0000 A

WO 01/35209 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 May 2001 (17.05.2001)

0 00 A

(10) International Publication Number

WO 01/35209 A2

GOG6F 9/00

(51) International Patent Classification’:

(21) International Application Number: PCT/CA00/01339
(22) International Filing Date:
9 November 2000 (09.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/436,995 9 November 1999 (09.11.1999) US

(71) Applicant (for all designated States except US): UNIVER-
SITY OF VICTORIA INNOVATION AND DEVELOP-
MENT CORPORATION [CA/CA]; P.O. Box 3075 STN
CSC, R-Hut McKenzie Avenue, Victoria, British Columbia
V8W 3W2 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PANG, James, C.
[CA/CA]; 1703 - 950 Cambie Street, Vancouver, British
Columbia V6B 5X5 (CA). SHOJA, Gholamali, C.
[CA/CA]; 1650 Barksdale Drive, Victoria, British Colum-
bia V8N 4Z8 (CA). MANNING, Eric, G. [CA/CA]; 2909
Phyllis Street, Victoria, British Columbia V8N 4Z8 (CA).

(74) Agent: MANNING, Gavin, N.; Oyen Wiggs Green &
Mutala, 480 - 601 West Cordova Street, Vancouver, British

Columbia V6B 1G1 (CA).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Continued on next page]

(54) Title: MODIFIED MOVE TO REAR LIST SYSTEM AND METHODS FOR THREAD SCHEDULING

START
IDENTIFY 110
CURRENT 4/ 100
_| THREADAS [
EARLIEST
READY-TO-RUN
THREAD
12
No-
18 120——\’
RECORD START
ses{ TIME AND SET
TIMER
Yes.
114 122 !
TRANSFER
CONTROL TO
SET TIMER CURRENT THREAD
Yes
116 123 !
) s L RUN CURRENT
* 128 h THREAD UNTIL:
TRANSFER TIMER SIGNAL OR
CONTROL TO
QURRENT THREAD GIVES UP
GENERATE NEW CONTROL
THREAD TIMESTAMP FOR
o CURRENT | 124 I
Vr THREAD L__ DETERMINE TIME
1 USED BY CURRENT
130 THREAD
RUN CURRENT \)
THREAD UNTIL y 126 l
TT'ME;\%UTISSS INITIALIZE LEFT =
HR p N$R o VALUE FOR UPDATE LEFT
uP Cal CURRENT VALUE FOR
THREAD CURRENT THREAD

(57) Abstract: Methods and systems for scheduling threads in a
multi-threaded computer system use a modified move-to-rear list
scheduling algorithm. Threads are ordered in a service list accord-
ing to a virtual time value. System threads always retain a virtual
time value. For system threads, the virtual time value serves as a
priority. For user threads, the virtual time value is incremented af-
ter the thread has received a share of access to the CPU resource.
The invention can provide soft real time capability for applica-
tion software. At the same time, it satisfies system threads which
must be executed with some urgency. The thread scheduler of the
invention may be used to advantage in the Java multi-threading
framework.

WO 01/35209

A2 |00 00O

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations"” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/35209 PCT/CA00/01339

10

15

20

25

30

35

MODIFIED MOVE TO REAR LIST SYSTEM
AND METHODS FOR THREAD SCHEDULING

Technical Field
This invention relates to scheduling of threads in a multi-

threaded computer system. The invention has particular application to
managing CPU resources on the JAVA platform.

Background
Modern general purpose computers make it possible to provide

awide variety of applications which are multimedia in nature. A multimedia
application must be run on an underlying supporting environment which can
properly support the delivery of continuous media data. Otherwise the
multimedia application will not be presented in a satisfactory way. Real-time
requirements are imposed on the host operating system and its subsystems
because continuous media data, such as digital audio or digital video, must
be presented continuously at a predetermined rate in order to correctly
represent the information being carried. The requirements on the operating
system may be classified as being "soft real-time" because, in general, the
operating system is only required to statistically guarantee that quality of
service parameters, such as delay and throughput, will be maintained.
Multimedia applications often have deadlines for completing various tasks.
Fortunately, missing a particular deadline is generally not fatal as long as
the deadline is not missed by too much and as long as most other deadlines

are not missed.

Multimedia applications are typically very resource intensive.
A supporting computer platform must be able to partition, monitor and police
the usage of system resources so that all current application programs can
make adequate progress, even in the presence of heavy system loads.

One platform that has several desirable characteristics for
multimedia computing is the Java platform. In the Java platform,
application software written in the Java programming language runs on top
of a Java language programming environment. The Java language
programming environment includes a Java operating system. The Java
operating system runs either on computing hardware which includes a Java
processor which directly interprets Java language commands (sometimes
known as Java on Java) or on conventional general purpose computing

WO 01/35209 PCT/CA00/01339

10

15

20

25

30

35

.

hardware running an operating system, such as Windows NT or UNIX, and
a software Java processor emulator (also known as a Java virtual machine)

running on the operating system.

Programmers write applications for the Java platform within
the Java language programming environment. The Java programming
language has a number of advantages. It is small and easily-understood to
programmers. Java is object oriented, has built-in support for multi-threaded
programming and has automatic memory management. Java is portable,
dynamic and robust. In addition an extensive collection of software libraries
including Java class libraries and OS specific “native” libraries is available
to programmers. The fact that a wide selection of software libraries is
available facilitates the rapid development of a wide variety of applications
including multimedia processing applications. The interpreted nature of Java
enables Java applications to run on a wide variety of computer hardware and
a wide variety of operating systems without modification.

A problem with implementing multimedia applications on Java
platforms is that Java presently does not provide support for real-time
processing. Java does not provide any mechanism which can be used to
monitor, manage or police the usage of the CPU resource to ensure the proper
delivery of continuous media data. Current implementations of Java use a
static priority-based algorithm for thread scheduling. Such algorithms have
been shown to be largely ineffective for multimedia applications.

A further problem is that the Java product specification does not
specify how thread scheduling should be implemented. Different thread
scheduling mechanisms are used by various Java virtual machines. This
leads to inconsistencies across platforms and can cause Java applications
which function properly on one platform to not function properly on other

platforms.

Nilsen Adding Real Time Capabilities to Java, Communications
of the ACM, 41(6):49-56, 1998 proposes certain extensions to the Java
environment which are designed to facilitate real-time computing. The
Nilsen system relies on an off-line analyzer and scheduler to provide

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-3

information to a real-time executive for deterministic execution. The Nilsen
system is not fully compatible with the Java reference implementation and
requires applications to be modified and specifically optimized. The Nilsen
system is therefore not useful for general purposes.

Sun Microsystems has recently proposed a real-time extension
to the Java platform. The proposed extension relies on static priority-based
scheduling and exploits real-time facilities in underlying real-time operating
systems. Unfortunately, hard real-time scheduling based upon static
priorities has been shown to be inefficient for running soft real-time

multimedia applications.

Various algorithms suitable for scheduling threads in multi-
threaded computer systems are known. Many of these algorithms were
developed for scheduling packets in packet switched networks and were
subsequently adapted for use in scheduling threads in multi threaded
computer systems. For example, weighted fair queuing (WFQ) computes start
and finish times for each entity being scheduled and schedules the entities
in increasing order of their finish times. The need to compute finish times
makes WFQ very computationally intensive. Furthermore, WFQ does not
provide fairness when the available bandwidth fluctuates over time due to,

for example, sporadic interrupt processing.

Fair queuing based on start time (FQS) is similar to WFQ but
schedules entities in increasing order of their start times. FQS is also
computationally expensive and does not provide fairness when available
bandwidth fluctuates.

Self clocked fair queuing (SCFQ) functions in a similar manner
to WFQ but uses an approximation to calculate the finish times for each
entity. SCFQ is quite efficient. Unfortunately, SCFQ achieves efficiency at
the expense of a maximum scheduling delay which may be unacceptable for
many applications, especially multimedia applications.

The start time fair queuing (SFQ) algorithm assigns start and
finish tags to each entity to be scheduled and then schedules the entities in

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-4 -

increasing order of their start tags. A disadvantage of SFQ is that its delay
bound increases linearly with the number of threads in the system. Thus it
is not ideal for a general purpose environment in which the number of

threads may vary.

The experimental Plan 9 operating system incorporates a new
scheduling algorithm called Move to Rear List Scheduling (MTR-LS). Move
to rear scheduling is described in J. Bruno et al., Move-To-Rear List

Scheduling: a new scheduling algorithm for providin 0S guarantees,
Proceedings of the Fifth ACM International Multimedia Conference, pp. 63-
73, November 9-13, 1997. The MTR-LS algorithm assigns a weight, called
a service fraction, to each thread. The service fraction specifies the minimum
amount of the CPU resource to be allocated to the thread in absolute terms
as a fraction of the total available CPU resource. Each thread is also
assigned a time stamp. Scheduling of threads is based on their time stamps.
The time stamps are adjusted according to the service fractions of their
respective threads and the amount of CPU resources consumed by the
threads. In addition to the normal QoS guarantees, MTR-LS can provide a

[13 : : »
cumulative service guarantee”.

A disadvantage of the MTR-LS algorithm is that it cannot
effectively be used to schedule system threads which use priorities to specify
their urgency. In a priority-based system, the system thread that services
timers and clock interrupts can be given a priority higher than that of any
other threads in the system. In such a priority-based system the scheduler
can pre-empt the current thread and schedule the timer and clock service
thread as soon as the timer and clock service thread becomes runnable. With
a move to rear list scheduling algorithm it is not possible to express the
relative urgency of different threads since each thread is merely guaranteed

a share of the CPU resource but threads are otherwise equal in priority.

There is a need for systems and methods for scheduling threads
in multi-threaded computer systems which provide fairness and quality of
service guarantees, and yet retain the ability to effectively schedule system
threads which must be executed with some urgency. There is a particular
need for such systems and methods which can be applied to the Java

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

_5-

operating system because the Java operating system is otherwise well
adapted for use in multimedia applications.

Summary of the Invention
This invention provides systems and methods which use a

modified move to rear list scheduling algorithm. In the modified move to
rear list scheduling algorithm each thread is assigned a timestamp value.
For high priority system threads the timestamp value is set so that it is
always earlier than timestamp values for most other threads. In preferred
embodiments the timestamp values for system threads are static. The time
stamp values for low priority system threads, such as idler threads are set
so that they are always later than the time stamp values of most other
threads. The value of the timestamp for the high priority system threads
indicates a high priority with which the system threads should be executed
if they are ready to run. Conversely, the time stamps of low priority system
threads indicate a low priority. All user threads have time stamps that are
between those of the high priority system threads and the low priority
system threads. For user threads, the timestamp value is reassigned each
time the thread uses up an amount of the CPU resource which has been
allocated to the thread.

One aspect of the invention provides a computer implemented
method for scheduling the running of threads in a multi-threaded computer
system. The method comprises maintaining a list of a plurality of threads,
each having a timestamp value. A scheduler identifies, as the current
thread, the thread which has the earliest timestamp value of any threads
which are ready to run. The method maintains a time left value for each
thread. Ifthe time left value for the current thread indicates that the thread
has some time left to run then control is transferred to the current thread for
arunning time not exceeding the time left value for the current thread. After
the current thread has run for the running time, if the current thread is not
a system thread, then the running time is subtracted from the time left value
for the thread. Whenever the time left value for the current thread is not
greater than zero, the current thread is assigned a new timestamp value
which is greater than the timestamp values of any of the other user threads.

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-6 -

The time left value for the current thread is then re-initialized as described

below.

The methods of the invention permit the fair scheduling of
threads while enabling system threads to be scheduled in a manner which
takes into account the urgency of the system threads relative to other system

threads and user threads.

Another aspect of the invention provides a multi-threaded
computer system which implements modified move to rear list thread
scheduling. The computer system includes: a processor; and a multi-
threaded operating system running on the processor. The operating system
comprises a plurality of system threads. User software on the computer
system comprises one or more user threads. The system includes a memory
accessible to the processor. The memory contains a data structure comprising
arecord for each of a plurality of threads. The plurality of threads comprising
at least one high priority system thread and the one or more user threads.
Each record includes a timestamp value, a service fraction value and a time
left value for the thread corresponding to the record. The computer system
includes a scheduler which is adapted to identify as a current thread one of
the plurality of threads which is ready to run and has a timestamp value
earlier than the timestamp value of any other of the plurality of threads
which is ready to run. If the time left value for the current thread is greater
than zero, the scheduler transfers control of the processor to the current
thread for a running time not exceeding the time left value for the current
thread; and, if the current thread is not a system thread, the scheduler
subtracts the running time from the time left value for the current thread.
If the time left value for the current thread is not greater than zero then the
scheduler assigns a new timestamp value to the current thread, the new
timestamp value being later than the timestamp values of any of the user
threads. The scheduler then initializes the time left value of the current

thread and selects a new current thread.

Further aspects, advantages and inventive features of the
invention are described below.

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

Brief Description of Drawings

In drawings which illustrate non-limiting embodiments of the
invention: '

Figure 1A is a schematic view of a conventional prior art computing
environment;

Figure 1B is a schematic view of a prior art Java computing
environment incorporating a Java virtual machine running in a conventional
computing environment;

Figure 1C is a schematic view of a prior art Java environment
including Java software running on a computing hardware which includes
a Java processor;

Figure 2 is a schematic view of a computer system according to the
invention;

Figure 3 is a service list for use in systems and methods according to
the invention;

Figure 4 is a flowchart illustrating a method according to the
nvention;

Figure 5is a diagram illustrating the assignment of a new timestamp
value to a user thread in the method of the invention; and,

Figure 6 is a block diagram illustrating functional units of a computer
system which includes a modified MTR-LS thread scheduler according to the

invention.

Description
Figure 1A illustrates a conventional computing environment in

which an operating system runs on computer hardware. The computer
hardware incorporates one or more processors and provides other resources
which may be used by applications. The resources may include memory,
access to peripheral devices, and so on. A programming environment
mediates interactions between application software and the operating system
and interactions between application software and the computer hardware.
The application software runs in the programming environment. A problem
which has been recognized with the conventional computing environment is
that application software must be written specifically for each programming
environment since not all programming environments provide the same

resources for use by application programs.

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

_8-

Figure 1B shows a prior art Java computing environment. An
operating system runs on suitable computing hardware. The operating
system may be, for example, Microsoft Windows™ or Sun Solaris™. A Java
processor emulator (known as a Java Virtual Machine or “JVM”) runs on the
operating system. A Java operating system runs on the Java processor
emulator. The Java operating system provides resources to a Java language
environment. Java application software runs in the Java language
environment. Commands which make up the Java application are received
by the Java operating system and interpreted by the Java processor
emulator. The Java operating system and processor emulator, in turn, cause
the operating system and/or hardware to implement the commands. One
advantage of the JAVA language environment is that the JAVA language
environment is standardized so that every JAVA language environment
provides the same resources to JAVA applications without regard to the
computing hardware on which the JAVA language environment is provided.

Figure 1C shows an alternative Java computing environment
which includes a JAVA processor. A JAVA processor is a microprocessor that
is capable of executing directly Java instructions (called “byte codes”). When
such a processor is available, the Java operating system and programming
environment can be written in the Java language and executed on the
processor directly. This eliminates the need for a general purpose operating
system and saves much overhead.

The following description explains an embodiment of the
invention which provides thread scheduling in a Java computing
environment, such as the environment shown in either of Figures 1B or 1C.
The invention has particular application to this environment but the
methods and systems of the invention may be used for thread scheduling in
multi-threaded computer systems generally.

Figure 2 shows a computer system 20 according to the
invention. System 20 has a processor 22, a memory 24 accessible to
processor 22, and application software 26, which includes a plurality of
threads containing instructions to be executed by processor 22. System 20
also includes a software programmable system timer 28 and JAVA operating

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

_9.-

system software 30 which includes a scheduler 32 which schedules the
running of threads of application software 26.

For each active thread, JAVA operating system software 30
maintains a record in a data structure 34 in memory 24. Data structure 34
maintains information about the thread. The form of data structure 34 is
not particularly important. Data structure 34 may include information such
as the name of the thread; a pointer to stack memory for the thread; a
program counter; a register file; machine context information; and a pointer
to a parent process as is known in the art. In addition, data structure 34
includes, for each thread, fields for a timestamp value, a service fraction
value and a time left value. JAVA operating system 30 also maintains a
service list 40, which contains a list of all active threads. Service list 40 is
used by scheduler 32 to schedule threads, as described below. In preferred
embodiments of the invention, JAVA operating system 30 maintains a queue
42 which contains a list which includes entries for all active threads which
are ready to run.

In a computer system 20 according to the invention various
types of threads share processor 22. Processor 22 must service high priority
system threads. Such threads must be serviced with a high priority for
proper operation of computer system 20. An example of a high priority
system thread is the thread which services a system clock interrupt and
services timeouts generated by timer 28. A second group of threads is the
group of threads which make up running user application software 26. Such
threads may be called “user threads”. The programmers of application
software 26 may wish to control how much time processor 22 spends
servicing various ones of the user threads. Threads which require large
amounts of the processor resource may be given more time to run on
processor 22 than other less computationally intensive threads. Finally,
computer system 20 may include a number of low priority system threads
which perform functions such as running the finalize() routines of discarded
JAVA objects or performing garbage collection routines.

As noted above, data structure 34 includes a timestamp value
for each thread. As illustrated in Figure 3, threads in each different group of

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-10 -

threads are assigned timestamp values in a different range. Figure 3 1s a
map of all possible timestamp values. In the preferred embodiment of the
invention, the space of possible timestamp values is subdivided into four
ranges, a high priority system thread space 44, a user thread space 46, a low
priority system thread space 48, and a reserved space 50. The user thread
space 46 is typically much larger than any of the other thread spaces.

High priority system threads are assigned timestamp values
from high priority system thread space 44. Since any practical computer
system will have a limited number of high priority system threads, high
priority system thread space may include a relatively small number of
timestamp values. In the preferred embodiment of the invention a clock
handler thread is assigned an earliest timestamp of all and a time slicer
thread is assigned the next earliest timestamp.

User threads are assigned timestamps in the range 46. Low
priority system threads may be assigned timestamps in the area 48. The
reserved space 50 is preferably left available for various system tasks, as

described below.

The timestamp values assigned to threads are not directly
connected to the time as measured by any clock but are numbers. Smaller
numbers may be associated with “early” timestamps and larger numbers
with “later” timestamps or vice versa. Preferably the timestamp is
represented as an integer which permits the timestamp value to have a very
large range of values. For example, a 64-bit integer may be used to represent
the timestamp value. In general the timestamp value is preferably an
mteger of 45-bits or more.

The active threads in service list 40 can be conceptually
arranged in order of their timestamp values, from earliest to latest. The
position of each active thread in such an ordered service list 40 is determined
by the timestamp values for the thread. Threads having earlier timestamps
(it can be appreciated that "earlier" may be represented by a higher or lower
values of the timestamp) appear near the head of service list 40 (i.e. toward
high priority system area 44). Threads having later timestamps appear

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

- 11 -

farther toward the rear of service list 40. Each thread has a service fraction
value which indicates how much of the processor's time should be allocated
to processing instructions in that thread.

It is not necessary to keep the entries in service list 40 ordered
by timestamp value since, at any given time, a large number of threads will
not be ready to run. At any given time there will be a large number of active
threads which are not ready to run. For example, threads may be waiting for
a resource, such as a printer, a disk drive, or some other peripheral to become
available; threads may be waiting for other threads to complete certain
operations or to supply certain results; and/or threads may be waiting for
another thread to leave a monitor. Scheduler 32 is only required to schedule
threads which are ready to run. Preferably scheduler 32 maintains in queue
42 a list of threads which are ready to run wherein threads with earlier
timestamps are closer to the head of queue 42 than are threads which have
later timestamps. Queue 42 preferably employs a heap data structure for

efficiency.

As shown in Figure 4, a method 100 for scheduling threads
according to the invention begins by identifying a current thread (Step 110).
The current thread is the thread in queue 42 which has a timestamp which
is earlier than the timestamps of any other threads in queue 42. Where
threads in queue 42 are sorted in order of timestamp as described above then
scheduler 32 can then be implemented by simply selecting the first thread
in the ready to run queue as the current thread.

System threads are handled differently from user threads.
Scheduler 32 determines if the selected thread is a system thread (step 112).
If the thread identified as the current thread is a system thread then timer
28 1s set to measure an interval which determines how long the system
thread will be permitted to run (Step 114). Typically the interval is set to
equal either a preemption interval or the value of time left specified in data
structure 34 for the system thread, whichever is lower. Scheduler 32 then
transfers control to the current system thread (Step 116) and the current
system thread is allowed to run (step 117) until timer 28 times out or the
current system thread voluntarily relinquishes control over processor 22.

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-12 -

Method 100 then returns to Step 110 to identify a new current thread, which
may be the same as or different from the thread which has just executed. The
time left value for system threads is not altered.

Each time a running thread is suspended, context switching
code, which is included in scheduler 32, temporarily disables any further
signals, calculates the CPU resource consumption for the running thread
since the context was switched to it and saves the context of the running
thread.

If the current thread is not a system thread then a
determination is made at Step 118 as to whether or not the time left value
for the current thread is greater than zero. If the time left value is greater
than zero then the start time of the thread is recorded and timer 28 is set to
time out after an interval determined by the shorter of the preemption
interval and the time left value for the current thread (Step 120). Once
again, timer 28 measures an interval which determines the maximum
amount of time that the thread will have to execute without interruption.
Each time a user thread begins to run, context switching code records the
start time of the thread.

Method 100 then transfers control to the current user thread
(Step 122) and permits the user thread to run until either the thread gives
up control or timer 28 times out (Step 123). After the thread has completed
execution, the time used by the current thread is determined in Step 124. In
Step 126 the time left value for the current thread is then updated by
subtracting the time used by the current thread (as determined in Step 124)
from the time left value for the current thread.

Preferably, if the thread stops running by giving up control
before timer 28 times out then at step 126 the time left value for the thread
1s reduced to zero. As a result, the next time the thread comes to the
attention of scheduler 32 it will be moved to the rear of queue 42, as
described below, instead of being re-scheduled immediately. A thread may
give up control over processor 22 voluntarily when it has finished its current

batch of work. A thread may also voluntarily give up control over processor

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-13 -

22 when it is blocked. A thread is blocked when it has further work to do but
requires access to some system resource to perform the work. For example,
a thread might be blocked when it performs a read from a file and there is no
data available, or it performs a monitor entry operation but the monitor is

already occupied by another thread.

When a thread is blocked it is no longer “ready to run” and is
therefore no longer eligible to participate in the competition among the
threads in queue 42 to become the next current thread. Where a thread gives
up control of processor 22 because it is finished all of the work that it has to
do then it is generally preferable to set the time left value for the thread to
zero. If the time left value for the thread is left at a value greater than zero
then the thread will still have the earliest time stamp of all user threads, and
will be re-scheduled immediately. Resetting the “left” value for a thread
which gives up control of processor 22 to zero will ensure that the thread is
moved to the rear of queue 42 after all other active user threads in the
service list 40. Method 100 then returns to Step 110 to select a new current
thread.

If, in Step 118, it is determined that the time left value for the
current thread is less than or equal to zero then a new timestamp is
generated for the current thread in Step 128. Note that Step 128 is never
practised on system threads and therefore the timestamp for system threads
remains fixed. In Step 130 the time left value for the current thread is
initialized. Initializing the time left value for the current thread typically
involves multiplying the service fraction for the current thread by a virtual
time quantum 7° The virtual time quantum 7 is a user-defined system
constant. 7'is notionally the time which would be taken for all threads in
service list 40 to be executed just once in a case where the service fractions
for all of the active threads totals 100%.

Asillustrated in Figure 5, as each user thread runs on processor
22, its time left value is reduced. When the time left value for the thread has
been reduced to zero then the thread is assigned a new timestamp which is
later than time stamps of all other user threads in the service list 40. The
result is that threads in the user portion 46 of service list 40 leap frog one

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

- 14 -

another as time passes. In Figure 5, a thread 60 has just completed running.
Thread 60 is assigned a new timestamp which is later than the timestamps
of any of the four other active user threads in service list 40. Thus, thread 60
is moved to the rear of the list of active service threads, as indicated by arrow
62.

Those threads which have a larger service fraction will have a
larger time quantum each time their time left values are initialized in step
130. Consequently, threads having a large service fraction are ahead of other
user threads in queue 42 will have more time running on processor 22 before
being moved behind other user threads in queue 22 than will user threads

having a smaller service fraction.

In the preferred embodiment of the invention, timestamps are
not re-used. As each thread uses up the quantum of processor time which was
specified when its time left value was initialized the thread is assigned a new
timestamp which is later than that of any other active user threads. The
integer used to represent the timestamp has a large enough range of values
that the supply of new timestamps for user threads is practically
inexhaustible. For example, the timestamp may be a 64-bit integer value. In
this case, if one hundred values of the timestamp were used up every
microsecond then it would still take over 5,000 years to use up every possible

timestamp value.

Low priority system threads, which have timestamps in low
priority system area 48 will run only when there are no runnable high
priority system threads and no runnable user threads since the timestamp
values for low priority system threads are later than the timestamp values
for any other threads. Low priority system threads might include, for
example, an idler thread, a garbage collection thread, and a finalizer thread
which invokes the finalize() function of discarded JAVA objects. The idler
thread need not do any useful work. The idler thread is always ready to run.
Its presence ensures that there is always at least one runnable thread to be
scheduled.

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

- 15 -

Most preferably the garbage collection thread and the finalizer
thread are treated as user threads and are each assigned a small service
fraction. If these threads are assigned timestamps in low priority system
area 48 which gives them very low priorities then they may not run
frequently enough if the system is busy running higher priority threads.
This can eventually cause a Java virtual machine to run low on memory. If
this happens then the Java virtual machine must pause to run the garbage
collector thread. If the garbage collector is run as a user thread in a system
according to the invention, on the other hand, then the garbage collector can
be guaranteed a small share of CPU time without significantly affecting the
operation of user threads.

Timestamps in reserved area 50 may be assigned temporarily
to user threads for implementing necessary system maintenance tasks which
should not be interrupted by user threads. For example, user threads may be
temporarily assigned timestamps in reserved area 50 if a low memory
situation develops so that it is necessary to run a garbage collection routine.
After memory has been freed by running the garbage collection routine then
the previous timestamps of the user threads may be restored.

Figure 6 is a block diagram which shows functional units in a
computer system according to one embodiment of the invention. System 200
includes a global priority mapper 210, a scheduler 212, a resource
consumption tracker 214, a timer handler 216, and a time slicer 218 each of
which may comprise a software thread capable of running on a computer
processor. Global priority mapper 210 assigns timestamps to user threads
and initializes the time left values for each thread according to the service
fraction (CPU resource allocation) for the thread.

Scheduler 212 is invoked each time it is necessary to select a
new thread to run. The times when scheduler 212 is invoked to select a new
current thread may be called decision epochs. A decision epoch occurs, for
example, whenever the current thread is blocked or pre-empted. A decision
epoch may occur, for example, when a current thread is pre-empted by a
signal handler, when the thread performs some system activity, such as /0,
monitor operations or thread creation, or when it yields control of the

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

- 16 -

processor. In a Java environment, scheduler 212 may rely on asynchronous
signals from an operating system for notification of events such as timer time
out or changes in device status. The handler for such a signal will invoke
scheduler 212 to cause the currently running thread to be pre-empted and a
new thread (which could be the same thread as the currently running
thread) to be scheduled. At each decision epoch, scheduler 212 selects a
thread for execution. Scheduler 212 scans list 40 (or queue 42) to locate the
runnable thread with the highest global priority (earliest timestamp). If the
thread identified is not a system thread and has used up its allotment for the
current quantum (i.e. has a time left value <0) then scheduler 212 calls
global priority mapper 210 to re-initialize the quantum and global priority
(timestamp) for the thread. Global priority mapper 310 resets the priority
for each thread to be « X 7'+ L where « is the service fraction of the thread,
T1is the virtual time quantum and Zis the last time left value for the thread.
Scheduler 212 then resumes scanning list 40 (or queue 42) to locate another
runnable thread with the highest global priority. Scheduler 212 repeats this
operation until it finds a thread with a positive time left value which is ready

to run.

If the thread identified is a system thread or is a user thread
which has not used up all of its allotment for the current quantum then
scheduler 212 transfers the control of the CPU to the current thread and sets
timer for the time slicer to expire at the end of the next preemption interval,
or when the current thread's current quantum is exhausted, which ever

comes first.

Resource consumption tracker 214 takes clock readings before
the control of the CPU is transferred to a thread and takes clock readings
again after the control is given up or revoked. Resource consumption tracker
214 then calculates the CPU resource consumption of the thread during the
last execution and, if the thread is not a system thread subtracts this amount
from the thread's time left value. Resource consumption tracker may be
implemented as part of the context switching code which runs whenever
context is switched from one thread to another thread. |

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-17 -

Timer handler 216 services hardware clock interrupts and
supports timer time-outs. Timer slicer 218 registers timer timeouts with
timer handler 216. When the timer times out then time slicer 218 is invoked
(or “woken up”) and causes re-scheduling of threads. This prevents any
thread from monopolizing the use of the CPU resource. Time slicer 218
interrupts the currently running thread after a time AT which is equal to the
smaller of the time left value for the thread and a preemption interval.
Every time scheduler 212 selects a new thread to run it sets a time-out for
time slicer 218 that will expire after AT time units. When the time-out
expires, time slicer 218 becomes runnable. Because time slicer 218 always
has an artificially early timestamp value, the time slicer thread pre-empts
the current user thread and causes a re-scheduling. If the current user
thread is blocked for some reason, such as a monitor operation, before the
time AT passes then scheduler 212 cancels the time-out and sets out a new
time-out when the next thread is scheduled.

When a new user thread is created the new user thread is
preferably assigned a timestamp which is later than that of any other user
thread in service list 40. Consequently, even though creating the new thread
will lead to a decision epoch, it alone will not cause the current thread to be

pre-empted.

In this invention Hoare’s “monitor” mechanism (as described in
C.A.R. Hoare, Monitors: An Operating System Structuring Concept,
Communications of the ACM, 17(10):549-557, October, 1974) may be used for
thread synchronization. When this is done, signal handling is asynchronous

and is split into two parts: a very simple signal handling function is invoked
when a signal arrives. Ths signal handling function invokes a more elaborate
signal handling thread. The primary role of the signal handling function is
to notify the signal handling thread when a signal is delivered. When a
signal is delivered, the current thread is suspended and the signal handling
function for the signal is invoked. The signal handling function first invokes
context switching code, as described above, to preserve the state of the
current thread. The signal handling function then makes its corresponding
signal handling thread ready to run. This may be accomplished, for example,
by providing a monitor for each signal handling thread and keeping each

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

~18 -

signal handling thread in a condition wait queue for its monitor until the
signal handling function makes the signal handling thread runnable by
setting the condition of the condition wait queue in which the signal handling
thread is waiting to true. This removes the signal handling thread from the
condition wait queue for its monitor. The signal handling thread becomes
runnable immediately. Since the signal handling thread is typically a high
priority system thread it will run immediately (unless pre-empted by a
higher priority system thread). When the signal handling thread finishes, or
1s pre-empted, the context switch code is invoked and the scheduler function
is called to schedule a new thread. Signal handler functions may use the
stack of a pre-empted thread.

As an example, a signal handling function may be associated
with a timer 28. The signal handling function is invoked whenever timer 28
times out. The signal handling function can cause a clock handler thread to
become runnable, and to perform actions which follow from the time-out.

Preemption by Operating System

One problem can occur when it is desired to implement this
invention in a multitasking operating system. If a JAVA virtual machine
which implements thread scheduling according to the invention is running
in such an operating system then the operating system may periodically
preempt the JVM and give the processor to another program. If this happens
then the computation of the time used by a thread can become inaccurate.
Consider, for example, the situation that would occur if a JVM schedules a
thread 7'at time Zand the thread runs until a time ¢ + 4¢, at which point the
operating system takes away control from the JVM (and thread 7) until a
time ¢ + At, + At,. Thread T'is then allowed to run until time ¢ + A¢, + 4¢,
+ At,. The resource consumption tracker 214 would think that thread 7"had
run for a time At, + A¢, + At, whereas, in reality thread 7"has only run for
At, +At; time units.

A solution to this problem is to use the real-time scheduling
facility, which is provided by most modern multi-tasking operating systems,
to prevent the operating system from arbitrarily preempting the JVM. The
JVM may be given a higher priority than any other program running under

WO 01/35209 PCT/CA00/01339

10

15

20

25

30

35

-19-

the multitasking operating system, including some functions of the operating
system itself. To ensure that the operating system has access to the processor
for necessary tasks, the JVM can run a thread (an “OS thread”) which has a
service fraction but does nothing but yield control of the processor to the
operating system. For example, 10% of the available processor bandwidth
might be allocated to the OS thread.

Timestamp Inversion

Another problem that can occur through the use of the invention
1s timestamp inversion. Timestamp inversion can occur when monitors are
used for synchronization between threads, as is done in Java applications.
A monitor is a resource which is available to only one thread at a time. Ifthe
monitor is free then a thread can enter the monitor. Otherwise a thread
wishing to enter the monitor must wait until the monitor is free. Timestamp
Inversion can occur when a lower priority thread which is executing inside
a monitor blocks a higher priority thread which wishes to enter the same
monitor. Consider, for example, the case where 7', and 7, are two threads,
T, is a runnable thread, and 7, has a timestamp earlier that that of any
other runnable thread. 7} is running inside a monitor M. T, has a later
timestamp than 7 and is waiting to enter /. When 7, finishes its quantum
1.e. when 1ts "time left" value becomes zero, scheduler 212 will move thread
T, to the rear of queue 42 by assigning it a new timestamp. Since 7, no
longer has a timestamp earlier than 7, it should no longer block 7.
However, T, will not give up its resources and in particular it will not give up
the monitor A/it is currently holding. As a result, 7, cannot proceed, even
though it may have an earliest timestamp which is earlier than the
timestamp of 7, which occupies the monitor A and is blocking 7}, at the
entrance of monitor M.

The problem of timestamp inversion may be addressed as
follows. When a thread attempts to enter an occupied monitor, the thread is
blocked. Each time this occurs, the scheduler compares the timestamp for
the thread to the timestamp of the thread which "owns" the monitor. If the
thread which is waiting to en ter the monitor has an earlier effective
timestamp, then the thread which is in the monitor temporarily inherits the
earlier timestamp as a new effective timestamp. When the thread in the

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

-20 -

monitor exits the monitor, the scheduler restores its former timestamp.
Moreover, when a thread which is inside a monitor finishes its quantum (i.e.
when its time left value becomes zero) that thread is assigned a new
timestamp and its time left value is re-initialized. However, if the monitor's
wait queue is not empty (i.e. there are other threads waiting to enter the
monitor) then the thread in the monitor would temporarily be given its
original timestamp as its effective timestamp until it exits the monitor.
When the thread exits the monitor the new timestamp comes into effect. As
a result, the thread in the monitor may finish its critical section as quickly
as possible and release the monitor for use by other threads. The thread will
resume its rightful place in the service list after it leaves the monitor. While
this scheme for addressing timestamp inversion problems is simple and
allows fair scheduling even when synchronization is required, it may have an
adverse effect on some quality of service guarantees, such as any fairness
guarantees because the blocking thread is allowed to “borrow” time from its

next quantum.

Systems which implement modified move to rear list scheduling
according to the invention can provide a cumulative service guarantee. The
delay that a particular process experiences will not accumulate over the
lifetime of the process and the service rate perceived by the process will not
be less than the admitted service rate, as specified by the service fraction, by
more than a constant amount. Thus, such systems are well adapted for use
by soft real-time applications, such as the delivery of multimedia

information.

The invention may be embodied in a program product. The
program product comprising any medium which carries a set of computer-
readable signals corresponding to instructions which, when run on a
computer, cause the computer to execute a method of the invention. The
program product may be distributed in any of a wide variety of forms. The
program product may comprise, for example, physical media such as floppy
diskettes, CD ROMs, DVDs, hard disk drives, flash RAM or the like or
transmission-type media such as digital or analog communication links.

WO 01/35209 PCT/CA00/01339

221 -

As will be apparent to those skilled in the art in light of the
foregoing disclosure, many alterations and modifications are possible in the
practice of this invention without departing from the spirit or scope thereof.
Accordingly, the scope of the invention is to be construed in accordance with
the substance defined by the following claims.

10

15

20

25

30

35

WO 01/35209

PCT/CA00/01339

-0 -

WHAT IS CLAIMED IS:
A computer implemented method for scheduling the running of

1.

threads, the method comprising:

a)

b)

d)

maintaining a list of a plurality of threads, the plurality of
threads comprising at least one high priority system thread and
at least one user thread and, for each of the plurality of threads,
maintaining a timestamp value, a service fraction value and a
time left value;
identifying as a current thread one of the plurality of threads
which is ready to run and has a timestamp value earlier than
the timestamp value of any other of the plurality of threads
which is ready to run;
if the time left value for the current thread is greater than zero,
1) transferring control to the current thread for a running
time not exceeding the time left value for the current
thread; and,
i1) if the current thread is not a system thread, subtracting
the running time from the time left value for the current
thread; and,
if the time left value for the current thread is not greater than
zero, assigning a new timestamp value to the current thread,
the new timestamp value being later than the timestamp
values of any of the user threads, and initializing the time left
value of the current thread.

The method of claim 1 wherein the plurality of threads comprises at

least one low priority system thread, the low priority system thread

having a timestamp value later than a timestamp value of any of the

user threads.

The method of claim 1 wherein initializing the time left value of the

current thread comprises setting the time left value as the service

fraction value of the current thread multiplied by a virtual time

quantum.

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

10.

11.

-23 -

The method of claim 3 wherein the virtual time quantum is a time
within which each of the plurality of threads would be executed once
if the plurality of threads had service fractions totalling one hundred
per-cent.

The method of claim 1 wherein the threads are threads in a JAVA

programming environment.

The method of claim 5 wherein the high priority system threads
comprise a clock handler thread, the clock handler thread servicing a

clock interrupt.

The method of claim 6 wherein the high priority system threads
comprise a time slicer thread, the time slicer thread having a later
timestamp than the clock handler thread.

The method of claim 5 comprising providing an Operating System
which provides priority-based real-time scheduling; running a Java
Virtual Machine on the Operating System at a priority higher than a
priority allocated to the Operating System; and providing an OS
thread running on the Java Virtual Machine, the OS thread providing
CPU resources to the Operating System.

The method of claim 5 wherein the user threads comprise a garbage
collection thread and a finalizer thread wherein the garbage collection
thread runs a garbage collection routine and the finalizer thread runs
finalize() routines of discarded JAVA objects.

The method of claim 5 wherein one of the user threads comprises an
OS thread, the OS thread providing CPU resources to an underlying
operating system.

The method of claim 1 comprising maintaining a queue containing
records of all ready-to-run threads in the list, the records arranged in
the queue in order of the timestamp values for the corresponding
threads.

10

15

20

25

30

35

WO 01/35209 PCT/CA00/01339

12.

13.

14.

15.

16.

17.

_24 -

The method of claim 1 wherein the timestamp comprises an integer

having in excess of 45 bits.

The method of claim 7 wherein the time slicer thread uses a timer to
discontinue execution of a thread after the lesser of a predetermined
preemption time and the time left value for the thread.

The method of claim 5, comprising running the threads on a computer

comprising a processor capable of directly executing Java byte codes.

The method of claim 5, comprising running the threads on a computer
comprising a processor running an operating system, a computer
program emulating a Java processor and a Java operating system.

The method of claim 5 wherein the low priority system threads
comprise an idler thread, wherein the idler thread is always ready to

run.

Computer system comprising a processor, a memory accessible to the
processor, an operating system and a computer program emulating a
Java processor running on the processor, the computer program
providing a scheduler for scheduling the running of Java threads on
the processor, the scheduler maintaining a list of a plurality of
threads, the plurality of threads comprising at least one high priority
system thread and at least one user thread and, for each of the
plurality of threads, maintaining a timestamp value, a service fraction
value and a time left value; the scheduler adapted to:

a) identify as a current thread one of the plurality of threads
which is ready to run and has a timestamp value earlier than
the timestamp value of any other of the plurality of threads
which is ready to run;

c) if the time left value for the current thread is greater than zero,
1) transfer control to the current thread for a running time

not exceeding the time left value for the current thread;
and,

10

15

20

25

30

35

WO 01/35209

18.

19.

d)

PCT/CA00/01339

_25 -

i1) if the current thread is not a system thread, subtract the
running time from the time left value for the current
thread; and,

if the time left value for the current thread is not greater than

zero, assign a new timestamp value to the current thread, the

new timestamp value being later than the timestamp values of

any of the user threads, and initializing the time left value of

the current thread.

A computer readable medium having computer readable program logic

recorded thereon, the program logic, when run on a computer,

implementing a method comprising:

a)

b)

d)

maintaining a list of a plurality of threads, the plurality of
threads comprising at least one high priority system thread and
at least one user thread and, for each of the plurality of threads,
maintaining a timestamp value, a service fraction value and a
time left value;

identifying as a current thread one of the plurality of threads
which is ready to run and has a timestamp value earlier than
the timestamp value of any other of the plurality of threads
which is ready to run;

if the time left value for the current thread is greater than zero,

1) transferring control to the current thread for a running
time not exceeding the time left value for the current
thread; and,

i1) if the current thread is not a system thread, subtracting

the running time from the time left value for the current
thread; and,
if the time left value for the current thread is not greater than
Zero, assigning a new timestamp value to the current thread,
the new timestamp value being later than the timestamp
values of any of the user threads, and initializing the time left
value of the current thread.

A computer system comprising:

a)

a processor;

10

15

20

25

WO 01/35209

b)

d)

e)

PCT/CA00/01339

26 -

a multi-threaded operating system running on the processor,
the operating system comprising a plurality of system threads;
user software running on the computer system, the user
software comprising one or more user threads;

a memory accessible to the processor, the memory containing a

data structure comprising a record for each of a plurality of

threads, the plurality of threads comprising at least one high
priority system thread and the one or more user threads, each
record comprising a timestamp value, a service fraction value
and a time left value for a thread corresponding to the record;

a scheduler, the scheduler adapted to identify as a current

thread one of the plurality of threads which is ready to run and

has a timestamp value earlier than the timestamp value of any
other of the plurality of threads which is ready to run and, if the
time left value for the current thread is greater than zero,

1) transfer control of the processor to the current thread for
a running time not exceeding the time left value for the
current thread; and,

11) if the current thread is not a system thread, subtracting
the running time from the time left value for the current
thread; or,

if the time left value for the current thread is not greater than

zero, assigning a new timestamp value to the current thread,

the new timestamp value being later than the timestamp
values of any of the user threads, and initializing the time left
value of the current thread.

WO 01/35209 PCT/CA00/01339

1/4
APPLICATION JAVA APPLICATION
SOFTWARE SOFTWARE
| JAVA LANGUAGE
PROGRAMMING
ENVIRONMENT
ENVIRONMENT _ JAVA CLASS LIBRARIES
-NATIVE LIBRARIES
OPERATING
SYSTEM
JAVA OS

COMPUTER

HARDWARE JUM

FIG. 1A OPERATING SYSTEM
(PRIOR ART)
COMPUTER HARDWARE
FIG. 1B
(PRIOR ART)
JAVA APPLICATION
SOFTWARE
JAVA LANGUAGE
ENVIRONMENT

- JAVA CLASS LIBRARIES
-NATIVE LIBRARIES

JAVA OS

COMPUTER HARDWARE
WITH JAVA PROCESSOR

FIG. 1C
(PRIOR ART)

WO 01/35209

2/4

2 /% 28
PROCESSOR |« > TIMER
F_24
MEMORY // 32 r 30
26
(/
APPLIGATIO SCHEDULER
ATION 40
SOFTWARE i~
SERVICE LIST
42 34
- e
"THREAD
QUEUE DATA
STRUCTURE

FIG 2

PCT/CA00/01339

WO 01/35209

PCT/CA00/01339
3/4
44 46 48 o
,’_ (_ & /_ /
/] % / {
s
FIG. 3

LATER

(= EARLIER |
VALUES TIMESTAMP VALUES

200
-
4
216
TIMER HANDLER |-/

214

RESOURCE r
CONSUMPTION

218 TRACKER
TIME SLICER -

210

212 GLOBAL f
-/ PRIORITY

SCHEDULER 1 MAPPER

FIG. 6

WO 01/35209

(s)

' .
IDENTIFY 110
CURRENT 4/

100
J THREADAS | /7

PCT/CA00/01339

4/4

EARLIEST
READY-TO-RUN
THREAD

112

SYSTEM
THREAD ?

118 ‘120'—\l
RECORD START
IS LEFT <= 0? >—No»| TIME AND SET
TIMER
Yes
114 122 y
(-’ N\ TRANSFER
- CONTROL TO
SET TIMER CURRENT THREAD
Yes
116 123 ;
s & RUN CURRENT
' 128 N THREAD UNTIL:
CL%’;S(;:LETRO “ TIMER SIGNAL OR
I
CURRENT - THREAD GIVES UP
GENERATE NEW CONTROL
THREAD TIMESTAMP FOR
1 CURRENT 124 i
V/ THREAD L_ DETERMINE TIME
' USED BY CURRENT
130 THREAD
RUN CURRENT \ -
THREAD UNTIL: N / 126
e OF INITIALIZE LEFT | = Y
o TRbr VALUE FOR UPDATE LEFT
CURRENT VALUE FOR
THREAD CURRENT THREAD

FIG. 4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

