分成固态部分的颜料和液态部分的染料，并且在吸墨件上约束固态部分和液态部分。因此，即使当记录图像时通过反应黑墨和彩墨以便使得它们固化或变浓而没有模糊地记录高质量图像时，该喷墨记录装置也能够长时间保持吸墨件的充分吸收性。

参照附图，通过实例的下面描述，本发明的进一步特征将会变得明显。

附图说明

图 1 是说明本发明能够应用的喷墨记录装置的简略结构的透视图。

图 2 是说明在图 1 中记录头的排放面上形成的排出口阵列的布置实例的示意框图。

图 3 是说明在图 1 中记录头的排放面上形成的排出口阵列的另一布置实例的示意框图。

图 4A 和 4B 是图 1 中加压单元的纵向截面图。图 4A 显示从记录头的排放面分离的状态，并且图 4B 显示紧密接触记录头的排放面的状态。

图 5 是在根据本发明第一实施例的喷墨记录装置中的废墨收集单元的部分截面透视图。

图 6 是说明当逐滴排放到图 5 所示吸墨件的废墨分离成固态部分和液态部分时的初始阶段的状态的平面图。

图 7 是说明当固态部分的黑颜料与液态部分分离并且沉积在吸墨件上时的图 6 的初始阶段的状态的纵向截面图。

图 8 是说明与重复的恢复处理一起在图 6 所示的状态之后进行在固态部分和液态部分之间的分离时的状态的平面图。

图 9 是说明当固态部分的黑颜料与液态部分分离并且沉积在吸墨件上时的图 8 阶段的状态的纵向截面图。

图 10 是说明在根据本发明第一实施例的实例 2 中喷墨记录装置的
废墨收集单元的状态的一部分截面透视图。

图 11 是说明在根据本发明第一实施例的实例 3 中喷墨记录装置的废墨收集单元的状态的一部分截面透视图。

图 12A、12B 和 12C 是说明在根据本发明第一实施例的实例 4 中喷墨记录装置的废墨收集单元的吸墨件的一些形状的透视图。

图 13 是根据本发明的喷墨记录装置的第二实施例的废墨收集单元的截面图。

图 14 是说明已经逐滴排放并且由在图 13 所示用于收集废墨的单元中的吸墨件约束的废墨的状态的截面图。

图 15 是说明当通过图 14 中的转移构件已经逐滴排放到吸墨件的废墨分离成固态部分和液态部分时的状态的平面图。

图 16 是说明当吸墨件的固态部分的黑颜料与液态部分分离并且沉积在吸墨件上时的状态的平面图。

图 17 是说明与重复的恢复处理一起在图 15 所示的状态之后进行在固态部分和液态部分之间的废墨分离时的状态的平面图。

图 18 是说明当固态部分的黑颜料与液态部分分离并且沉积在吸墨件上时的图 17 阶段的状态的纵向截面图。

图 19A、19B、19C、19D 和 19E 是说明转移构件 33 的多个形状的透视图。

图 20 是说明在根据本发明第二实施例的喷墨记录装置中的废墨收集单元的实例 6 中废墨逐滴排放之前的状态的纵向截面图。

图 21 是说明在图 20 所示的废墨收集单元中废墨已经逐滴排放之后的状态的纵向截面图。

图 22 是通过框架的透视图，其示出根据图 20 的实例 6 的废墨收集单元的修改实例。

图 23 是说明在根据本发明第二实施例的喷墨记录装置中的废墨收集单元的实例 7 中废墨逐滴排放之前的状态的纵向截面图。

图 24 是通过框架的透视图，其示出在废墨已经逐滴排放之后，在图 23 所示的废墨收集单元中的吸墨件和转移构件的状态。
具体实施方式

在下面，将会参照附图具体描述本发明。在每个图中相同的符号指示相同部件或相应部件。图 1 是示出本发明能够应用的喷墨记录装置的简略结构的透视图。在图 1 中，喷墨记录装置 1 具有：支架 2，其移动同时在其上安装记录头 3；以及用于在由箭头 A 所示两个方向上往复移动支架 2 的支架马达 M1 和运送机构 4。喷墨记录装置 1 也具有：用于送进诸如记录纸之类的记录介质的纸送进机构 5；以及用于恢复记录头 3 的排放的恢复装置 10。喷墨记录装置 1 的这些组件连接到装置的主体的底盘 60 上。

墨水槽（墨盒）6 可拆卸地安装在由支架 2 载有的记录头 3 中。在墨盒 6 中的墨供应给记录头 3。用于支撑记录介质的压板（未示出）安装在由支架 2 载有的记录头 3 的排放面（在其内布置有排出口的面）的相对位置处。从送纸机构 5 运送的记录介质（P）通过由运送马达 M1（未示出）驱动的运送辊 61 而运送通过记录部分（在压板上）。记录头 3 是通过在图像信号的基础上排放墨而在记录介质上记录图像的组件。喷墨记录装置 1 通过将基于图像信号的驱动信息给予记录头 3 而在压板上运送的记录介质上记录图像，与由马达 M1 驱动的支架 2 的移动同步。记录了图像的记录介质（P）由排出辊 63 从装置的主体排出。

在图 1 中的记录头 3 是用于彩色记录的记录头，并且支架 2（或记录头 3）在其上安装容纳洋红（M）、青（C）、黄（Y）和黑（K）每种颜色墨的四个墨盒 6。这四个墨盒能够每个独立安装和拆卸。图 2 是说明在图 1 中记录头的排放面上形成的排出口阵列的布置实例的示意框图。图 3 是说明在图 1 中记录头的排放面上形成的排出口阵列的另一布置实例的示意框图。在图 2 中说明的记录头 3 具有一个排放面 17 上形成的两个排出口阵列——用于黑墨的排出口阵列 13 和用于黄墨（彩墨）的排出口阵列 14。另一方面，在图 3 中的记录头 3 具有一个排放面 17 上形成的四个排出口阵列——用于黑墨的排出口阵列 13，用于黄墨（彩墨）的排出口阵列 14，用于洋红墨的排出口阵列
15 和用于青墨的排出口阵列 16。换句话说，图 2 和 3 也示出具有布置在一起的用于黑墨的排出口阵列和用于彩墨的排出口阵列的排放面。

当相应于记录信号（图像信号）的脉冲电压应用于其上时，通过选择地从多个排出口排放墨，从而记录头 3 记录图象。根据本实施例的记录头 3 特别提供有热电转换构件，当脉冲电压应用于其上时，该热电转换构件产生用于排放墨的热能。通过使得热电转换构件产生热能，使得薄膜沸腾产生并收缩气泡以及使用随后的压力改变，记录头 3 从排出口排放墨滴。热电转换构件分别提供在多个排出口的每一个中，并且通过相应于记录信号而将脉冲压力应用于热电转换构件，使得相应于热电转换构件的排出口排放墨滴。

在图 1 中，用于维持和恢复记录头 3 的墨排放性能的恢复装置 10 在支架 2 的可移动范围中以及超出记录区域安装在预定位置处（例如，在支架的原始位置处）。恢复装置 10 提供有用于覆盖记录头 3 的排出口的加盖单元 11，以及用于擦拭和清理记录头 3 的排放面的擦拭单元 12。恢复装置 10 也提供有吸取单元 62，其由连接到加盖单元 11 中的盖 8（图 4A 和 4B）上的吸取泵等构成。图 4A 和 4B 是图 1 中加盖单元 11 的纵向截面图。图 4A 示出盖 8 从记录头 3 的排放面 17 分离的状态，并且图 4B 示出盖紧密接触记录头的排放面的状态。

在图 1、4A 和 4B 中，通过紧密接触记录头 3 的排放面 17 而用于覆盖排出口的盖 8 填充有用于吸收和约束墨的吸墨件 9。该吸墨件 9 由多孔材料或海绵材料制成。盖 8 连接到吸取管 7 上。吸取管的另一端侧通过吸取泵 62 连接到包括下述吸墨件 31 的废墨收集部分上。根据本实施例吸取泵 62 是管泵。因此，喷墨记录装置能够在用盖 8 加盖排放面 17 的状态下操作吸取泵 62，以便在盖 8 中产生负压，由此从每个排出口吸取墨，并且有力地排出墨。由此，该喷墨记录装置能够排出和去除阻塞因素，例如变浓的墨和在记录头 3 的墨流动路径中存在的气泡。换句话说，通过使得吸取泵 62 吸取墨通过吸取管 7，对记录头 3 进行吸取-恢复。

通过更新在每个排出口（在每个喷嘴中）的墨而消除排出口中的
阻塞，吸取恢复操作将保持和恢复记录头的墨排放性能。

然后，通过吸取操作从排出口排出的墨（废墨）送到连接到吸取泵 62 上的废墨收集部分。该废墨收集部分由吸墨件构成，通过用于从未示出的各排出口朝向墨池（或未盖 8）将未有助于记录的墨进行排放的预料失效操作，记录头有时候得到恢复。

通过预料失效操作而排放到墨池的墨（废墨）也由吸取泵 62 吸取并且送到上述废墨收集部分。从而，通过用盖 8 加盖记录头 3 的排出口，能够保护记录头 3 并且也防止在记录头 3 不操作时墨蒸发和干燥。另外，能够通过擦拭机构 12 擦拭和去除沉积在记录头 3 的排放面 17 上的墨和脏物。如上述的加盖单元 11，擦拭单元 12 和吸取单元 62 能够共同操作和适当地保持和恢复记录头 3 的墨排放性能到正常状态。

图 5 是说明在根据本发明第一实施例的喷墨记录装置中的废墨收集单元的结构的部分透视图。根据本发明的喷墨记录装置是通过在图像信息的基础上从记录头排放墨到记录介质上而在记录介质上记录图像的装置。根据第一实施例的喷墨记录装置具有用于从用于排放墨的黑墨排出部分 13 和用于从排放与黑墨反应的彩墨的彩墨排出部分 14（或 14、15 和 16）排出墨的恢复单元。如图 1、4A 和 4B 所示，上述恢复单元由盖 8 和吸取泵 62 构成。

除了用于记录的排放操作之外，通过从记录头 3 有力地排出墨，恢复单元保持排放特征正常或者恢复排放特征到正常状况。

根据第一实施例的喷墨记录装置也具有吸墨件 31（图 5），其用于收集由恢复单元排出的墨并且将墨分成固态部分和液态部分；并且进一步具有墨导入单元 7（图 4A、4B 和 5），其用于将由恢复单元排出的墨导入吸墨件内。该吸墨件 31 收集和约束自记录头 3 的吸取恢复处理等排出的墨（废墨）。墨导入单元 7 将由恢复单元排出的墨（废墨）导入上述吸墨件内并且使得该吸墨件将墨导入自身内；并且如图 4A 和 4B 所示由吸取管 7 构成。

如图 5 所示，在记录装置的主体的预定位置处，废墨收集单元 50 布置成收集由吸取恢复单元 62 排出的墨。该废墨收集单元 50 由容器
形状的框架 35 及由其容纳的吸墨件 31 构成。该吸墨件 31 只需要是提供有适度约束墨 (废墨) 的功能的材料 (构件)，并且不作特别限定。合适的材料例如包括由诸如海绵之类的多孔构件和使用纸浆作为材料的纤维体构成的材料；聚合物吸收剂；或者由聚合物吸收剂撒在其上的纸形主体构成的构件。在图 5 中参考数字 43 指示吸管 7 的出口。图 5 中参考数字 41 和 42 指示由吸墨件 31 分离墨而形成的固态部分和液态部分，这将在后面详细讲述。

在下面，将要描述墨和着色材料的实例，其能够用在根据本发明的喷墨记录装置中。本发明的目的在于，即使当彼此反应的这些墨在记录头的吸取恢复操作中通过相同盖吸取时，也防止混合的墨变浓或凝固。本发明提供能够进一步提高渗色性能的墨。通过使用当接触用于收集废墨的吸墨件 (也称为废墨吸收件) 时着色材料沉淀的墨，而更有效地获得上述目的。

作为已经研究引起以上现象的原因或者因素的结果，发现墨具有特征性能并且显示与着色材料自身特征相关联的现象，在着色材料和溶剂以及它们的混合状态之间的关系，这将在下面讲述。然而，本发明不限于上述的说明，而是能够应用于墨中的各种着色材料以及引起最新发现性能和现象或特征性能和现象的墨。

顺便提及，渗色意味着在记录介质上形成的墨的模糊或颜色混合。另外，渗色性能意味着减小或阻止渗色的性能。

具有提高渗色性能的墨例如是使用自分散颜料 (例如碳黑) 作为着色材料的墨，其与直接具有亲水性的功能基或者通过另一原子基相结合。而且，该墨也是使用多个水溶有机溶剂的墨 (第一墨)，其中至少一个是具有降低颜料分散稳定性特征的弱溶剂。当这种墨应用在记录介质上时，随着水的蒸发，该弱溶剂增加其相对于颜料的比率，使得在记录介质的上层中颜料开始彼此凝结。藉此，即使单独或甚至当另一种墨存在于周围时，该墨也能够显示阻止渗色的功能 (或性能)。

而且，作为在第一墨中的着色材料，当墨使用浓密地具有结合在颜料表面上的亲水性基的颜料作为着色材料时，该墨显著显示下面的
现象。

具体地说，该墨显著显示着色材料固化并且粘附到废墨吸收件上的现象，并且废墨吸收件随着显著显示上述优点的同时极大降低其吸收性。在该情况下，与传统自分散颜料相比较，颜料很难由墨中的溶剂溶解，这是因为受到着色材料结构中产生的位阻现象影响，并且由于水的痕量的蒸发，该墨显示降低颜料的分散稳定性的趋势。藉此，墨具有进一步减少渗色的效果。

而且，通过变浓或者随着水的蒸发增加其颗粒尺寸的墨而能够进一步减少渗色，具体地说，当大约 40%的水已经从液体中蒸发时，在水蒸发之前和之后，改变平均颗粒尺寸直径大约 25%或更多。

通过例如使用具有自动取样器的纤维光学颗粒分析器 FPAR-1000（商标名称；由 Otsuka 电子有限公司制造），能够容易地确定颗粒尺寸而不稀释墨。

这些墨具有进一步减少渗色的效果，当颜料黑墨已经与染料彩墨混合之后测量混合物的粘性时，其比颜料黑墨和染料彩墨两者粘性都显示出更高的粘性。

这种染料彩墨的实例是包含如下溶剂的染料彩墨：该溶剂相对于包含在颜料黑墨中的颜料为弱溶剂；以及进一步具有如下的着色材料至少作为着色材料的墨：该着色材料在端部具有苯环的结构。在端部具有苯环结构的着色材料通常具有容易被颜料吸收的特征。当这种染色彩墨与颜料墨混合时，染色彩墨降低颜料的分散稳定性。在当前应用中，这种染色墨称为引起与颜料黑墨相位反应的染色彩墨。

另外，当在两种墨混合之后测量混合物的粘性时，第一墨和第二墨显示比第一墨和第二墨的两者粘性更高的粘性时，第一墨和第二墨具有进一步减少渗色的作用。

水从废墨中蒸发程度例如根据废墨管材料、管的内径或者由一个恢复操作排出的墨（废墨）的数量而改变。

然而，通常使用废墨管的材料质量和管的内径受到限制，并且由一个恢复操作排出的废墨的数量也通常处于预定范围内。
顺便提及，根据本发明的弱溶剂是示出如下这种特征的溶剂：“包括大约 50 质量％的要评测溶剂并且在其内分散在墨中使用的着色材料的颜料分散液体中的颗粒，在前一液体保持在 60℃48 小时之后，显示出比在下述的颜料分散液体中的颗粒更大的尺寸”。该“下述的颜料分散液体”是“包括没有或少量要评测溶剂并且在其内分散在墨中使用的不溶水着色材料的颜料分散液体”。另外，良溶剂是显示除那些弱溶剂之外特征的溶剂。

在下面，将会示出第二墨的实例，当第一墨与第二墨进行接触时，其阻止第一墨和第二墨扩散或转移入废墨吸收件内。

出于进一步减少在记录介质上形成的渗色的目的，该实例包括第二墨，该第二墨相对于包含在第一墨中的颜料例如包含弱溶剂。该实例进一步包括包含如下着色材料的墨：至少一种着色材料具有端部具有苯环（当在多个部分具有疏水半族时可以在一部分具有亲水半族）的结构。在端部具有苯环结构的着色材料通常提供有容易被颜料吸收的特征。

从而第二墨降低颜料的分散稳定性，使得第一墨和第二墨容易形成障碍，当废墨接触废墨吸收件时，其阻止源于两种墨的废墨扩散或移入废墨吸收件内。因此，由于在本发明的混合，墨显著产生防止墨变浓和凝固的技术问题，并且也显著产生由解决该技术问题而获得的效果。而且，当第一墨和第二墨具有下述关系时，需要规定源于每种墨的废墨引入的位置，如以上说明的那样。具体地说，在第一墨和第二墨之间的以上关系包括当两种墨混合并且测量混合物的粘性时，该粘性高于各种墨的任一种粘性的关系。

第二着色材料的具体实例包括在结构式 (1) 和结构式 (2) 中所示的着色材料，当废墨接触废墨吸收件时，其促成源于第一墨和第二墨的废墨形成用于阻止废墨扩散或移动入废墨吸收件内的障碍。

式 1

结构式 (1)
在上述“结构式 (1)”中 R1 代表氢原子、烷基、羟基低烷基、环己基、单烷氨基烷基、双烷氨基烷基或者氨基低烷基。在“结构式 (1)”中 Y 代表氯原子、羟基、氨基、单烷氨基或双烷氨基。该单烷氨基或双烷氨基可以具有从如下构成的组中选择的替换物：磺基、羧基和在烷基上的羟基。在“结构式 (1)”中 R2、R3、R4、R5 和 R6 每个单独代表氢原子，具有 1 到 8 个碳原子的烷基，或者羧基。然而，所有 R2、R3、R4、R5 和 R6 不能同时为氢原子。

在“结构式 (1)”中所示化合物的具体实例包括每种示范性化合物，其具有为自由酸形式，在下面“式 2”中每个化学式中所示的结构。在这些示范性化合物 M1 到 M7 中，能够特别使用 M7 的示范性化合物。

式 2

示范性化合物 M1

示例性化合物 M2
示范性化合物 M3

示范性化合物 M4

示范性化合物 M5

示范性化合物 M6
在上述“结构式（2）”中，l=0到2，m=1到3，n=1到3，同时满足l+m+n=3到4，并且替代物的替代位置由4或4’示出。在“结构式（2）”中 M 代表碱金属或铵。R1 和 R2 每个单独代表氢原子、磺基或羧基。然而，R1 和 R2 不能同时为氢原子。在“结构式（2）”中 Y 代表氯原子、羟基、铵基、单烷氨基或双烷氨基。

在“结构式（2）”中所示的着色材料是通过如下准备的特征酞菁化合物：使用酞菁化合物作为原料，其通过在金属化合物存在时反应
- 硫代邻苯二甲酸衍生物、或者 4-硫代邻苯二甲酸衍生物和邻苯二甲酸衍生物（例如邻苯二甲酸酐）而获得；在原料中转换硫基为氯磺基；以及在存在有机胺时将合成的化合物与胺化剂反应。

在“结构式 (2)”中所示的着色材料是特征的酰基化合物，其具有未替代的氯磺酰基 (-SO₂NH₂) 和仅仅在结构式的 4 和 4’位置处引入的替代的氯磺酰基（下述式 4”的结构式 (3)）。在“结构式 (2)”中的 4 和 4’的以上位置为在“结构式 (2)”中 R₂、R₃、R₆、R₇、R₁₀、R₁₁、R₁₄ 和 R₁₅ 的位置。发现使用这种化合物作为着色材料的墨具有对环境气体的极其优良抵抗性。

结构式 (3)

由“结构式 (3)”所示化合物的具体实例包括每种示范性化合物，其具有为自由酸形式、由下述式 5”的每个化学式所示的结构。在这些示范性化合物 C₁ 到 C₇ 中，能够特别使用示范性化合物 C₁。

式 5
示范性化合物 C₁
示范性化合物 C2

示范性化合物 C3

示范性化合物 C4
示范性化合物 C5

示范性化合物 C6

示范性化合物 C7

通过使用具有上述特征的第一墨和第二墨，该喷墨记录装置与传
统墨相比较能够显著提高渗透性能。然而，发现当相应废墨每种逐滴地排出到废墨吸收件的相邻部分时，上述相应的废墨引起形成阻止相应废墨扩散或移入废墨收集构件内的障碍的现象。

在下面，参照附图将要详细描述根据本发明的第一实施例。图 5 是在根据本发明第一实施例的喷墨记录装置中的废墨收集单元 50 的一部分的截面透视图。

图 5 的结构与根据下述实施例 1 的废墨收集单元的结构相同。在图 5 中，吸墨件（废墨吸收件）31 容纳在容器形状的框架 35 中，该框架 35 布置在记录装置的下部壳体或类似物中。该吸墨件 31 整体上具有大致矩形的固体形状，并且容纳在框架 35 中，使得侧表面和底表面接触具有矩形形状的框架 35 的内壁表面。吸墨件 31 的材料仅仅需要具有度约束废墨的功能，并且不作特别限定。例如，合适的材料能够包括诸如海绵之类的多孔构件和使用纸浆作为材料的纤维体。合适的吸墨件也能够包括由聚合物吸收剂制成的构件或者由聚合物吸收剂散布在其上的纸形主体制成的构件。已经由吸取泵 62 排出并且由吸取管 7 引入的墨（废墨）从吸取管的出口 43 逐滴排放到吸墨件 31。该吸取管 7 组成用于将排出的墨引到废墨收集单元 50 的墨引入单元。如上述，在本实施例中，废墨直接逐滴从墨引入单元 7 排出到吸墨件 31 上。

图 6 是说明当逐滴排放到图 5 中吸墨件 31 的废墨分离成固态部分 41 和液态部分 42 时的初始阶段的状态的平面图。图 7 是说明当固态部分 41 的黑颜料 44 与液态部分分离并且沉积在吸墨件上时的图 6 中初始阶段的状态的纵向截面图。

图 8 是说明与重复的恢复处理一起在图 6 所示的状态之后进行在固态部分 41 和液态部分 42 之间的分离时的形状的平面图。图 9 是说明当固态部分 41 的黑颜料 44 与液态部分分离并且沉积在吸墨件上时的图 8 阶段的状态的纵向截面图。在图 6 和 8 中，斜十字（x）显示位置 32（排出部分），在该位置 32 处废墨 45 从废墨管（墨引入管）7 的出口 43 逐滴排放到吸墨件 31。当颜料墨（黑墨）和染料墨（彩墨）的混合墨（废墨）45 逐滴排放吸墨件 31 上时，其由于水的蒸发而
突然在吸收构件上凝结并且增加其粘性。

换句话说，如图 6 所示，排出的墨（废墨）由吸墨件 31 收集，并且立即分成颜料的固态部分 41 和染料的液态部分 42（固态-液态分离）。吸墨件 31 的密度越高，排出的墨越显著地显示出被立即分离的趋势。

由于废墨通过重复吸取恢复操作而重复地收集，分离的固态部分 41 和液态部分 42 扩张，如图 8 和 9 所示。图 7 和 9 示出时间序列的状态，其中固态部分 41 的黑颜料 44 沉积在吸墨件 31 上。

该吸墨件 31 单独布置在吸取管 7 的出口 43 下。然而，在出口 43 和吸墨件 31 的表面之间的距离（L）不作特别限定。

然而，当距离（L）太短时，出口 43 自身会被变浓的废墨堵塞。因此，需要确保距离（L）到一定程度。图 9 是在已经进一步重复吸取恢复操作之后的纵向截面图。黑颜料 44 的沉积增加其高度。然而，当混合的墨（废墨）45 逐滴排放在沉积物上时，因为沉积物为由水蒸发引起的凝聚物，因此混合墨已经逐滴排放在上面的沉积物的一部分再次溶解。这被认为是因在混合墨 45 中水再分散颜料 44，并且混合墨 45 已经逐滴排在上面的那部分变得可流动。因此，能够说在本实施例中使用的墨很难引起在废墨出口 43 中的堵塞。

这里，将会参照具体实例详细讲述在根据本发明的喷墨记录装置中使用的墨。然而，本发明不限于该实例。

首先，将会参照具体实例讲述用于准备黑墨的颜料分散体的方法。该黑墨的颜料分散体通过如下准备：首先，通过在 5.5g 水中溶解 5g 浓盐酸而准备盐酸溶液，并且添加 1.5g 的 4-氮-1,2-苯二羧酸到该溶液中，同时保持该溶液冷却到 5℃；随后，在冰浴中放置包含该溶液的容器并且搅拌该溶液以便保持溶液到 10℃或更低，通过溶解 1.8g 的亚硝酸钠在冷却到 5℃的 9g 水中而准备亚硝酸钠溶液，并且添加后一溶液到前一溶液中；进一步搅拌以上混合溶液 15 分钟，并且添加 6g 比表面积为 220m²/g 的碳黑和 105mL/100g 的 DBP 油吸收剂到该溶液中，同时搅拌该溶液；并且随后，进一步搅拌以上混合液体 15 分钟。自分
散碳黑通过如下准备：用过滤纸（商标名称：Standard Filter Paper No.2; Advantec 制造）过滤获得的浆；用水彻底冲洗颗粒；并且在 110℃的炉中干燥颗粒。通过添加水到获得的自分散碳黑中而进一步准备在其内具有 10 质量%浓度的分散颜料的分散液体。由上述方法获得的颜料分散液体使得自分散碳黑分散在水中，其具有引入在碳黑颗粒表面上的-C₆H₆-(COONa)₂基。

下面将会参照具体实例讲述用于准备黑墨 1 的方法。该黑墨 1 具体通过如下方法准备：将上述颜料分散液体（35 质量份）与甘油（7.0质量份）、二甘醇（6 质量份）和邻苯二甲酸二铵（diammonium phthalate）（0.5 质量份）混合；将以上液体进一步与 Acetylenol E100（由 Kawaken Fine Chemicals Co., Ltd. 制造的乙炔乙二醇（acetylenic glycol）的乙撑氧加成物）（0.2 质量份）和水（45.3 质量份）混合；搅拌上述混合物一小时；并且之后，用过滤器（由 FUJI FILM 公司制造的 FR20）压力过滤混合物。黑墨 1 在 25℃显示 2.3mPa·s 的粘度。

下面，将会参照具体实例讲述准备黄墨 1 的方法。黄墨 1 具体如下准备：将 C.I.正黄 132（4 质量份）与甘油（7 质量份）、聚乙二醇 600（4 质量份）和 2-吡咯烷酮（5 质量份）混合；将以上液体进一步与 Acetylenol E100（由 Kawaken Fine Chemicals Co., Ltd. 制造的乙炔乙二醇（acetylenic glycol）的乙撑氧加成物）（1 质量份）和水（79 质量份）混合；搅拌上述混合物一小时；并且之后，用过滤器（由 Fuji Film 公司制造的 FR20）压力过滤混合物。黄墨 1 在 25℃显示 2.0mPa·s 的粘度。

下面，将要讲述上述黑墨 1 和上述黄墨 1 的混合墨的粘度。上述黑墨 1 和上述黄墨 1 以 1:1 的比率混合，并且彻底地搅拌该混合物。随后，当在 25℃测量时，该液体混合物显示 3.0mPa·s 的粘度。通过粘度的测量结果，确定两种墨的混合操作增加（变浓）了混合墨的粘度。

将会参照一些实例讲述具有根据上述第一实施例的墨收集单元 50 的喷墨记录装置。在这些实例中，恢复单元（吸取泵 62）一起吸取上述黑墨 1 和上述彩墨 1；将混合墨引入废墨收集单元 50 内；并且逐
滴排放废墨到吸墨件 31 上。从而，该废墨收集单元 50 收集废墨。

实例 1

如图 5 和 6 所示，使用的废墨收集单元 50 采用在框架 35 中容纳矩形实心形状的吸墨件 31 的结构。墨引入单元的吸取管 7 布置成使得出口 43 放置在吸墨件 31 的表面以上，分开距离 (L)。

如图 2 所示，记录头 3 具有排放面 17，该排放面 17 具有布在其中的用于排放黑墨 1 的排出口阵列 13 和用于排放黄墨 1 的排出口阵列 14。记录头 3 使用黑墨 1 和黄墨 1 产生打印（形成的图像），并且经受加盖记录头 3、操作吸取泵 62 和通过盖 4 吸取墨的吸取恢复操作。吸取的废墨通过吸取管 7 逐滴排放到吸墨件 31 上。重复恢复操作并且观察吸墨件 31 的上部。然后，废墨（混合墨）45 被分成固态部分 41 和液态部分 42，并且由吸墨件约束。

实例 2

图 10 是说明在根据第一实施例的喷墨记录装置中废墨收集单元 50 的实例 2 的结构的一部分截面透视图。代替图 5 中所示的结构，如图 10 所示，在本实例中使用的废墨收集单元 50 采用如下结构：其在矩形形状的框架 35 中容纳具有半圆柱形状、弧形横截面的吸墨件 31。吸取管 7 布置成使得出口 43 放置在吸墨件 31 的表面以上，分开距离 (L)。如图 2 所示，记录头 3 具有排放面 17，该排放面 17 具有布在其中的用于排放黑墨 1 的排出口阵列 13 和用于排放黄墨 1 的排出口阵列 14。记录头 3 使用黑墨 1 和黄墨 1 产生打印（形成的图像），并且经受加盖记录头 3、操作吸取泵 62 和通过盖 4 吸取墨的吸取恢复操作。吸取的废墨通过吸取管 7 逐滴排放到吸墨件 31 上。重复恢复操作并且观察吸墨件 31 的上部。然后，废墨（混合墨）45 被分成固态部分 41 和液态部分 42，并且由吸墨件约束。另外，在本实例中，与实例 1 相比较，固态部分 41 的沉积物朝向吸墨件 31 的下部移动，该吸墨件 31 具有向下展开的弯曲表面形状。另外，沉积物 41 左右分散。

实例 3
图 11 是说明在根据本发明第一实施例的喷墨记录装置中废墨收集单元的实例 3 的结构的一部分截面透视图。代替图 5 中所示的结构，在本实施例中使用的废墨收集单元 50 采用如图 11 所示的结构。该废墨收集单元具有如下结构：其在矩形形状的框架 35 中容纳具有矩形实心形状、在上表面形成凹处 46 的吸墨件 31。该凹处 46 形成在废墨 45 通过吸墨管 7 逐滴排放在其上的部分。换句话说，在本实施例中，在出口 43 以下的一部分吸墨件 31 低于其它部分。其它结构基本上与上述实例 1 的情况相同。然后，重复恢复操作，其是将由恢复单元排出的废墨 45 逐滴排放到凹处 46 上的操作。随后，观察吸墨件 31 的上部。然后，废墨（混合墨）45 被分成固态部分 41 和液态部分 42，并且由吸墨件约束，处于如图 11 所示的状态。与实例 1 相比较，在本实施例中固态部分 41 的沉积物朝向吸墨件 31 的凹处 46 的池部分（凹进部分）下部移动，

实例 4

图 12A、12B 和 12C 是说明在根据本发明第一实施例的喷墨记录装置中废墨收集单元的实例 4 的吸墨件的多种形状的透视图。代替图 5 中所示的结构，当前发明人使用废墨收集单元 50，其在框架 35 中容纳具有如图 12A、12B 和 12C 所示的各种形状的吸墨件 31。图 12A 显示锥形的情况，图 12B 显示顶部制成弯曲表面的锥形的情况，并且图 12C 显示多角棱锥的情况。所有这些吸墨件 31 具有朝向下侧展开的斜面形状。在所有情况下，吸墨管 7 布置成使得出口 43 放置在吸墨件 31 的顶点区域以上。

其它结构基本上与上述实例 1 的情况相同。然后，重复恢复操作并且观察吸墨件 31 的上部。然后，废墨 45 被分成固态部分 41 和液态部分 42，并且由吸墨件 31 约束。在本实施例中固态部分 41 的沉积物朝向吸墨件 31 的下部分散，类似于实例 2 的情况。

另外，在上述的实例 1 到 4 中，阻止渗色在记录图像上的能力得到评价，其具体地说是如下的能力：通过使用黑墨 1 和黄墨 1，在黄色的纯色（solid）打印的背景上打印黑线而记录的图像上减少渗色或
颜色混合的能力。藉此，任一实例均显示极满意的能力。

根据上述实施例的喷墨记录装置排出颜料墨和染料墨的混合墨，上述颜料墨从黑墨的排出部分排出，并且上述染料墨从彩墨排出部分排出并且与颜料墨反应；在吸墨件 31 上收集它；并且在吸墨件上蒸发混合墨中的水。

藉此，该喷墨记录装置能够将排出的墨分成颜料的固态部分 41 和染料的液态部分 42，并且在吸墨件上约束固态部分和液态部分。因此，即使当记录图像时通过将黑墨与彩墨反应以便使得它们固化或变浓而不存在模糊地高质量记录图像时，该喷墨记录装置也能够长时间保持废墨收集单元 50 的吸墨件 31 的充分吸收性。

在下面，将会参照附图详细讲述根据本发明的第二实施例。图 13 是说明根据第二实施例的喷墨记录装置的废墨收集单元 60 的实例 5 的结构的截面图。图 14 是说明已经逐滴排放并且由在图 13 所示的废墨收集单元中的吸墨件约束的废墨的状态的截面图。在图 13 和 14 中，吸墨件（废墨吸收件）31 容纳在容器形状的框架 35 中，该框架 35 布置在记录装置的下部壳体或类似物中。该框架 35 具有整体大致矩形形状的容器形状，并且转移构件 33 布置在其中心。该转移构件 33 放在安装在框架 35 的底表面上的杆型伸出部分 36 的上端。该吸墨件 31 容纳在框架 35 中，使得侧表面和底面接触具有矩形形状的框架 35 的内壁表面。在吸墨件 31 的中心，形成与伸出部分 36 相结合的孔 37。在图中的情况下，转移构件 33 和框架 35 由相同材料制成（例如相同的塑料）。具体地说，在图 13 和 14 中的转移构件 33 和伸出部分 36 与框架 35 一样由相同构件制成。

在与伸出部分 36 相结合的孔 37 周围，吸墨件 31 显示沿着伸出部分膨胀到正好在转移构件 33 以下的部分的形状，并且也显示沿着内壁表面在周围区域沿着框架 35 的内壁表面膨胀的形状。在图中的情况下，在周围区域中的吸墨件 31 膨胀到比转移构件 33 稍高的位置。因此，总体上，吸墨件显示围绕伸出部分 36 在中心部分以及在周围区域膨胀的形状，并且在它们之间凹下同时上表面张开。吸取管 7 工作为
墨引入单元，其用于将由诸如吸取泵 62 之类的恢复单元排放的墨（废墨）引导至废墨收集单元 60。

转移构件 33 布置在作为墨引入单元的吸取管 7 的出口 43 以下并且与之分离。由吸取管 7 已经引入的墨通过管的出口 43 逐滴排放到转移构件 33 上。在转移构件 33 的下部，布置吸墨件 31。逐滴排放到转移构件 33 上的废墨 45 在转移构件的表面上流下并且逐滴排放到吸墨件 31 上。

吸墨件 31 的材料仅仅需要具有适度约束废墨的功能，并且不作特别限定。可使用的材料例如包括诸如海绵之类的多孔构件，或者使用纸浆作为原材料的纤维体；以及由聚合物吸收剂制成的构件，或者由聚合物吸收剂撤在其上的纸形主体制成的构件。在图中的情况下，转移构件 33 和伸出部分 36 与框架 35 整体形成并且由相同材料制成，但不限定于此；并且可以具有例如结合了由不同材料制成的构件的结构。

图 15 是说明当通过图 14 中的转移构件 33 已经逐滴排放到吸墨件 31 的废墨分离成固态部分 41 和液态部分 42 时的初始阶段的状态的平面图。图 16 是说明当吸墨件的固态部分的黑颜料与液态部分分离并且沉积在吸墨件上时的初始阶段的状态的纵向截面图。图 17 是说明与重复的恢复处理一起在图 15 所示的状态之后进行在固态部分 41 和液态部分 42 之间的分离时的状态的平面图。图 18 是说明当固态部分 41 的黑颜料 44 与液态部分分离并且沉积在吸墨件上时的图 17 阶段的状态的纵向截面图。在图 15、16、17 和 18 中的参考数字 32 指示通过转移构件 33 逐滴排放到吸墨件 31 上的废墨位置。在图 13 和 14 中，示出的转移构件 33 是球形。然而，转移构件的形状不限于此，而是能够是各种形状。

图 19A、19B、19C、19D 和 19E 是说明转移构件 33 的多个可用形状的透视图。

在图 19A、19B、19C、19D 和 19E 中，图 19A 显示具有尖头顶部的锥形的情况；图 19B 显示顶部制成大致曲表面的锥形情况；图 19C 显示多角棱锥的情况；图 19D 显示在上边缘具有边缘线并且在两侧均
具有斜面的三角截面体的情况；以及图 19E 显示球形或椭球形的情况。在图 19A、19B 和 19C 中的转移构件 33 具有向上凸起的形状。在图 19D 中的转移构件 33 具有斜面形状，其横截面为三角形并且两个表面朝向下部展开。在图 13、14、15、16、17、18、19A、19B、19C、19D 和 19E 中，由恢复处理产生的废墨被墨引入单元 7 引入并且通过转移构件 33 逐滴排放到吸墨件 31 上。图 15、16 和 17 是说明以时间序列从上表面在吸墨件 31 中约束的废墨 45 的状态的示意结构图。流在转移构件 33 的斜面的废墨在其中由斜十字示出的内部逐滴排放到吸墨件 31 上。图 16 和 18 是示意结构图，说明当重复恢复处理时，以时间序列，在吸墨件 31 中固态部分与液态部分分离的废墨的直接水平观察状态。

在图 14、15、16、17 和 18 中，当由颜料墨（墨黑）和染料墨（彩墨）构成的混合墨（废墨）45 逐滴排放到吸墨件 31 上时，由于水的蒸发，其突然在吸墨件上凝结并且增加其粘度。具体地说，如图 15 和 16 所示，废墨立刻分成颜料的固态部分 41 和染料的液态部分 42。

吸墨件 31 的密度越高，排出的墨越显著地显示立刻分离的趋势。由于通过重复吸取恢复操作而重复收集废墨，如图 17 和 18 所示，分离的固态部分 41 和液态部分 42 扩张。

图 16 显示固态部分 41 的黑颜料 44 逐渐沉积在吸墨件 31 上的状态。

图 18 是在进一步重复吸取恢复操作之后与图 16 中相同部分的截面图。固态部分 41 的沉积物随着废墨 45 逐滴排放而增加其高度。然而，当混合墨（废墨）45 再次逐滴排放到沉积物上时，因为沉积物 41 为由水蒸发引起的凝聚物，因此在混合墨已经逐滴排放到上面的部分附近的沉积物再次溶解。这是因为在混合墨 45 中的水分散颜料 44，并且在混合墨 45 已经逐滴排放到上面的部分附近的固态部分 41 再次变得可流动。

在图 13、14、15、16、17、18、19A、19B、19C、19D 和 19E 中，第二实施例具有除了上述这点之外与图 1、2、3、4A、4B、5、6、7、
8、9、10、11、12A、12B 和 12C 中的第一实施例基本上相同的结构。下面，参照一些实例将会描述具有根据上述实施例的废墨收集单元 60 的喷墨记录装置。在这些实施例中，上述黑墨 1 和上述彩墨 1 由相同的恢复单元（吸取泵 62）吸取在一起。混合墨引入废墨收集单元 60 内，通过转移构件 33 逐滴排放到吸墨件 31 上，并且从而进行收集。

实例 5

如图 13 和 15 所示，使用的废墨收集单元 60 具有在矩形形状的框架 35 中容纳吸墨件 31 的结构。墨引入单元的吸取管 7 布置成使得出口 43 放置在转移构件 33 以上。如图 2 所示，记录头 3 具有排放面 17，该排放面 17 具有布置在其上的用于排放黑墨 1 的排出口阵列 13 和用于排放黄墨 1 的排出口阵列 14。记录头 3 使用黑墨 1 和黄墨 1 产生打印（形成的图像），并且经受加盖记录头 3、操作吸取泵 62 和通过盖 4 吸取墨的吸取恢复操作。吸取的废墨通过转移构件 33 从吸取管 7 逐滴排放到吸墨件 31 上。转移构件 33 的表面能够处理成疏水的。重复这种恢复操作并且观察该吸墨件 31。然后，废墨（混合墨）45 被分成固态部分 41 和液态部分 42，并且由吸墨件（图 14）约束。

实例 6

图 20 是说明在根据本发明实施例的喷墨记录装置中的废墨收集单元 60 的实例 6 中废墨逐滴排放之前的状态的纵向截面图。图 21 是说明在图 20 示出的废墨收集单元 60 中废墨已经逐滴排放之后的状态的纵向截面图。在本实例中，代替图 13 所示的结构，如图 21 所示，废墨收集单元 60 具有杆型伸出部分 36 和锥形转移构件 33，上述杆型伸出部分 36 垂直安装在矩形框架 35 的内部的中心部分，上述转移构件 33 放在杆型伸出部分 36 的上端。围绕伸出部分 36，布置吸墨件 31，其具有锥形形状，并且具有从转移构件 33 的底表面到框架 35 的底表面朝向底部展开的斜面。在图中示出的实例中，该吸墨件 31 也具有朝向底部展开的斜面，并且由转移构件 33 的表面形成的斜面和由吸墨件 31 的表面形成的斜面组成连续表面。然而，两个斜面均具有相同的角度或不同的角度。
也在本实例中，如图 2 所示，记录头 3 具有排放面 17，该排放面 17 具有布置在其上的用于排放墨 1 的排放口阵列 13 和用于排放黄墨 1 的排放口阵列 14。记录头 3 使用制墨 1 和黄墨 1 产生打印（形成的图像），并且经受盖罩记录头 3、操作吸取泵 62 和通过盖 4 吸取墨的吸取恢复操作。

吸取的废墨通过吸取管 7 逐滴排放到转移构件 33 的顶部上。吸取的废墨通过转移构件 33 的表面进一步逐滴排放到废墨 31 的斜面上。在该情况下转移构件 33 的表面也能够处理成吸水的。重复这种恢复操作并且观察该吸墨件 31。然后，废墨（混合墨）45 被分成固定部分 41 和液态部分 42，并且由吸墨件约束（图 22）。另外，在本实例中，如图 21 所示，与实例 5 相比较，固定部分 41 的沉积物朝向吸墨件 31 的下部移动。

图 22 是通过框架 35 的透视图，其示出根据图 20 的实例 6 的吸墨收集单元 60 的修改实例。图 22 示出在图 20 的结构的中心部分消除杆型伸出部分 36 的结构，将具有平顶锥形形状的吸墨件 31 结合到框架 35 的底表面上，并且将具有锥形形状的转移构件 33 结合到吸墨件的顶表面上。吸墨件 31 通过接触表面 34 结合到转移构件 33 上。在该情况下，转移构件 33 和吸墨件 31 两者也均具有朝向底部展开的每个斜面。这些斜面可以具有相同的角度或不同角度。在图中示出的实例中，两个斜面相连接。在一些情况下，通过在图 20 和 22 中形成吸墨件 31 的上端表面，以便具有比转移构件 33 的底端表面更小的面积，从而两个斜面可以形成为不进行连接。

实例 7

图 23 是说明在根据本发明第二实施例的喷墨记录装置中的吸墨收集单元 60 的实例 7 中废墨逐滴排放之前的状的纵向截面图。图 24 是通过框架 35 的透视图，其示出在废墨已经逐滴排放之后，在图 23 所示的废墨收集单元 60 中的吸墨件 31 和转移构件 33 的状态。在本实例中，类似于实例 1 的情况，废墨使用如图 23 所示的转移构件 33 和吸墨件 31 通过吸取管 7 逐滴排放在转移构件 33 上。
本实例具有布置吸墨件 31 以便围绕转移构件 33（和伸出部分 36）的特征。具体地说，废墨收集单元具有容纳凹形吸墨件 31 的结构，其在中心部分具有开口 38，并且沿着框架 35 的内壁表面和底表面具有张开的上端，并且将传送构 33 布置在开口 38 的中心。也在本实例中，当重复恢复操作并且观察吸墨件 31 时，逐滴排放的废墨分成固态部分 41 和液态部分 42，并且由吸墨件 31 约束。另外，与实例 5 中的结构相比较，在本实例中的废墨收集单元具有很难泄漏固态部分 41 的沉积到记录装置外部的结构，这是因为转移构件 33 由圆柱的吸墨件 31 围绕。

在上述第二实施例中，阻止渗色在记录图像上的能力也得到提高，其具体地说是通过使用黑墨 1 和黄墨 1，在黄色的纯色（solid）打印的背景上打印黑线而记录的图像上减少渗色或颜色混合的能力。藉此，两个实例均显示极满意的能力。

根据上述第二实施例的喷墨记录装置具有如下结构：通过转移构件将颜料墨和染料墨的混合墨传送到吸墨件上，上述颜料墨从黑墨的排出部分排出，并且上述染料墨从彩墨排出部分排出并且与颜料墨反应；以及能够在吸墨件上蒸发混合墨中的水。藉此，该喷墨记录装置能够在吸墨件上将排出的墨分成颜料的固态部分和染料的液态部分。因此，即使当记录图像时通过将黑墨与彩墨反应以便使得它们固化或变浓而记录不存在模糊的高质量图像时，该喷墨记录装置也能够长时间保持废墨收集单元 60 的吸墨件 31 的充分吸收性。

在以上实施例中作为实例讲述的喷墨记录装置为串型，其使用由支架裁剪的记录头，并且沿着记录介质移动。本发明也能够类似地应用于线型喷墨记录装置，其仅仅通过垂直扫描用于实线记录的记录头而记录图像。本发明也能够类似地应用于任意喷墨记录装置而不管记录头的数量以及类型数量和墨的性能，并且显示类似的操作/工作效果。而且，本发明不限于诸如打印机、复印机、传真机和成像装置之类的单元装置。本发明能够广泛应用于组合装置，像组合以上单元装置或者在计算机系统中组合记录装置的复合装置，并且显示类型的操
作/工作效果。

虽然已经参照实例讲述了本发明，但是应当理解本发明不限于公开的实例。下面的权利要求的范围符合最宽泛的解释，以便囊括所有这些修改和等价结构和功能。
图 5
图11
图24