

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2007327959 B2

(54) Title
Urea and sulfamide derivatives as tafia inhibitors

(51) International Patent Classification(s)
C07C 275/24 (2006.01) **A61K 31/4164** (2006.01)
A61K 31/17 (2006.01) **A61K 31/4184** (2006.01)
A61K 31/36 (2006.01) **A61K 31/4402** (2006.01)
A61K 31/381 (2006.01) **A61K 31/4409** (2006.01)
A61K 31/40 (2006.01) **A61P 9/10** (2006.01)

(21) Application No: **2007327959** (22) Date of Filing: **2007.11.22**

(87) WIPO No: **WO08/067909**

(30) Priority Data

(31) Number **10 2006 057 413.3** (32) Date **2006.12.06** (33) Country **DE**

(43) Publication Date: **2008.06.12**
(44) Accepted Journal Date: **2013.08.01**

(71) Applicant(s)
Sanofi-Aventis

(72) Inventor(s)
Schreuder, Herman;Follmann, Markus;Broenstrup, Mark;Kallus, Christopher;Halland, Nis;Czechtizky, Werngard;Evers, Andreas

(74) Agent / Attorney
Watermark Patent and Trade Marks Attorneys, Level 2 302 Burwood Road, HAWTHORN, VIC, 3122

(56) Related Art
EP 0641779 A1

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. Juni 2008 (12.06.2008)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2008/067909 A3

(51) Internationale Patentklassifikation:

A61K 31/17 (2006.01) *A61K 31/4184* (2006.01)
A61K 31/36 (2006.01) *A61K 31/4402* (2006.01)
A61K 31/381 (2006.01) *A61K 31/4409* (2006.01)
A61K 31/40 (2006.01) *A61P 9/10* (2006.01)
A61K 31/4164 (2006.01)

SCHREUDER, Herman [NL/DE]; Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main (DE).

(74) Anwalt: THEN, Johann; Sanofi-Aventis Deutschland GmbH, Patentabteilung, Industriepark Höchst, Gebäude K 801, 65926 Frankfurt am Main (DE).

(21) Internationales Aktenzeichen: PCT/EP2007/010101

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) Internationales Anmeldedatum:

22. November 2007 (22.11.2007)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

10 2006 057 413.3
6. Dezember 2006 (06.12.2006) DE

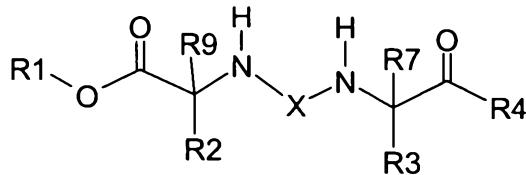
(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SANOFI-AVENTIS [FR/FR]; 174, avenue de France, F-75013 Paris (FR).

Veröffentlicht:

— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(72) Erfinder; und


(75) Erfinder/Anmelder (nur für US): KALLUS, Christopher [DE/DE]; Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main (DE). BROENSTRUP, Mark [DE/DE]; Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main (DE). CZECHTIZKY, Werngard [AT/DE]; Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main (DE). EVERAERT, Andreas [DE/DE]; Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main (DE). FOLLMANN, Markus [DE/DE]; Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main (DE). HALLAND, Nis [DK/DE]; Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main (DE).

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 9. April 2009

(54) Title: UREA AND SULFAMIDE DERIVATIVES AS TAFIA INHIBITORS

(54) Bezeichnung: HARNSTOFF- UND SULFAMIDDERIVATE ALS INHIBITOREN VON TAFIA

WO 2008/067909 A3

or fibrotic changes.

(I)

(57) Abstract: The invention relates to compounds of formula (I) which are inhibitors of activated thrombin-activatable fibrinolysis inhibitor. Said compounds of formula (I) are suitable for producing medicaments used for the prevention, secondary prevention, and treatment of one or several diseases associated with thromboses, embolisms, hypercoagulability, or fibrotic changes.

(57) Zusammenfassung: Die Erfindung betrifft Verbindungen der Formel (I), die Inhibitoren von aktivierter Thrombin-aktivierbarer Fibrinolyse Inhibitor sind. Die Verbindungen der Formel (I) eignen sich zur Herstellung von Arzneimitteln zur Prophylaxe, Sekundärprävention und Therapie von einer oder mehreren Erkrankungen, die mit Thrombosen, Embolien, Hyperkoagulabilität oder fibrotischen Veränderungen einhergehen.

Urea and sulfamide derivatives as TAFIa inhibitors

The invention relates to novel compounds of the formula I which inhibit the enzyme

5 TAFIa (activated thrombin-activatable fibrinolysis inhibitor), to process for their preparation and to the use thereof as medicaments.

The enzyme TAFIa is produced for example through thrombin activation from the thrombin-activatable fibrinolysis inhibitor zymogen (TAFI). The enzyme TAFI is also

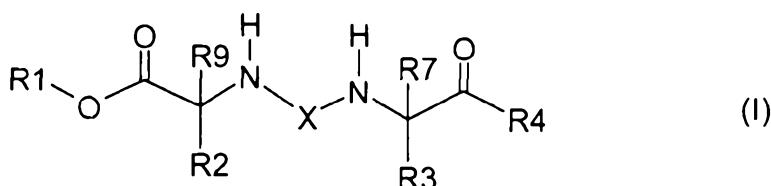
10 referred to as plasma procarboxypeptidase B, procarboxypeptidase U or procarboxypeptidase R and is a proenzyme similar to carboxypeptidase B (L. Bajzar, Arterioscler. Thromb. Vasc. Biol. 2000, pages 2511 – 2518).

During formation of a clot, thrombin is generated as the final product of the coagulation

15 cascade and induces conversion of soluble plasma fibrinogen to an insoluble fibrin matrix. At the same time, thrombin activates the endogenous fibrinolysis inhibitor TAFI. Activated TAFI (TAFIa) is thus produced during thrombus formation and lysis from the zymogen TAFI through the action of thrombin; thrombomodulin in a complex with thrombin increases this effect about 1250-fold. TAFIa cleaves basic amino acids at the 20 carboxy end of fibrin fragments. The loss of carboxy-terminal lysines as binding sites for plasminogen then leads to inhibition of fibrinolysis. Efficient inhibitors of TAFIa prevent the loss of these high-affinity lysine binding sites for plasminogen and, in this way, assist endogenous fibrinolysis by plasmin: TAFIa inhibitors have profibrinolytic effects.

25 In order to maintain hemostasis in the blood, mechanisms which lead to the clotting of blood and to the breaking up of clots have developed; these are in equilibrium. If a disturbed equilibrium favors coagulation, fibrin is produced in larger quantities, so that pathological processes of thrombus formation may lead to serious pathological states in humans.

30 Just like excessive coagulation may lead to serious pathological states caused by thrombosis, an antithrombotic treatment entails the risk of unwanted bleeding through disturbance of the formation of a necessary hemostatic plug. Inhibition of TAFIa increases endogenous fibrinolysis - without influencing coagulation and platelet aggregation - i.e. the disturbed equilibrium is shifted in favor of fibrinolysis. It is thus 35 possible both to counter the buildup of a clinically relevant thrombus, and to increase the


lysis of a pre-existing clot. On the other hand, buildup of a hemostatic plug is not impaired, so that a hemorrhagic diathesis is probably not to be expected (Bouma et al., J. Thrombosis and Haemostasis, 1, 2003, pages 1566 – 1574).

5 Inhibitors of TAFIa have previously been described in the international application
WO2005/105781.

The TAFIa inhibitors of the invention are suitable for a prophylactic and for a therapeutic use in humans suffering from disorders associated with thromboses, embolisms,

10 hypercoagulability or fibrotic changes. They can be employed for secondary prevention and are suitable both for acute and for long-term therapy.

The invention therefore relates to the use of the compound of the formula I

15 and/or of a stereoisomeric form of the compound of the formula I and/or mixtures of these forms in any ratio, and/or a physiologically tolerated salt of the compound of the formula I, for the manufacture of a medicament for the prophylaxis, secondary prevention and therapy of one or more disorders associated with thromboses, embolisms, hypercoagulability or fibrotic changes, where

20 X is -C(O)- or -S(O)2-,

R1 is 1) hydrogen atom,
2) -(C₁-C₆)-alkyl,
3) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl or
4) -(C₁-C₆)-alkylene-(C₆-C₁₄)-aryl,

25 R2 is the radical of the formula II

in which

m is the integer zero or 1,

A1 is 1) -(CH₂)_n- in which n is the integer zero, 1, 2 or 3,

30 2) -NH-(CH₂)_n- in which n is the integer zero, 1, 2 or 3,

- 3) $-\text{NH}(\text{C}_1\text{-C}_6\text{-alkyl})\text{-}(\text{CH}_2)_n$ - in which n is the integer zero, 1, 2 or 3,
- 4) $-\text{NH}((\text{C}_3\text{-C}_6\text{-cycloalkyl})\text{-}(\text{CH}_2)_n$ - in which n is the integer zero, 1, 2 or 3,
- 5) $-\text{O}-(\text{CH}_2)_n$ - in which n is the integer zero, 1, 2 or 3,
- 6) $-(\text{CH}_2)_n\text{-SO}_x$ - in which n is the integer zero, 1, 2 or 3, and x is the integer zero, 1 or 2,

5 A2 is 1) Het, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, and are unsubstituted or substituted independently of one another once, twice or three times by $-(\text{C}_1\text{-C}_3\text{-alkyl})$, halogen, $-\text{NH}_2$, $-\text{CF}_3$ or $-\text{O-CF}_3$,

- 2) $-(\text{C}_0\text{-C}_6\text{-alkylene})\text{-NH}_2$,
- 15 3) $-(\text{C}_1\text{-C}_6\text{-alkylene})\text{-NH-C(=NH)-NH}_2$,
- 4) $-(\text{C}_1\text{-C}_6\text{-alkylene})\text{-NH-C(=NH)-(C}_1\text{-C}_4\text{-alkyl)}$,
- 5) $-(\text{C}_0\text{-C}_4\text{-alkylene})\text{-O-NH-C(=NH)-NH}_2$,
- 6) $-(\text{C}_0\text{-C}_4\text{-alkylene})\text{-NH-C(O)-(C}_1\text{-C}_6\text{-alkyl)}$,
- 7) $-(\text{C}_1\text{-C}_6\text{-alkylene})\text{-NH-C(O)-O-(C}_1\text{-C}_4\text{-alkylene-aryl)}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,
- 20 8) $-(\text{C}_3\text{-C}_8\text{-cycloalkyl})\text{-NH}_2$, or
- 9) $-(\text{C}_0\text{-C}_4\text{-alkylene})\text{-}(C}_6\text{-C}_{14}\text{-aryl)$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

25 R3 is 1) $-(\text{C}_1\text{-C}_6\text{-alkyl})$,

- 2) $-(\text{C}_0\text{-C}_4\text{-alkylene})\text{-}(C}_3\text{-C}_{12}\text{-cycloalkyl)$,
- 3) $-(\text{C}_1\text{-C}_6\text{-alkylene})\text{-}(C}_6\text{-C}_{14}\text{-aryl)$, where aryl is substituted independently of one another once, twice or three times by R15,

30 4) $-(\text{C}_0\text{-C}_8\text{-alkylene})\text{-N(R}_5\text{-)PG}$,

- 5) $-(\text{C}_1\text{-C}_6\text{-alkylene})\text{-NH-C(O)-O-(C}_1\text{-C}_4\text{-alkylene-aryl)}$, where aryl is

substituted independently of one another once, twice or three times by R15,

- 6) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkylene-N(R5)-PG}$,
- 7) $-(C_0-C_8)\text{-alkylene-O-PG}$,
- 8) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkylene-O-PG}$,
- 5 9) $-(C_0-C_8)\text{-alkylene-C(O)-O-PG}$,
- 10) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkylene-C(O)-O-PG}$ or
- 11) hydrogen atom,

R4 is $-N(R6)_2$,

where R6 are identical or different and are independently of one another

- 10 1) hydrogen atom,
- 2) $-(C_1-C_6)\text{-alkyl}$,
- 3) $-(C_0-C_4)\text{-alkylene-}(C_3-C_{12})\text{-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-C(O)\text{-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$ or
- 15 4) $-(C_0-C_6)\text{-alkylene-}(C_6-C_{14})\text{-aryl}$, where aryl and alkylene are unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-C(O)\text{-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$,
 $-C(O)\text{-N(R8)}_2$ or $-O-(C_1-C_4)\text{-alkyl}$,

- 20 5) $-(C_0-C_8)\text{-alkylene-N(R5)-PG}$,
- 6) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-N(R5)-PG}$,
- 7) $-(C_0-C_8)\text{-alkylene-O-PG}$,
- 8) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-O-PG}$,
- 9) $-(C_0-C_8)\text{-alkylene-C(O)-O-R11}$,
- 25 10) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-C(O)-O-PG}$,
- 11) $-(C_0-C_4)\text{-alkylene-Het}$, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen,

-C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,
12) -(C₁-C₃)-fluoroalkyl,
13) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,
14) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,
5 15) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13, or
16) amino acid, where the linkage of the amino acid takes place by a
peptide linkage, and the carboxyl radical of the amino acid is
unsubstituted or substituted by PG or by -N(R₅)₂,
or the two R₆ radicals form together with the N atom to which they are
10 bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated,
partly saturated or aromatic, where the ring is unsubstituted or substituted
once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11
or phenyl,

R₅ is hydrogen atom or -(C₁-C₆)-alkyl,

15 PG is a protective group for the amino, carboxyl or for the hydroxy function,

R₇ is hydrogen atom or -(C₁-C₆)-alkyl,

R₈ is hydrogen atom or -(C₁-C₆)-alkyl,

R₉ is hydrogen atom or -(C₁-C₆)-alkyl,

R₁₁ and R₁₂ are identical or different and are independently of one another

20 1) hydrogen atom,

2) -(C₁-C₆)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted
independently of one another once, twice or three times by halogen, -OH or
-O-(C₁-C₄)-alkyl,

25 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is

unsubstituted or substituted independently of one another once, twice, three
or four times by R₁₃, halogen, -C(O)-O-R13, -(C₁-C₄)-alkyl-O-R13,
-O-(C₁-C₄)-alkyl or -(C₀-C₄)-alkylene-phenyl,

5) -(C₀-C₄)-alkylene-C(O)-N(R₁₃)₂ or

30 6) -(C₀-C₄)-alkylene-indolyl,

R₁₃ is 1) hydrogen atom,

- 2) -(C1-C4)-alkyl,
- 3) -(C0-C4)-alkylene-C(O)-O-R14,
- 4) -(C0-C4)-alkylene-C(O)-R14 or
- 5) -(C0-C4)-alkylene-O-R14,

5 R14 is hydrogen atom, -(C1-C4)-alkyl, -NH₂ or -OH, and
R15 is hydrogen atom, -(C1-C4)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or
halogen.

The invention also relates to the use of the compound of the formula I where
10 X is -C(O)-.

The invention also relates to the use of the compound of the formula I where
X is -S(O)₂-.

15 In a preferred embodiment, the invention relates to the use of the compound of
the formula I where
X is -C(O)-,
R1 is 1) hydrogen atom or
2) -(C1-C4)-alkyl,

20 R2 is 1) -(C1-C6)-alkylene-NH₂,
2) -(C0-C4)-alkylene-pyridyl-NH₂,
3) -(C0-C4)-alkylene-piperidinyl-NH₂,
4) -(C0-C4)-alkylene-thiazolyl-NH₂,
5) -(C1-C6)-alkylene-NH-C(=NH)-NH₂,

25 6) -(C0-C4)-alkylene-(C3-C8)-cycloalkyl-NH₂,
7) -(C1-C6)-alkylene-NH-C(=NH)-(C1-C4)-alkyl,
8) -(C0-C4)-alkylene-O-NH-C(=NH)-NH₂,
9) -(C1-C6)-alkylene-NH-C(O)-O-(C1-C4)-alkylene-aryl, where aryl is
unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once, twice or
30 three times by R15,
10) -(C0-C4)-alkylene-NH-C(O)-(C1-C4)-alkyl,
11) -(C0-C4)-alkylene-(C6-C14)-aryl, where aryl is unsubstituted or substituted
by -NH₂ or is substituted by -NH₂ and once, twice or three times

by R15, or

12) $-(C_1-C_4)\text{-alkylene-SO}_x\text{-(C}_1\text{-C}_4\text{)\text{-alkylene-NH}_2$ in which x is the integer zero, 1 or 2

R3 is 1) $-(C_1\text{-C}_4)\text{-alkyl}$,

5 2) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_8\text{)\text{-cycloalkyl}}$,

3) $-(C_1\text{-C}_6)\text{-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,

4) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)\text{-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,

10 5) $-(C_1\text{-C}_6)\text{-alkylene-NH-PG}$,

6) $-(C_1\text{-C}_6)\text{-alkylene-O-PG}$,

7) $-(C_1\text{-C}_6)\text{-alkyl}$, or

8) hydrogen atom,

where PG is t-butyl-, t-butyloxycarbonyl or benzyloxycarbonyl,

15 R4 is $-\text{N(R}_6)_2$,

where R6 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1\text{-C}_6)\text{-alkyl}$,

3) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)\text{-cycloalkyl}$, where cycloalkyl is

20 unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R}_{11}$, $-(C_1\text{-C}_4)\text{-alkyl-O-R}_{11}$ or $-\text{O-(C}_1\text{-C}_4\text{)\text{-alkyl}}$,

4) $-(C_0\text{-C}_4)\text{-alkylene-C(R}_{11}\text{)(R}_{12}\text{)-(C}_3\text{-C}_{12}\text{)\text{-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice or

25 three times by R11, halogen, $-\text{C(O)-O-R}_{11}$, $-(C_1\text{-C}_4)\text{-alkyl-O-R}_{11}$ or $-\text{O-(C}_1\text{-C}_4\text{)\text{-alkyl}}$,

5) $-(C_0\text{-C}_4)\text{-alkylene-Het}$, where Het means a 4- to 15-membered

heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two,

30 three or four identical or different heteratoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen,

-C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

6) -(C₀-C₆)-alkylene-aryl, where aryl or alkylene is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

5 7) -(C₀-C₄)-alkylene-C(R11)(R12)-aryl, where aryl or alkylene is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

8) 1,2,3,4-tetrahydronaphthalenyl,

10 9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₀-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

15 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

25 R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, -OH or -O-(C₁-C₄)-alkyl,

30 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is

unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, -C(O)-O-R13, -(C₁-C₄)-alkyl-O-R13, -O-(C₁-C₄)-alkyl or -(C₀-C₄)-alkylene-phenyl,

5 5) -(C₀-C₄)-alkylene-C(O)-N(R13)₂ or

5 6) -(C₀-C₄)-alkylene-indolyl,

R13 is 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-C(O)-O-R14,

4) -(C₀-C₄)-alkylene-C(O)-R14 or

10 5) -(C₀-C₄)-alkylene-O-R14,

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH, and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

The invention also relates to the use of the compound of the formula I where

15 X is -C(O)-,

R1 is 1) hydrogen atom or

2) -(C₁-C₄)-alkyl,

R2 is 1) -(C₁-C₆)-alkylene-NH₂,

2) -(C₁-C₄)-alkylene-pyridyl-NH₂,

20 3) -(C₁-C₄)-alkylene-piperidinyl-NH₂,

4) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,

5) -(C₀-C₄)-alkylene-(C₃-C₆)-cycloalkyl-NH₂,

6) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,

7) -(C₁-C₄)-alkylene-O-NH-C(=NH)-NH₂,

25 8) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl, where phenyl

is unsubstituted or substituted independently of one another once, twice or three times by R15,

9) -(C₁-C₄)-alkylene-NH-C(O)-(C₁-C₆)-alkyl,

10) -(C₁-C₄)-alkylene-phenyl, where phenyl is substituted independently of

30 one another once, twice or three times by R15,

11) -(C₁-C₄)-alkylene-SO₂-(C₁-C₄)-alkylene-NH₂ or

12) -(C₁-C₄)-alkylene-S-(C₁-C₄)-alkylene-NH₂,

R3 is 1) -(C₁-C₄)-alkyl,
2) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl,
3) -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted
5 by -NH₂ or is substituted by -NH₂ and once, twice or three times by R15,
4) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl, where phenyl
is unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once,
twice or three times by R15,
5) hydrogen atom,

10 R4 is -N(R6)₂,

where R6 are identical or different and are independently of one another

1) hydrogen atom,
2) -(C₁-C₄)-alkyl,
3) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected
15 from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,
adamantanyl, bicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydro-
naphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in
which cycloalkyl is unsubstituted or substituted independently of one another
once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R11 or -(C₁-C₄)-
20 alkylene-phenyl, where phenyl is unsubstituted or substituted by halogen,
4) -(C₀-C₄)-alkylene-C(R11)(R12)-(C₃-C₁₂)-cycloalkyl, where cycloalkyl
is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,
adamantanyl, bicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydro-
naphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in
25 which cycloalkyl is unsubstituted or substituted independently of one another
once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R11 or -(C₁-C₄)-
alkylene-phenyl, where phenyl is unsubstituted or substituted by halogen,
5) -(C₀-C₄)-alkylene-Het, where Het is selected from the group of
30 acridinyl, azepinyl, azetidinyl, aziridinyl, benzimidazalinyl, benzimidazolyl,
benzo[1,3]dioxolyl, benzofuranyl, benzothiophuranyl, benzothiophenyl,
benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl,
benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl,

quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, dibenzofuranyl, dibenzothiophenyl, dihydrofuran[2,3-b]-tetrahydrofuran, dihydrofuranyl, dioxolyl, dioxanyl, 2H, 6H-1,5,2-dithiazinyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolidinyl, 2-isothiazolinyl, isothiazolyl, isoxazolyl, isoxazolidinyl, 2-isoxazolinyl, morpholinyl, naphthyridinyl, octahydroiso-quinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, oxothiolanyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridothiophenyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydropyridinyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienoimidazolyl, thienooxazolyl, thienopyridine, thienothiazolyl, thiomorpholinyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, where Het or alkylene is unsubstituted or substituted independently of one another once or twice by -(C₁-C₄)-alkyl,

6) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

25 7) -(C₀-C₄)-alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

8) 1,2,3,4-tetrahydronaphthalenyl,

30 9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or

substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or
14) -(C₁-C₃)-fluoroalkyl,

5 or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidine, piperidine, 2-aza-bicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,

10 R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,
2) -(C₁-C₄)-alkyl,
3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,
4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,

20 adamantanyl, bicyclo[3.1.1]heptanyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl, or
5) -(C₀-C₄)-alkylene-indolyl,

25 R13 is 1) hydrogen atom,
2) -(C₁-C₄)-alkyl,
3) -(C₀-C₄)-alkylene-C(O)-O-R14,
4) -(C₀-C₄)-alkylene-C(O)-R14 or
5) -(C₀-C₄)-alkylene-O-R14, and

30 R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

The invention also relates to the use of the compound of the formula I where

X is $-\text{C}(\text{O})-$,

R1 is 1) hydrogen atom or

5 2) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkyl}$,

R2 is 1) $-(\text{C}_1\text{-}\text{C}_6)\text{-alkylene-NH}_2$,

2) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-pyridyl-NH}_2$,

3) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-piperidinyl-NH}_2$,

4) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-NH-C(=NH)-NH}_2$,

10 5) $-(\text{C}_1\text{-}\text{C}_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-}\text{C}_4\text{)-alkyl}$,

6) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-(C}_3\text{-}\text{C}_6\text{)-cycloalkyl-NH}_2$,

7) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,

8) $-(\text{C}_1\text{-}\text{C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-}\text{C}_4\text{)-alkylene-phenyl}$,

9) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-NH-C(O)-(C}_1\text{-}\text{C}_6\text{)-alkyl}$

15 10) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-phenyl-NH}_2$,

11) $-(\text{C}_1\text{-}\text{C}_2)\text{-alkylene-SO}_2\text{-(C}_1\text{-}\text{C}_4\text{)-alkylene-NH}_2$ or

12) $-(\text{C}_1\text{-}\text{C}_2)\text{-alkylene-S-(C}_1\text{-}\text{C}_4\text{)-alkylene-NH}_2$,

R3 is 1) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkyl}$,

2) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-(C}_3\text{-}\text{C}_6\text{)-cycloalkyl}$,

20 3) $-(\text{C}_1\text{-}\text{C}_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted

by $-\text{OH}$,

4) $-(\text{C}_1\text{-}\text{C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-}\text{C}_4\text{)-alkylene-phenyl}$,

5) hydrogen atom,

R4 is $-\text{N}(\text{R}_6)_2$,

25 where R_6 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(\text{C}_1\text{-}\text{C}_6)\text{-alkyl}$,

30 3) $-(\text{C}_0\text{-}\text{C}_4)\text{-alkylene-(C}_3\text{-}\text{C}_8\text{)-cycloalkyl}$, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, tetrahydronaphthalenyl, decahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which

cycloalkyl is unsubstituted or substituted independently of one another once, twice or three times by -(C₁-C₄)-alkyl or phenyl,

- 4) -C(R11)(R12)-adamantanyl,
- 5) -CH(R11)-C(O)-NH-CH(R12)-R13,
- 6) -(C₀-C₄)-alkylene-Het, where Het is selected from the group of benzimidazolyl, isoxazolyl, piperidinyl, pyridinyl, pyrrolidinyl, thiophenyl and benzo[1,3]dioxolyl,
- 7) 1,2,3,4-tetrahydronaphthalenyl,
- 8) -(C₀-C₄)-alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted

10 or substituted independently of one another once, twice or three times by phenyl or fluorine,

- 9) -CH(R11)-C(O)-NH₂,
- 10) -CH(R11)-C(O)-NH-CH(R12)-CH₂-OH,
- 11) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted

15 or substituted independently of one another once or twice by chlorine, fluorine, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl, phenyl or -(C₁-C₄)-alkyl,

- 12) -CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,
- 13) -(C₀-C₄)-alkylene-C(R11)(R12)-bicyclo[3.1.1]heptanyl, where
- 20 bicyclo[3.1.1]heptanyl is unsubstituted or substituted once to four times by -(C₁-C₄)-alkyl,
- 14) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl, phenyl or -(C₁-C₄)-alkyl,

- 25 15) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

- 16) -CH₂-CF₂-CF₃,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidines, 2-azabicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11,

-(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

5 1) hydrogen atom,
2) -(C₁-C₄)-alkyl,
3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,

10 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl or

15 5) -(C₀-C₄)-alkylene-indolyl,

R13 is 1) hydrogen atom,
2) -(C₁-C₄)-alkyl,
3) -(C₀-C₄)-alkylene-C(O)-O-R14,

20 4) -(C₀-C₄)-alkylene-C(O)-R14 or
5) -(C₀-C₄)-alkylene-O-R14,

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

25 The invention also relates to the use of the compound of the formula I where

X is -S(O)₂-,

R1 is 1) hydrogen atom or
2) -(C₁-C₄)-alkyl,

R2 is 1) -(C₁-C₆)-alkylene-NH₂,
30 2) -(C₀-C₄)-alkylene-pyridyl-NH₂,
3) -(C₀-C₄)-alkylene-piperidinyl-NH₂,

- 4) $-(C_0-C_4)\text{-alkylene-thiazolyl-NH}_2$,
- 5) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-NH}_2$,
- 6) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl-NH}_2$,
- 7) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{-alkyl)}$,
- 5 8) $-(C_0-C_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,
- 9) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{-alkylene-aryl)}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,
- 10 10) $-(C_0-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_4\text{-alkyl)}$,
- 11) $-(C_0-C_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{-aryl)}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15, or
- 12) $-(C_1-C_4)\text{-alkylene-SO}_x\text{-(C}_1\text{-C}_4\text{-alkylene-NH}_2$ in which x is the integer zero, 1 or 2,

15 R3 is

- 1) $-(C_1-C_4)\text{-alkyl}$,
- 2) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_8\text{-cycloalkyl)}$,
- 3) $-(C_1-C_6)\text{-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,
- 4) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{-alkylene-aryl)}$, where aryl is substituted independently of one another once, twice or three times by R15,
- 20 5) $-(C_1-C_6)\text{-alkylene-NH-PG}$,
- 6) $-(C_1-C_6)\text{-alkylene-O-PG}$,
- 7) $-(C_1-C_6)\text{-alkyl}$, or
- 8) hydrogen atom,

25 where PG is t-butyl-, t-butyloxycarbonyl or benzyloxycarbonyl,

R4 is $-\text{N}(\text{R}_6)_2$,

where R6 are identical or different and are independently of one another

- 1) hydrogen atom,
- 2) $-(C_1-C_6)\text{-alkyl}$,
- 30 3) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{-cycloalkyl)}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three

or four times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

4) -(C₀-C₄)-alkylene-C(R11)(R12)-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

5) -(C₀-C₄)-alkylene-Het, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

10) -(C₀-C₆)-alkylene-aryl, where aryl or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

15) -(C₀-C₄)-alkylene-C(R11)(R12)-aryl, where aryl or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

20) 1,2,3,4-tetrahydronaphthalenyl,

8) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

25) -(C₀-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

30) or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated,

partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

5 R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted

10 independently of one another once, twice or three times by halogen, -OH or -O-(C₁-C₄)-alkyl,

4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is

unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, -C(O)-O-R13, -(C₁-C₄)-alkyl-O-R13,

15 -O-(C₁-C₄)-alkyl or -(C₀-C₄)-alkylene-phenyl,

5) -(C₀-C₄)-alkylene-C(O)-N(R13)₂ or

6) -(C₀-C₄)-alkylene-Indolyl,

R13 is 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

20 3) -(C₀-C₄)-alkylene-C(O)-O-R14,

4) -(C₀-C₄)-alkylene-C(O)-R14 or

5) -(C₀-C₄)-alkylene-O-R14,

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH, and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

25

The invention also relates to the use of the compound of the formula I where

X is -S(O)₂-,

R1 is 1) hydrogen atom or

2) -(C₁-C₄)-alkyl,

30 R2 is 1) -(C₁-C₆)-alkylene-NH₂,

2) -(C₁-C₄)-alkylene-pyridyl-NH₂,

- 3) $-(C_1-C_4)\text{-alkylene-piperidinyl-NH}_2$,
- 4) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-NH}_2$,
- 5) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl-NH}_2$,
- 6) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{)-alkyl}$,
- 5 7) $-(C_1-C_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,
- 8) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$, where phenyl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,
- 9) $-(C_1-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_6\text{)-alkyl}$,
- 10 10) $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,
- 11) $-(C_1-C_4)\text{-alkylene-SO}_2\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ or
- 12) $-(C_1-C_4)\text{-alkylene-SO}_2\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$

R3 is 1) $-(C_1-C_4)\text{-alkyl}$,

15 2) $-(C_1-C_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl}$,

3) $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is substituted independently of one another once, twice or three times by R15,

4) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$, where phenyl is substituted independently of one another once, twice or three times by R15,

20 5) hydrogen atom,

R4 is $-\text{N}(R6)_2$,

where R6 are identical or different and are independently of one another

- 1) hydrogen atom,
- 2) $-(C_1-C_4)\text{-alkyl}$,

25 3) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, bicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydro-naphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)\text{-alkyl}$, $-\text{C(O)-O-R11}$ or $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted by halogen,

4) -(C₀-C₄)-alkylene-C(R11)(R12)-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, bicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydro-naphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R11 or -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by halogen,

5) -(C₀-C₄)-alkylene-Het, where Het is selected from the group of acridinyl, azepinyl, azetidinyl, aziridinyl, benzimidazalinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, dibenzofuranyl, dibenzothiophenyl, dihydrofuran[2,3-b]tetrahydrofuranyl, dihydrofuranyl, dioxolyl, dioxanyl, 2H, 6H-1,5,2-dithiazinyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolidinyl, 2-isothiazolinyl, isothiazolyl, isoxazolyl, isoxazolidinyl, 2-isoxazolinyl, morpholinyl, naphthyridinyl, octahydroiso-quinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, oxothiolanyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxythiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridothiophenyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydropyridinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienoimidazolyl, thienooxazolyl, thienopyridine, thienothiazolyl, thiomorpholinyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, where Het or alkylene is unsubstituted or

substituted independently of one another once or twice by -(C₁-C₄)-alkyl

6) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

5 7) -(C₀-C₄)-alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10 10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

15 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidine, piperidine, 2-azabicyclo[3.2.2]nonane and 7-azabicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl,

20 -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

25 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,

30 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,

adamantanyl, bicyclo[3.1.1]heptanyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl, or

5 5) -(C₀-C₄)-alkylene-indolyl,

R13 is 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-C(O)-O-R14,

4) -(C₀-C₄)-alkylene-C(O)-R14 or

10 5) -(C₀-C₄)-alkylene-O-R14, and

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

The invention also relates to the use of the compound of the formula I where

15 X is -S(O)₂-,

R1 is 1) hydrogen atom or

2) -(C₁-C₄)-alkyl,

R2 is 1) -(C₁-C₆)-alkylene-NH₂,

2) -(C₁-C₄)-alkylene-pyridyl-NH₂,

20 3) -(C₁-C₄)-alkylene-piperidinyl-NH₂,

4) -(C₁-C₄)-alkylene-NH-C(=NH)-NH₂,

5) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,

6) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl-NH₂,

7) -(C₁-C₄)-alkylene-O-NH-C(=NH)-NH₂,

25 8) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl,

9) -(C₁-C₄)-alkylene-NH-C(O)-(C₁-C₆)-alkyl or

10) -(C₁-C₄)-alkylene-phenyl-NH₂,

11) -(C₁-C₂)-alkylene-SO₂-(C₁-C₄)-alkylene-NH₂ or

12) -(C₁-C₂)-alkylene-S-(C₁-C₄)-alkylene-NH₂,

30 R3 is 1) -(C₁-C₄)-alkyl,

- 2) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl,
- 3) -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by -OH,
- 4) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl,
- 5) hydrogen atom,

5 R4 is -N(R₆)₂,

where R₆ are identical or different and are independently of one another

- 1) hydrogen atom,
- 2) -(C₁-C₆)-alkyl,

10 3) -(C₀-C₄)-alkylene-(C₃-C₈)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice or three times by -(C₁-C₄)-alkyl or phenyl,

15 4) -C(R₁₁)(R₁₂)-adamantanyl,
5) -CH(R₁₁)-C(O)-NH-CH(R₁₂)-R₁₃,
6) -(C₀-C₄)-alkylene-Het, where Het is selected from the group of benzimidazolyl, isoxazolyl, piperidinyl, pyridyl, pyrrolidinyl, thiophenyl and benzo[1,3]dioxolyl,

20 7) 1,2,3,4-tetrahydronaphthalenyl,
8) -(C₀-C₄)-alkylene-C(R₁₁)(R₁₂)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

25 9) -CH(R₁₁)-C(O)-NH₂,
10) -CH(R₁₁)-C(O)-NH-CH(R₁₂)-CH₂-OH,
11) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, -C(O)-O-R₁₁, -(C₁-C₄)-alkyl-O-R₁₁, -O-(C₁-C₄)-alkyl, phenyl or -(C₁-C₄)-alkyl,
12) -CH(R₁₁)-C(O)-NH-(C₁-C₄)-alkyl,
30 13) -(C₀-C₄)-alkylene-C(R₁₁)(R₁₂)-bicyclo[3.1.1]heptanyl, where

bicyclo[3.1.1]heptanyl is unsubstituted or substituted once to four times by -(C₁-C₄)-alkyl,

14) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by chlorine, fluorine,

5 -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl, phenyl or -(C₁-C₄)-alkyl,

15) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

16) -CH₂-CF₂-CF₃,

or the two R₆ radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidines, 10 2-aza-bicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R₇ is hydrogen atom or -(C₁-C₄)-alkyl,

15 R₉ is hydrogen atom or -(C₁-C₄)-alkyl,

R₁₁ and R₁₂ are identical or different and are independently of one another

1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,

20 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, octahydro-4,7-methano-indenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl, or

25 5) -(C₀-C₄)-alkylene-Indolyl,

R₁₃ is 1) hydrogen atom,

30 2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-C(O)-O-R14,

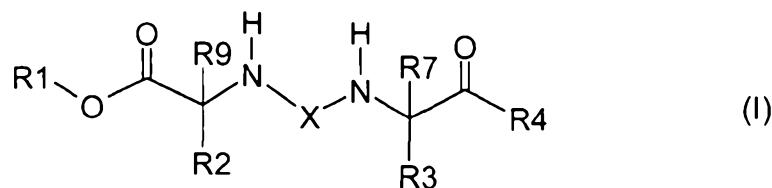
4) $-(C_0-C_4)\text{-alkylene-C(O)-R14}$ or

5) $-(C_0-C_4)\text{-alkylene-O-R14}$,

R14 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{NH}_2$ or $-\text{OH}$ and

R15 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{O-CF}_3$, $-\text{NH}_2$, $-\text{OH}$, $-\text{CF}_3$ or halogen.

5


The invention also relates to the use of the compound of the formula I in the context of one or more disorders from the series myocardial infarction, angina pectoris and other forms of acute coronary syndrome, stroke, peripherally vascular disorders, deep vein thrombosis, pulmonary embolism, embolic or thrombotic events caused by

10 cardiac arrhythmias, cardiovascular events such as restenosis following revascularization and angioplasty and similar procedures such as stent implantations and bypass operations, or reducing the risk of thrombosis following surgical procedures such as operations on the knee and hip, or in the context of disseminated intravascular coagulation, sepsis and other intravascular events

15 associated with inflammation, or atherosclerosis, diabetes and the metabolic syndrome and the sequelae thereof, tumor growth and tumor metastasis, inflammatory and degenerative articular disorders such as rheumatoid arthritis and arthrosis, impairments of the hemostatic system such as fibrin deposits, fibrotic changes of the lung such as chronic obstructive pulmonary disease, adult respiratory

20 distress syndrome or fibrin deposits in the eye following eye operations or prevention or treatment of scarring.

The invention further relates to the compound of the formula I

25 and/or of a stereoisomeric form of the compound of the formula I and/or mixtures of these forms in any ratio, and/or a physiologically tolerated salt of the compound of the formula I, where

X is $-\text{S(O)}_2^-$,

R1 is 1) hydrogen atom,

30 2) $-(C_1-C_6)\text{-alkyl}$,

- 3) $-(C_0-C_4)\text{-alkylene-}(C_3-C_{12})\text{-cycloalkyl}$ or
- 4) $-(C_1-C_6)\text{-alkylene-}(C_6-C_{14})\text{-aryl}$,

R2 is a radical of the formula II

5 in which

m is the integer zero or 1,

A1 is

- 1) $-(CH_2)_n$ - in which n is the integer zero, 1, 2 or 3,
- 2) $-\text{NH-}(CH_2)_n$ - in which n is the integer zero, 1, 2 or 3,
- 3) $-\text{NH}(C_1-C_6)\text{-alkyl-}(CH_2)_n$ - in which n is the integer zero, 1, 2 or 3,
- 4) $-\text{NH}((C_3-C_6)\text{-cycloalkyl-}(CH_2)_n$ - in which n is the integer zero, 1, 2 or 3,
- 5) $-\text{O-}(CH_2)_n$ - in which n is the integer zero, 1, 2 or 3, or
- 6) $-(CH_2)_n\text{-SO}_n$ - in which n is the integer zero 1, 2 or 3 and x is the integer zero, 1 or 2

15 A2 is

- 1) Het, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, and are unsubstituted or substituted independently of one another once, twice or three times by $-(C_1-C_3)\text{-alkyl}$, halogen, $-\text{NH}_2$, $-\text{CF}_3$ or $-\text{O-CF}_3$,

- 2) $-(C_0-C_6)\text{-alkylene-}\text{NH}_2$,
- 3) $-(C_1-C_6)\text{-alkylene-}\text{NH-C(=NH)-NH}_2$,
- 4) $-(C_1-C_6)\text{-alkylene-}\text{NH-C(=NH)-(C}_1\text{-C}_4\text{)}\text{-alkyl}$,
- 5) $-(C_0-C_4)\text{-alkylene-}\text{O-NH-C(=NH)-NH}_2$,
- 6) $-(C_0-C_4)\text{-alkylene-}\text{NH-C(O)-(C}_1\text{-C}_6\text{)}\text{-alkyl}$,
- 7) $-(C_1-C_6)\text{-alkylene-}\text{NH-C(O)-O-(C}_1\text{-C}_4\text{)}\text{-alkylene-aryl}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,
- 8) $-(C_3-C_8)\text{-cycloalkyl-NH}_2$, or
- 9) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl}$, where aryl is unsubstituted or

substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

R3 is 1) $-(\text{C}_1\text{-C}_6)\text{-alkyl}$,
2) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$,
5 3) $-(\text{C}_1\text{-C}_6)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,
4) $-(\text{C}_0\text{-C}_8)\text{-alkylene-N(R}_5\text{)-PG}$,
5) $-(\text{C}_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,
10 6) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl-(C}_0\text{-C}_4\text{)-alkylene-N(R}_5\text{)-PG}$,
7) $-(\text{C}_0\text{-C}_8)\text{-alkylene-O-PG}$,
8) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl-(C}_0\text{-C}_4\text{)-alkylene-O-PG}$,
9) $-(\text{C}_0\text{-C}_8)\text{-alkylene-C(O)-O-PG}$,
15 10) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl-(C}_0\text{-C}_4\text{)-alkylene-C(O)-O-PG}$ or
11) hydrogen atom,

R4 is $-\text{N}(\text{R}_6)_2$,
where R6 are identical or different and are independently of one another
1) hydrogen atom,
2) $-(\text{C}_1\text{-C}_6)\text{-alkyl}$,
20 3) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R}_11$, $-(\text{C}_1\text{-C}_4)\text{-alkyl-O-R}_11$ or $-\text{O-(C}_1\text{-C}_4)\text{-alkyl}$,
4) $-(\text{C}_0\text{-C}_6)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl}$, where aryl and alkylene are unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R}_11$, $-(\text{C}_1\text{-C}_4)\text{-alkyl-O-R}_11$,
25 $-\text{C(O)-N(R}_8)_2$ or $-\text{O-(C}_1\text{-C}_4)\text{-alkyl}$,
5) $-(\text{C}_0\text{-C}_8)\text{-alkylene-N(R}_5\text{)-PG}$,
6) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl-(C}_0\text{-C}_4\text{)-alkyl-N(R}_5\text{)-PG}$,
30 7) $-(\text{C}_0\text{-C}_8)\text{-alkylene-O-PG}$,
8) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl-(C}_0\text{-C}_4\text{)-alkyl-O-PG}$,

9) $-(C_0-C_8)\text{-alkylene-C(O)-O-R11}$,

10) $-(C_0-C_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl-(C}_0\text{-C}_4\text{)-alkyl-C(O)-O-PG}$,

11) $-(C_0-C_4)\text{-alkylene-Het}$, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1\text{-C}_4)\text{-alkyl-O-R11}$ or $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,

5 12) $-(C_1\text{-C}_3)\text{-fluoroalkyl}$,

13) $-(C_0\text{-C}_4)\text{-alkylene-CH(R11)-C(O)-NH}_2$,

14) $-(C_0\text{-C}_4)\text{-alkylene-CH(R11)-C(O)-NH-(C}_1\text{-C}_4\text{)-alkyl}$,

15 15) $-(C_0\text{-C}_4)\text{-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13}$, or

16) amino acid, where the linkage of the amino acid takes place by a peptide linkage, and the carboxyl radical of the amino acid is unsubstituted or substituted by PG or by $-\text{N(R5)}_2$,

15 or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by $-(C_1\text{-C}_4)\text{-alkyl}$, $-\text{C(O)-O-R11}$, halogen, $-(C_1\text{-C}_4)\text{-alkyl-O-R11}$ or phenyl,

20 R5 is hydrogen atom or $-(C_1\text{-C}_6)\text{-alkyl}$,

PG is a protective group for the amino, carboxyl or for the hydroxy function,

R7 is hydrogen atom or $-(C_1\text{-C}_6)\text{-alkyl}$,

25 R8 is hydrogen atom or $-(C_1\text{-C}_6)\text{-alkyl}$,

R9 is hydrogen atom or $-(C_1\text{-C}_6)\text{-alkyl}$,

R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1\text{-C}_6)\text{-alkyl}$,

30 3) $-(C_0\text{-C}_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, $-\text{OH}$ or

-O-(C₁-C₄)-alkyl,

4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, -C(O)-O-R13, -(C₁-C₄)-alkyl-O-R13,

5 -O-(C₁-C₄)-alkyl or -(C₀-C₄)-alkylene-phenyl,

5) -(C₀-C₄)-alkylene-C(O)-N(R13)₂ or

6) -(C₀-C₄)-alkylene-indolyl,

R13 is 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

10 3) -(C₀-C₄)-alkylene-C(O)-O-R14,

4) -(C₀-C₄)-alkylene-C(O)-R14 or

5) -(C₀-C₄)-alkylene-O-R14,

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH, and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

15

The invention further relates the compound of the formula I where

X is -S(O)₂-,

R1 is 1) hydrogen atom or

2) -(C₁-C₄)-alkyl,

20 R2 is 1) -(C₁-C₆)-alkylene-NH₂,

2) -(C₀-C₄)-alkylene-pyridyl-NH₂,

3) -(C₀-C₄)-alkylene-piperidinyl-NH₂,

4) -(C₀-C₄)-alkylene-thiazolyl-NH₂,

5) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,

25 6) -(C₀-C₄)-alkylene-(C₃-C₈)-cycloalkyl-NH₂,

7) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,

8) -(C₀-C₄)-alkylene-O-NH-C(=NH)-NH₂,

9) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-aryl, where aryl is

unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once,

30 twice or three times by R15,

10) $-(C_0-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_4\text{)-alkyl}$
11) $-(C_0-C_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15, or

5 12) $-(C_1\text{-C}_4)\text{-alkylene-SO}_x\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ in which x is the integer zero, 1 or 2

R3 is 1) $-(C_1\text{-C}_4)\text{-alkyl}$,
2) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl}$,

10 3) $-(C_1\text{-C}_6)\text{-alkylene-aryl}$, where aryl is substituted independently of one

another once, twice or three times by R15,
4) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,

5) $-(C_1\text{-C}_6)\text{-alkylene-NH-PG}$,

6) $-(C_1\text{-C}_6)\text{-alkylene-O-PG}$,

15 7) $-(C_1\text{-C}_6)\text{-alkyl}$, or

8) hydrogen atom,

where PG is t-butyl-, t-butyloxycarbonyl or benzyloxycarbonyl,

R4 is $-\text{N}(R6)_2$,

where R6 are identical or different and are independently of one another

20 1) hydrogen atom,

2) $-(C_1\text{-C}_6)\text{-alkyl}$,

3) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1\text{-C}_4)\text{-alkyl-O-R11}$ or

25 $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,

4) $-(C_0\text{-C}_4)\text{-alkylene-C(R11)(R12)-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1\text{-C}_4)\text{-alkyl-O-R11}$ or $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,

30 5) $-(C_0\text{-C}_4)\text{-alkylene-Het}$, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one,

two or three ring systems connected together, and which comprise one, two, three or four identical or different heteratoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen,

5 -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

6) -(C₀-C₆)-alkylene-aryl, where aryl or alkylene is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

7) -(C₀-C₄)-alkylene-C(R11)(R12)-aryl, where aryl or alkylene is

10 unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

15 10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₀-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

20 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted

25 once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

30 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) $-(C_0-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, $-\text{OH}$ or $-\text{O}-(C_1-C_4)\text{-alkyl}$,

4) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, $-\text{C(O)-O-R13}$, $-(C_1-C_4)\text{-alkyl-O-R13}$, $-\text{O}-(C_1-C_4)\text{-alkyl}$ or $-(C_0-C_4)\text{-alkylene-phenyl}$,

5) $-(C_0-C_4)\text{-alkylene-C(O)-N(R13)}_2$ or

6) $-(C_0-C_4)\text{-alkylene-indolyl}$,

10 R13 is 1) hydrogen atom,

2) $-(C_1-C_4)\text{-alkyl}$,

3) $-(C_0-C_4)\text{-alkylene-C(O)-O-R14}$,

4) $-(C_0-C_4)\text{-alkylene-C(O)-R14}$ or

5) $-(C_0-C_4)\text{-alkylene-O-R14}$,

15 R14 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{NH}_2$ or $-\text{OH}$, and

R15 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{O-CF}_3$, $-\text{NH}_2$, $-\text{OH}$, $-\text{CF}_3$ or halogen.

The invention also relates to the use of the compound of the formula I where

X is $-\text{S(O)}_2-$,

20 R1 is 1) hydrogen atom or

2) $-(C_1-C_4)\text{-alkyl}$,

R2 is 1) $-(C_1-C_6)\text{-alkylene-NH}_2$,

2) $-(C_1-C_4)\text{-alkylene-pyridyl-NH}_2$,

3) $-(C_1-C_4)\text{-alkylene-piperidinyl-NH}_2$,

25 4) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-NH}_2$,

5) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl-NH}_2$,

6) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{)-alkyl}$,

7) $-(C_1-C_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,

8) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$, where phenyl

30 is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once,

twice or three times by R15,

9) $-(C_1-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_6\text{)-alkyl}$,

10) $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

5 11) $-(C_1-C_4)\text{-alkylene-SO}_2\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ or

12) $-(C_1-C_4)\text{-alkylene-S-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$,

R3 is 1) $-(C_1-C_4)\text{-alkyl}$,

2) $-(C_1-C_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl}$,

3) $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is substituted independently of one another once, twice or three times by R15,

10 4) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$, where phenyl is substituted independently of one another once, twice or three times by R15,

5) hydrogen atom,

R4 is $-\text{N}(R6)_2$,

15 where R6 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1-C_4)\text{-alkyl}$,

3) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,

20 adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or

bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)\text{-alkyl}$, $-\text{C(O)-O-R11}$ or $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is

25 unsubstituted or substituted by halogen,

4) $-(C_0-C_4)\text{-alkylene-C(R11)(R12)-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or

30 bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)\text{-alkyl}$, $-\text{C(O)-O-R11}$ or $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is

unsubstituted or substituted by halogen,

5) $-(C_0-C_4)$ -alkylene-Het, where Het is selected from the group of acridinyl, azepinyl, azetidinyl, aziridinyl, benzimidazalinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzofuranyl, benzothiophuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, dibenzofuranyl, dibenzothiophenyl, dihydrofuran[2,3-b]-tetrahydrofuran, dihydrofuranyl, dioxolyl, dioxanyl, 2H, 6H-1,5,2-dithiazinyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolidinyl, 2-isothiazolinyl, isothiazolyl, isoxazolyl, isoxazolidinyl, 2-isoxazolinyl, morpholinyl, naphthyridinyl, octahydroiso-quinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, oxothiolanyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridothiophenyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydropyridinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienoimidazolyl, 25 thienooxazolyl, thienopyridine, thienothiazolyl, thiomorpholinyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, where Het or alkylene is unsubstituted or substituted independently of one another once or twice by $-(C_1-C_4)$ -alkyl,

6) $-(C_1-C_6)$ -alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by halogen, phenyl, $-C(O)-O-R11$, $-(C_1-C_4)$ -alkyl-O-R11, $-O-(C_1-C_4)$ -alkyl or $-(C_1-C_4)$ -alkyl,

30 7) $-(C_0-C_4)$ -alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by

phenyl or fluorine,

- 8) 1,2,3,4-tetrahydronaphthalenyl,
- 9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,
- 10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,
- 5 11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,
- 12) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,
- 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or
- 10 14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidine, piperidine, 2-aza-bicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

- 1) hydrogen atom,
- 20 2) -(C₁-C₄)-alkyl,
- 3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,
- 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl, or
- 30 5) -(C₀-C₄)-alkylene-indolyl,

R13 is 1) hydrogen atom,
2) -(C₁-C₄)-alkyl,
3) -(C₀-C₄)-alkylene-C(O)-O-R14,
4) -(C₀-C₄)-alkylene-C(O)-R14 or
5 5) -(C₀-C₄)-alkylene-O-R14, and

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

The invention also relates to the use of the compound of the formula I where

10 X is -S(O)₂-,

R1 is 1) hydrogen atom or
2) -(C₁-C₄)-alkyl,

R2 is 1) -(C₁-C₆)-alkylene-NH₂,
2) -(C₁-C₄)-alkylene-pyridyl-NH₂,
15 3) -(C₁-C₄)-alkylene-piperidinyl-NH₂,
4) -(C₁-C₄)-alkylene-NH-C(=NH)-NH₂,
5) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,
6) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl-NH₂,
7) -(C₁-C₄)-alkylene-O-NH-C(=NH)-NH₂,

20 8) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl,
9) -(C₁-C₄)-alkylene-NH-C(O)-(C₁-C₆)-alkyl,
10) -(C₁-C₄)-alkylene-phenyl-NH₂,
11) -(C₁-C₂)-alkylene-SO₂-(C₁-C₄)-alkylene-NH₂ or
12) -(C₁-C₂)-alkylene-S-(C₁-C₄)-alkylene-NH₂,

25 R3 is 1) -(C₁-C₄)-alkyl,
2) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl,
3) -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted
by -OH,
4) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl,
30 5) hydrogen atom,

R4 is $-N(R6)_2$,

where R6 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1-C_6)$ -alkyl,

5 3) $-(C_0-C_4)$ -alkylene- (C_3-C_8) -cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalene, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice or three

10 times by $-(C_1-C_4)$ -alkyl or phenyl,

4) $-C(R11)(R12)$ -adamantanyl,

5) $-CH(R11)-C(O)-NH-CH(R12)-R13$,

15 6) $-(C_0-C_4)$ -alkylene-Het, where Het is selected from the group of benzimidazolyl, isoxazolyl, piperidine, pyridine, pyrrolidinyl, thiophenyl and benzo[1,3]dioxol,

7) 1,2,3,4-tetrahydronaphthalenyl,

8) $-(C_0-C_4)$ -alkylene- $C(R11)(R12)$ -phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

20 9) $-CH(R11)-C(O)-NH_2$,

10) $-CH(R11)-C(O)-NH-CH(R12)-CH_2-OH$,

11) $-(C_1-C_6)$ -alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, $-C(O)-O-R11$, $-(C_1-C_4)$ -alkyl- $O-R11$, $-O-(C_1-C_4)$ -alkyl, phenyl or

25 $-(C_1-C_4)$ -alkyl,

12) $-CH(R11)-C(O)-NH-(C_1-C_4)$ -alkyl,

13) $-(C_0-C_4)$ -alkylene- $C(R11)(R12)$ -bicyclo[3.1.1]heptanyl, where bicyclo[3.1.1]heptanyl is unsubstituted or substituted once to four times by $-(C_1-C_4)$ -alkyl,

30 14) $-(C_1-C_6)$ -alkylene- $C(O)-O-R11$, where alkylene is unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, $-C(O)-O-R11$, $-(C_1-C_4)$ -alkyl- $O-R11$, $-O-(C_1-C_4)$ -alkyl, phenyl or $-(C_1-C_4)$ -

alkyl,

15) $-(C_0-C_4)\text{-alkylene-}C(R11)(R12)\text{-}C(O)\text{-}O\text{-}R11$, or

16) $-\text{CH}_2\text{-CF}_2\text{-CF}_3$,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidines, 2-azabicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by $-(C_1-C_4)\text{-alkyl}$, $-\text{C(O)\text{-}O\text{-}R11}$, $-(C_1-C_4)\text{-alkyl-O\text{-}R11}$ or phenyl,

R7 is hydrogen atom or $-(C_1-C_4)\text{-alkyl}$,

10 R9 is hydrogen atom or $-(C_1-C_4)\text{-alkyl}$,

R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1-C_4)\text{-alkyl}$,

3) $-(C_0-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted

15 independently of one another once, twice or three times by $-\text{OH}$, halogen or $-\text{O-(}C_1\text{-}C_4\text{)\text{-}alkyl}$,

4) $-(C_0-C_4)\text{-alkylene-(}C_3\text{-}C_{12}\text{)\text{-cycloalkyl}}$, where cycloalkyl is selected

from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,

adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl,

20 octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which

cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)\text{-alkyl}$, $-\text{C(O)\text{-}O\text{-}R13}$ or phenyl or

5) $-(C_0-C_4)\text{-alkylene-indolyl}$,

R13 is 1) hydrogen atom,

25 2) $-(C_1-C_4)\text{-alkyl}$,

3) $-(C_0-C_4)\text{-alkylene-}C(O)\text{-O\text{-}R14}$,

4) $-(C_0-C_4)\text{-alkylene-}C(O)\text{-R14}$ or

5) $-(C_0-C_4)\text{-alkylene-O\text{-}R14}$,

R14 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{NH}_2$ or $-\text{OH}$ and

30 R15 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{O-CF}_3$, $-\text{NH}_2$, $-\text{OH}$, $-\text{CF}_3$ or halogen.

The invention also relates to the compound of the formula I and/or of a stereoisomeric form of the compound of the formula I and/or mixtures of these forms in any ratio, and/or a physiologically tolerated salt of the compound of the formula I, where

5 X is -C(O)-,

R1 is 1) hydrogen atom,
2) -(C₁-C₆)-alkyl,
3) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl or
4) -(C₁-C₆)-alkylene-(C₆-C₁₄)-aryl,

10 R2 is the radical of the formula II

$$-(A1)_m\text{-}A2 \quad (\text{II})$$

in which

m is the integer zero or 1,

A1 is 1) -(CH₂)_n- in which n is the integer zero, 1, 2 or 3,
2) -NH-(CH₂)_n- in which n is the integer zero, 1, 2 or 3,
3) -NH(C₁-C₆)-alkyl)-(CH₂)_n- in which n is the integer zero, 1, 2 or 3,
4) -NH((C₃-C₆)-cycloalkyl)-(CH₂)_n- in which n is the integer zero, 1, 2 or 3,
5) -O-(CH₂)_n- in which n is the integer zero, 1, 2 or 3, or
20 6) -(CH₂)_n-SO_x- in which n is the integer zero, 1, 2 or 3 and x is the integer zero, 1 or 2,

A2 is 1) Het, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or 25 four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, and are unsubstituted or substituted independently of one another once, twice or three times by -(C₁-C₃)-alkyl, halogen, -NH₂, -CF₃ or -O-CF₃,
2) -(C₀-C₆)-alkylene-NH₂ ,
3) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,
4) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,
30 5) -(C₀-C₄)-alkylene-O-NH-C(=NH)-NH₂,

- 6) $-(C_0-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_6\text{)-alkyl}$,
- 7) $-(C_1\text{-C}_6\text{)-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,
- 5 8) $-(C_3\text{-C}_8\text{)-cycloalkyl-NH}_2$, or
- 9) $-(C_0\text{-C}_4\text{)-alkylene-(C}_6\text{-C}_14\text{)-aryl}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

R3 is 1) $-(C_1\text{-C}_6\text{)-alkyl}$,

- 10 2) $-(C_0\text{-C}_4\text{)-alkylene-(C}_3\text{-C}_12\text{)-cycloalkyl}$,
- 3) $-(C_1\text{-C}_6\text{)-alkylene-(C}_6\text{-C}_14\text{)-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,
- 4) $-(C_0\text{-C}_8\text{)-alkylene-N(R}_5\text{)-PG}$,
- 5) $-(C_1\text{-C}_6\text{)-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,
- 15 6) $-(C_0\text{-C}_4\text{)-alkylene-(C}_6\text{-C}_14\text{)-aryl-(C}_0\text{-C}_4\text{)-alkylene-N(R}_5\text{)-PG}$,
- 7) $-(C_0\text{-C}_8\text{)-alkylene-O-PG}$,
- 8) $-(C_0\text{-C}_4\text{)-alkylene-(C}_6\text{-C}_14\text{)-aryl-(C}_0\text{-C}_4\text{)-alkylene-O-PG}$,
- 9) $-(C_0\text{-C}_8\text{)-alkylene-C(O)-O-PG}$,
- 20 10) $-(C_0\text{-C}_4\text{)-alkylene-(C}_6\text{-C}_14\text{)-aryl-(C}_0\text{-C}_4\text{)-alkylene-C(O)-O-PG}$ or
- 11) hydrogen atom,

R4 is $-\text{N(R}_6\text{)}_2$,

where R6 are identical or different and are independently of one another

- 1) hydrogen atom,
- 25 2) $-(C_1\text{-C}_6\text{)-alkyl}$,
- 3) $-(C_0\text{-C}_4\text{)-alkylene-(C}_3\text{-C}_12\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R}_11$, $-(C_1\text{-C}_4\text{)-alkyl-O-R}_11$ or $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,
- 30 4) $-(C_0\text{-C}_6\text{)-alkylene-(C}_6\text{-C}_14\text{)-aryl}$, where aryl and alkylene are unsubstituted or substituted independently of one another once, twice, three

or four times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -C(O)-N(R8)₂ or -O-(C₁-C₄)-alkyl,

5) -(C₀-C₈)-alkylene-N(R5)-PG,

6) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl-(C₀-C₄)-alkyl-N(R5)-PG,

5 7) -(C₀-C₈)-alkylene-O-PG,

8) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl-(C₀-C₄)-alkyl-O-PG,

9) -(C₀-C₈)-alkylene-C(O)-O-R11,

10 10) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl-(C₀-C₄)-alkyl-C(O)-O-PG,

11) -(C₀-C₄)-alkylene-Het, where Het means a 4- to 15-membered

10 heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen,

15 -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

12) -(C₁-C₃)-fluoroalkyl,

13) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

14) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

15) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13, or

20 16) amino acid, where the linkage of the amino acid takes place by a peptide linkage, and the carboxyl radical of the amino acid is unsubstituted or substituted by PG or by -N(R5)₂,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated,

25 partly saturated or aromatic, where the ring is unsubstituted or substituted

once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11

or phenyl,

R5 is hydrogen atom or -(C₁-C₆)-alkyl,

PG is a protective group for the amino, carboxyl or for the hydroxy function,

30 R7 is hydrogen atom or -(C₁-C₆)-alkyl,

R8 is hydrogen atom or -(C₁-C₆)-alkyl,

R9 is hydrogen atom or -(C₁-C₆)-alkyl,

R11 and R12 are identical or different and are independently of one another

- 1) hydrogen atom,
- 2) -(C₁-C₆)-alkyl,
- 5) 3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, -OH or -O-(C₁-C₄)-alkyl,
- 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, -C(O)-O-R13, -(C₁-C₄)-alkyl-O-R13, -O-(C₁-C₄)-alkyl or -(C₀-C₄)-alkylene-phenyl,
- 10) 5) -(C₀-C₄)-alkylene-C(O)-N(R13)₂ or
- 6) -(C₀-C₄)-alkylene-indolyl,

R13 is

- 1) hydrogen atom,
- 2) -(C₁-C₄)-alkyl,
- 3) -(C₀-C₄)-alkylene-C(O)-O-R14,
- 4) -(C₀-C₄)-alkylene-C(O)-R14 or
- 5) -(C₀-C₄)-alkylene-O-R14,

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH, and

20) R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

The invention also relates to the compound of the formula I where

X is -C(O)-,

R1 is

- 1) hydrogen atom or
- 2) -(C₁-C₄)-alkyl,

R2 is

- 1) -(C₁-C₆)-alkylene-NH₂,
- 2) -(C₀-C₄)-alkylene-pyridyl-NH₂,
- 3) -(C₀-C₄)-alkylene-piperidinyl-NH₂,
- 4) -(C₀-C₄)-alkylene-thiazolyl-NH₂,
- 30) 5) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,
- 6) -(C₀-C₄)-alkylene-(C₃-C₈)-cycloalkyl-NH₂,

7) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{)-alkyl}$,
8) $-(C_0\text{-C}_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,
9) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is
unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once,
5 twice or three times by R15,
10 10) $-(C_0\text{-C}_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_4\text{)-alkyl}$ or
11) $-(C_0\text{-C}_4)\text{-alkylene-(C}_6\text{-C}_14\text{)-aryl}$, where aryl is unsubstituted or
substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times
by R15, or
12) $-(C_1\text{-C}_4)\text{-alkylene-SO}_x\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ in which x is the integer
zero, 1 or 2

R3 is 1) $-(C_1\text{-C}_4)\text{-alkyl}$,
2) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl}$,
3) $-(C_1\text{-C}_6)\text{-alkylene-aryl}$, where aryl is substituted independently of one
15 another once, twice or three times by R15,
4) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is
substituted independently of one another once, twice or three times by R15,
5) $-(C_1\text{-C}_6)\text{-alkylene-NH-PG}$,
6) $-(C_1\text{-C}_6)\text{-alkylene-O-PG}$,
20 7) $-(C_1\text{-C}_6)\text{-alkyl}$, or
8) hydrogen atom,
where PG is t-butyl-, t-butyloxycarbonyl or benzyloxycarbonyl,

R4 is $-\text{N(R}_6)_2$,
where R6 are identical or different and are independently of one another
25 1) hydrogen atom,
2) $-(C_1\text{-C}_6)\text{-alkyl}$,
3) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_12\text{)-cycloalkyl}$, where cycloalkyl is
unsubstituted or substituted independently of one another once, twice, three
or four times by R11, halogen, $-\text{C(O)-O-R}_11$, $-(C_1\text{-C}_4)\text{-alkyl-O-R}_11$ or
30 $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,
4) $-(C_0\text{-C}_4)\text{-alkylene-C(R}_11\text{)(R}_12\text{)-(C}_3\text{-C}_12\text{)-cycloalkyl}$, where cycloalkyl

is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

5 5) -(C₀-C₄)-alkylene-Het, where Het means a 4- to 15-membered

heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

10 6) -(C₀-C₆)-alkylene-aryl, where aryl or alkylene is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

15 7) -(C₀-C₄)-alkylene-C(R11)(R12)-aryl, where aryl or alkylene is

unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

20 8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₀-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

25 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,

5 2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, -OH or -O-(C₁-C₄)-alkyl,

4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is

10 unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, -C(O)-O-R13, -(C₁-C₄)-alkyl-O-R13,

-O-(C₁-C₄)-alkyl or -(C₀-C₄)-alkylene-phenyl,

5) -(C₀-C₄)-alkylene-C(O)-N(R13)₂ or

6) -(C₀-C₄)-alkylene-indolyl,

15 R13 is 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-C(O)-O-R14,

4) -(C₀-C₄)-alkylene-C(O)-R14 or

5) -(C₀-C₄)-alkylene-O-R14,

20 R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH, and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

The invention also relates to the compound of the formula I where

X is -C(O)-,

25 R1 is 1) hydrogen atom or

2) -(C₁-C₄)-alkyl,

R2 is 1) -(C₁-C₆)-alkylene-NH₂,

2) -(C₁-C₄)-alkylene-pyridyl-NH₂,

3) -(C₁-C₄)-alkylene-piperidinyl-NH₂,

30 4) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,

5) -(C₀-C₄)-alkylene-(C₃-C₆)-cycloalkyl-NH₂,

- 6) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,
- 7) -(C₁-C₄)-alkylene-O-NH-C(=NH)-NH₂,
- 8) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once, twice or three times by R15,

- 9) -(C₁-C₄)-alkylene-NH-C(O)-(C₁-C₆)-alkyl,
- 10) -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once, twice or three times by R15,
- 11) alkylene-SO₂-(C₁-C₄)-alkylene-NH₂ or

- 12) -(C₁-C₄)-alkylene-S-(C₁-C₄)-alkylene-NH₂,

R3 is

- 1) -(C₁-C₄)-alkyl,
- 2) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl,
- 3) -(C₁-C₄)-alkylene-phenyl, where phenyl is substituted independently of one another once, twice or three times by R15,

- 4) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl, where phenyl is substituted independently of one another once, twice or three times by R15,
- 5) hydrogen atom,

R4 is -N(R₆)₂,

where R₆ are identical or different and are independently of one another

- 20 1) hydrogen atom,
- 2) -(C₁-C₄)-alkyl,
- 3) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R11 or -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by halogen,
- 30 4) -(C₀-C₄)-alkylene-C(R₁₁)(R₁₂)-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,

adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]-heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R11 or -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by halogen,

5) -(C₀-C₄)-alkylene-Het, where Het is selected from the group of acridinyl, azepinyl, azetidinyl, aziridinyl, benzimidazalinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, 10 benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, dibenzofuranyl, dibenzothiophenyl, dihydrofuran[2,3-b]-tetrahydrofuranyl, dihydrofuranyl, dioxolyl, dioxanyl, 2H, 15 6H-1,5,2-dithiazinyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolidinyl, 2-isothiazolinyl, isothiazolyl, isoxazolyl, isoxazolidinyl, 2-isoxazolinyl, morpholinyl, naphthyridinyl, octahydro- 20 isoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, oxothiolanyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, 25 pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridothiophenyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydropyridinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 30 thiazolyl, thienyl, thienoimidazolyl, thienooxazolyl, thienopyridine, thienothiazolyl, thiomorpholinyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, where Het or alkylene is unsubstituted or substituted independently of one another once or

twice by -(C₁-C₄)-alkyl,

6) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

5 7) -(C₀-C₄)-alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10 10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

15 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidine, piperidine, 2-aza-bicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane,

20 where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

25 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,

30 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,

adamantanyl, bicyclo[3.1.1]heptanyl, decahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl, or

5 5) -(C₀-C₄)-alkylene-indolyl,
R13 is 1) hydrogen atom,
 2) -(C₁-C₄)-alkyl,
 3) -(C₀-C₄)-alkylene-C(O)-O-R14,
 4) -(C₀-C₄)-alkylene-C(O)-R14 or
10 5) -(C₀-C₄)-alkylene-O-R14, and
R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH and
R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

The invention also relates to the compound of the formula I where

15 X is -C(O)-,
R1 is 1) hydrogen atom or
 2) -(C₁-C₄)-alkyl,
R2 is 1) -(C₁-C₆)-alkylene-NH₂,
 2) -(C₁-C₄)-alkylene-pyridyl-NH₂,
20 3) -(C₁-C₄)-alkylene-piperidinyl-NH₂,
 4) -(C₁-C₄)-alkylene-NH-C(=NH)-NH₂,
 5) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,
 6) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl-NH₂,
 7) -(C₁-C₄)-alkylene-O-NH-C(=NH)-NH₂,
25 8) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl,
 9) -(C₁-C₄)-alkylene-NH-C(O)-(C₁-C₆)-alkyl or
 10) -(C₁-C₄)-alkylene-phenyl-NH₂,
 11) (C₁-C₂)-alkylene-SO₂-(C₁-C₄)-alkylene-NH₂ or
 12) -(C₁-C₂)-alkylene-S-(C₁-C₄)-alkylene-NH₂,
30 R3 is 1) -(C₁-C₄)-alkyl,
 2) -(C₁-C₄)-alkylene-(C₃-C₆)-cycloalkyl,

- 3) -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by -OH,
- 4) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-phenyl,
- 5) hydrogen atom,

5 R4 is -N(R6)₂,

where R6 are identical or different and are independently of one another

- 1) hydrogen atom,
- 2) -(C₁-C₆)-alkyl,
- 3) -(C₀-C₄)-alkylene-(C₃-C₈)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclopropyl, adamantyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice or three times by -(C₁-C₄)-alkyl or phenyl,

15 4) -C(R11)(R12)-adamantanyl,

5) -CH(R11)-C(O)-NH-CH(R12)-R13,

6) -(C₀-C₄)-alkylene-Het, where Het is selected from the group of benzimidazolyl, isoxazolyl, piperidinyl, pyridyl, pyrrolidinyl, thiophenyl and benzo[1,3]dioxolyl,

20 7) 1,2,3,4-tetrahydronaphthalenyl,

8) -(C₀-C₄)-alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

9) -CH(R11)-C(O)-NH₂,

25 10) -CH(R11)-C(O)-NH-CH(R12)-CH₂-OH,

11) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl, phenyl or -(C₁-C₄)-alkyl,

30 12) -CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

13) -(C₀-C₄)-alkylene-C(R11)(R12)-bicyclo[3.1.1]heptanyl, where bicyclo[3.1.1]heptanyl is unsubstituted or substituted once to four times by

-(C₁-C₄)-alkyl,

14) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl, phenyl or -(C₁-C₄)-

5 alkyl,

15) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

16) -CH₂-CF₂-CF₃,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidines,

10 2-azabicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

15 R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,

20 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl or

25 5) -(C₀-C₄)-alkylene-indolyl,

R13 is 1) hydrogen atom,

2) -(C₁-C₄)-alkyl,

30 3) -(C₀-C₄)-alkylene-C(O)-O-R14,

4) -(C₀-C₄)-alkylene-C(O)-R14 or

5) $-(C_0-C_4)\text{-alkylene-O-R14}$,

R14 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{NH}_2$ or $-\text{OH}$ and

R15 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{O-CF}_3$, $-\text{NH}_2$, $-\text{OH}$, $-\text{CF}_3$ or halogen.

5 The term " $(C_1-C_6)\text{-alkyl}$ " means hydrocarbon radicals whose carbon chain is straight-chain or branched and comprises 1 to 6 carbon atoms, for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl, isopentyl, neopentyl, hexyl, 2,3-dimethylbutane or neohexyl.

The term " $-(C_0-C_4)\text{-alkylene}$ " means hydrocarbon radicals whose carbon chain is

10 straight-chain or branched and comprises 1 to 4 carbon atoms, for example methylene, ethylene, propylene, isopropylene, isobutylene, butylene or tertiary butylene. " $-C_0\text{-Alkylene}$ " is a covalent bond.

The term " $-(CH_2)_n$ - in which n is the integer zero or 1" means the methylene radical in the case where n equals 1, and the radical has the meaning of a covalent bond in 15 the case where n is the integer zero.

The term " $-(C_1-C_4)\text{-alkylene}$ " means hydrocarbon radicals whose carbon chain is straight-chain or branched and comprises 1 to 4 carbon atoms, for example methylene ($-CH_2-$), ethylene ($-CH_2-CH_2-$), propylene ($-CH_2-CH_2-CH_2-$), isopropylene, isobutylene, butylene or tertiary butylene.

20 The term " $-(CH_2)_n$ - in which n is the integer zero, 1, 2 or 3" means radicals such as methylene, ethylene or propylene. In the case where n is the integer zero, the radical has the meaning of a covalent bond.

The term " $(C_3-C_{12})\text{-cycloalkyl}$ " means radicals such as compounds derived from 3- to 12-membered mono-, bi- or tricycles or bridged rings such as the monocycles

25 cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane or cyclooctane, derived from the bicycles bicyclo[4.2.0]octane, octahydroindene, decahydronaphthalene, decahydroazulene, decahydrobenzocycloheptene or dodecahydroheptalene, or from tricycles such as adamantane, or derived from the bridged rings such as spiro[2.5]octane, spiro[3.4]octane, spiro[3.5]nonane,

30 bicyclo[3.1.1]heptane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane or octahydro-4,7-methanindene.

The term "R6 form together with the N atom to which they are bonded a mono- or

bicyclic ring having 4 to 9 ring atoms" means radicals such as compounds derived from 4- to 8-membered monocycles which may be saturated or wholly or partly aromatic, for example azetidine, dihydroazete, azete, diazetidine, diazete, pyrrolidine, dihydropyrrole, pyrrole, imidazolidine, dihydroimidazole, imidazole, 5 pyrazoline, pyrazolidine, piperidine, dihydropyridine, tetrahydropyridine, pyridine, piperazine, dihydropyrazine, pyrazine, pyridazine, pyrimidine, oxazine, azepane, tetrahydroazepine, azepine, azocan, dihydroazocine, hexohydroazocine or azocine or bicyclic rings such as 2-azabicyclo[3.2.2]nonane or, 7-azabicyclo[2.2.1]heptane. The term "-(C₆-C₁₄)-aryl" means aromatic carbon radicals having 6 to 14 carbon 10 atoms in the ring. Examples of -(C₆-C₁₄)-aryl radicals are phenyl, naphthyl, for example 1-naphthyl, 2-naphthyl, 1,2,3,4-tetrahydronaphthalenyl, anthryl or fluorenyl. Naphthyl radicals and especially phenyl radicals are preferred aryl radicals. The term "4- to 15-membered Het ring" or "Het" means ring systems having 4 to 15 carbon atoms which are present in one, two or three ring systems connected 15 together and which comprise one, two, three or four identical or different heteratoms from the series oxygen, nitrogen or sulfur. Examples of these ring systems are the radicals acridinyl, azepinyl, azetidinyl, aziridinyl, benzimidazalinyl, benzimidazolyl, benzo[1,3]dioxol, benzofuranyl, benzothiophuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, 20 carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, dibenzofuranyl, dibenzothiophenyl, dihydrofuran[2,3-b]-tetrahydrofuranyl, dihydrofuranyl, dioxolyl, dioxanyl, 2H,6H-1,5,2-dithiazinyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H- 25 indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolidinyl, 2-isothiazolinyl, isothiazolyl, isoxazolyl, isoxazolidinyl, 2-isoxazolinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, oxothiolanyl, 30 pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxythiinyl, phenoxyazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridothiophenyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl,

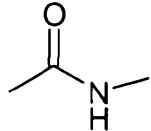
tetrahydroisoquinoliny, tetrahydroquinoliny, tetrahydropyridinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienoimidazolyl, thienooxazolyl, thienopyridine, thienothiazolyl, thiomorpholinyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl,

5 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl.

Preferred Het rings are the radicals isoxazolyl, benzo[1,3]dioxole and thiophenyl.

The term "halogen" means fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, especially chlorine or bromine.

The term "amino acid" means compounds such as naturally occurring α -amino acids


10 glycine, alanine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, serine, threonine, cysteine, methionine, asparagine, glutamine, lysine, histidine, arginine, glutamic acid and aspartic acid. Histidine, tryptophan, serine, threonine, cysteine, methionine, asparagine, glutamine, lysine, arginine, glutamic acid and aspartic acid are particularly preferred. Also included therewith are non-naturally

15 occurring amino acids such as 2-amino adipic acid, 2-aminobutyric acid, 2-aminoisobutyric acid, 2,3-diaminopropionic acid, 2,4-diaminobutyric acid, 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, 2-aminopimelic acid, phenylglycine, 3-(2-thienyl)alanine, 3-(3-thienyl)alanine, sarcosine, 2-(2-thienyl)glycine, 2-aminoheptanoic acid, pipecolic acid, hydroxylysine,

20 N-methylisoleucine, 6-N-methyllysine, N-methylvaline, norvaline, norleucine, ornithine, allo-isoleucine, 4-hydroxyproline, allo-hydroxylysine, allo-threonine, 3-hydroxyproline, 3-(2-naphtyl)alanine, 3-(1-naphtylalanine), homophenylalanine, homocysteine, 2-amino-3-phenylaminoethylpropionic acid, homocysteic acid, homotryptophan, cysteic acid, 3-(2-pyridyl)alanine, 3-(3-pyridyl)alanine, 3-(4-

25 pyridyl)alanine, phosphinothricin, 4-fluorophenylalanine, 3-fluorophenylalanine, 4-fluorophenylalanine, 3-fluorophenylalanine, 3-fluorophenylalanine, 2-fluorophenylalanine, 4-chlorophenylalanine, 4-nitrophenylalanine, 4-aminophenylalanine, cyclohexylalanine, citrulline, 5-fluorotryptophan, 5-methoxytryptophan or 2-amino-3-phenylaminopropionic acid.

30 The term "peptide linkage" means structures such as

The term "protective group for the amino, carboxyl or for the hydroxy function"

means protective groups such as suitable protective groups for amino functions, for example the t-butoxycarbonyl, the benzyloxycarbonyl or the phthalolyl group, and the trityl or tosyl protective group, suitable protective groups for the carboxyl function are for example, alkyl, aryl or arylalkyl esters and suitable protective groups for the

5 hydroxy function are for example alkyl esters, t-butyl, benzyl or trityl groups.

Protective groups can be introduced and removed by techniques which are well known or described herein (see Green, T.W., Wutz, P.G.M., Protective Groups in Organic Synthesis (1991), 2nd Ed., Wiley-Interscience, or Kocienski, P., Protecting Groups (1994), Thieme).

10 The term "-(C₁-C₃)-fluoroalkyl" means a partly or completely fluorinated alkyl radical derived for example from the following radicals -CF₃, -CHF₂, -CH₂F, -CHF-CF₃,

-CHF-CHF₂, -CHF-CH₂F, -CH₂-CF₃, -CH₂-CHF₂, -CH₂-CH₂F, -CF₂-CF₃,

-CF₂-CHF₂, -CF₂-CH₂F, -CH₂-CHF-CF₃, -CH₂-CHF-CHF₂, -CH₂-CHF-CH₂F,

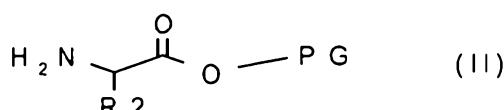
-CH₂-CH₂-CF₃, -CH₂-CH₂-CHF₂, -CH₂-CH₂-CH₂F, -CH₂-CF₂-CF₃,

15 -CH₂-CF₂-CHF₂, -CH₂-CF₂-CH₂F, -CHF-CHF-CF₃, -CHF-CHF-CHF₂,

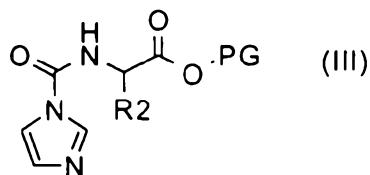
-CHF-CHF-CH₂F, -CHF-CH₂-CF₃, -CHF-CH₂-CHF₂, -CHF-CH₂-CH₂F,

-CHF-CF₂-CF₃, -CHF-CF₂-CHF₂, -CHF-CF₂-CH₂F, -CF₂-CHF-CF₃,

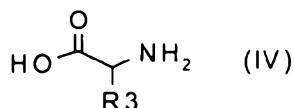
-CF₂-CHF-CHF₂, -CF₂-CHF-CH₂F, -CF₂-CH₂-CF₃, -CF₂-CH₂-CHF₂,


-CF₂-CH₂-CH₂F, -CF₂-CF₂-CF₃, -CF₂-CF₂-CHF₂ or -CF₂-CF₂-CH₂F.

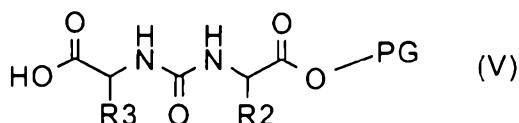
20 The term "-S(O)₂-" means a sulfonyl radical.


The term "-C(O)-" means a carbonyl radical.

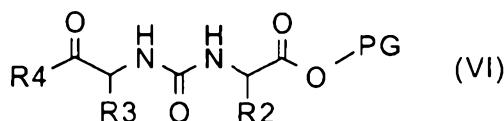
The invention also relates to a process for preparing the compound of the formula I, which comprises


a) reacting a compound of the formula II

where R₂ and PG have the meanings mentioned in the compound of the formula I, with a phosgene equivalent such as carbonyldiimidazole, diphosgene, triphosgene or phosgene to give an intermediate of the formula III

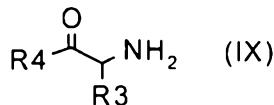


where R2 and PG have the meanings mentioned in the compound of the formula I, and reacting the compound of the formula III with an amino acid of the formula IV

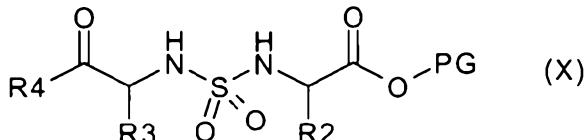


5

where R3 has the meaning mentioned in the compound of the formula I, to give a compound of the formula V



10 where R2, R3 and PG have the meanings mentioned in the compound of the formula I, and subsequently the compound of the formula V is reacted with an amine of the formula $\text{NH}(\text{R6})_2$, where R6 has the meaning mentioned in the compound of the formula I, to give a compound of the formula VI



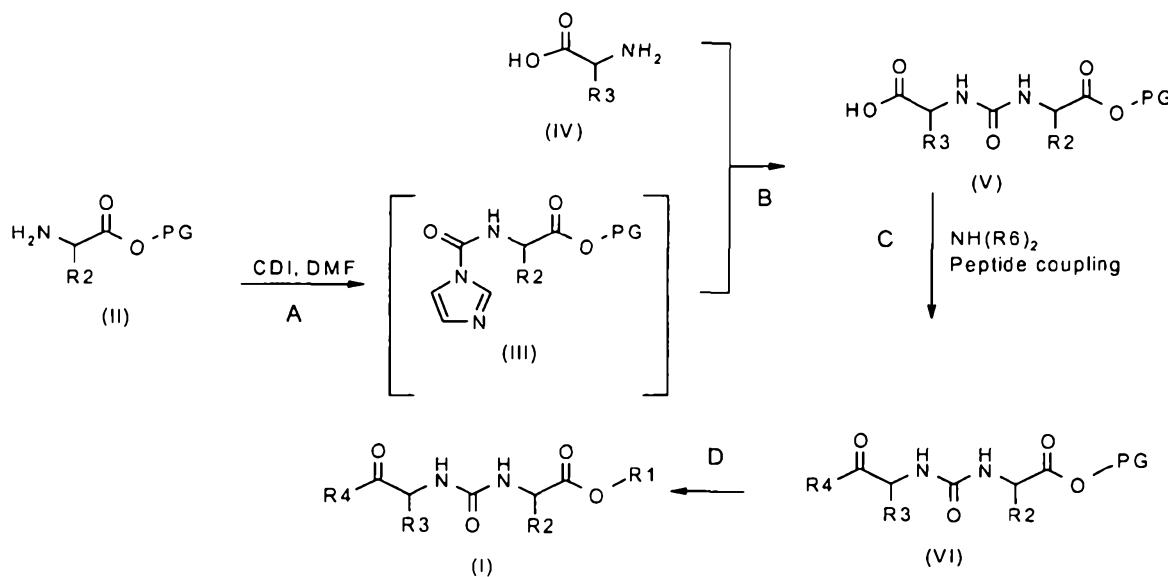
15 where R₂, R₃, R₄ and PG have the meanings mentioned in the compound of the formula I, and is then converted into a compound of the formula I, or
b) a compound of the formula II is reacted with a compound of the formula

IX

where R3, R4 and PG have the meanings mentioned in the compound of the formula I, to give a compound of the formula X

where R2, R3, R4 and PG have the meanings mentioned in the compound of the formula I, and is then converted into a compound of the formula I, or

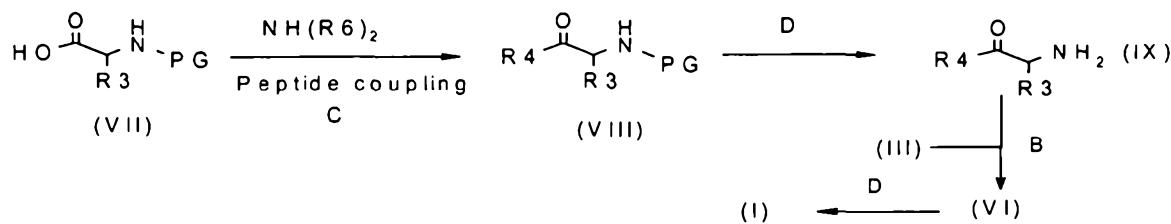
c) fractionating a compound of the formula I prepared by processes a) or b), or a suitable precursor of the formula I which occurs in enantiomeric forms owing to its chemical structure, by salt formation with enantiopure acids or bases, chromatography on chiral stationary phases or derivatization by means of chiral enantiopure compounds such as amino acids, separation of the diastereomers obtained in this way, and elimination of the chiral auxiliary groups into the pure enantiomers, or


5 d) either isolating in free form the compound of the formula I prepared by processes a), b) or c), or converting into physiologically tolerated salts in the case where acidic or basic groups are present.

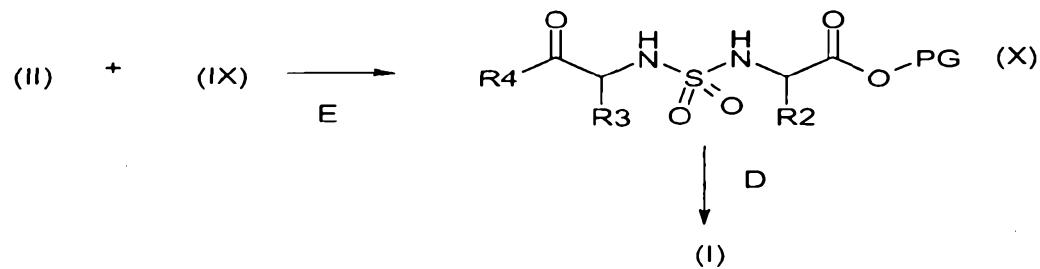
10

Compounds of the invention of the formula (I) are prepared for example by treating amino acid (II) with a phosgene equivalent such as carbonyldiimidazole, diphosgene, triphosgene or phosgene in an inert solvent such as DMF or

15 dichloromethane, and reacting the intermediate (III) resulting in this case with an amino acid (IV) which is commercially available or prepared by removing protective groups, to give a compound (V), where PG is defined as in the compound of the formula I. A peptide linkage of (V) with (VI) is then formed by processes known from the literature, for example in the presence of a carbodiimide or with preactivation


20 with (V) as active ester by adding for example 1-hydroxybenzotriazole in inert solvents such as dimethylformamide (DMF) or dichloromethane. The final deprotection to give (I) in turn takes place by the processes quoted above for eliminating protective groups as shown in Scheme 1 below.

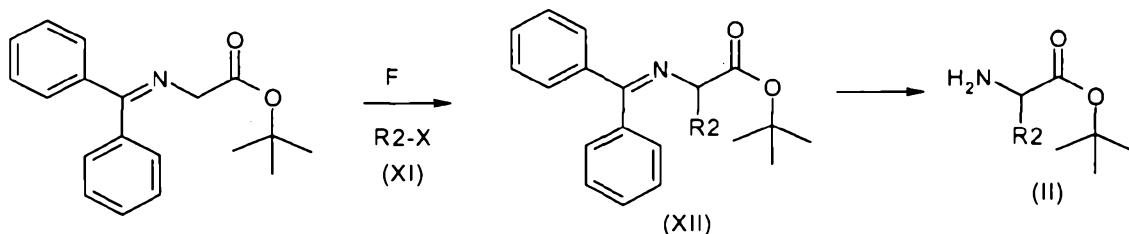
Scheme 1


As an alternative thereto, the sequence of the process steps can also be varied by reacting compounds of the formula (IV) with $\text{NH}(\text{R}_6)_2$ as in process step C and

5 subsequently carrying out process steps B and D.

Scheme 2

10 A further process for preparing the compounds of the invention according to (I) is reaction of compounds (IX) with compounds of the type (II) in analogy to A. In a process disclosed by Borghese et al. (Org. Process Res. Dev. 2006, 10, 770-775), compounds of the formula X are prepared and are subsequently deprotected and afford compounds of the formula I:


15

Scheme 3

Amines of the formula $\text{NH}(\text{R}_6)_2$ mean amines or dipeptide derivatives which are commercially available or prepared by processes disclosed in the literature. The

20 compounds (II) are commercially available or can be obtained by alkylation of tert-butyl (benzhydrylideneamino)acetate in suitable solvents such as THF or DMF in the presence of bases such as lithiumhexamethyldisilazane, KOH, NaOH, CsOH, K_2CO_3 or NaH and subsequent deprotection under acidic conditions, for example in dilute hydrochloric acid or aqueous citric acid (Scheme 4, cf., for example, J. Ezquerra et al., *Tetrahedron Lett.* 1993, 34 (52), 8535-8538). The compounds (XI) are commercially available or disclosed in the literature, where X is a suitable leaving

group such as bromine, iodine, chlorine, tosylate or mesylate.

Scheme 4

5 A compound of the formula I prepared as in Scheme 1 or 3, or a suitable precursor of the formula I which occurs in enantiomeric form owing to its chemical structure, can be fractionated by salt formation with enantiopure acids or bases, chromatography on chiral stationary phases or derivatization by means of chiral enantiopure compounds such as amino acids, separation of the diastereomers 10 obtained in this way, and elimination of the chiral auxiliary groups into the pure enantiomers (process b), or the compound of the formula I prepared as in Scheme 1 or 3 can either be isolated in free form or be converted into physiologically tolerated salts in the case where acetic or basic groups are present (process d).

15 In process step c), the compound of the formula I, if it occurs as mixture of diastereomers or enantiomers, or results as mixtures thereof in the chosen synthesis, is separated into the pure stereoisomers, either by chromatography on an optionally chiral support material or, if the racemic compound of the formula I is able to form salts, by fractional crystallization of the diastereomeric salts formed with an 20 optically active base or acid as auxiliary. Examples of suitable chiral stationary phases for thin-layer or column chromatographic separation of enantiomers are modified silica gel supports (called Pirkle phases) and high molecular weight carbohydrates such as triacetylcellulose. For analytical purposes it is also possible to use gas chromatography methods, after appropriate derivatization known to the 25 skilled worker, on chiral stationary phases. To separate enantiomers of the racemic carboxylic acids, diastereomeric salts differing in solubility are formed with an optically active, usually commercially available base such as (-)-nicotine, (+)- and (-)-phenylethylamine, quinine bases, L-lysine or L- and D-arginine, the less soluble component is isolated as solid, the more soluble diastereomer is deposited from the 30 mother liquor, and the pure enantiomers are obtained from the diastereomeric salts

obtained in this way. It is possible in the same way in principle to convert the racemic compounds of the formula I comprising a basic group such as an amino group with optically active acids such as (+)-camphor-10-sulfonic acid, D- and L-tartaric acid, D- and L-lactic acid, and (+) and (-)-mandelic acid into the pure

5 enantiomers. Chiral compounds comprising alcohol or amine functions can also be converted with appropriately activated or optionally N-protected enantiopure amino acids into the corresponding esters or amides, or conversely chiral carboxylic acids can be converted with carboxy-protected enantiopure amino acids into the amides, or with enantiopure hydroxy carboxylic acids such as lactic acid into the
10 corresponding chiral esters. The chirality of the amino acid or alcohol residue introduced in enantiopure form can then be utilized for separating the isomers by carrying out a separation of the diastereomers now present by crystallization or chromatography on suitable stationary phases, and then eliminating the included chiral moiety again by suitable methods.

15

A further possibility with some of the compounds of the invention is to employ diastereomerically or enantiomerically pure starting materials to prepare the framework structures. It is thus possible where appropriate also to employ other or simplified processes for purifying the final products. These starting materials have
20 previously been prepared enantiomerically or diastereomerically pure by processes known from the literature. This may mean in particular that either enantioselective processes are employed in the synthesis of the basic structures, or else a separation of enantiomers (or diastereomers) is carried out at an early stage of the synthesis and not at the stage of the final products. A simplification of these separations can
25 likewise be achieved by proceeding in two or more stages.

30 Acidic or basic products of the compound of the formula I may be in the form of their salts or in free form. Pharmacologically acceptable salts are preferred, for example alkali metal or alkaline earth metal salts such as hydrochlorides, hydrobromides, sulfates, hemisulfates, all possible phosphates, and salts of amino acids, natural bases or carboxylic acids. Physiologically tolerated salts are prepared from compounds of the formula I able to form salts, including their stereoisomeric forms, in step c) of the process in a manner known per se. The compounds of the formula I form stable alkali metal, alkaline earth metal or, where appropriate, substituted

ammonium salts with basic reagents such as hydroxides, carbonates, bicarbonates, alcoholates and ammonia or organic bases, for example trimethyl- or triethylamine, ethanolamine, diethanolamine or triethanolamine, trometamol or else basic amino acids, for example lysine, ornithine or arginine. If the compounds of the formula I

5 have basic groups, it is also possible to prepare stable acid addition salts with strong acids. Suitable for this purpose are both inorganic and organic acids such as hydrochloric, hydrobromic, sulfuric, hemisulfuric, phosphoric, methanesulfonic, benzenesulfonic, p-toluenesulfonic, 4-bromobenzenesulfonic, cyclohexylamidosulfonic, trifluoromethylsulfonic, 2-hydroxyethanesulfonic, acetic, 10 oxalic, tartaric, succinic, glycerolphosphoric, lactic, malic, adipic, citric, fumaric, maleic, gluconic, glucuronic, palmitic, or trifluoroacetic acid.

The invention also relates to medicaments characterized by an effective content of at least one compound of the formula I and/or of a physiologically tolerated salt of

15 the compound of the formula I and/or an optionally stereoisomeric form of the compound of the formula I, together with a pharmaceutically suitable and physiologically tolerated carrier, additive and/or further active ingredients and excipients.

20 By reason of the pharmacological properties, the compounds of the invention are suitable for the prophylaxis, secondary prevention and therapy of all disorders which can be treated by inhibition of TAFIa. Thus, TAFIa inhibitors are suitable both for a prophylactic and for a therapeutic use in humans. They are suitable both for an acute treatment and for a long-term therapy. TAFIa inhibitors can be employed in 25 patients suffering from impairments of wellbeing or diseases associated with thromboses, embolisms, hypercoagulability or fibrotic changes.

These include myocardial infarction, angina pectoris and all other types of acute coronary syndrome, stroke, peripheral vascular disorders, deep vein thrombosis,

30 pulmonary embolism, embolic or thrombotic events caused by cardiac arrhythmias, cardiovascular events such as restenosis following revascularization, angioplasty and similar procedures such as stent implantations and bypass operations. TAFIa inhibitors can additionally be employed in all procedures leading to contact of the blood with foreign surfaces such as, for example, for dialysis patients and patients

with indwelling catheters. TAFIa inhibitors can be employed to reduce the risk of thrombosis after surgical procedures such as knee and hip joint operations.

TAFIa inhibitors are suitable for the treatment of patients with disseminated

- 5 intravascular coagulation, sepsis and other intravascular events associated with an inflammation. TAFIa inhibitors are additionally suitable for the prophylaxis and treatment of patients with atherosclerosis, diabetes and the metabolic syndrome and the sequelae thereof. Impairments of the hemostatic system (e.g. fibrin deposits) have been implicated in mechanisms leading to tumor growth and tumor metastasis,
- 10 and for inflammatory and degenerative articular disorders such as rheumatoid arthritis and arthrosis. TAFIa inhibitors are suitable for slowing down or preventing such processes.

Further indications for the use of TAFIa inhibitors are fibrotic changes of the lung

- 15 such as chronic obstructive lung disease, adult respiratory distress syndrome (ARDS) and of the eye such as fibrin deposits after eye operations. TAFIa inhibitors are also suitable for the prevention and/or treatment of scar formation.

The medicaments of the invention can be administered by oral, inhalational, rectal or

- 20 transdermal administration or by subcutaneous, intraarticular, intraperitoneal or intravenous injection. Oral administration is preferred. It is possible for stents and other surfaces which come into contact with blood in the body to be coated with TAFIa inhibitors.

- 25 The invention also relates to a process for producing a medicament, which comprises making a suitable dosage form from at least one compound of the formula I with a pharmaceutically suitable and physiologically tolerated carrier and, where appropriate, further suitable active ingredients, additives or excipients.

- 30 Suitable solid or pharmaceutical formulations are, for example, granules, powder, coated tablets, tablets, (micro)capsules, suppositories, syrups, solutions, suspensions, emulsions, drops or injectable solutions, and products with protracted release of active ingredient, in the production of which conventional aids such as carriers, disintegrants, binders, coating agents, swelling agents, glidants or

lubricants, flavorings, sweeteners and solubilizers are used. Excipients which are frequently used and which may be mentioned are magnesium carbonate, titanium dioxide, lactose, mannitol and other sugars, talc, milk protein, gelatin, starch, cellulose and its derivatives, animal and vegetable oils such as fish liver oil,

5 sunflower, peanut or sesame oil, polyethylene glycol and solvents such as, for example, sterile water and monohydric or polyhydric alcohols such as glycerol.

The pharmaceutical products are preferably produced and administered in dosage units, where each unit comprises as active ingredient a particular dose of the

10 compound of the invention of the formula I. In the case of solid dosage units such as tablets, capsules, coated tablets or suppositories, this dose can be up to about 1000 mg, but preferably about 50 to 300 mg and, in the case of injection solutions in ampoule form, up to about 300 mg but preferably about 10 to 100 mg.

15 The daily doses indicated for the treatment of an adult patient weighing about 70 kg are, depending on the activity of the compound of formula I, from about 2 mg to 1000 mg of active ingredient, preferably about 50 mg to 500 mg. However, in some circumstances, higher or lower daily doses may also be appropriate. The daily dose can be administered either by a single administration in the form of a single dosage 20 unit or else a plurality of smaller dosage units or by multiple administration of divided doses at particular intervals.

TAFla inhibitors can be administered both as monotherapy and in combination or together with all antithrombotics (anticoagulants and platelet aggregation inhibitors),

25 thrombolytics (plasminogen activators of every type), other substances having profibrinolytic activity, antihypertensives, regulators of blood glucose, lipid-lowering agents and antiarrhythmics.

Examples

30 Final products are normally determined by mass spectroscopic methods (FAB-, ESI-MS) and $^1\text{H-NMR}$; the main peak or two main peaks are indicated in each case. Temperatures are stated in degrees Celsius, RT means room temperature (21°C to 24°C). Abbreviations used are either explained or correspond to usual conventions. Unless stated otherwise, the LC/MS analyses were carried out under the following

conditions:

Method A: = method column: YMC Jsphere H80 20x2 mm, packing material 4 μ m, mobile phase: CH₃CN: H₂O + 0.05% trifluoroacetic acid (TFA), gradient: 4:96

(0 min.) to 95:5 (2.0 min.) to 95:5 (2.4 min.) to 4:96 (2.45 min.) flow rate:

5 1.0 ml/min., temperature: 30°C.

Method B: column: YMC Jsphere 33x2.1 mm, packing material 4 μ m, mobile phase: CH₃CN + 0.05% TFA: H₂O + 0.05% TFA, gradient: 5:95 (0 min.) to 95:5 (2.5 min.) to 95:5 (3.0 min.), flow rate: 1.3 ml/min., temperature: 30°C.

Method C: column: YMC Jsphere 33x2.1 mm, packing material 4 μ m, mobile phase:

10 CH₃CN + 0.08% formic acid: H₂O + 0.1% formic acid, gradient: 5:95 (0 min.) to 95:5 (2.5 min.) to 95:5 (3.0 min.), flow rate: 1.3 ml/min., temperature: 30°C.

Method D: column: YMC Jsphere 33x2.1 mm, packing material 4 μ m, mobile phase: CH₃CN + 0.05% TFA: H₂O + 0.05% TFA, gradient: 5:95 (0-0.5 min.) to 95:5 (3.5 min.) to 95:5 (4.0 min.), flow rate: 1.3 ml/min., temperature: 30°C.

15 Method E: column: YMC Jsphere 33x2.1 mm, packing material 4 μ m, mobile phase: CH₃CN + 0.05% TFA: H₂O + 0.05% TFA, gradient: 2:98 (0-1.0 min.) to 95:5 (5.0 min.) to 95:5 (6.2 min.), flow rate: 1.0 ml/min., temperature: 30°C.

Method F: column: YMC Jsphere 33x2.1 mm, packing material 4 μ m, mobile phase: CH₃CN + 0.05% TFA: H₂O + 0.05% TFA, gradient: 5:95 (0 min.) to 95:5 (3.4 min.)

20 to 95:5 (4.4 min.), flow rate: 1.0 ml/min., temperature: 30°C.

Unless indicated otherwise, chromatographic separations were carried out on silica gel with ethyl acetate/heptane mixtures as mobile phase. Preparative separations on reversed phase (RP) silica gel (HPLC) were, unless indicated otherwise, carried out

25 under the following conditions: column Merck Hibar RT 250-25 LiChrospher 100 RP-18e 5 μ m, mobile phase A: H₂O + 0.1% TFA, phase B: 80% acetonitrile + 0.1% TFA, flow rate 25 ml/min., 0-7 min. 100% A, 7-22 min. to 100% B, 22-30 min. 100% B, 30-33 min. to 100% A, 33-35 min. 100% A.

30 Evaporation of solvents normally took place under reduced pressure in a rotary evaporator at 35°C to 45°C.

Example 1

(S)-6-Amino-2-{3-[(R)-1-(3-methyl-butylcarbamoyl)-2-phenyl-ethyl]-ureido}-hexanoic acid hydrochloride

Example 1a)

5 tert-Butyl (R)-1-(3-methyl-butylcarbamoyl)-2-phenyl-ethyl]-carbamate
1-Hydroxybenzotriazole hydrate (1.685 g, 11 mmol) and N,N'-
dicyclohexylcarbodiimide (DCC, 2.270 g, 11 mmol) were successively added to a
solution of N-Boc-D-phenylalanine (2.653 g, 10 mmol) in tetrahydrofuran (THF)
(80 ml) and stirred at RT for 2 h. Subsequently, isoamylamine (1.162 ml, 10 mmol)
10 was added, and stirring was continued at RT. Leaving to stand overnight was
followed by filtration, concentration of the filtrate, taking up in ethyl acetate, renewed
filtration, successive washing with saturated NaHCO₃ solution and 1N HCl, and the
organic phase was dried over MgSO₄, filtered and concentrated.

LC/MS data: R_t(min.) 1.568; calculated (calc.): [M+H]⁺ = 335.47, found (found):

15 235.15 (- tert-butyloxycarbonyl during the measurement) (Method A)

Example 1b)

(R)-2-Amino-N-(3-methyl-butyl)-3-phenyl-propionamide

A solution of the crude product from Example 1a) (2.710 g, 8.103 mmol) in
dichloromethane/trifluoroacetic acid (TFA) (60 ml, 1:1 v/v) was stirred at RT for
20 30 min. The solution was concentrated, taken up in ethyl acetate and washed with
1N HCl. The aqueous phase was made weakly alkaline with potassium hydroxide
and extracted three times with ethyl acetate. The combined organic phases were
dried over MgSO₄, filtered and concentrated.

LC/MS data: R_t(min) 0.978; calc.: [M+H]⁺ = 235.35 found: 235.15 (method A)

25 Example 1c)

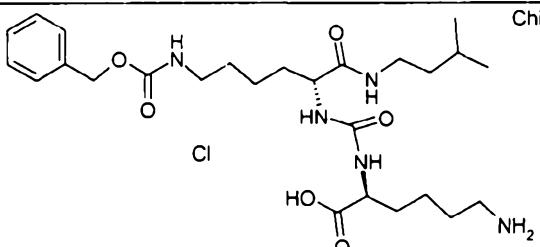
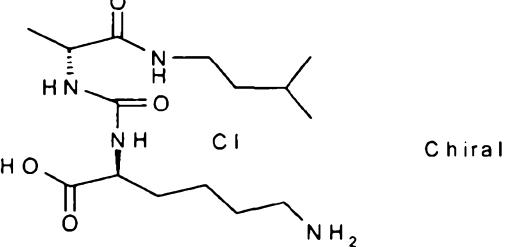
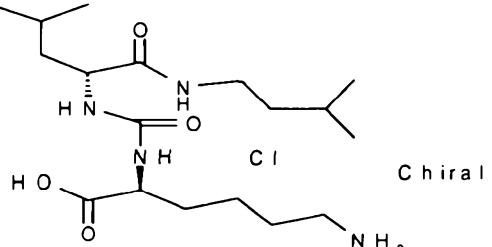
tert-Butyl (S)-6-tert-butoxycarbonylamino-2-{3-[(R)-1-(3-methyl-butylcarbamoyl)-2-
phenyl-ethyl]-ureido}-hexanoate

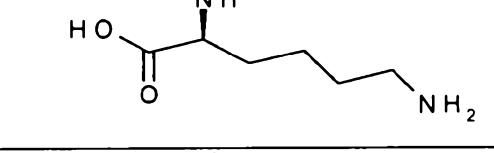
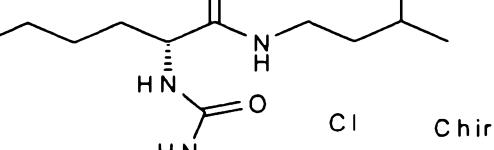
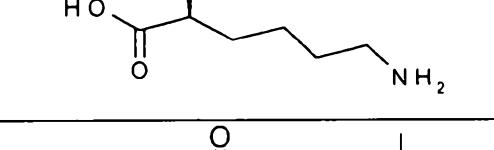
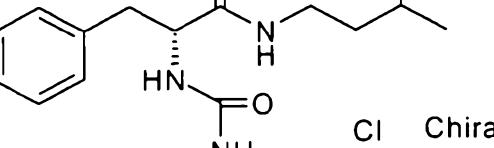
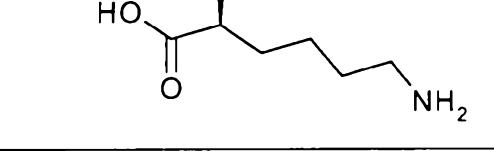
The crude product from Example 1b) (1.380 g, 5.889 mmol) was added to a solution
of 1,1'-carbonyldiimidazole (0.955 g, 5.889 mmol) in dimethylformamide (DMF)
30 (21 ml) and stirred at RT for 1h. Then triethylamine (1.633 ml, 11.780 mmol) and
tert-butyl (S)-2-amino-6-tert-butoxycarbonylaminohexanoate hydrochloride (1.996 g,
5.889 mmol) were added, and the mixture was left to stand at RT overnight. The
solution was concentrated and partitioned between water and ethyl acetate, and the
organic phase was dried over MgSO₄, filtered and concentrated. The resulting crude

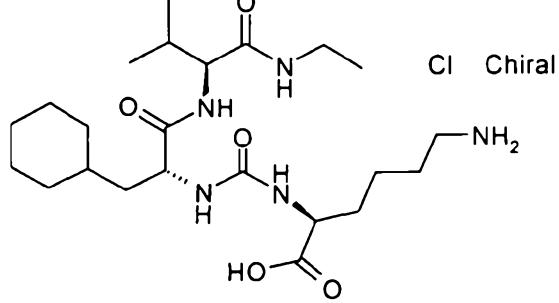
product was purified by preparative HPLC.

LC/MS data: R_t (min) 1.757; calc.: $[M+H]^+$ = 563.76 found: 563.35 (method A)

Example 1d)




(S)-6-Amino-2-{3-[(R)-1-(3-methyl-butylcarbamoyl)-2-phenyl-ethyl]-ureido}-hexanoic






5 acid hydrochloride


The product from Example 1c) (0.500 g, 0.889 mmol) was dissolved in dichloromethane/TFA (10 ml, 1:1, v/v) and stirred at RT for 2 h. The solution was concentrated and purified by preparative HPLC. The combined product fractions were mixed with 2N HCl, concentrated and freeze dried.

10 LC/MS data: R_t (min) 0.971; calc.: $[M+H]^+$ = 407.54 found: 407.30 (method A)

The following examples were prepared in analogy to Example 1:

Example	Formula	LC/MS method	R_t	$[M+H]^+$ calc.	$[M+H]^+$ found
2		A	1.067 min	522.66	522.35
3		A	0.788 min	331.43	331.25
4		A	0.974 min	373.51	373.25

5	 Cl Chiral	A	0.931 min	359.48	359.25
6	 Cl Chiral	A	0.980 min	373.51	373.25
7	 Cl Chiral	A	1.021 min	407.53	407.25
8	 Cl Chiral	A	0.943 min	393.5	393.25
9	 Chiral Cl	A	1.052 min	579.71	579.35

10	 Cl Chiral	A	1.042 min	470.63	470.35
----	--	---	-----------	--------	--------

Example 11

(S)-6-Amino-2-{3-[(R)-2-cyclohexyl-1-(2,4-difluoro-benzylcarbamoyl)-ethyl]-ureido}-hexanoic acid

5 Example 11a)

(R)-2-Amino-3-cyclohexylpropanoic acid trifluoroacetate

5 ml of TFA were added to a solution of (R)-N-Boc-2-amino-3-cyclohexylpropanoic acid (3.0 g, 11.1 mmol) in 20 ml of CH_2Cl_2 , and the mixture was stirred at RT overnight. After deprotection was complete, the CH_2Cl_2 was evaporated off, and the 10 remaining solid was mixed with 50 ml of H_2O and lyophilized. Yield: 2.84 g (90%) of (R)-2-amino-3-cyclohexylpropanoic acid trifluoroacetate as colorless solid.

Example 11b)

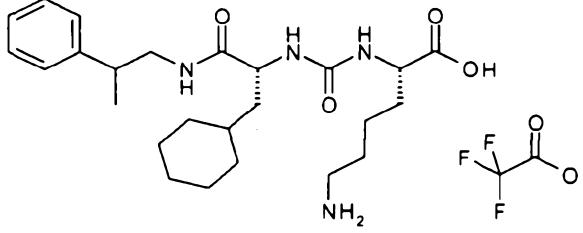
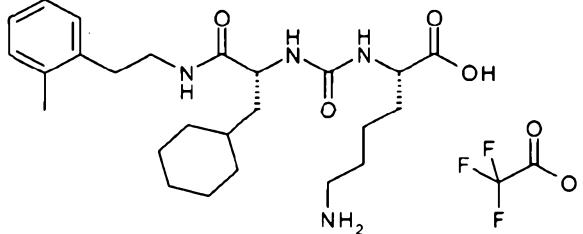
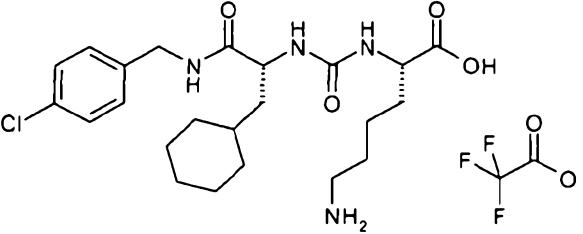
tert-Butyl (S)-6-tert-butoxycarbonylamino-2-[3-((R)-1-carboxy-2-cyclohexyl-ethyl)-ureido]-hexanoate

15 Commercial tert-butyl (S)-2-amino-6-tert-butoxycarbonylaminohexanoate hydrochloride (1.95 g, 5.75 mmol) was mixed in 30 ml of DMF with NEt_3 (0.8 ml, 5.754 mmol) and 1,1'-carbonyldiimidazole (0.933 g, 5.754 mmol) and stirred at RT for 30 min. Then (R)-2-amino-3-cyclohexylpropanoic acid trifluoroacetate (1.64 g, 5.754 mmol) and NEt_3 (1.6 ml, 11.5 mmol) were added, and the mixture was heated 20 at 80°C until the imidazolide formed as intermediate was completely converted. The product was purified by flash chromatography on silica gel ($\text{CH}_2\text{Cl}_2/\text{MeOH}$ gradient). Yield: 2.1 g (73%) of tert-butyl (S)-6-tert-butoxycarbonylamino-2-[3-((R)-1-carboxy-2-cyclohexylethyl)-ureido]-hexanoate.

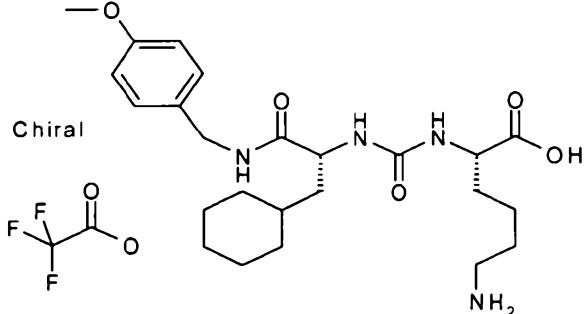
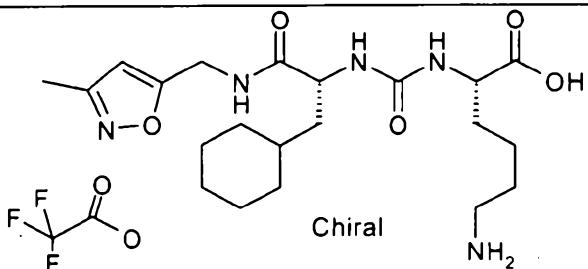
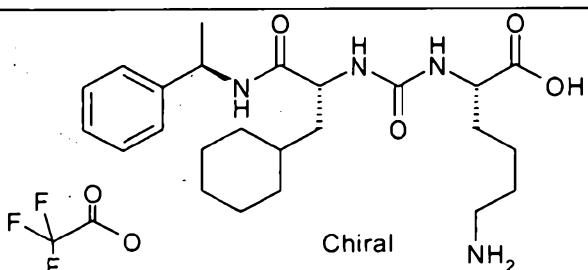
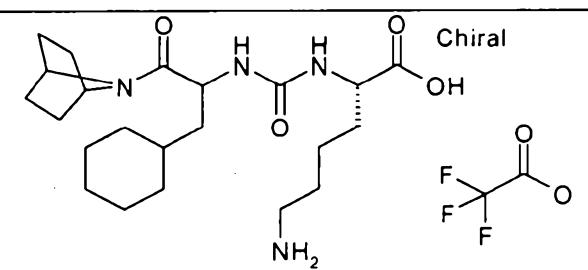
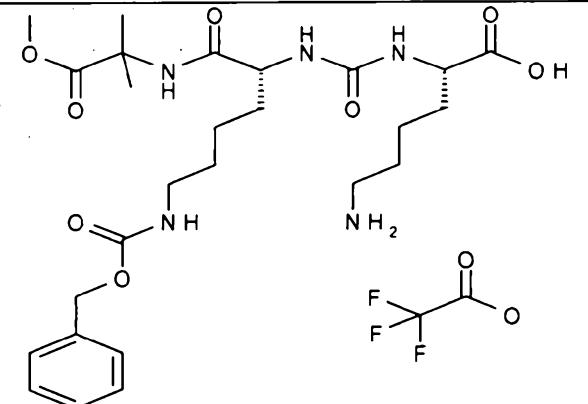
Example 11c)

25 (S)-6-Amino-2-{3-[(R)-2-cyclohexyl-1-(2,4-difluoro-benzylcarbamoyl)-ethyl]-ureido}-hexanoic acid trifluoroacetate

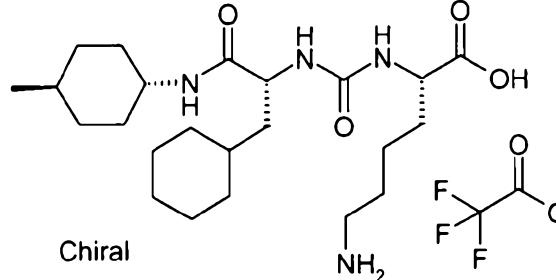
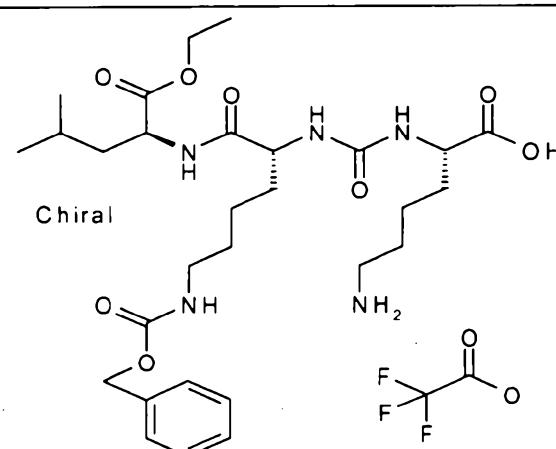
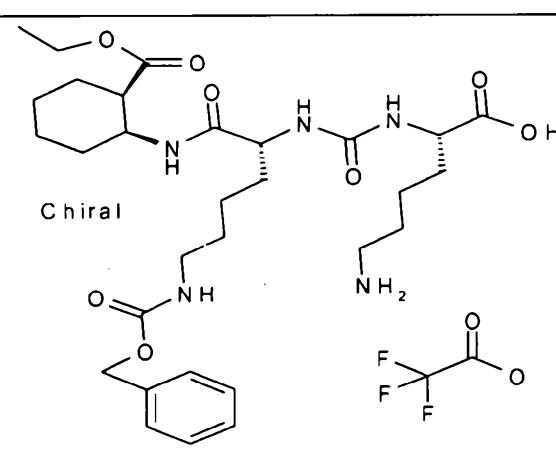
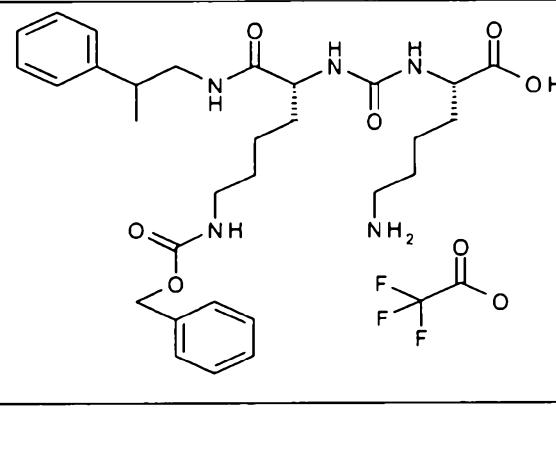
N-Methylmorpholine (53 μl , 0.48 mmol), 1-hydroxybenzotriazole (28 mg,

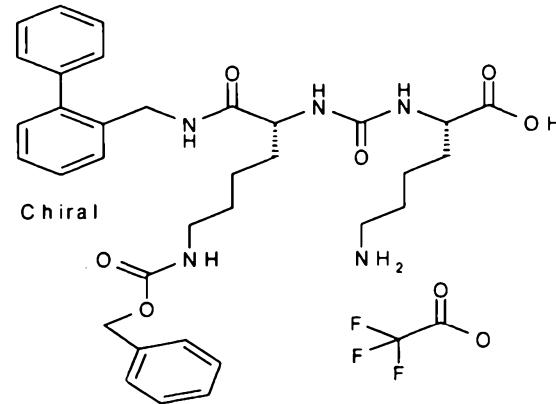
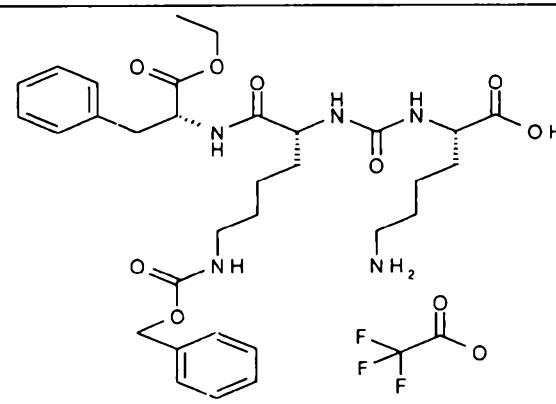
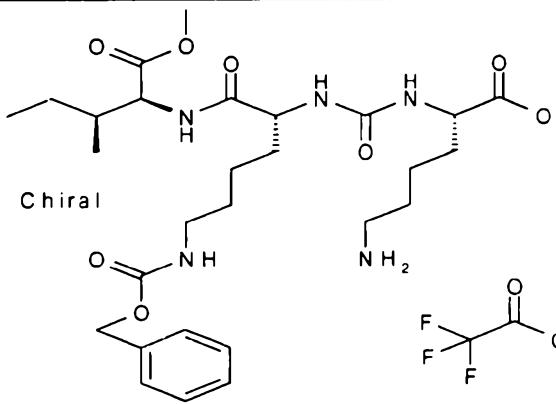
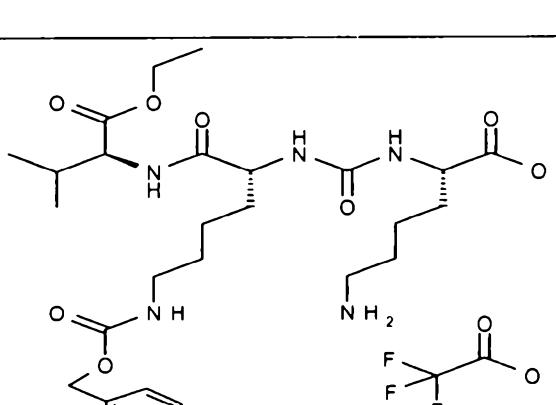



0.208 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride

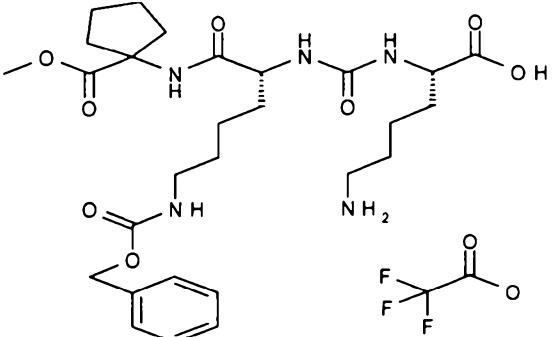
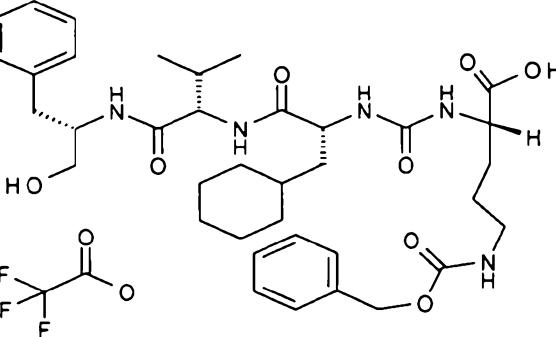
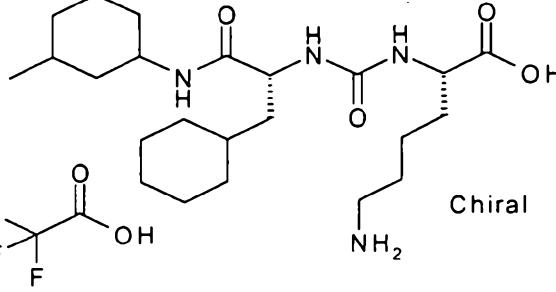
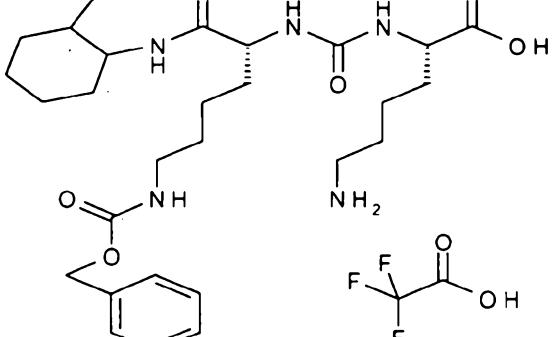
(36.8 mg, 0.192 mmol) were added in the stated sequence to a solution of tert-butyl (S)-6-tert-butoxycarbonylamino-2-[3-((R)-1-carboxy-2-cyclohexyl-ethyl)-ureido]-hexanoate (80 mg, 0.16 mmol) and 2,4-difluorobenzylamine (22.9 mg, 0.16 mmol) in 3 ml of CH_2Cl_2 and 1 ml of DMF, and the mixture was stirred at RT for about 14 h.

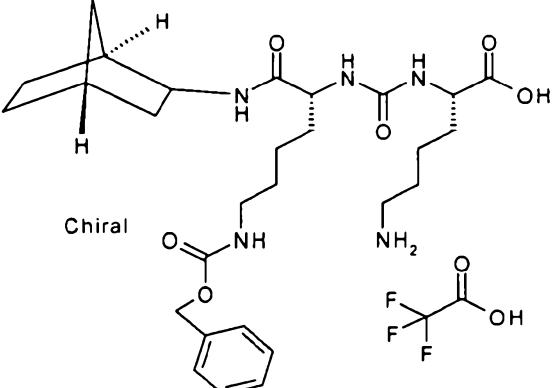
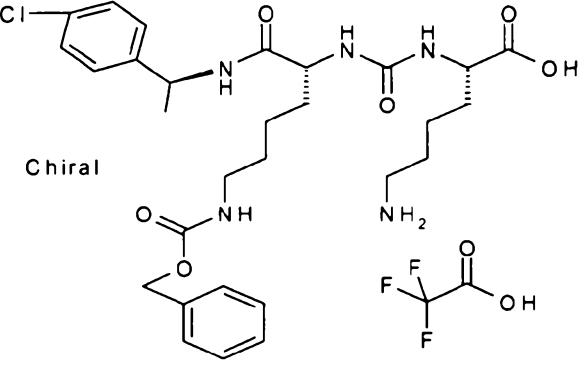
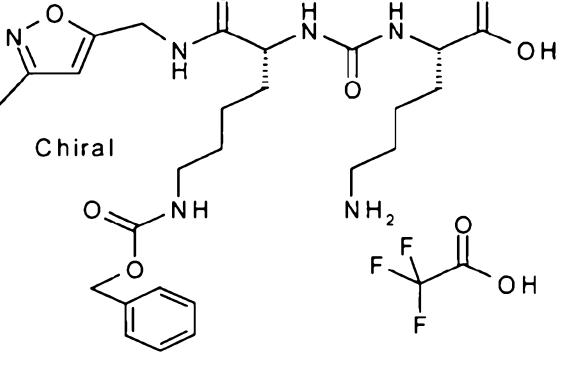
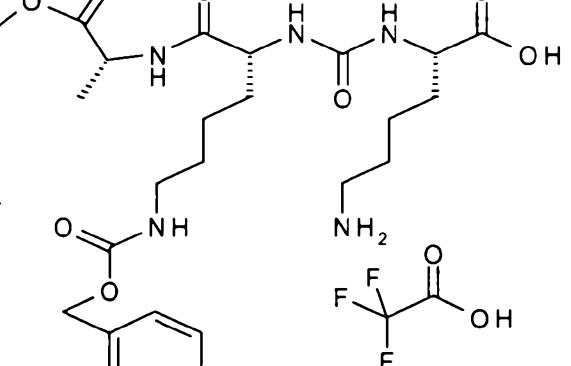





5 Extraction with $\text{CH}_2\text{Cl}_2/\text{H}_2\text{O}$, drying of the organic phase with MgSO_4 and evaporation afforded tert-butyl (S)-6-tert-butoxycarbonylamino-2-{3-[(R)-2-cyclohexyl-1-(2,4-difluorobenzylcarbamoyl)-ethyl]-ureido}-hexanoate as crude product. The entire crude product was dissolved in 4 ml of CH_2Cl_2 , 1 ml of TFA was added and, after 4 h, a further 0.5 ml of TFA was added, and deprotection was

10 carried out at RT for about 10 h. Purification of the deprotected crude product by preparative HPLC afforded 25 mg (27%) of (S)-6-amino-2-{3-[(R)-2-cyclohexyl-1-(2,4-difluorobenzylcarbamoyl)-ethyl]-ureido}-hexanoic acid trifluoroacetate.

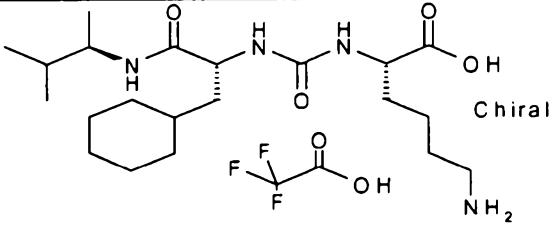
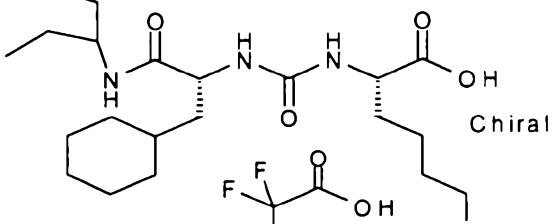
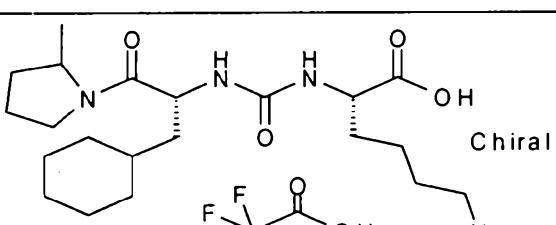
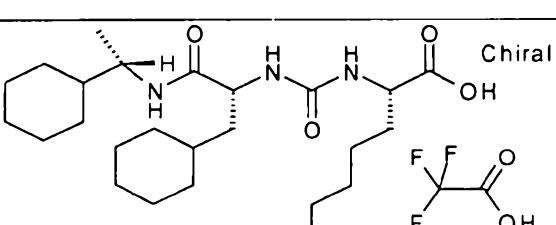
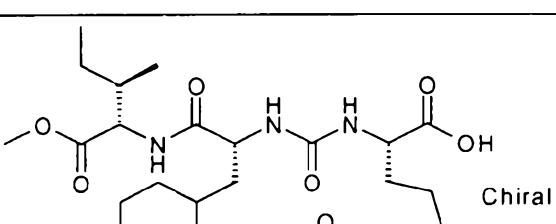
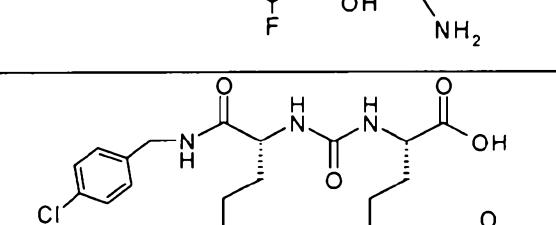




The following examples were prepared in analogy to Example 11::

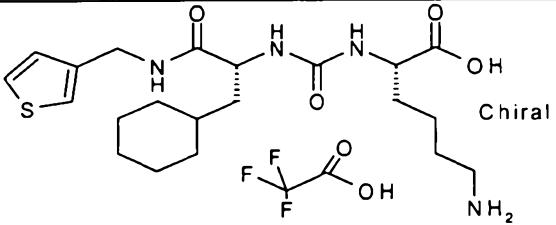
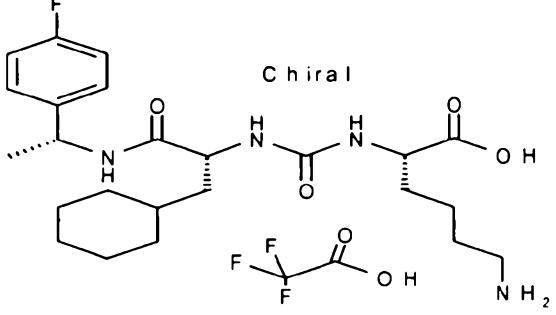
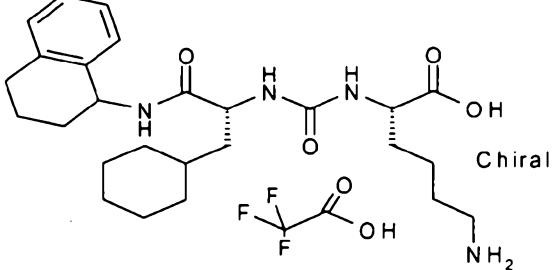
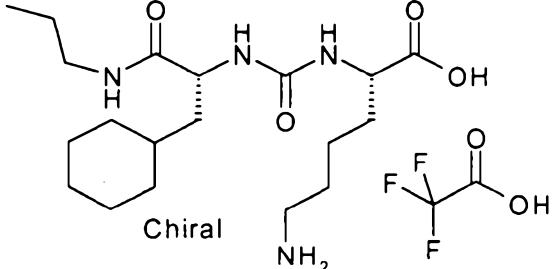
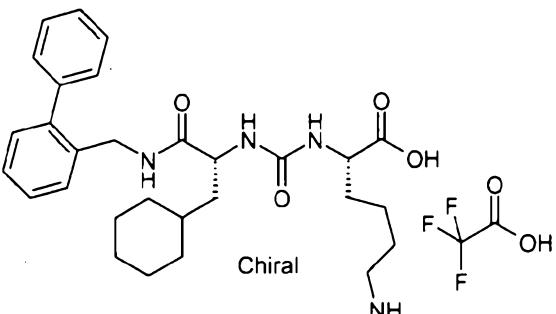
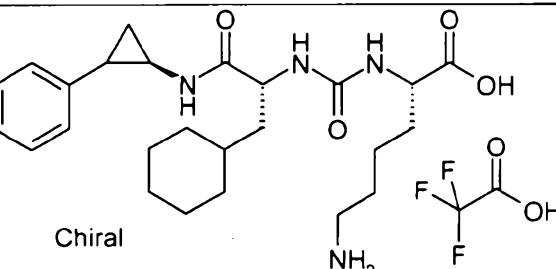




Example	Formula	LC/MS Method	R_t	$[\text{M}+\text{H}]^+$ calc.	$[\text{M}+\text{H}]^+$ found
12		B	1.33 min	461.31	461.28
13		B	1.33 min	461.31	461.29
14		B	1.50 min	467.24	467.43

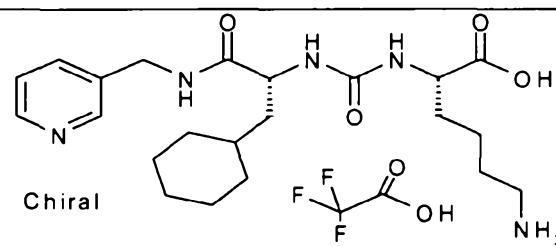
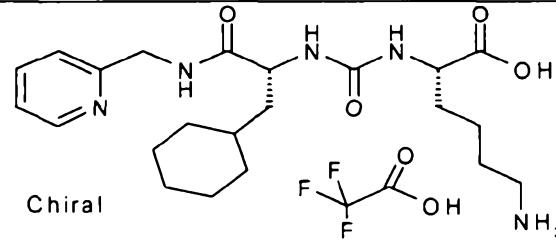
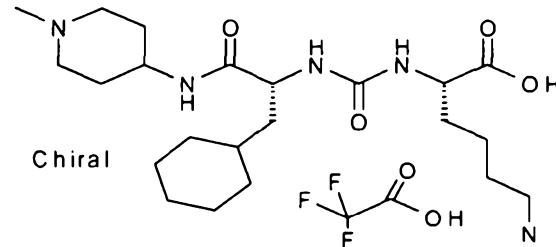
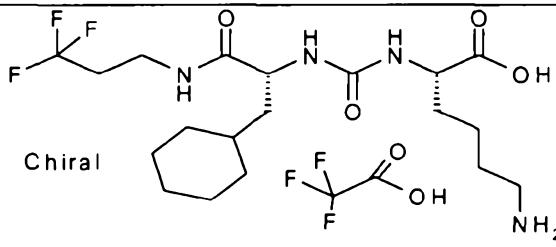
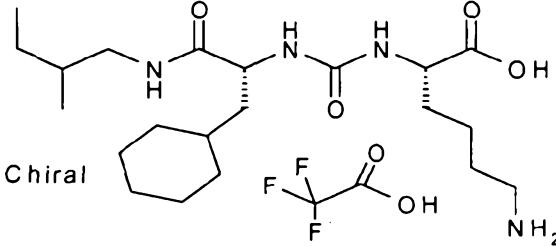
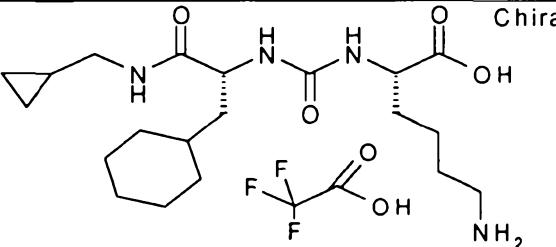
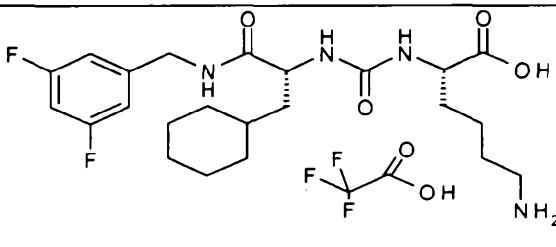




15		B	1.33 min	447.29	447.25
16		B	1.33 min	437.31	437.27
17	<p>Chiral</p>			¹ H-NMR (400MHz, DMSO-d ₆): 13.0-12.0 (br., 1H), 8.38 (d, 1H), 6.34 (d, 1H), 6.20 (d, 1H), 4.30-4.20 (m, 2H), 4.12-4.08 (m, 1H), 3.61 (s, 3H), 2.80-2.70 (m, 2H), 1.80-1.05 (m, 22H), 0.95-0.78 (m, 2H).	
18		B	1.34 min	461.31	461.29
19		B	1.31 min	439.32	439.31
20		B	1.35 min	481.25	481.23

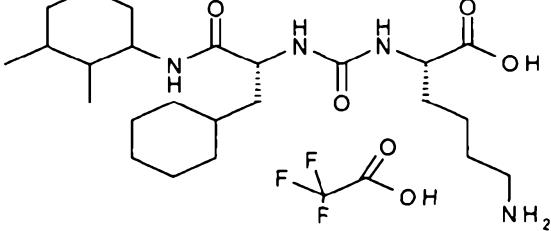
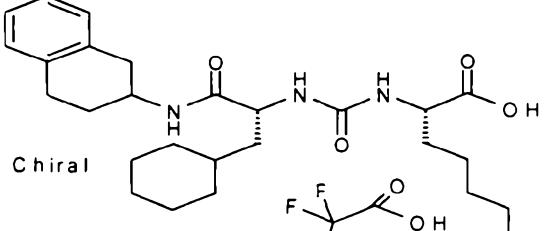
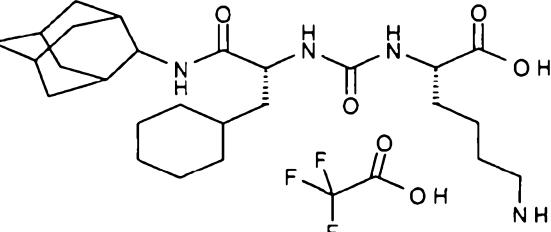
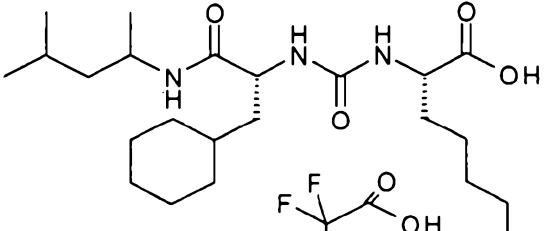
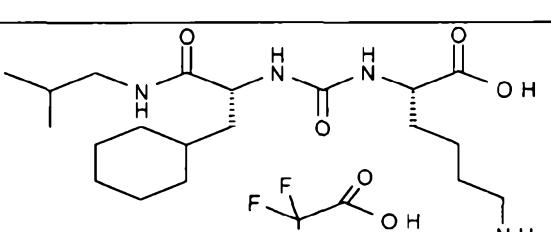
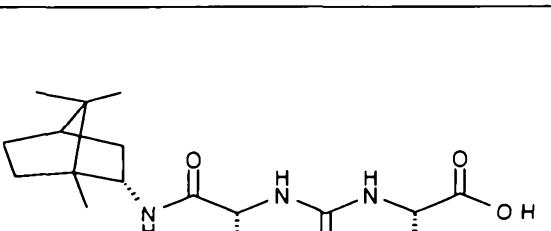




21	<p>Chiral</p>	B	1.24 min	463.29	463.28
22	<p>Chiral</p>	B	1.12 min	438.27	438.27
23	<p>Chiral</p>	B	1.31 min	447.29	447.27
24	<p>Chiral</p>	B	1.18 min	423.29	423.32
25		B	1.15 min	552.30	552.21

26	 Chiral	B	1.35 min	461.31	461.30
27	 Chiral	B	1.33 min	427.33	427.33
28	 Chiral	B	1.46 min	523.32	523.34
29	 Chiral	B	1.23 min	413.31	413.31
30	 Chiral	B	1.28 min	491.28	491.29







31	<p>Chiral</p>	B	1.35 min	439.32	439.32
32	<p>Chiral</p>	B	1.35 min	594.35	594.29
33	<p>Chiral</p>	B	1.33 min	606.35	606.31
34		B	1.33 min	570.32	570.26

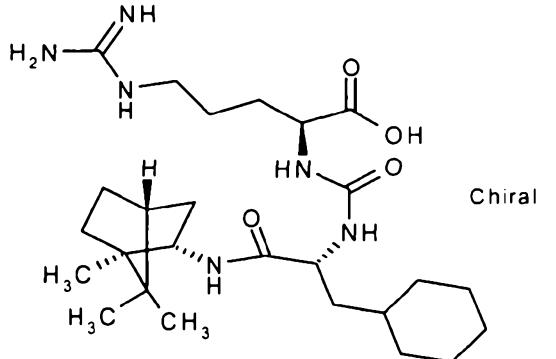
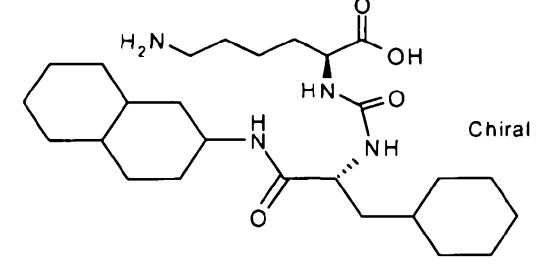
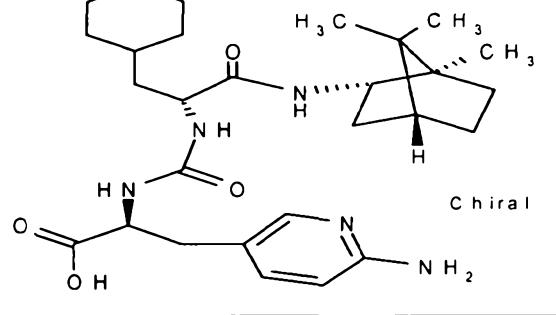
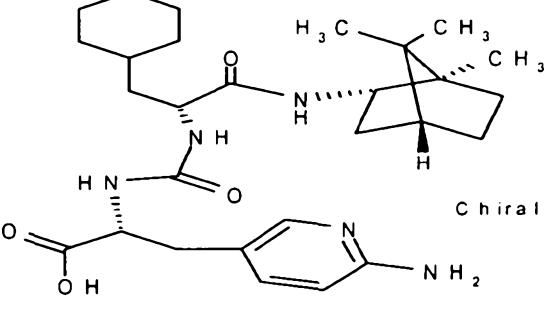






35		B	1.43 min	618.32	618.24
36		B	1.37 min	628.33	628.26
37		B	1.30 min	580.33	580.25
38		B	1.28 min	580.33	580.23

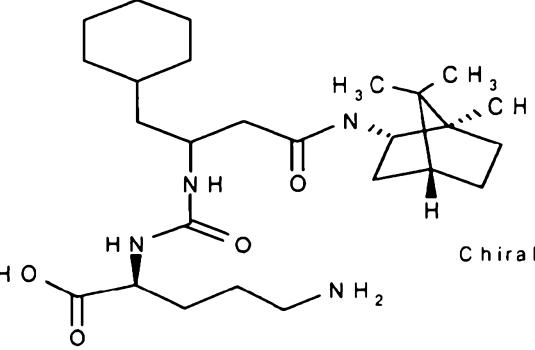
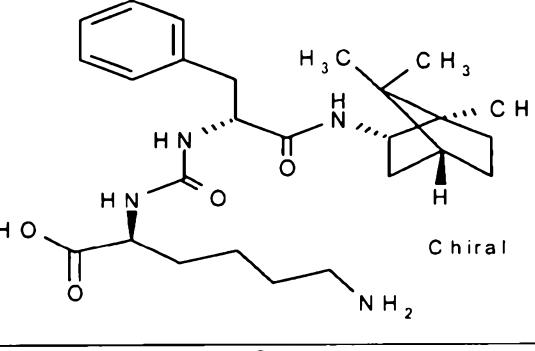
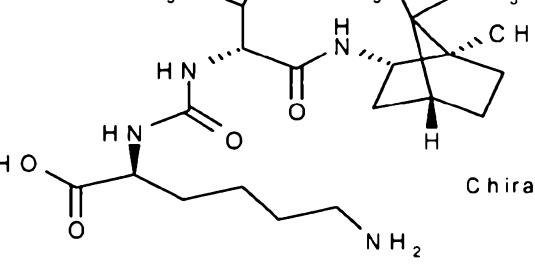
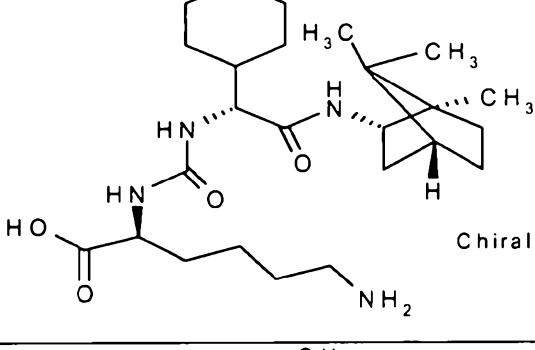
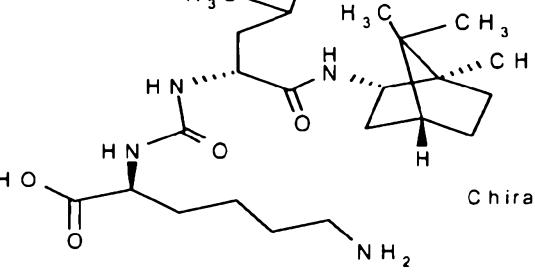







39		B	1.23 min	578.32	578.29
40		B	1.84 min	696.39	696.40
41		B	1.33 min	439.32	439.31
42		B	1.30 min	548.34	548.43

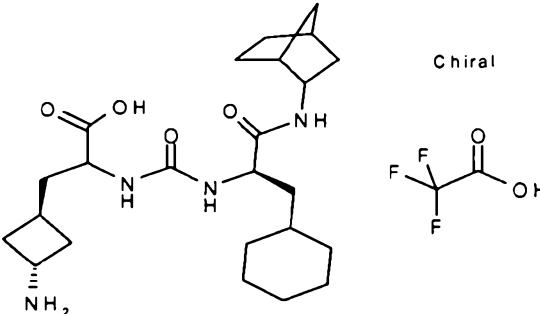
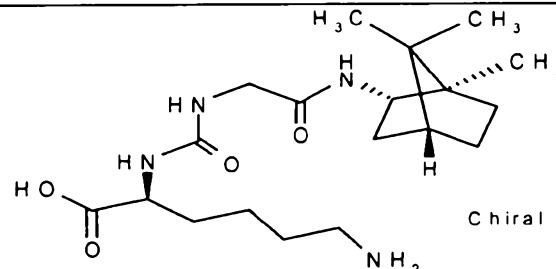
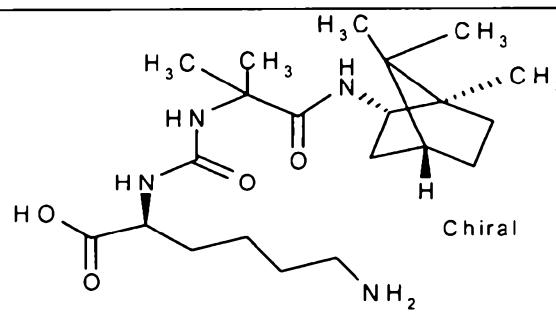
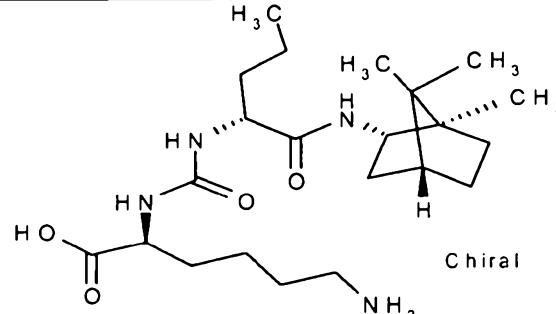
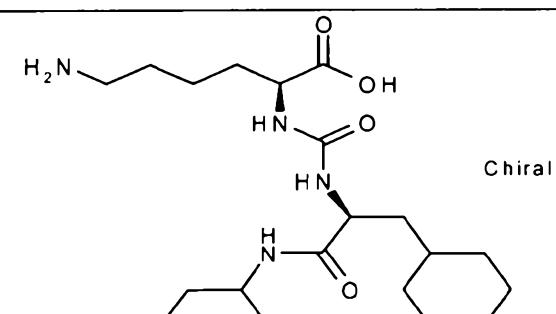






43	<p>Chiral</p>	C	1.45 min	544.31	544.32 [M-H] ⁺
44	<p>Chiral</p>	B	1.37 min	590.27	590.44
45	<p>Chiral</p>	B	1.12 min	547.28	547.40
46		B	1.18 min	538.28	538.35

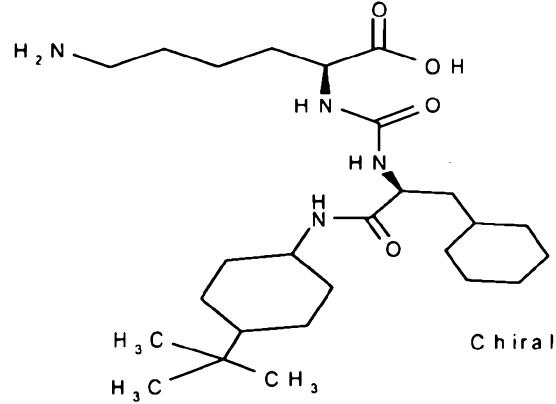
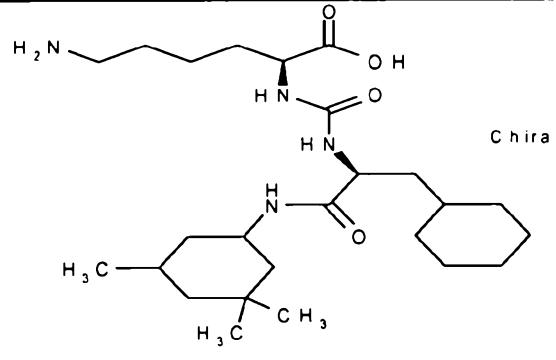
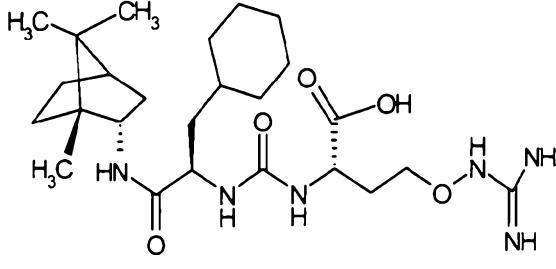
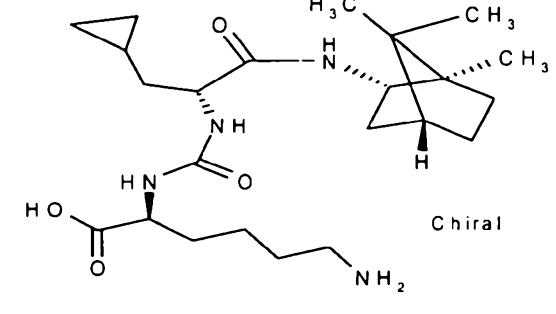
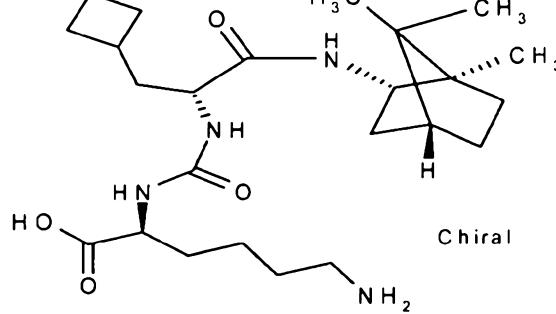
47	<p>Chiral</p>	B	1.30 min	556.31	556.35
48	<p>Chiral</p>	B	1.38 min	570.32	570.47
49		B	1.29 min	471.31	471.42
50	<p>Chiral</p>	B	1.37 min	519.31	519.35
51	<p>Chiral</p>	B	1.20 min	439.23	439.30
52	<p>Chiral</p>	B	1.03 min	383.26	383.33

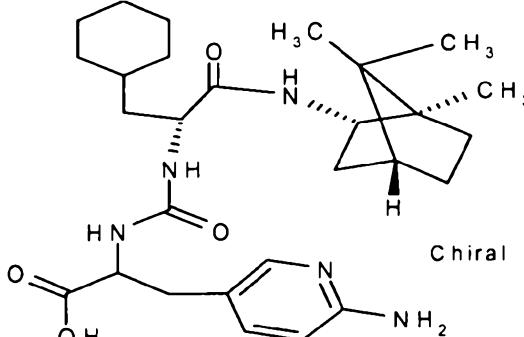
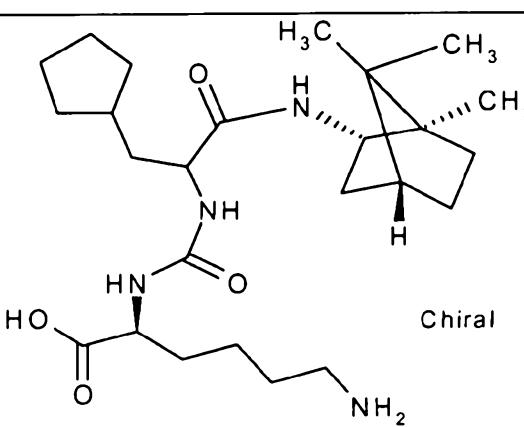
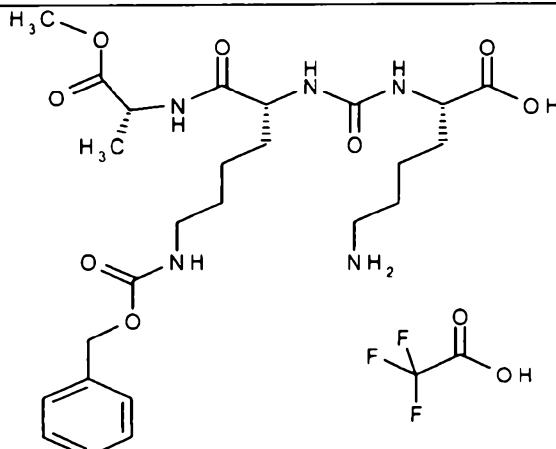
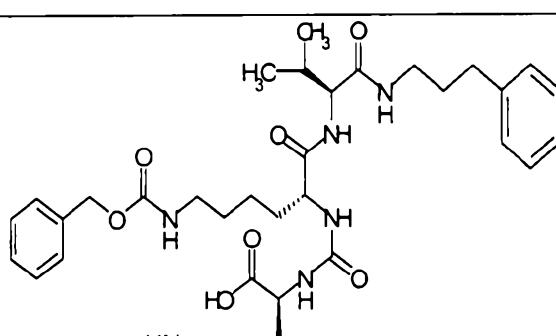
53		B	1.23 min	413.31	413.37
54		B	1.21 min	413.31	413.37
55		B	1.17 min	411.29	411.37
56		B	1.36 min	453.34	453.40
57		B	1.29 min	471.31	471.43
58		B	1.38 min	576.25	576.45






59		B	1.22 min	439.23	439.31
60		B	1.30 min	465.28	465.36
61		B	1.35 min	473.31	473.38
62		B	1.11 min	385.28	385.35
63		B	1.42 min	509.31	509.36
64		B	1.33 min	459.29	459.36

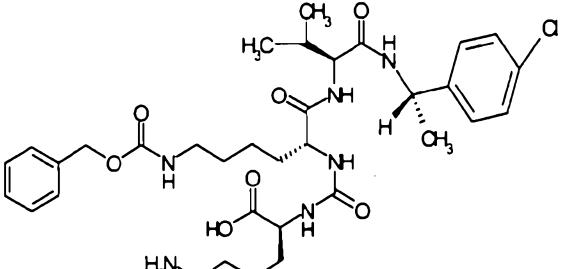
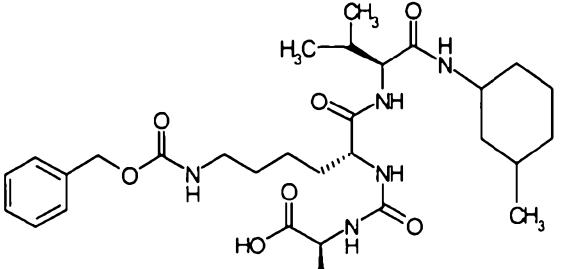
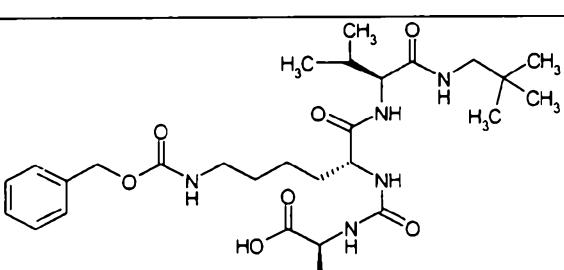
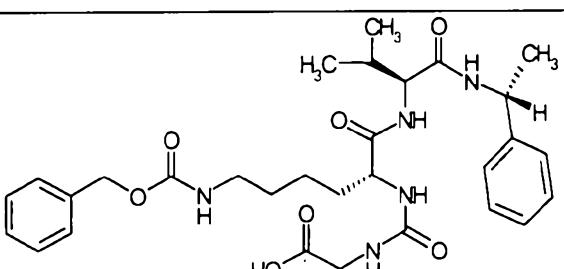
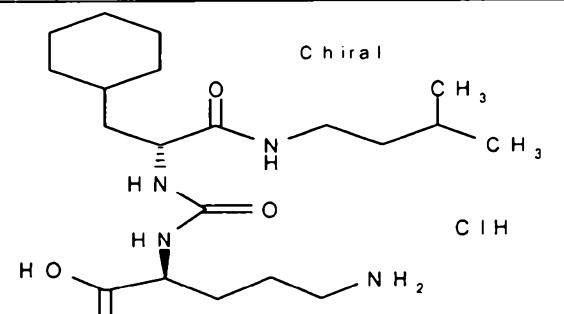





65		B	0.95 min	434.27	434.38
66		B	0.87 min	434.27	434.38
67		B	0.82 min	440.32	440.44
68		B	1.18 min	439.25	439.33
69		B	1.26 min	413.31	413.39
70		B	1.22 min	397.28	397.35
71		B	1.29 min	469.26	469.29

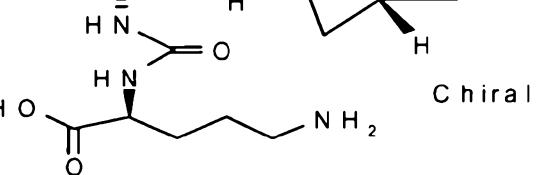
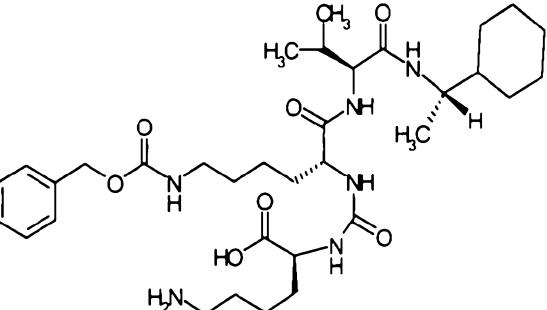
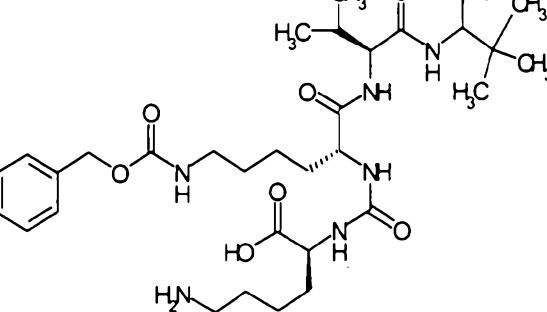
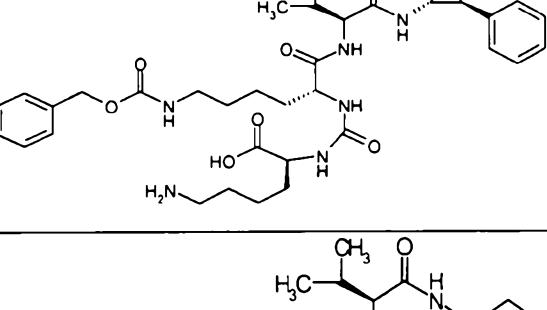
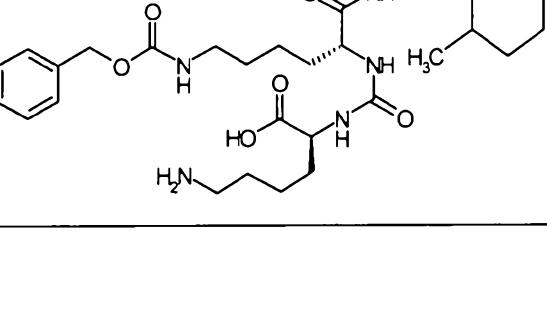





72		C	1.54-1.60	451.33	451.35 [M-H] ⁻
73		B	1.38 min	473.31	473.31
74		C	1.58-1.72	475.33	475.32 [M-H] ⁻
75		C	1.46 min	425.31	425.35 [M-H] ⁻
76		C	1.33 min	397.28	397.24 [M-H] ⁻
77		C	1.60 min	477.34	477.36 [M-H] ⁻
				500 MHz ¹ H-NMR (d ₆ -DMSO): δ = 7.88 (s, br, 3H), 7.63 (d, 1H), 6.40 (d, 1H), 6.29 (d, 1H), 4.26-4.19 (m, 1H), 4.12-4.07 (m, 1H), 4.03-3.99 (m, 1H), 2.79-2.70 (m, 2H), 2.13-2.07 (m, 1H), 1.78-1.46 (m, 22H), 0.90-0.80 (m, 3H), 0.88 (s, 3H), 0.79	






				(s, 3H), 0.68 (s, 3H)		
78		C	1.64 min	489.34 [M-H] ⁻	489.27 [M-H] ⁻	
79		C	1.61 min	475.32 [M-H] ⁻	475.25 [M-H] ⁻	
80		C	1.34 min	441.27 [M-H] ⁻	441.35 [M-H] ⁻	
81		C	1.43 min	423.30 [M-H] ⁻	423.44 [M-H] ⁻	
82		B	0.94 min	434.28	434.28	
83		C	1.28 min	453.27 [M-H] ⁻	453.33 [M-H] ⁻	





84		C	1.72 min	491.36 [M-H] ⁺	491.38 [M-H] ⁺
85		C	1.55 min	471.30 [M-H] ⁺	471.30 [M-H] ⁺
86		C	1.68 min	479.36 [M-H] ⁺	479.47 [M-H] ⁺
87		B	1.15 min	397.28	397.33
88		B	1.38 min	472.29	472.32
89		B	1.06 min	487.30	487.38

90		C	1.48 min	447.30 [M-H] ⁻	447.40 [M-H] ⁻
91		D	2.13 min	507.37	507.40
92		D	2.16 min	479.36	479.36
93		A	1.21 min	514.69	514.45
94		A	1.20 min	514.69	514.45
				$400\text{ MHz } ^1\text{H-NMR (d}_6\text{-DMSO): } \delta =$ $7.93\text{ (s, br, 2H), 7.78 (d, 1H), 7.72$ $(s, 1H), 7.68 (d, 1H), 6.91 (d, 1H),$ $6.42 (d, 1H), 6.23 (d, 1H), 4.34 (dd,$ $1H), 4.17 (dd, 1H), 4.04-3.97 (m,$ $1H), 2.93 (dd, 1H), 2.71 (dd, 1H),$ $2.14-2.05 (m, 1H), 1.71-1.53 (m,$ $8H), 1.42-1.02 (m, 8H), 0.90-0.77$ $(m, 3H), 0.88 (s, 3H), 0.82 (s, 3H),$	






			0.68 (s, 3H)			
95	<p>Chiral</p>	A	1.13 min	479.69	479.45	
96	<p>Chiral</p>	A	1.10 min	473.64	473.45	
97	<p>Chiral</p>	A	1.01 min	425.35	425.60	
98	<p>Chiral</p>	A	1.11 min	465.66	465.40	
99	<p>Chiral</p>	A	1.05 min	439.62	439.25	






100		C	1.48 min	447.60	447.40
101		A	0.90 min	383.25	383.25
102		A	0.93 min	411.57	411.25
103		A	1.04 min	425.60	425.25
104		B	1.35 min	439.33	439.52

105		B	1.56 min	481.38	481.58
106		B	1.47 min	467.36	467.56
107		B	1.51 min	509.67	509.44
108		A	1.05 min	437.61	437.25
109		A	1.10 min	451.63	451.25

110	<p>Chiral</p>	A	1.22 min	514.69	514.25
111	<p>Chiral</p>	A	1.13 min	465.66	465.30
112		B	1.18 min	538.63	538.35
113		C	1.60 min	669.85	669.57

114		C	1.53 min	645.83	645.52
115		B	1.53 min	645.83	645.52
116		C	1.38 min	591.73	591.45
117		C	1.60 min	727.89	727.50
118		C	1.53 min	679.84	679.53

119		C	1.61 min	690.27	689.48 690.26
120		C	1.57 min	647.84	647.53
121		C	1.51 min	621.80	621.54
122		C	1.53 min	655.82	655.54
123		A	1.01 min	399.56	399.25

124	<p>Chiral</p>	A	1.17 min	465.66	465.35
125		C	1.61 min	661.87	661.55
126		C	1.54 min	635.83	635.57
127		C	1.57 min	667.83	667.50
128		C	1.55 min	647.84	647.53

129		C	1.57 min	676.24	675.45 677.46
-----	--	---	----------	--------	------------------

Example 130:

(S)-6-Amino-2-{3-[(R)-5-benzyloxycarbonylamino-1-((S)-1-carbamoyl-2-methylpropylcarbamoyl)-pentyl]-ureido}-hexanoic acid

5 Example 130a)

Benzyl [(R)-5-tert-butoxycarbonylamino-5-((S)-1-carbamoyl-2-methylpropylcarbamoyl)-pentyl]-carbamate

N-Methylmorpholine (0.87 ml, 7.9 mmol), 1-hydroxybenzotriazole (0.46 g,

3.41 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride

10 (0.65 g, 3.41 mmol) were added in this sequence to a solution of commercially available (R)-6-benzyloxycarbonylamino-2-tert-butoxycarbonylamino-hexanoic acid (1 g, 2.63 mmol) and commercially available (S)-2-amino-3-methylbutyramide hydrochloride (0.40 g, 2.63 mmol) in 12 ml of CH_2Cl_2 and 4 ml of DMF, and the mixture was stirred at RT for about 14 h. Flash chromatography (gradient

15 heptane/AcOEt to CH_2Cl_2 /MeOH) afforded 1 g of the product (79%).

Example 130b)

Benzyl [(R)-5-amino-5-((S)-1-carbamoyl-2-methyl-propylcarbamoyl)-pentyl]-carbamate hydrochloride

A solution of benzyl [(R)-5-tert-butoxycarbonylamino-5-((S)-1-carbamoyl-2-methyl-

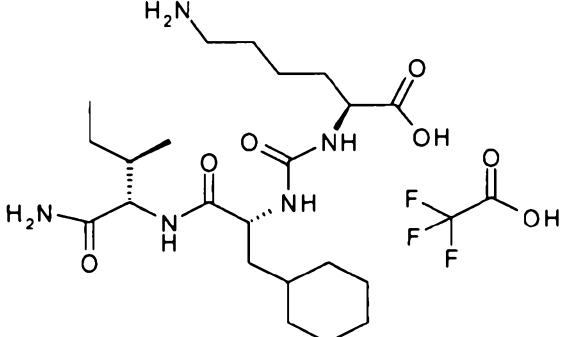
20 propylcarbamoyl)-pentyl]-carbamate (1 g, 2.09 mmol) in 30 ml of CH_2Cl_2 was mixed with 5 ml of H_2O and 5 ml of conc. HCl/ H_2O and heated at 40°C until the Boc protective group was completely eliminated. Extraction with H_2O / CH_2Cl_2 , drying of the organic phase over MgSO_4 and evaporation afforded 230 mg (27%) of the product.

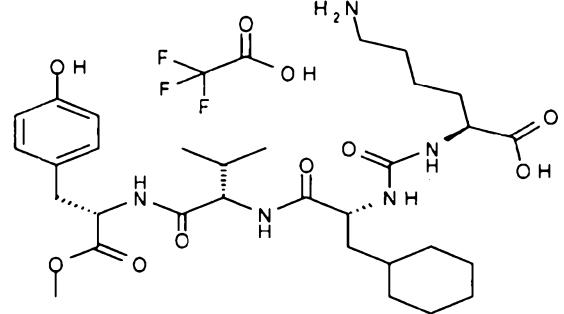
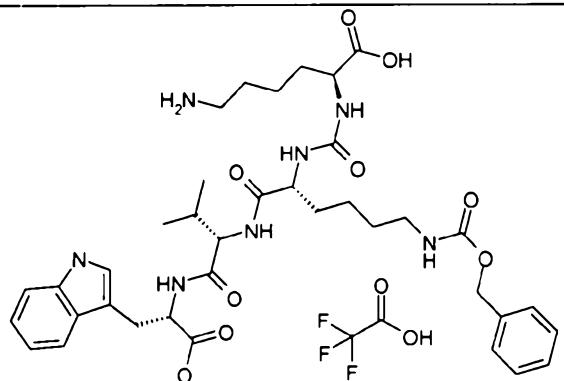
25 Example 130c)

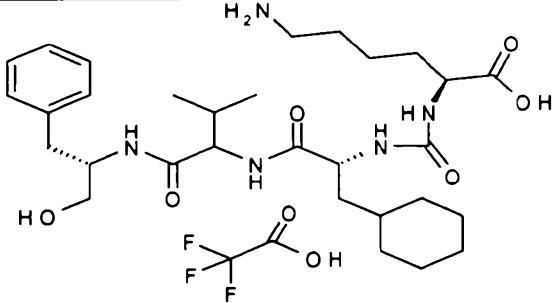
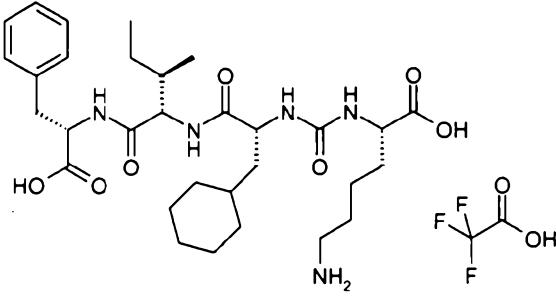
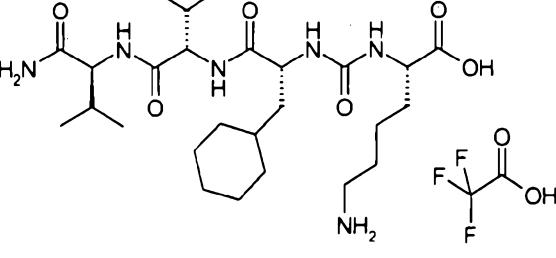
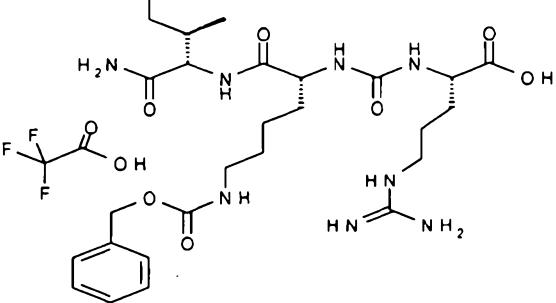
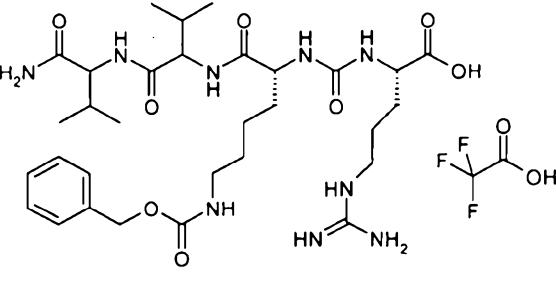
tert-Butyl (S)-2-{3-[(R)-5-benzyloxycarbonylamino-1-((S)-1-carbamoyl-2-methyl-propylcarbamoyl)-pentyl]-ureido}-6-tert-butoxycarbonylamino-hexanoate trifluoroacetate

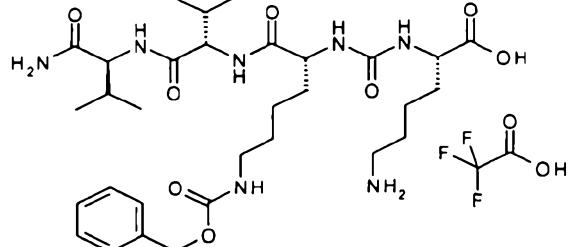
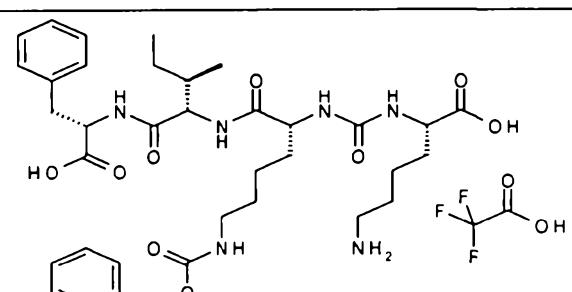
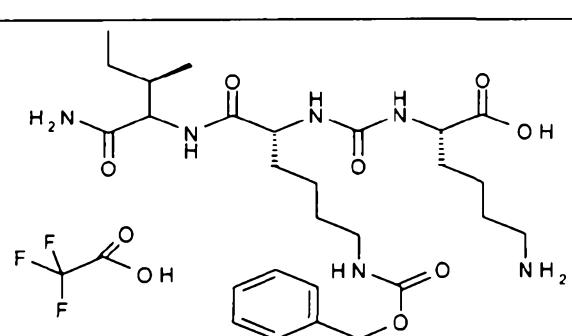
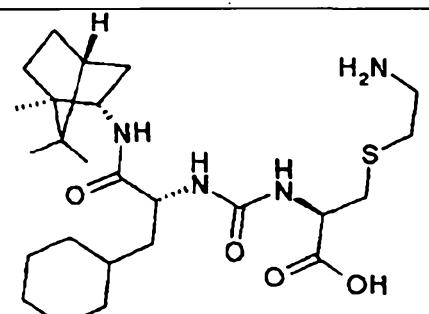
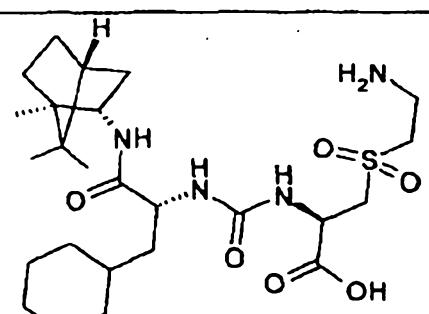
Commercially available tert-butyl (S)-2-amino-6-tert-butoxycarbonylaminohexanoate

hydrochloride (89 mg, 0.26 mmol) was mixed in 4 ml of DMF with NEt₃ (0.12 ml, 0.53 mmol) and 1,1'-carbonyldiimidazole (43 mg, 0.26 mmol) and stirred at RT for 1 h. Then benzyl [(R)-5-amino-5-((S)-1-carbamoyl-2-methylpropylcarbamoyl)-pentyl]-carbamate hydrochloride (100 mg, 0.24 mmol) was added and the mixture was





5 heated at 80°C until the imidazolide formed as intermediate was completely converted. Preparative HPLC afforded 76 mg (39%) of tert-butyl (S)-2-{3-[(R)-5-benzyloxycarbonylamino-1-((S)-1-carbamoyl-2-methylpropylcarbamoyl)-pentyl]-ureido}-6-tert-butoxycarbonylaminohexanoate trifluoroacetate.






Example 130d)






10 (S)-6-Amino-2-{3-[(R)-5-benzyloxycarbonylamino-1-((S)-1-carbamoyl-2-methylpropylcarbamoyl)-pentyl]-ureido}-hexanoic acid trifluoroacetate
tert-Butyl (S)-2-{3-[(R)-5-benzyloxycarbonylamino-1-((S)-1-carbamoyl-2-methylpropylcarbamoyl)-pentyl]-ureido}-6-tert-butoxycarbonylaminohexanoate trifluoroacetate (37 mg, 0.045 mmol) was dissolved in 5 ml of CH₂Cl₂ and 1 ml of
15 TFA and stirred at RT for 14 h. Preparative HPLC afforded 21 mg (70%) of (S)-6-amino-2-{3-[(R)-5-benzyloxycarbonylamino-1-((S)-1-carbamoyl-2-methylpropylcarbamoyl)-pentyl]-ureido}-hexanoic acid trifluoroacetate.

LC/MS: R_t (min) = 1.17 calc.: [M+H]⁺ = 551.32, found: 551.31 (method B).

The following examples were prepared in analogy to Example 130:

Example	Formula	LC/MS Method	R _t	[M+H] ⁺ calc.	[M+H] ⁺ found
131		B	1.24 min	456.31	456.30
132		B	1.18 min	565.33	565.31
133		B	1.36 min	620.36	620.30
134		B	1.43 min	752.39	752.27

135		B	1.33 min	576.37	576.35
136		B	1.35 min	604.37	604.33
137		B	1.16 min	541.37	541.34
138		B	1.19 min	593.34	593.37
139		B	1.18 min	678.39	678.44

140		B	1.20 min	650.38	650.40
141		B	1.34 min	713.38	713.39
142		B	1.16 min	565.33	565.35
142a	 Cl	D	2.86 min	497.32	497.23
142b	 Cl	D	2.77 min	529.31	529.15

Example 143

(S)-6-Amino-2-(3-[(S)-1-[(S)-1-((S)-1-methoxycarbonyl-2-methyl-propylcarbamoyl)-2-methyl-propylcarbamoyl]-2-phenyl-ethyl}-sulfamidyl)-hexanoic acid

5 Example 143a)

Methyl (S)-2-((S)-2-amino-3-methylbutyrylamino)-3-methylbutyrate

600 mg (1.65 mmol) of commercially available methyl (S)-2-((S)-2-benzyloxy-carbonylamino-3-methylbutyrylamino)-3-methylbutyrate (Z-Val-Val-OMe) was dissolved in 10 ml of methanol, mixed with 20 mg of palladium on carbon (10%) and 10 stirred under a hydrogen atmosphere (1 bar) at RT for 2 h. The reaction mixture was filtered and concentrated and afforded the title compound quantitatively.

LC/MS: R_t (min) 0.85; calc.: $[M+H]^+$ 231.17 found: 231.16 (method B).

Example 143b)

Methyl (S)-2-[(S)-2-((S)-2-benzyloxycarbonylamino-3-phenyl-propionylamino)-3-

15 methylbutyrylamino]-3-methylbutyrate

247mg of Z-Phe-OH (0.825 mmol, 1 eq) were dissolved in 10 ml of dry DMF at 0°C under argon. Then 56 mg of 1-hydroxybenzotriazole (0.5 eq), 221 mg of 1-ethyl-3-(dimethylaminopropyl)carbodiimide hydrochloride (1.4 eq) and 346 μ l of Hünig's base (2.4 eq) were added, and the mixture was stirred for 30 min. 190 mg of the 20 compound from Example 143a) were then added, and the mixture was stirred at RT for 20 h. The reaction mixture was mixed with 50 ml of saturated $NaHCO_3$ solution and extracted with ethyl acetate (2 x 30 ml). The organic phase was dried over Na_2SO_4 , filtered and concentrated. The crude product was chromatographed on silica gel with heptane/ethyl acetate mixtures. 314 mg of the desired compound were 25 obtained.

LC/MS: R_t (min) 1.85; calc.: $[M+H]^+$ 512.28 found 512.36 (method B).

Example 143c)

Methyl (S)-2-[(S)-2-((S)-2-amino-3-phenyl-propionylamino)-3-methyl-butyrylamino]-3-methylbutyrate

30 Z deprotection of Z-Phe-Val-Val-OMe to give Phe-Val-Val-OMe was carried out as described in 143a) and afforded 247 mg of the title compound.

LC/MS: R_t (min) 1.09; calc.: $[M+H]^+$ 378.24 found 378.33 (method B).

Example 143d)

2-Oxooxazolidine-3-sulfonyl chloride

A solution of 1.13 ml of 2-bromoethanol (15.9 mmol, 1.0 eq) in dichloromethane (20 ml) was slowly added to a solution of 2.25 g of chlorosulfonyl isocyanate (15.9 mmol, 1.0 eq) in dichloromethane (100 ml) under argon at 0°C in such a way that the temperature did not exceed 10°C. After the addition was complete, stirring

5 was continued at 0°C for 30 min. The product obtained in this way was directly reacted further in the next step.

Example 143e)

tert-Butyl (S)-6-tert-butoxycarbonylamino-2-(2-oxo-oxazolidine-3-sulfonylamino)-hexanoate

10 A suspension of 5.39 g of H-Lys(Boc)-OtBu hydrochloride (15.9 mmol, 1.0 eq) and 7.1 ml of triethylamine (50.9 mmol, 3.2 eq) in dichloromethane (70 ml) was added to the solution obtained in Example 143d), in such a way that the temperatures did not exceed 10°C. After the addition was complete, the mixture was allowed to reach RT and was stirred for a further 2 h. The reaction mixture was then mixed with 200 ml of

15 0.2 M hydrochloride acid, and the organic phase was separated off and washed with 100 ml of 0.2 M hydrochloric acid and concentrated. 5.5 g of the desired material were obtained as a colorless oil, which crystallized on standing.

LC/MS: R_t (min) 1.76; calc.: $[M+H]^+$ 452.14 found 452.18 (method B).

Example 143f)

20 tert-Butyl (S)-6-tert-butoxycarbonylamino-2-(3-{(S)-1-[(S)-1-((S)-1-methoxycarbonyl-2-methyl-propylcarbamoyl)-2-methyl-propylcarbamoyl]-2-phenyl-ethyl}-sulfamidyl)-hexanoate

240 mg of Phe-Val-Val-OMe (compound from Example 143c), 0.636 mmol, 1 eq were dissolved with 345 mg of the compound from Example 143e) in 7 ml of acetonitrile, and 106 μ l of triethylamine were added. The reaction mixture was stirred at 80°C for 20 h and, after cooling, evaporated. The crude product was purified by chromatography on silica gel with heptane/ethyl acetate mixtures as mobile phase. 275 mg of the title compound were obtained.

LC/MS: R_t (min) 1.733; calc.: $[M+H]^+$ 742.41 found 742.35 (method A).

30 Example 143g)

(S)-6-Amino-2-(3-{(S)-1-[(S)-1-((S)-1-methoxycarbonyl-2-methyl-propylcarbamoyl)-2-methyl-propylcarbamoyl]-2-phenyl-ethyl}-sulfamidyl)-hexanoic acid

A solution of 270 mg of the compound from Example 143f) in 4 ml of dichloromethane/TFA (1:1, v/v) was stirred at RT for 2 h and then evaporated. The

residue was purified by preparative HPLC and afforded 131 mg of the title compound as trifluoroacetate.

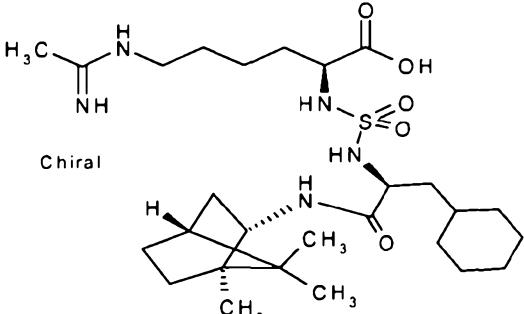
LC-MS: R_t (min) 1.16; calc.: $[M+H]^+$ 586.29 found 586.39 (method B).

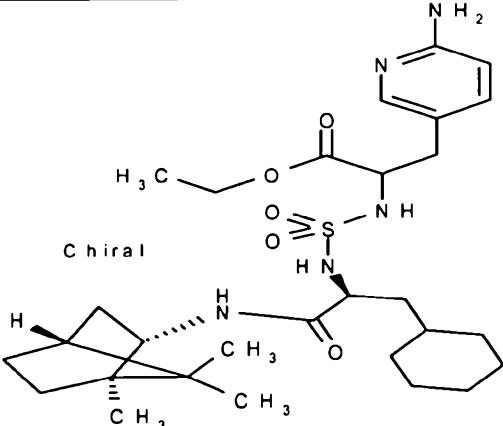
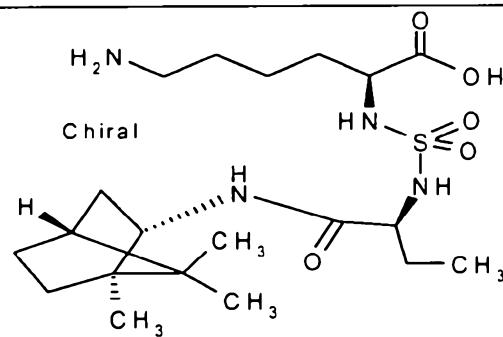
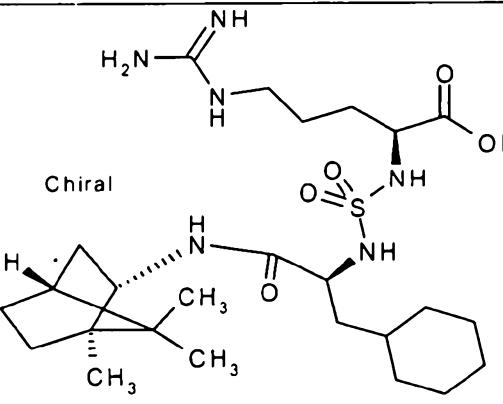
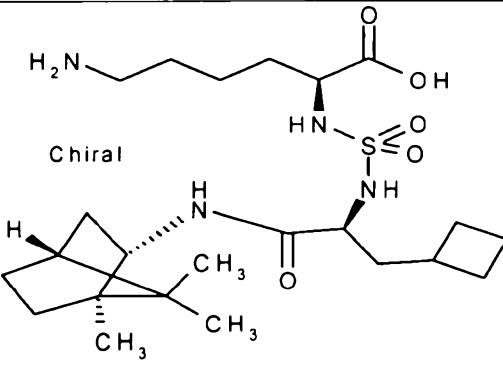
5 Example 144

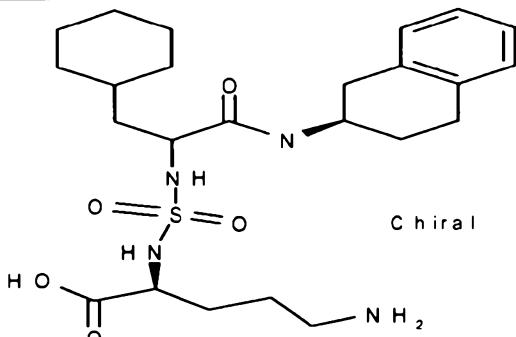
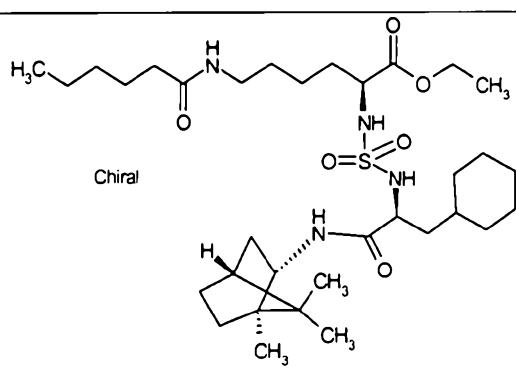
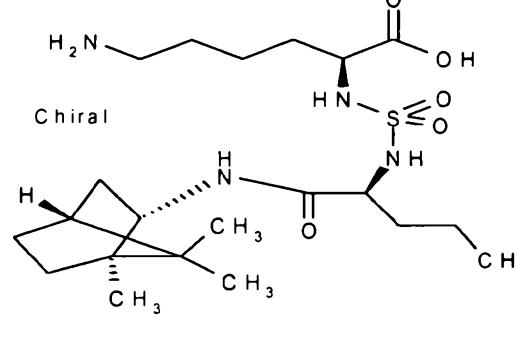
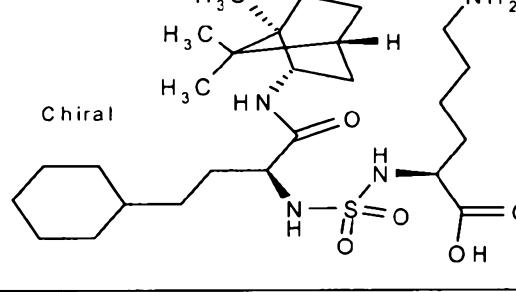
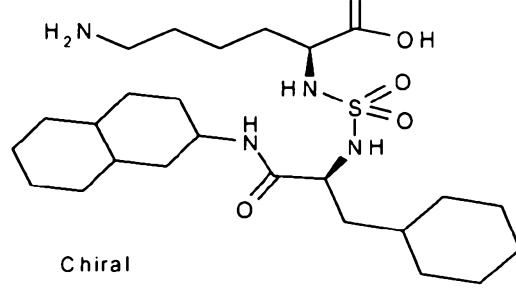
(S)-6-Amino-2-{3-[(R)-1-(bicyclo[2.2.1]hept-2-ylcarbamoyl)-2-cyclohexyl-ethyl]-sulfamidyl}-hexanoic acid

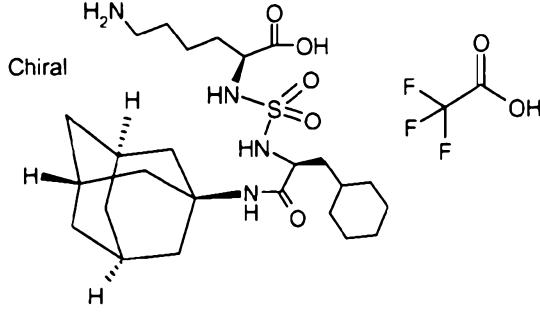
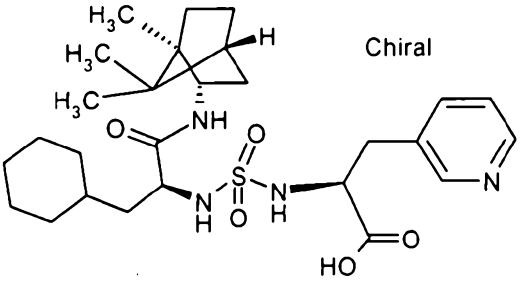
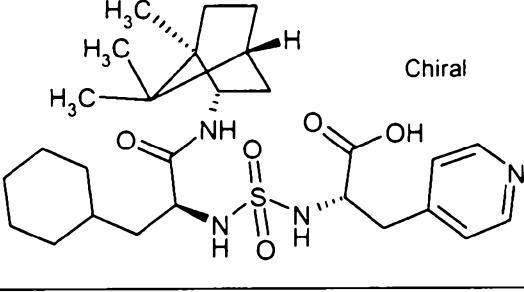
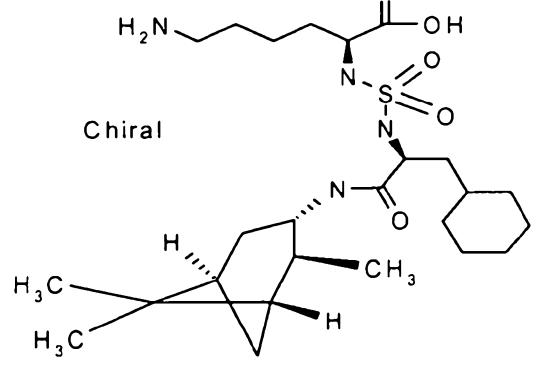
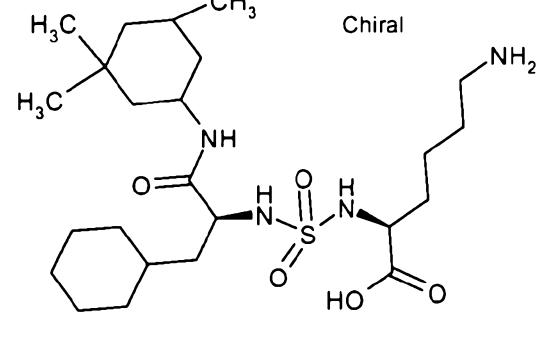
The title compound was in analogy to Example 143 employing a commercially available endo-norborbonylamine instead of the dipeptide in Example 143c).

10 LC-MS: R_t (min) 1.34; calc.: $[M+H]^+$ 473.28 found 473.36 (method B).


Example 145





(S)-6-Amino-2-[3-((S)-1-cyclohexylcarbamoyl-2-phenyl-ethyl)-sulfamidyl]-hexanoic acid






15 The title compound was in analogy to Example 143 employing a commercially available cyclohexylamine instead of the dipeptide in Example 143c).






LC-MS: R_t (min) 1.20; calc.: $[M+H]^+$ 455.24 found 455.33 (method B).

The following examples were prepared in analogy to Example 143:

Example	Formula	LC/MS method	R_t	$[M+H]^+$ calc.	$[M+H]^+$ found
146		D	2.20	556.35	556.36

147		D	2.40	578.34	578.41
148		D	1.80	447.26	447.28
149		D	2.21	543.33	543.38
150		C	1.58	485.28	485.39

151		A	1.14	496.67	495.35
152		D	3.21	641.43	641.34
153		D	1.96	461.28	461.23
154		D	2.29	529.34	529.34
155		B	1.51	515.33	515.34

156	<p>Chiral</p>	F	1.63	513.31	513.33
157	<p>Chiral</p>	C	1.91	533.28	533.17
158	<p>Chiral</p>	C	1.84	533.28	533.23
159	<p>Chiral</p>	B	1.51	515.33	515.56
160	<p>Chiral</p>	B	1.50	503.33	503.49

161		Chiral	B	1.58	517.34	517.49
162		Chiral	B	1.38	475.30	475.45

Example 163

(S)-6-Amino-2-{[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]-hexanoic acid}

5

1) Benzyl (S)-6-benzyloxycarbonylamino-2(2-oxo-oxazolidine-sulfonylamino)-hexanoate

A solution of 2.61 ml of 2-bromoethanol (36.9 mmol, 1.0 equiv.) in dichloromethane (20 ml) was slowly added to a solution of 5.21 g of chlorosulfonyl isocyanate

10 (36.9 mmol, 1.0 equiv.) in dichloromethane (300 ml) at 0°C under argon in such a way that the internal temperature remained below 10°C. Stirring was then continued at 0°C for 30 min. A solution of 15.0 g of H-Lys(Z)-OBzL•HCl (36.9 mmol, 1.0 equiv.) and 16.5 ml of triethylamine (118.0 mmol, 3.2 equivalents (equiv.)) in 120 ml of CH₂Cl₂ was added dropwise to the solution in such a way that the temperature of the

15 reaction mixture did not go above 10°C. After the addition, the ice bath was removed and the mixture was stirred at RT for 4 h. The organic solution was then washed three times with 100 ml of 0.2M HCl (aq.), dried over Na₂SO₄ and concentrated.

18.4 g of the crude title compound were obtained as a colorless oil which was directly employed further in step 3..

20 LC-MS: R_t(min) 1.82; calc.: [M+H]⁺ 520.17 found: 520.30 (method B).

2) tert-Butyl [(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethyl]-carbamate

3.53 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (18.4 mmol, 1.0 equiv.), 1.25 g of 1-hydroxybenzotriazole (9.2 mmol, 0.5 equiv.) and 7.3 ml of Hünig's base were added to a solution of 5.0 g of (S)-2-tert-butoxycarbonylamino-3-cyclohexylpropionic acid (Boc-Cha-OH, 18.4 mmol, 1.0 equiv.) in DMF (60 ml) at 0°C

5 under argon, and the mixture was stirred for 30 min. Then 2.83 g of (R)-(+)-bornylamine (18.4 mmol, 1.0 equiv.) and 3.7 ml of Hünig's base were added, and the mixture was stirred at RT for 16 h. The reaction mixture was quenched with NaHCO_3 (saturated, aq.) and extracted three times with ethyl acetate. The combined organic phases were washed twice with water and dried over Na_2SO_4 and concentrated.

10 Purification by flash chromatography on silica gel with heptane/ethyl acetate mixtures as eluent afforded 6.58 g (88% yield) of the title compound as a colorless oil.

LC-MS: R_t (min) 2.42; calc.: $[\text{M}+\text{H}]^+$ 407.33 found: 407.32 (method B).

15 3) (S)-2-Amino-3-cyclohexyl-N-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-propionamide trifluoroacetate

50 ml of TFA were slowly added to a solution of 6.5 g of tert-butyl [(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethyl]-carbamate (16.0 mmol) in 50 ml of CH_2Cl_2 at 0°C under argon. The mixture was allowed to

20 reach RT. After 3 h, the reaction mixture was concentrated. The title compound was obtained as a pale yellow oil which was employed directly in the next step.

LC-MS R_t (min) 1.60; calc.: $[\text{M}+\text{H}]^+$ 307.27 found: 307.39 (method C).

4) Benzyl (S)-6-benzyloxycarbonylamino-2-{[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-

25 trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-hexanoate

11.63 g of benzyl (S)-6-benzyloxycarbonylamino-2(2-oxo-oxazolidine-sulfonylamino)-hexanoate (22.4 mmol, 1.4 equiv.) and 4.9 g of (S)-2-amino-3-cyclohexyl-N-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-propionamide trifluoroacetate

(16.0 mmol, 1.0 equiv.) were suspended in 80 ml of MeCN and, after addition of

30 8.9 ml of Et_3N , the mixture was heated under reflux for 20 h. After cooling, the volatile constituents were removed in a rotary evaporator and the residue was purified by flash chromatography on silica gel with heptane/ethyl acetate mixtures as eluent. 9.0 g (76% yield) of the title compound were obtained as a colorless foam.

LC-MS: R_t (min) 2.61; calc.: $[\text{M}+\text{H}]^+$ 739.41 found: 739.43 (method B).

5) (S)-6-Amino-2-{{(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl}}-hexanoic acid

9.0 g of benzyl (S)-6-benzyloxycarbonylamino-2-{{(S)-2-cyclohexyl-1-((1R,2S,4R)-

5 1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl}}-hexanoate
(12.2 mmol) were dissolved in 90 ml of methanol and, after addition of 600 mg of
10% Pd/C, hydrogenated at RT under atmospheric pressure for 3.5 h. The reaction
mixture was filtered through Celite and concentrated. 6.1 g (97%) of the title
compound were obtained as a colorless oil. 100 mg of the compound were dissolved
10 in 5 ml of MeCN. Addition of 50 ml of water resulted in a suspension. Freeze drying
resulted in a colorless solid.

LC-MS: R_t (min) 1.70; calc.: $[M+H]^+$ 515.33 found: 515.35 (method F).

1 H-NMR (DMSO-d₆) δ 0.68 (s, 3H), 0.82 (s, 3H), 0.83-0.91 (m, 2H), 0.89 (s, 3H),
0.97 (dd, 1H, J = 4.8, 13.0 Hz), 1.08-1.34 (m, 7H), 1.35-1.55 (m, 5H), 1.56-1.72 (m,
15 9H), 1.78 (d, 1H, J = 13.0 Hz), 2.04-2.13 (m, 1H), 2.75 (t, 2H, J = 7.1 Hz), 3.51 (t,
1H, J = 5.5 Hz), 3.83 (t, 1H, J = 7.0 Hz), 4.03-4.10 (m, 1H), 6.91-7.05 (br, 1H), 7.77
(d, 1H, J = 8.8 Hz), 7.5-8.2 (br, 2H).

Example 164

20 3-(6-Amino-pyridin-3-ylmethyl)-2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-
bicyclo[2.2.1]hept-2-yl-carbamoyl)-ethylsulfamidyl]-propionic acid

1) tert-Butyl 2-amino-3-(6-tert-butoxycarbonylamino-pyridin-3-yl)-propionate

660 mg of N-(diphenylmethylene)glycine tert-butyl ester (2.23 mmol, 1.0 equiv.) were
25 dissolved in 15 ml of dry THF and cooled to 0°C under argon. Then 2.23 ml of 1 M
lithium hexamethyldisilazane (LiHMDS) solution in THF were added dropwise, and
the mixture was stirred at 0°C for 15 min. Subsequently, 642 mg of tert-butyl
(5-bromomethylpyridin-2-yl)-carbamate (2.23 mmol, 1.0 equiv.) were added, and the
mixture was stirred at 0°C for 2 h. The mixture was quenched with 18 ml of sat. citric

30 acid and stirred at RT for 1 h. The mixture was extracted with ethyl acetate (2x 30
ml), and the organic phases were washed with 50 ml of 1M HCl. The aqueous
phases were combined and adjusted to pH 10 with 2M NaOH and then extracted 3x
with ethyl acetate. The combined organic phases were dried over Na₂SO₄ and
concentrated. The residue was purified by flash chromatography on silica gel with

heptane/ethyl acetate mixtures as eluent. 600 mg (80% yield) of the title compound were obtained as a colorless solid.

LC-MS: R_t (min) 1.06; calc.: $[M+H]^+$ 338.21 found: 338.27 (method B).

5 2) tert-Butyl 3-(6-tert-butoxycarbonylamino-pyridin-3-yl)-2-(2-oxo-oxazolidine-3-sulfonylamino)-propionate

A solution of 0.126 ml of 2-bromoethanol (1.78 mmol, 1.0 equiv.) in dichloromethane (10 ml) was slowly added dropwise to a solution of 251 mg of chlorosulfonyl isocyanate (1.78 mmol, 1.0 equiv.) in dichloromethane (10 ml) under argon at 0°C in 10 such a way that the temperature did not exceed 10°C. After the addition, the mixture was stirred at 0°C for a further 30 min. A mixture of 600 mg of tert-butyl 2-amino-3-(6-tert-butoxycarbonylamino-pyridin-3-yl)-propionate (1.78 mmol, 1.0 equiv.) and 0.545 ml of triethylamine (3.91 mmol, 2.2 equiv.) in 5 ml of CH_2Cl_2 was added dropwise to this solution in such a way that the temperature did not rise above 10°C.

15 After the addition, the ice bath was removed and the mixture was stirred at RT for a further 3 h. The residue after concentration was chromatographed on silica gel with heptane/ethyl acetate mixtures as eluent. 320 mg (37% yield) of the title compound were obtained as a colorless solid.

LC-MS: R_t (min) 1.40; calc.: $[M+H]^+$ 487.19 found: 487.26 (method B).

20

3) tert-Butyl 3-(6-tert-butoxycarbonylamino-pyridin-3-ylmethyl)-2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl-carbamoyl)-ethylsulfamidyl]propionate

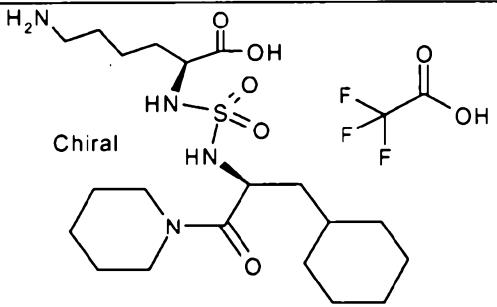
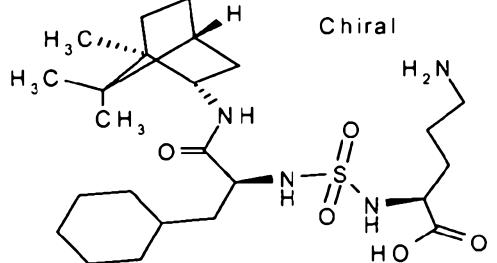
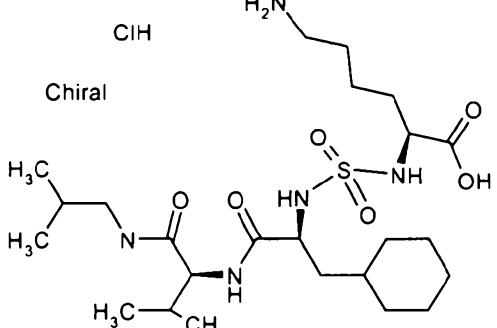
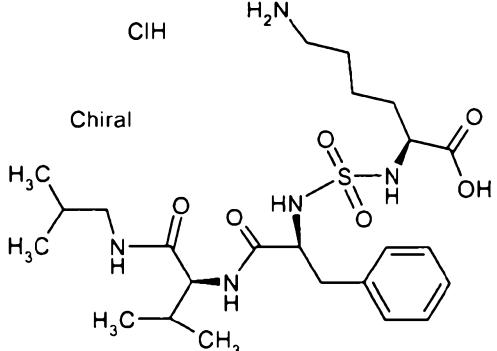
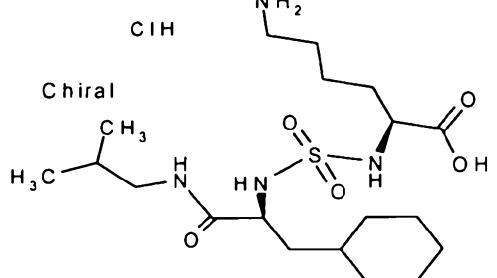
320 mg of tert-butyl 3-(6-tert-butoxycarbonylamino-pyridin-3-yl)-2-(2-oxo-oxazolidine-3-sulfonylamino)-propionate (0.66 mmol, 1.0 equiv.) and 277 mg of (S)-2-amino-3-cyclohexyl-N-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-propionamide trifluoroacetate (0.66 mmol, 1.0 equiv.), prepared as described above, were suspended in 12 ml of MeCN and, after addition of 0.37 ml of Et_3N , heated under reflux for 20 h. After cooling, the volatile constituents were evaporated off, and the residue was purified by flash chromatography on silica gel with heptane/ethyl acetate mixtures as eluent. 139 mg (30% yield) of the title compound were obtained as a colorless solid.

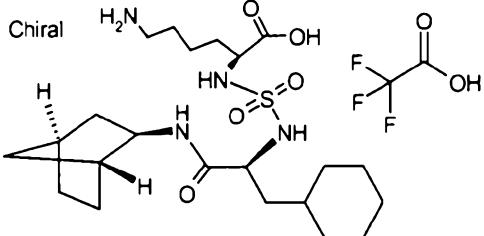
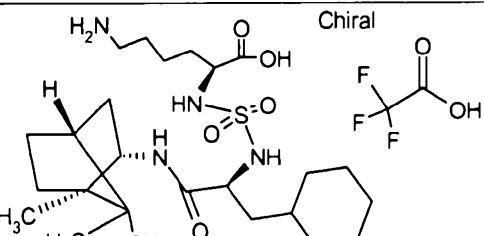
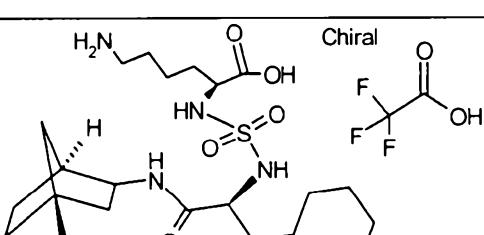
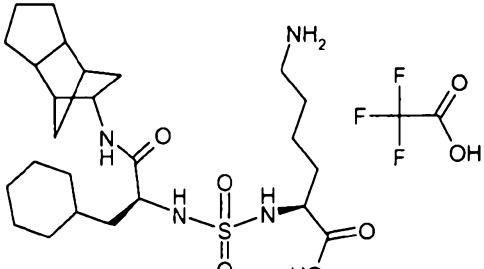
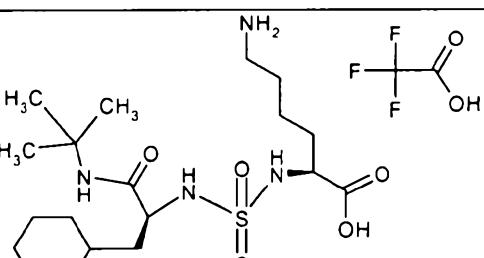
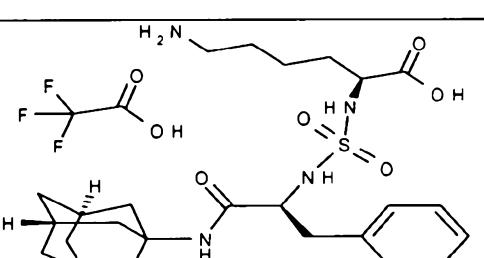
LC-MS: R_t (min) 2.19; calc.: $[M+H]^+$ 706.42 found: 706.54 (method B).

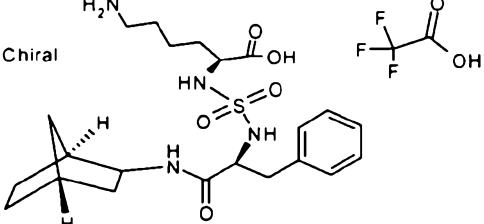
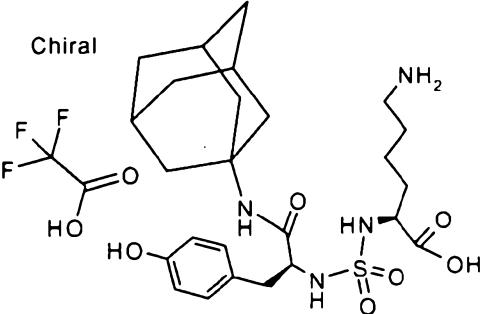
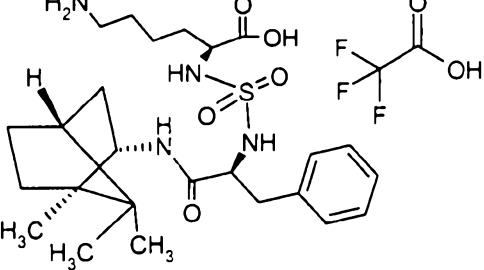
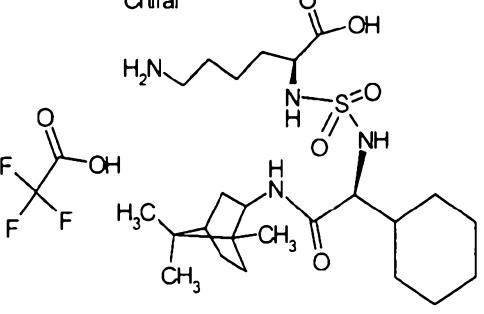
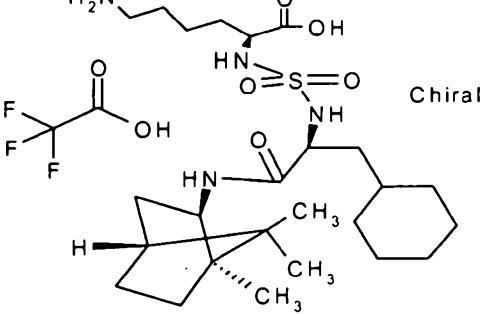
4) 3-(6-Amino-pyridin-3-ylmethyl)-2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl-carbamoyl)-ethylsulfamidyl]-propionic acid trifluoroacetate

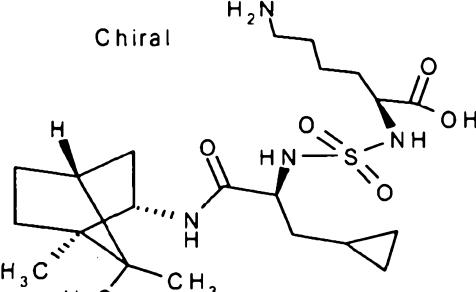
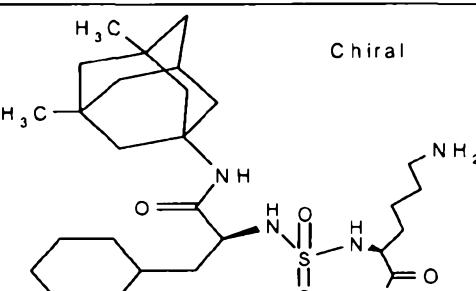
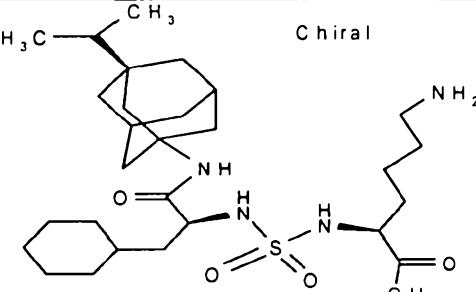
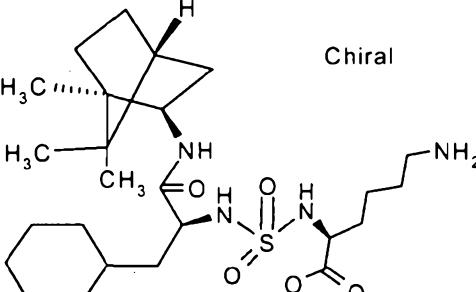
135 mg of tert-butyl 3-(6-tert-butoxycarbonyl-amino-pyridin-3-ylmethyl)-2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl-carbamoyl)-

5 ethylsulfamidyl] propionate (0.19 mmol) were dissolved in 1.0 ml of CH_2Cl_2 and cooled to 0°C. Then 0.8 ml of TFA was added, and the mixture was stirred at RT. After 1 h, the volatile constituents were evaporated and the residue was purified by RP-HPLC. 70 mg (55% yield) of the title compound were obtained as a colorless solid.






10 LC-MS: R_t (min) 1.61; calc.: $[\text{M}+\text{H}]^+$ 550.31 found: 550.39 (method B), 1:1 mixture of the diastereomers.







$^1\text{H-NMR}$ (DMSO- d_6) δ 0.67 (s, 3H), 0.69 (s, 3H), 0.82 (s, 6H), 0.79-0.92 (m, 4H), 1.08-1.39 (m, 16H), 1.56-1.78 (m, 16H), 2.01 (t, 1H, J = 12.0 Hz), 2.11 (t, 1H, J = 12.0 Hz), 2.70 (dd, 1H, J = 6.4, 13.9 Hz), 2.79 (dd, 2H, J = 7.0, 13.9 Hz), 2.94 (dd,






15 1H, J = 5.5, 14.1 Hz), 3.73-3.90 (m, 2H), 4.01-4.13 (m, 1H), 6.80 (d, 0.5H, J = 8.0 Hz), 6.94 (dd, 2H, J = 5.3, 8.6 Hz), 7.01 (d, 1H, J = 9.1 Hz), 7.11 (d, 1H, J = 8.7 Hz), 7.18 (d, 1H, J = 9.1 Hz), 7.69-7.74 (m, 3H), 7.79 (d, 2H, J = 9.4 Hz), 7.85 (dd, 1H, J = 1.9, 9.1 Hz), 7.88-7.99 (br, 4H)





20 The following examples were prepared in analogy to Example 163:

165		B	1.55	541.34	541.39
166		B	1.50	549.31	549.35

167		B	1.28	447.26	447.25
168		A	1.20	501.71	501.25
169		A	1.00	534.74	534.35
170		A	0.94	528.70	528.25
171		A	0.96	435.61	435.25

172	<p>Chiral</p>	B	1.32	473.28	473.30
173	<p>Chiral</p>	B	1.51	515.33	515.33
174	<p>Chiral</p>	B	1.33	473.30	473.28
175		B	1.45	513.31	513.34
176		B	1.26	435.26	435.28
177		B	1.35	507.26	507.24

178	<p>Chiral</p>	F	1.30	467.23	467.35
179	<p>Chiral</p>	F	1.36	523.23	523.41
180	<p>Chiral</p>	F	1.53	509.28	509.40
181	<p>Chiral</p>	C	1.60	501.31	501.29
182	<p>Chiral</p>	F	1.69	515.33	515.51

183	<p>Chiral</p>	B	1.31	473.28	473.39
184	<p>Chiral</p>	B	1.61	541.34	541.39
185	<p>Chiral</p>	B	1.66	555.36	555.36
186	<p>Chiral</p>	B	1.67	571.39	571.50

Pharmacological examples

The prepared substances were tested for TAFIa inhibition using the Actichrome plasma TAFI activity kit from American Diagnostica (Pr. No. 874). This entailed

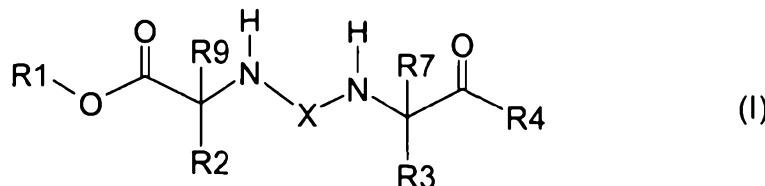
5 adding 28 μ l of assay buffer (20 mM Hepes, 150 mM NaCl, pH 7.4) and 10 μ l of TAFIa (American Diagnostica Pr. No. 874TAFIA; 2.5 /ml) to 2 μ l of 2.5 mM DMSO solution of the substance and incubating in a 96 half-well microtiter plate at room temperature for 15 minutes. The enzymic reaction was started by adding 10 μ l of TAFIa developer (prediluted 1:2 with assay buffer). The time course of the reaction

was followed at 420 nm in a microtiter plate reader (SpectraMax plus 384; Molecular Devices) for 15 minutes.

The IC₅₀ values were calculated from the averaged values (duplicate determination) of serial dilutions of the substance with the aid of the Softmax Pro software (version 5 4.8; Molecular Devices).

Table 1 shows the results.

Table 1:


10

Example No.	IC ₅₀ [μM]						
2	1.424	57	0.544	107	1.10	146	0.071
10	0.979	64	0.757	108	0.007	149	0.049
11	0.644	69	1.047	109	0.009	150	0.357
12	1.257	72	0.167	110	0.006	153	1.087
13	1.26	73	0.047	111	0.004	154	0.220
16	0.039	74	0.019	113	0.747	155	0.669
19	0.353	75	0.653	114	0.519	156	0.492
20	0.105	76	0.845	115	0.239	157	0.2
21	0.904	77	0.003	118	0.267	159	0.131
25	0.463	78	0.305	119	1.302	163	0.012
26	0.487	79	0.031	120	0.615	164	0.026
27	0.187	81	0.166	121	0.370	165	0.882
28	0.118	84	0.654	122	0.525	169	0.770
29	0.694	85	0.039	124	0.018	172	0.420
31	0.076	86	0.06	126	0.204	173	0.012
32	0.753	88	0.393	127	0.693	174	0.326
33	0.19	90	0.111	128	0.391	175	0.168
34	1.085	91	0.004	129	0.608	177	2.117
37	0.537	92	0.160	133	0.636	180	0.168
38	0.297	93	1.499	134	0.532	182	0.069
39	1.14	94	109.23	135	0.522	183	0.805
41	0.09	95	41.042	137	0.14	184	1.069
42	0.839	96	0.015	139	0.376	185	0.4
43	0.046	97	0.462	140	0.318	186	22.943

44	0.144	98	1.036	142a	0.0007	187	10.176
49	0.106	99	0.057	142b	0.006		
53	0.391	100	0.111	143	9.756		
56	0.133	103	0.015	142	10.601		

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. The use of the compound of the formula I

5 and/or of a stereoisomeric form of the compound of the formula I and/or mixtures of these forms in any ratio, and/or a physiologically tolerated salt of the compound of the formula I, for the manufacture of a medicament for the prophylaxis, secondary prevention and therapy of one or more disorders associated with thromboses, embolisms, hypercoagulability or 10 fibrotic changes, where

X is $-\text{S}(\text{O})_2-$,

R1 is 1) hydrogen atom,
 2) $-(\text{C}_1\text{-C}_6)\text{-alkyl}$,
 3) $-(\text{C}_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12})\text{-cycloalkyl}$ or
 15 4) $-(\text{C}_1\text{-C}_6)\text{-alkylene-(C}_6\text{-C}_{14})\text{-aryl}$,

R2 is the radical of the formula II

in which

m is the integer zero or 1,

20 A1 is 1) $-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 2) $-\text{NH}-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 3) $-\text{NH}(\text{C}_1\text{-C}_6)\text{-alkyl}-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 4) $-\text{NH}((\text{C}_3\text{-C}_6)\text{-cycloalkyl})-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 25 5) $-\text{O}-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3, or
 6) $-(\text{CH}_2)_n\text{-SO}_x-$ in which n is the integer zero, 1, 2, or 3 and x is the integer zero, 1 or 2

A2 is 1) Het, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, and are unsubstituted or substituted independently of one another once, twice or three times by -(C₁-C₃)-alkyl, halogen, -NH₂, -CF₃ or -O-CF₃,

5 2) -(C₀-C₆)-alkylene-NH₂ ,

3) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,

10 4) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,

5) -(C₀-C₄)-alkylene-O-NH-C(=NH)-NH₂,

6) -(C₀-C₄)-alkylene-NH-C(O)-(C₁-C₆)-alkyl,

7) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-aryl, where aryl is unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once, twice or three times by R15,

15 8) -(C₃-C₈)-cycloalkyl-NH₂, or

9) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl, where aryl is unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once, twice or three times by R15,

20 R3 is 1) -(C₁-C₆)-alkyl,

2) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl,

3) -(C₁-C₆)-alkylene-(C₆-C₁₄)-aryl, where aryl is substituted independently of one another once, twice or three times by R15,

4) -(C₀-C₈)-alkylene-N(R₅)-PG,

25 5) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-aryl, where aryl is substituted independently of one another once, twice or three times by R15,

6) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl-(C₀-C₄)-alkylene-N(R₅)-PG,

7) -(C₀-C₈)-alkylene-O-PG,

30 8) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl-(C₀-C₄)-alkylene-O-PG,

9) -(C₀-C₈)-alkylene-C(O)-O-PG,

10) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkylene-C(O)-O-PG}$ or

11) hydrogen atom,

R4 is -N(R6)_2 ,

where R6 are identical or different and are independently of one another

5 1) hydrogen atom,

2) $-(C_1-C_6)\text{-alkyl}$,

3) $-(C_0-C_4)\text{-alkylene-}(C_3-C_{12})\text{-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$ or $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,

10 4) $-(C_0-C_6)\text{-alkylene-}(C_6-C_{14})\text{-aryl}$, where aryl and alkylene are unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$, $-\text{C(O)-N(R8)}_2$ or $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,

15 5) $-(C_0-C_8)\text{-alkylene-N(R5)-PG}$,

6) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-N(R5)-PG}$,

7) $-(C_0-C_8)\text{-alkylene-O-PG}$,

8) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-O-PG}$,

9) $-(C_0-C_8)\text{-alkylene-C(O)-O-R11}$,

20 10) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-C(O)-O-PG}$,

11) $-(C_0-C_4)\text{-alkylene-Het}$, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different

25 heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$ or $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,

12) $-(C_1-C_3)\text{-fluoroalkyl}$,

30 13) $-(C_0-C_4)\text{-alkylene-CH(R11)-C(O)-NH}_2$,

14) $-(C_0-C_4)\text{-alkylene-CH(R11)-C(O)-NH-(C}_1\text{-C}_4\text{)-alkyl}$,

15) $-(C_0-C_4)\text{-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13}$, or

16) amino acid, where the linkage of the amino acid takes place by a peptide linkage, and the carboxyl radical of the amino acid is unsubstituted or substituted by PG or by $-\text{N}(R5)_2$,

5 or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by $-(C_1-C_4)\text{-alkyl}$, $-\text{C(O)-O-R11}$, halogen, $-(C_1-C_4)\text{-alkyl-O-R11}$ or phenyl,

10 R5 is hydrogen atom or $-(C_1-C_6)\text{-alkyl}$,
PG is a protective group for the amino, carboxyl or for the hydroxy function,
R7 is hydrogen atom or $-(C_1-C_6)\text{-alkyl}$,
R8 is hydrogen atom or $-(C_1-C_6)\text{-alkyl}$,

15 R9 is hydrogen atom or $-(C_1-C_6)\text{-alkyl}$,
R11 and R12 are identical or different and are independently of one another

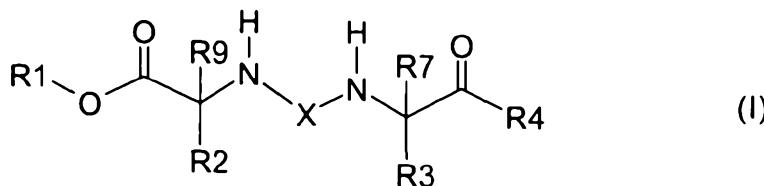
- 1) hydrogen atom,
- 2) $-(C_1-C_6)\text{-alkyl}$,

20 3) $-(C_0-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, -OH or $-\text{O-(C}_1\text{-C}_4)\text{-alkyl}$,

4) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, $-\text{C(O)-O-R13}$, $-(C_1-C_4)\text{-alkyl-O-R13}$, $-\text{O-(C}_1\text{-C}_4)\text{-alkyl}$ or $-(C_0-C_4)\text{-alkylene-phenyl}$,

25 5) $-(C_0-C_4)\text{-alkylene-C(O)-N(R13)}_2$ or

6) $-(C_0-C_4)\text{-alkylene-indolyl}$,


30 R13 is 1) hydrogen atom,
2) $-(C_1-C_4)\text{-alkyl}$,

3) $-(C_0-C_4)\text{-alkylene-C(O)-O-R14}$,
 4) $-(C_0-C_4)\text{-alkylene-C(O)-R14}$ or
 5) $-(C_0-C_4)\text{-alkylene-O-R14}$,

R14 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{NH}_2$ or $-\text{OH}$, and

5 R15 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{O-CF}_3$, $-\text{NH}_2$, $-\text{OH}$, $-\text{CF}_3$ or
 halogen.

2. The use of the compound of the formula I,

and/or of a stereoisomeric form of the compound of the formula I and/or mixtures of these forms in any ratio, and/or a physiologically tolerated salt of the compound of the formula I, for the manufacture of a medicament for the prophylaxis, secondary prevention and therapy of one or more disorders associated with thromboses, embolisms, hypercoagulability or fibrotic changes,

where

X is $-\text{S(O)}_2^-$,

20 R1 is 1) hydrogen atom or
 2) $-(C_1-C_4)\text{-alkyl}$,

R2 is 1) $-(C_1-C_6)\text{-alkylene-NH}_2$,
 2) $-(C_0-C_4)\text{-alkylene-pyridyl-NH}_2$,
 3) $-(C_0-C_4)\text{-alkylene-piperidinyl-NH}_2$,
 4) $-(C_0-C_4)\text{-alkylene-thiazolyl-NH}_2$,
 5) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-NH}_2$,
 6) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl-NH}_2$,
 7) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{)-alkyl}$,
 8) $-(C_0-C_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,

9) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

10) $-(C_0\text{-C}_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_4\text{)-alkyl}$,

5 11) $-(C_0\text{-C}_4)\text{-alkylene-(C}_6\text{-C}_{14}\text{)-aryl}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15, or

12) $-(C_1\text{-C}_4)\text{-alkylene-SO}_x\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ in which x is the integer zero 1 or 2,

10 R3 is 1) $-(C_1\text{-C}_6)\text{-alkyl}$,

2) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl}$,

3) $-(C_1\text{-C}_6)\text{-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,

4) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,

15 5) $-(C_1\text{-C}_6)\text{-alkylene-NH-PG}$,

6) $-(C_1\text{-C}_6)\text{-alkylene-O-PG}$,

or

20 7) hydrogen atom,

where PG is t-butyl-, t-butyloxycarbonyl or benzyloxycarbonyl,

R4 is $-\text{N}(R6)_2$,

where R6 are identical or different and are independently of one another

1) hydrogen atom,

25 2) $-(C_1\text{-C}_6)\text{-alkyl}$,

3) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1\text{-C}_4)\text{-alkyl-O-R11}$ or $-\text{O-(C}_1\text{-C}_4\text{)-alkyl}$,

30 4) $-(C_0\text{-C}_4)\text{-alkylene-C(R11)(R12)-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another

once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

5) -(C₀-C₄)-alkylene-Het, where Het means a 4- to 15-membered

heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by

10 R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

6) -(C₀-C₆)-alkylene-aryl, where aryl or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

7) -(C₀-C₄)-alkylene-C(R11)(R12)-aryl, where aryl or alkylene are

15 unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

20 10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₀-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

25 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is

30 saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

5 1) hydrogen atom,
 2) -(C₁-C₄)-alkyl,
 3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, -OH or -O-(C₁-C₄)-alkyl,
10 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, -C(O)-O-R13, -(C₁-C₄)-alkyl-O-R13, -O-(C₁-C₄)-alkyl or -(C₀-C₄)-alkylene-phenyl,
 5) -(C₀-C₄)-alkylene-C(O)-N(R13)₂ or
15 6) -(C₀-C₄)-alkylene-Indolyl,
R13 is 1) hydrogen atom,
 2) -(C₁-C₄)-alkyl,
 3) -(C₀-C₄)-alkylene-C(O)-O-R14,
 4) -(C₀-C₄)-alkylene-C(O)-R14 or
20 5) -(C₀-C₄)-alkylene-O-R14,
R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH, and
R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.
25 3. The use of the compound of the formula I as claimed in claim 2, where
R1 is 1) hydrogen atom or
 2) -(C₁-C₄)-alkyl,
R2 is 1) -(C₁-C₆)-alkylene-NH₂,
 2) -(C₁-C₄)-alkylene-pyridyl-NH₂,
30 3) -(C₁-C₄)-alkylene-piperidinyl-NH₂,
 4) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,

5) $-(C_0-C_4)\text{-alkylene-}(C_3-C_6)\text{-cycloalkyl-NH}_2$,

6) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{)-alkyl}$,

7) $-(C_1\text{-C}_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,

8) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$,

5 where phenyl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

9) $-(C_1\text{-C}_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_6\text{)-alkyl}$,

10) $-(C_1\text{-C}_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

11) $-(C_1\text{-C}_4)\text{-alkylene-SO}_2\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ or

12) $-(C_1\text{-C}_4)\text{-alkylene-S-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$,

R3 is 1) $-(C_1\text{-C}_4)\text{-alkyl}$,

2) $-(C_1\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl}$,

15 3) $-(C_1\text{-C}_4)\text{-alkylene-phenyl}$, where phenyl is substituted independently of one another once, twice or three times by R15,

4) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$, where phenyl is substituted independently of one another once, twice or three times by R15,

20 5) hydrogen atom,

R4 is $-\text{N(R}_6)_2$,

where R6 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1\text{-C}_4)\text{-alkyl}$,

25 3) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, bicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydro-naphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one

30 another once, twice, three or four times by $-(C_1\text{-C}_4)\text{-alkyl}$, $-\text{C(O)-O-R}_11$ or

-(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by halogen,

4) -(C₀-C₄)-alkylene-C(R₁₁)(R₁₂)-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, bicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R₁₁ or -(C₁-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted by halogen,

5) -(C₀-C₄)-alkylene-Het, where Het is selected from the group of acridinyl, azepinyl, azetidinyl, aziridinyl, benzimidazalinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, dibenzofuranyl, dibenzothiophenyl, dihydrofuran[2,3-b]tetrahydrofuran, dihydrofuranyl, dioxolyl, dioxanyl, 2H, 6H-1,5,2-dithiazinyl, furanyl, furazanyl,

10 15 20 25 30 imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolidinyl, 2-isothiazolinyl, isothiazolyl, isoxazolyl, isoxazolidinyl, 2-isoxazolinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, oxothiolanyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxythiinyl, phenoxyazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridothiophenyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydropyridinyl,

6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienoimidazolyl, thienooxazolyl, thienopyridine, thienothiazolyl, thiomorpholinyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, where Het or alkylene is unsubstituted or substituted independently of one another once or twice by -(C₁-C₄)-alkyl

6) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

7) -(C₀-C₄)-alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidine, piperidine, 2-azabicyclo[3.2.2]nonane and 7-azabicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl,

-C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

R9 is hydrogen atom or -(C₁-C₄)-alkyl,

R11 and R12 are identical or different and are independently of one another

- 1) hydrogen atom,
- 2) -(C₁-C₄)-alkyl,
- 3) -(C₀-C₄)-alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by -OH, halogen or -O-(C₁-C₄)-alkyl,
- 4) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, bicyclo[3.1.1]heptanyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by -(C₁-C₄)-alkyl, -C(O)-O-R13 or phenyl, or
- 5) -(C₀-C₄)-alkylene-indolyl,

R13 is

- 1) hydrogen atom,
- 2) -(C₁-C₄)-alkyl,
- 3) -(C₀-C₄)-alkylene-C(O)-O-R14,
- 4) -(C₀-C₄)-alkylene-C(O)-R14 or
- 5) -(C₀-C₄)-alkylene-O-R14, and

R14 is hydrogen atom, -(C₁-C₄)-alkyl, -NH₂ or -OH and

R15 is hydrogen atom, -(C₁-C₄)-alkyl, -O-CF₃, -NH₂, -OH, -CF₃ or halogen.

4. The use of the compound of the formula I as claimed in claim 2 or 3, where

R1 is

- 1) hydrogen atom or
- 2) -(C₁-C₄)-alkyl,

R2 is

- 1) -(C₁-C₆)-alkylene-NH₂,
- 2) -(C₁-C₄)-alkylene-pyridyl-NH₂,
- 3) -(C₁-C₄)-alkylene-piperidinyl-NH₂,

R3 is

- 4) -(C₁-C₄)-alkylene-NH-C(=NH)-NH₂,
- 5) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,

6) $-(C_1-C_4)\text{-alkylene-}(C_3-C_6)\text{-cycloalkyl-NH}_2$,
7) $-(C_1-C_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,
8) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-}(C_1-C_4)\text{-alkylene-phenyl}$,
9) $-(C_1-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_6\text{)-alkyl}$ or
5 10) $-(C_1-C_4)\text{-alkylene-phenyl-NH}_2$,
11) $-(C_1-C_2)\text{-alkylene-SO}_2\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ or
12) $-(C_1-C_2)\text{-alkylene-S-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$,
R3 is 1) $-(C_1-C_4)\text{-alkyl}$,
2) $-(C_1-C_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl}$,
10 3) $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or
substituted by $-\text{OH}$,
4) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-}(C_1-C_4)\text{-alkylene-phenyl}$,
5) hydrogen atom,
R4 is $-\text{N}(R6)_2$,
15 where R6 are identical or different and are independently of one another
1) hydrogen atom,
2) $-(C_1-C_6)\text{-alkyl}$,
3) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl}$, where cycloalkyl is selected
from the group of cyclohexyl, cyclopentyl, cyclopropyl, adamantanyl, 1,7,7-
20 trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, octahydro-
4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is
unsubstituted or substituted independently of one another once, twice or
three times by $-(C_1-C_4)\text{-alkyl}$ or phenyl,
4) $-\text{C}(R11)(R12)\text{-adamantanyl}$,
25 5) $-\text{CH}(R11)\text{-C(O)-NH-CH}(R12)\text{-R13}$,
6) $-(C_0-C_4)\text{-alkylene-Het}$, where Het is selected from the group of
benzimidazolyl, isoxazolyl, piperidinyl, pyridyl, pyrrolidinyl,
thiophenyl and benzo[1,3]dioxolyl,
7) 1,2,3,4-tetrahydronaphthalenyl,

8) $-(C_0-C_4)\text{-alkylene-}C(R11)(R12)\text{-phenyl}$, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

9) $-\text{CH}(R11)\text{-}C(\text{O})\text{-NH}_2$,

5 10) $-\text{CH}(R11)\text{-}C(\text{O})\text{-NH-}CH(R12)\text{-CH}_2\text{-OH}$,

11) $-(C_1\text{-}C_6)\text{-alkylene-phenyl}$, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, $-\text{C}(\text{O})\text{-O-}R11$, $-(C_1\text{-}C_4)\text{-alkyl-O-}R11$, $-\text{O-}(C_1\text{-}C_4)\text{-alkyl}$, phenyl or

10 $-(C_1\text{-}C_4)\text{-alkyl}$,

12) $-\text{CH}(R11)\text{-}C(\text{O})\text{-NH-}(C_1\text{-}C_4)\text{-alkyl}$,

13) $-(C_0\text{-}C_4)\text{-alkylene-}C(R11)(R12)\text{-bicyclo[3.1.1]heptanyl}$, where bicyclo[3.1.1]heptanyl is unsubstituted or substituted once to four times by $-(C_1\text{-}C_4)\text{-alkyl}$,

15 14) $-(C_1\text{-}C_6)\text{-alkylene-}C(\text{O})\text{-O-}R11$, where alkylene is unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, $-\text{C}(\text{O})\text{-O-}R11$, $-(C_1\text{-}C_4)\text{-alkyl-O-}R11$, $-\text{O-}(C_1\text{-}C_4)\text{-alkyl}$, phenyl or $-(C_1\text{-}C_4)\text{-alkyl}$,

15 15) $-(C_0\text{-}C_4)\text{-alkylene-}C(R11)(R12)\text{-}C(\text{O})\text{-O-}R11$, or

20 16) $-\text{CH}_2\text{-CF}_2\text{-CF}_3$,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidines, 2-aza-bicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by $-(C_1\text{-}C_4)\text{-alkyl}$, $-\text{C}(\text{O})\text{-O-}R11$, $-(C_1\text{-}C_4)\text{-alkyl-O-}R11$ or phenyl,

25 R7 is hydrogen atom or $-(C_1\text{-}C_4)\text{-alkyl}$,

R9 is hydrogen atom or $-(C_1\text{-}C_4)\text{-alkyl}$,

R11 and R12 are identical or different and are independently of one another

30 1) hydrogen atom,

2) $-(C_1\text{-}C_4)\text{-alkyl}$,

25 Jun 2013

2007327959

3) $-(C_0-C_4)$ -alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by – OH, halogen or $-O-(C_1-C_4)$ -alkyl,

4) $-(C_0-C_4)$ -alkylene- (C_3-C_{12}) -cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)$ -alkyl, $-C(O)-O-R13$ or phenyl, or

5) $-(C_0-C_4)$ -alkylene-Indolyl,

R13 is 1) hydrogen atom,

2) $-(C_1-C_4)$ -alkyl,

3) $-(C_0-C_4)$ -alkylene- $C(O)-O-R14$,

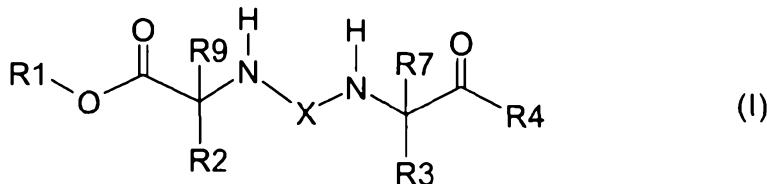
4) $-(C_0-C_4)$ -alkylene- $C(O)-R14$ or

10) 5) $-(C_0-C_4)$ -alkylene- $O-R14$,

R14 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-NH_2$ or $-OH$ and

R15 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-O-CF_3$, $-NH_2$, $-OH$, $-CF_3$ or halogen.

20 5. The use as claimed in any one of claims 1 to 4, in the context of one or more disorders from the series myocardial infarction, angina pectoris and other forms of acute coronary syndrome, stroke, peripherally vascular disorders, deep vein thrombosis, pulmonary embolism, embolic or thrombotic events caused by cardiac arrhythmias, cardiovascular events such as restenosis following revascularization and angioplasty and similar procedures such as stent implantations and bypass operations, or reducing the risk of thrombosis following surgical procedures such as operations on the knee and hip, or in the context of disseminated intravascular coagulation, sepsis and other intravascular events associated with


25 inflammation, or atherosclerosis, diabetes and the metabolic syndrome and the sequelae thereof, tumor growth and tumor metastasis, inflammatory and degenerative articular disorders such as rheumatoid arthritis and

30

arthrosis, impairments of the hemostatic systems such as fibrin deposits, fibrotic changes of the lung such as chronic obstructive pulmonary disease, adult respiratory distress syndrome or fibrin deposits in the eye following eye operations or prevention or treatment of scarring.

5

6. A compound of the formula I

and/or of a stereoisomeric form of the compound of the formula I and/or mixtures of these forms in any ratio, and/or a physiologically tolerated salt of the compound of the formula I, where

X is $-\text{S}(\text{O})_2^-$,

R1 is 1) hydrogen atom,
 2) $-(\text{C}_1\text{-C}_6)$ -alkyl,
 3) $-(\text{C}_0\text{-C}_4)$ -alkylene- $(\text{C}_3\text{-C}_{12})$ -cycloalkyl or
 4) $-(\text{C}_1\text{-C}_6)$ -alkylene- $(\text{C}_6\text{-C}_{14})$ -aryl,

R2 is a radical of the formula II

in which

m is the integer zero or 1,

A1 is 1) $-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 2) $-\text{NH}-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 3) $-\text{NH}(\text{C}_1\text{-C}_6)\text{-alkyl}-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 4) $-\text{NH}((\text{C}_3\text{-C}_6)\text{-cycloalkyl})-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3,
 5) $-\text{O}-(\text{CH}_2)_n-$ in which n is the integer zero, 1, 2 or 3, or
 6) $-(\text{CH}_2)_n\text{-SO}_x^-$ in which n is the integer zero, 1, 2 or 3 and x the integer zero, 1 or 2,

A2 is 1) Het, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, and are unsubstituted or substituted independently of one another once, twice or three times by -(C₁-C₃)-alkyl, halogen, -NH₂, -CF₃ or -O-CF₃,

5 2) -(C₀-C₆)-alkylene-NH₂,

3) -(C₁-C₆)-alkylene-NH-C(=NH)-NH₂,

10 4) -(C₁-C₆)-alkylene-NH-C(=NH)-(C₁-C₄)-alkyl,

5) -(C₀-C₄)-alkylene-O-NH-C(=NH)-NH₂,

15 6) -(C₀-C₄)-alkylene-NH-C(O)-(C₁-C₆)-alkyl,

7) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-aryl, where aryl is unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once, twice or three times by R15,

20 8) -(C₃-C₈)-cycloalkyl-NH₂, or

9) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl, where aryl is unsubstituted or substituted by -NH₂ or is substituted by -NH₂ and once, twice or three times by R15,

25 R3 is 1) -(C₁-C₆)-alkyl,

2) -(C₀-C₄)-alkylene-(C₃-C₁₂)-cycloalkyl,

3) -(C₁-C₆)-alkylene-(C₆-C₁₄)-aryl, where aryl is substituted independently of one another once, twice or three times by R15,

4) -(C₀-C₈)-alkylene-N(R₅)-PG,

25 5) -(C₁-C₆)-alkylene-NH-C(O)-O-(C₁-C₄)-alkylene-aryl, where aryl is substituted independently of one another once, twice or three times by R15,

6) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl-(C₀-C₄)-alkylene-N(R₅)-PG,

7) -(C₀-C₈)-alkylene-O-PG,

30 8) -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl-(C₀-C₄)-alkylene-O-PG,

9) -(C₀-C₈)-alkylene-C(O)-O-PG,

10) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkylene-C(O)-O-PG}$ or
11) hydrogen atom,

R4 is -N(R6)_2 ,

where R6 are identical or different and are independently of one another

5 1) hydrogen atom,
2) $-(C_1-C_6)\text{-alkyl}$,
3) $-(C_0-C_4)\text{-alkylene-}(C_3-C_{12})\text{-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$ or $-\text{O-(C_1-C_4)-alkyl}$,
4) $-(C_0-C_6)\text{-alkylene-}(C_6-C_{14})\text{-aryl}$, where aryl and alkylene are unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$, $-\text{C(O)-N(R8)}_2$ or $-\text{O-(C_1-C_4)-alkyl}$,
15 5) $-(C_0-C_8)\text{-alkylene-N(R5)-PG}$,
6) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-N(R5)-PG}$,
7) $-(C_0-C_8)\text{-alkylene-O-PG}$,
8) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-O-PG}$,
9) $-(C_0-C_8)\text{-alkylene-C(O)-O-R11}$,
20 10) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl-}(C_0-C_4)\text{-alkyl-C(O)-O-PG}$,
11) $-(C_0-C_4)\text{-alkylene-Het}$, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteroatoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$ or $-\text{O-(C_1-C_4)-alkyl}$,
25 12) $-(C_1-C_3)\text{-fluoroalkyl}$,
13) $-(C_0-C_4)\text{-alkylene-CH(R11)-C(O)-NH}_2$,
30 14) $-(C_0-C_4)\text{-alkylene-CH(R11)-C(O)-NH-(C_1-C_4)-alkyl}$,
15) $-(C_0-C_4)\text{-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13}$, or

16) amino acid, where the linkage of the amino acid takes place by a peptide linkage, and the carboxyl radical of the amino acid is unsubstituted or substituted by PG or by $-N(R5)_2$,

5 or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by $-(C_1-C_4)$ -alkyl, $-C(O)-O-R11$, halogen,

$-(C_1-C_4)$ -alkyl-O-R11 or phenyl,

R5 is hydrogen atom or (C_1-C_6) -alkyl,

10 PG is a protective group for the amino, carboxyl or for the hydroxy function,

R7 is hydrogen atom or (C_1-C_6) -alkyl,

R8 is hydrogen atom or (C_1-C_6) -alkyl,

R9 is hydrogen atom or (C_1-C_6) -alkyl,

15 R11 and R12 are identical or different and are independently of one another

1) hydrogen atom,

2) (C_1-C_6) -alkyl,

3) $-(C_0-C_4)$ -alkylene-phenyl, where phenyl is unsubstituted or

20 substituted independently of one another once, twice or three times by halogen, $-OH$ or

$-O-(C_1-C_4)$ -alkyl,

4) $-(C_0-C_4)$ -alkylene- (C_3-C_{12}) -cycloalkyl, where cycloalkyl is unsubstituted or substituted independently of one another once, twice,

25 three or four times by R13, halogen, $-C(O)-O-R13$, $-(C_1-C_4)$ -alkyl-O-R13, $-O-(C_1-C_4)$ -alkyl or $-(C_0-C_4)$ -alkylene-phenyl,

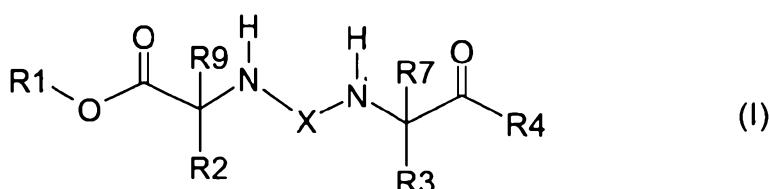
5) $-(C_0-C_4)$ -alkylene-C(O)-N(R13)₂ or

6) $-(C_0-C_4)$ -alkylene-indolyl,

R13 is 1) hydrogen atom,

30 2) (C_1-C_4) -alkyl,

3) $-(C_0-C_4)$ -alkylene-C(O)-O-R14,


4) $-(C_0-C_4)\text{-alkylene-C(O)-R14}$ or

5) $-(C_0-C_4)\text{-alkylene-O-R14}$,

R14 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{NH}_2$ or $-\text{OH}$, and

5 R15 is hydrogen atom, $-(C_1-C_4)\text{-alkyl}$, $-\text{O-CF}_3$, $-\text{NH}_2$, $-\text{OH}$, $-\text{CF}_3$ or halogen.

7. A compound of the formula I,

10 and/or of a stereoisomeric form of the compound of the formula I and/or mixtures of these forms in any ratio, and/or a physiologically tolerated salt of the compound of the formula I, where

X is $-\text{S(O)}_2^-$,

15 R1 is 1) hydrogen atom or

2) $-(C_1-C_4)\text{-alkyl}$,

R2 is 1) $-(C_1-C_6)\text{-alkylene-NH}_2$,

2) $-(C_0-C_4)\text{-alkylene-pyridyl-NH}_2$,

3) $-(C_0-C_4)\text{-alkylene-piperidinyl-NH}_2$,

4) $-(C_0-C_4)\text{-alkylene-thiazolyl-NH}_2$,

20 5) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-NH}_2$,

6) $-(C_0-C_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl-NH}_2$,

7) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{-alkyl)}$,

8) $-(C_0-C_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,

9) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{-alkylene-aryl)}$, where

25 aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15,

10) $-(C_0-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_4\text{-alkyl)}$,

11) $-(C_0-C_4)\text{-alkylene-}(C_6-C_{14})\text{-aryl}$, where aryl is unsubstituted or substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or three times by R15, or

12) $-(C_1-C_4)\text{-alkylene-}SO_x\text{-}(C_1-C_4)\text{-alkylene-}\text{NH}_2$ in which x is the integer zero, 1 or 2,

5 R3 is 1) $-(C_1-C_6)\text{-alkyl}$,

2) $-(C_0-C_4)\text{-alkylene-}(C_3-C_8)\text{-cycloalkyl}$,

10 3) $-(C_1-C_6)\text{-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,

4) $-(C_1-C_6)\text{-alkylene-NH-C(O)-O-}(C_1-C_4)\text{-alkylene-aryl}$, where aryl is substituted independently of one another once, twice or three times by R15,

5) $-(C_1-C_6)\text{-alkylene-NH-PG}$,

6) $-(C_1-C_6)\text{-alkylene-O-PG}$,

15 or

7) hydrogen atom,

where PG is t-butyl-, t-butyloxycarbonyl or benzyloxycarbonyl,

R4 is $-\text{N}(R_6)_2$,

where R6 are identical or different and are independently of one another

20 1) hydrogen atom,

2) $-(C_1-C_6)\text{-alkyl}$,

3) $-(C_0-C_4)\text{-alkylene-}(C_3-C_{12})\text{-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$ or $-\text{O-}(C_1-C_4)\text{-alkyl}$,

25 4) $-(C_0-C_4)\text{-alkylene-C(R11)(R12)-(C}_3\text{-C}_{12})\text{-cycloalkyl}$, where cycloalkyl is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, $-\text{C(O)-O-R11}$, $-(C_1-C_4)\text{-alkyl-O-R11}$ or $-\text{O-}(C_1-C_4)\text{-alkyl}$,

30 5) $-(C_0-C_4)\text{-alkylene-Het}$, where Het means a 4- to 15-membered heterocyclic ring system having 4 to 15 ring atoms which are

present in one, two or three ring systems connected together, and which comprise one, two, three or four identical or different heteratoms from the series oxygen, nitrogen or sulfur, where Het or alkylene are unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

5 6) -(C₀-C₆)-alkylene-aryl, where aryl or alkylene is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

10 7) -(C₀-C₄)-alkylene-C(R11)(R12)-aryl, where aryl or alkylene is unsubstituted or substituted independently of one another once, twice or three times by R11, halogen, -C(O)-O-R11, -(C₀-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

15 8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

11) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₀-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by R11, halogen, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or -O-(C₁-C₄)-alkyl,

20 13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

14) -(C₁-C₃)-fluoroalkyl,

or the two R6 radicals form together with the N atom to which they are

25 bonded a mono- or bicyclic ring having 4 to 9 ring atoms which is saturated, partly saturated or aromatic, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, halogen, -(C₁-C₄)-alkyl-O-R11 or phenyl,

R7 is hydrogen atom or -(C₁-C₄)-alkyl,

30 R9 is hydrogen atom or -(C₁-C₄)-alkyl,

25 Jun 2013

2007327959

R11 and R12 are identical or different and are independently of one another

- 1) hydrogen atom,
- 2) $-(C_1-C_4)$ -alkyl,
- 5) $-(C_0-C_4)$ -alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by halogen, -OH or $-O-(C_1-C_4)$ -alkyl,
- 10) $-(C_0-C_4)$ -alkylene- (C_3-C_{12}) -cycloalkyl, where cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by R13, halogen, $-C(O)-O-R13$, $-(C_1-C_4)$ -alkyl- $O-R13$, $-O-(C_1-C_4)$ -alkyl or $-(C_0-C_4)$ -alkylene-phenyl,
- 15) $-(C_0-C_4)$ -alkylene- $C(O)-N(R13)_2$ or
- 6) $-(C_0-C_4)$ -alkylene-indolyl,
- 15) R13 is
 - 1) hydrogen atom,
 - 2) $-(C_1-C_4)$ -alkyl,
 - 3) $-(C_0-C_4)$ -alkylene- $C(O)-O-R14$,
 - 4) $-(C_0-C_4)$ -alkylene- $C(O)-R14$ or
 - 5) $-(C_0-C_4)$ -alkylene- $O-R14$,
- 20) R14 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-NH_2$ or $-OH$, and
- R15 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-O-CF_3$, $-NH_2$, $-OH$, $-CF_3$ or halogen.

8. A compound of the formula I as claimed in claim 7, where

- 25) R1 is
 - 1) hydrogen atom or
 - 2) $-(C_1-C_4)$ -alkyl,
- R2 is
 - 1) $-(C_1-C_6)$ -alkylene- NH_2 ,
 - 2) $-(C_1-C_4)$ -alkylene-pyridyl- NH_2 ,
 - 3) $-(C_1-C_4)$ -alkylene-piperidinyl- NH_2 ,
- 30) 4) $-(C_1-C_6)$ -alkylene- $NH-C(=NH)-NH_2$,
- 5) $-(C_0-C_4)$ -alkylene- (C_3-C_6) -cycloalkyl- NH_2 ,

6) $-(C_1-C_6)\text{-alkylene-NH-C(=NH)-(C}_1\text{-C}_4\text{)-alkyl}$,

7) $-(C_1\text{-C}_4)\text{-alkylene-O-NH-C(=NH)-NH}_2$,

8) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$,
where phenyl is unsubstituted or substituted by $-\text{NH}_2$ or is
substituted by $-\text{NH}_2$ and once, twice or three times by R15,

5 9) $-(C_1\text{-C}_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_6\text{)-alkyl}$,

10 10) $-(C_1\text{-C}_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or
substituted by $-\text{NH}_2$ or is substituted by $-\text{NH}_2$ and once, twice or
three times by R15,

10 11) $-(C_1\text{-C}_4)\text{-alkylene-SO}_2\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ or

12) $-(C_1\text{-C}_4)\text{-alkylene-S-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$,

R3 is 1) $-(C_1\text{-C}_4)\text{-alkyl}$,

2) $-(C_1\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl}$,

3) $-(C_1\text{-C}_4)\text{-alkylene-phenyl}$, where phenyl is substituted
15 independently of one another once, twice or three times by R15,

4) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$,
where phenyl is substituted independently of one another once,
twice or three times by R15,

5) hydrogen atom,

20 R4 is $\text{N(R}_6\text{)}_2$,
where R6 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1\text{-C}_4)\text{-alkyl}$,

3) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_{12}\text{)-cycloalkyl}$, where cycloalkyl is selected
25 from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl,
adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl,
decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-
methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is
unsubstituted or substituted independently of one another once, twice,
30 three or four times by $-(C_1\text{-C}_4)\text{-alkyl}$, $-\text{C(O)-O-R}_11$ or $-(C_1\text{-C}_4)\text{-alkylene-phenyl}$,
where phenyl is unsubstituted or substituted by halogen,

4) $-(C_0-C_4)\text{-alkylene-}C(R11)(R12)\text{-}(C_3-C_{12})\text{-cycloalkyl}$, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)\text{-alkyl}$, $-C(O)\text{-}O\text{-}R11$ or $-(C_1-C_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted by halogen,

5) $-(C_0-C_4)\text{-alkylene-Het}$, where Het is selected from the group of acridinyl, azepinyl, azetidinyl, aziridinyl, benzimidazalanyl, benzimidazolyl, benzo[1,3]dioxolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxaliny, quinuclidinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, dibenzofuranyl, dibenzothiophenyl, dihydrofuran[2,3-b]-tetrahydrofuran, dihydrofuranyl, dioxolyl, dioxanyl, 2H, 6H-1,5,2-dithiazinyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, 20 isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolidinyl, 2-isothiazolinyl, isothiazolyl, isoxazolyl, isoxazolidinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, oxothiolanyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridothiophenyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydropyridinyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienoimidazolyl, thienooxazolyl,

thienopyridine, thienothiazolyl, thiomorpholinyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, where Het or alkylene is unsubstituted or substituted independently of one another once or twice by -(C₁-C₄)-alkyl,

5 6) -(C₁-C₆)-alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

10 7) -(C₀-C₄)-alkylene-C(R11)(R12)-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

15 8) 1,2,3,4-tetrahydronaphthalenyl,

9) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH₂,

10) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-(C₁-C₄)-alkyl,

15) -(C₀-C₄)-alkylene-CH(R11)-C(O)-NH-CH(R12)-R13,

12) -(C₁-C₆)-alkylene-C(O)-O-R11, where alkylene is unsubstituted or substituted independently of one another once or twice by halogen, phenyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11, -O-(C₁-C₄)-alkyl or -(C₁-C₄)-alkyl,

13) -(C₀-C₄)-alkylene-C(R11)(R12)-C(O)-O-R11, or

20 14) -(C₁-C₃)-fluoroalkyl,
or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidine, piperidine, 2-aza-bicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by -(C₁-C₄)-alkyl, -C(O)-O-R11, -(C₁-C₄)-alkyl-O-R11 or phenyl,
R7 is hydrogen atom or -(C₁-C₄)-alkyl,
R9 is hydrogen atom or -(C₁-C₄)-alkyl,
R11 and R12 are identical or different and are independently of one another

30 1) hydrogen atom,
2) -(C₁-C₄)-alkyl,

3) $-(C_0-C_4)$ -alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by – OH, halogen or $-O-(C_1-C_4)$ -alkyl,

4) $-(C_0-C_4)$ -alkylene- (C_3-C_{12}) -cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, tetrahydronaphthalenyl, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)$ -alkyl, $-C(O)-O-R_{13}$ or phenyl, or

5) $-(C_0-C_4)$ -alkylene-indolyl,

R13 is 1) hydrogen atom,

2) $-(C_1-C_4)$ -alkyl,

3) $-(C_0-C_4)$ -alkylene- $C(O)-O-R_{14}$,

4) $-(C_0-C_4)$ -alkylene- $C(O)-R_{14}$ or

5) $-(C_0-C_4)$ -alkylene- $O-R_{14}$, and

R14 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-NH_2$ or $-OH$ and

R15 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-O-CF_3$, $-NH_2$, $-OH$, $-CF_3$ or halogen.

20

9. A compound of the formula I as claimed in claim 7 or 8, where

R1 is 1) hydrogen atom or

2) $-(C_1-C_4)$ -alkyl,

R2 is 1) $-(C_1-C_6)$ -alkylene- NH_2 ,

2) $-(C_1-C_4)$ -alkylene-pyridyl- NH_2 ,

3) $-(C_1-C_4)$ -alkylene-piperidinyl- NH_2 ,

4) $-(C_1-C_4)$ -alkylene- $NH-C(=NH)-NH_2$,

5) $-(C_1-C_6)$ -alkylene- $NH-C(=NH)-(C_1-C_4)$ -alkyl,

6) $-(C_1-C_4)$ -alkylene- (C_3-C_6) -cycloalkyl- NH_2 ,

7) $-(C_1-C_4)$ -alkylene- $O-NH-C(=NH)-NH_2$,

8) $-(C_1-C_6)$ -alkylene- $NH-C(O)-O-(C_1-C_4)$ -alkylene-phenyl,

9) $-(C_1-C_4)\text{-alkylene-NH-C(O)-(C}_1\text{-C}_6\text{)-alkyl}$,

10) $-(C_1\text{-C}_4)\text{-alkylene-phenyl-NH}_2$,

11) $-(C_1\text{-C}_4)\text{-alkylene-SO}_2\text{-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$ or,

12) $-(C_1\text{-C}_4)\text{-alkylene-S-(C}_1\text{-C}_4\text{)-alkylene-NH}_2$,

5 R3 is 1) $-(C_1\text{-C}_4)\text{-alkyl}$,

2) $-(C_1\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_6\text{)-cycloalkyl}$,

3) $-(C_1\text{-C}_4)\text{-alkylene-phenyl}$, where phenyl is unsubstituted or substituted by $-\text{OH}$,

4) $-(C_1\text{-C}_6)\text{-alkylene-NH-C(O)-O-(C}_1\text{-C}_4\text{)-alkylene-phenyl}$,

10 5) hydrogen atom,

R4 is $-\text{N(R}_6\text{)}_2$,

where R6 are identical or different and are independently of one another

1) hydrogen atom,

2) $-(C_1\text{-C}_6)\text{-alkyl}$,

15 3) $-(C_0\text{-C}_4)\text{-alkylene-(C}_3\text{-C}_8\text{)-cycloalkyl}$, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalene, octahydro-4,7-methanoindenyl or bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice or

20 three times by $-(C_1\text{-C}_4)\text{-alkyl}$ or phenyl,

4) $-\text{C(R}_{11}\text{)(R}_{12}\text{)-adamantanyl}$,

5) $-\text{CH(R}_{11}\text{)-C(O)-NH-CH(R}_{12}\text{)-R}_{13}$,

6) $-(C_0\text{-C}_4)\text{-alkylene-Het}$, where Het is selected from the group of benzimidazolyl, isoxazolyl, piperidine, pyridine, pyrrolidinyl, thiophenyl and

25 benzo[1,3]dioxol,

7) 1,2,3,4-tetrahydronaphthalenyl,

8) $-(C_0\text{-C}_4)\text{-alkylene-C(R}_{11}\text{)(R}_{12}\text{)-phenyl}$, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by phenyl or fluorine,

30 9) $-\text{CH(R}_{11}\text{)-C(O)-NH}_2$,

10) $-\text{CH(R}_{11}\text{)-C(O)-NH-CH(R}_{12}\text{)-CH}_2\text{-OH}$,

11) $-(C_1-C_6)$ -alkylene-phenyl, where phenyl or alkylene are unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, $-C(O)-O-R11$, $-(C_1-C_4)$ -alkyl- $O-R11$, $-O-(C_1-C_4)$ -alkyl, phenyl or $-(C_1-C_4)$ -alkyl,

5 12) $-CH(R11)-C(O)-NH-(C_1-C_4)$ -alkyl,

13) $-(C_0-C_4)$ -alkylene- $C(R11)(R12)$ -bicyclo[3.1.1]heptanyl, where bicyclo[3.1.1]heptanyl is unsubstituted or substituted once to four times by $-(C_1-C_4)$ -alkyl,

10 14) $-(C_1-C_6)$ -alkylene- $C(O)-O-R11$, where alkylene is unsubstituted or substituted independently of one another once or twice by chlorine, fluorine, $-C(O)-O-R11$, $-(C_1-C_4)$ -alkyl- $O-R11$, $-O-(C_1-C_4)$ -alkyl, phenyl or $-(C_1-C_4)$ -alkyl,

15 15) $-(C_0-C_4)$ -alkylene- $C(R11)(R12)-C(O)-O-R11$, or

16) $-CH_2-CF_2-CF_3$,

or the two R6 radicals form together with the N atom to which they are bonded a mono- or bicyclic ring selected from the group of pyrrolidines, 2-azabicyclo[3.2.2]nonane and 7-aza-bicyclo[2.2.1]heptane, where the ring is unsubstituted or substituted once or twice by $-(C_1-C_4)$ -alkyl, $-C(O)-O-R11$, $-(C_1-C_4)$ -alkyl- $O-R11$ or phenyl,

20 R7 is hydrogen atom or $-(C_1-C_4)$ -alkyl,

R9 is hydrogen atom or $-(C_1-C_4)$ -alkyl,

R11 and R12 are identical or different and are independently of one another

25 1) hydrogen atom,

2) $-(C_1-C_4)$ -alkyl,

3) $-(C_0-C_4)$ -alkylene-phenyl, where phenyl is unsubstituted or substituted independently of one another once, twice or three times by – OH, halogen or

30 $-O-(C_1-C_4)$ -alkyl,

4) $-(C_0-C_4)$ -alkylene- (C_3-C_{12}) -cycloalkyl, where cycloalkyl is selected from the group of cyclohexyl, cyclopentyl, cyclobutyl, cyclopropyl, adamantanyl, 1,7,7-trimethylbicyclo[3.1.1]heptanyl, decahydronaphthalenyl, octahydro-4,7-methanoindenyl or

5 bicyclo[2.2.1]heptanyl and in which cycloalkyl is unsubstituted or substituted independently of one another once, twice, three or four times by $-(C_1-C_4)$ -alkyl, $-C(O)-O-R13$ or phenyl or

5) $-(C_0-C_4)$ -alkylene-indolyl,

10 R13 is 1) hydrogen atom,

2) $-(C_1-C_4)$ -alkyl,

3) $-(C_0-C_4)$ -alkylene- $C(O)-O-R14$,

4) $-(C_0-C_4)$ -alkylene- $C(O)-R14$ or

5) $-(C_0-C_4)$ -alkylene- $O-R14$,

R14 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-NH_2$ or $-OH$ and

15 R15 is hydrogen atom, $-(C_1-C_4)$ -alkyl, $-O-CF_3$, $-NH_2$, $-OH$, $-CF_3$ or halogen.

10. A compound of the formula I as claimed in any one or of claims 7 to 9, which is the compound of the formula I (S)-6-amino-2-(3- $\{(S)\}-1-[(S)-1-((S)-$

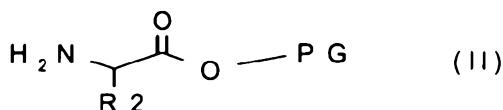
20 1-methoxycarbonyl-2-methyl-propylcarbamoyl)-2-methyl-propylcarbamoyl]-2-phenyl-ethyl}-sulfamidyl)-hexanoic acid, (S)-6-amino-2-{3- $\{(R)\}-1-$ (bicyclo[2.2.1]hept-2-ylcarbamoyl)-2-cyclohexyl-ethyl]-sulamidyl}- hexanoic acid, (S)-6-amino-2-[3- $\{(S)\}-1-cyclohexylcarbamoyl-2-phenyl-ethyl\}$ -sulfamidyl]- hexanoic acid, (S)-6-acetimidoylamino-2-{ $\{(S)\}-2-cyclohexyl-1-$

25 $\{(1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl\}$ -ethylsulfamidyl}- hexanoic acid, ethyl 3-(6-amino-pyridin-3-yl)-2-{ $\{(S)\}-2-$ cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]-propionate, (S)-6-amino-2-{ $\{(S)\}-1-((1R,2S,4R)-1,7,7-$ trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-propylsulfamidyl\}-hexanoic acid, (S)-2-{ $\{(S)\}-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-$

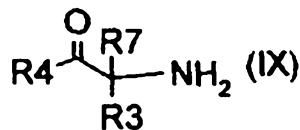
30 $\{(2.2.1)hept-2-ylcarbamoyl\}-ethylsulfamidyl\}-5-guanidino-pentanoic acid, (S)-6-amino-2-{ $\{(S)\}-2-cyclobutyl-1-((1R,2S,4R)-1,7,7-trimethyl-$$

bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, (S)-5-amino-2-{{2-cyclohexyl-1-[(R)-(1,2,3,4-tetrahydro-naphthalen-2-yl)carbamoyl]-ethylsulfamidyl}}-pentanoic acid, ethyl (S)-2-{{(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl}}-6-hexanoylaminohexanoate, (S)-6-amino-2-{{(S)-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-butylsulfamidyl}}-hexanoic acid, (S)-6-amino-2-{{(S)-3-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-propylsulfamidyl}}-methyl}-hexanoic acid, (S)-6-amino-2-{{(S)-2-cyclohexyl-1-(decahydro-naphthalen-2-ylcarbamoyl)-ethylsulfamidyl}}-hexanoic acid, (S)-2-{{(S)-1-(adamantan-1-ylcarbamoyl)-2-cyclohexyl-ethylsulfamidyl}}-6-amino- hexanoic acid, (S)-2-{{(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]-hept-2-ylcarbamoyl)-ethylsulfamidyl}}-3-pyridin-3-yl-propionic acid, (S)-2-{{(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl}}-3-pyridin-4-yl-propionic acid, (S)-6-amino-2-{{(S)-2-cyclohexyl-1-((1S,2S,3S,5R)-2,6,6-trimethylbicyclo[3.1.1]hept-3-ylcarbamoyl)-ethylsulfamidyl}}-hexanoic acid, (S)-6-amino-2-{{(S)-2-cyclohexyl-1-(3,3,5-trimethyl-cyclohexylcarbamoyl)-ethylsulfamidyl}}-hexanoic acid, (S)-6-amino-2-{{(S)-1-(4-tert-butyl-cyclohexylcarbamoyl)-2-cyclohexyl-ethylsulfamidyl}}-hexanoic acid, (S)-6-amino-2-{{(S)-2-cyclohexyl-1-(3-methyl-cyclohexylcarbamoyl)-ethylsulfamidyl}}-hexanoic acid, (S)-6-amino-2-{{(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl}}-hexanoic acid, 3-(6-amino-pyridin-3-ylmethyl)-2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-propionic acid, 2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-3-piperidin-4-yl-propionic acid, (S)-3-(4-amino-phenyl)-2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-propionic acid, (S)-6-amino-2-{{(S)-1-cyclohexylmethyl-2-oxo-2-piperidin-1-yl-ethylsulfamidyl}}-hexanoic acid, (S)-5-amino-2-{{(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl}}-pentanoic acid, (S)-6-

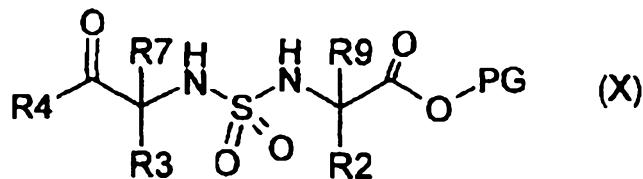
amino-2-{[(S)-2-cyclohexyl-1-((S)-1-isobutylcarbamoyl-2-methylpropylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid,


(S)-6-amino-2-{[(S)-1-((S)-1-isobutylcarbamoyl-2-methyl-propylcarbamoyl)-2-phenyl-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-2-cyclohexyl-1-isobutylcarbamoyl-ethylsulfamidyl)]-hexanoic acid, (S)-6-amino-2-[(S)-1-((1R,2R,4S)-bicyclo[2.2.1]hept-2-ylcarbamoyl)-2-cyclohexyl-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-2-cyclohexyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-1-((1S,4R)-bicyclo[2.2.1]hept-2-ylcarbamoyl)-2-cyclohexyl-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-2-cyclohexyl-1-(octahydro-4,7-methano-inden-5-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-1-tert-butylcarbamoyl-2-cyclohexyl-ethylsulfamidyl)]-hexanoic acid, (S)-2-[(S)-1-(adamantan-1-ylcarbamoyl)-2-phenyl-ethylsulfamidyl]}-6-amino-hexanoic acid, (S)-6-amino-2-[(S)-1-((1S,4R)-bicyclo[2.2.1]hept-2-ylcarbamoyl)-2-phenyl-ethylsulfamidyl]}-hexanoic acid, (S)-2-[(S)-1-(adamantan-1-ylcarbamoyl)-2-(4-hydroxy-phenyl)-ethylsulfamidyl]}-6-amino-hexanoic acid, (S)-6-amino-2-[(S)-2-phenyl-1-((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-cyclohexyl-(1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-methyl]-sulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-2-cyclohexyl-1-((1R,2R,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-2-cyclopropyl-1-((1R,2R,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-2-cyclohexyl-1-(3,5-dimethyl-adamantan-1-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, (S)-6-amino-2-[(S)-2-cyclohexyl-1-(3-isopropyl-adamantan-1-ylcarbamoyl)-ethylsulfamidyl]}-hexanoic acid, tert-butyl (S)-6-amino-2-[(S)-2-cyclohexyl-1-((1R,2R,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylcarbamoyl)-ethylsulfamidyl]}-hexanoate or (S)-2-[(S)-1-(adamantan-1-ylcarbamoyl)-3-methyl-butylsulfamidyl]}-6-amino-hexanoic acid.

11. A compound according to claim 6, substantially as hereinbefore described with reference to the examples.


12. A process for preparing the compound of the formula I as claimed in any one of claims 6 to 11, which comprises

5 a) a compound of the formula II


10

where R2 and PG have the meanings mentioned in the compound of the formula I, is reacted with a compound of the formula IX

15 where R3, R4, R7 and PG have the meanings mentioned in the compound of the formula I, to give a compound of the formula X

20 where R2, R3, R4, R7, R9 and PG have the meanings mentioned in the compound of the formula I, and is then converted into a compound of the formula I, or

25 b) fractionating a compound of the formula I prepared by processes a), or a suitable precursor of the formula I which occurs in enantiomeric forms owing to its chemical structure, by salt formation with enantiopure acids or bases, chromatography on chiral stationary phases or derivatization by means of chiral enantiopure compounds such as amino acids, separation of the diastereomers obtained in this way, and elimination of the chiral auxiliary groups into the pure enantiomers, or

c) either isolating in free form the compound of the formula I prepared by processes a) or b), or converting into physiologically tolerated salts in the case where acidic or basic groups are present.

13. A medicament having an effective content of at least one compound of the formula I as claimed in any one of claims 6 to 11 together with a pharmaceutically suitable and physiologically tolerated carrier, additive, and/or other active ingredients and excipients.

5

14. A method of prophylaxis, secondary prevention or therapy of one or more disorders associated with thromboses, embolisms, hypercoagulability or fibrotic changes, comprising administering to a subject a compound of the formula I as defined in any one of claim 1 to 11, or a medicament according to claim 13.

10

SANOFI-AVENTIS

WATERMARK PATENT & TRADE MARK ATTORNEYS

15

P31864AU00