(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date (10) International Publication Number
15 December 2005 (15.12.2005) PCT WO 2005/120067 A2
(51) International Patent Classification’: HO4N 7/173, (74) Agent: DUBOIS, Steven, M.; Potomac Patent Group,
GO6F 13/00, HO4N 5/445 PLLC, P.O. Box 270, Fredericksburg, VA 22404 (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2005/019705 kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(22) International Filing Date: 3 June 2005 (03.06.2005) CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
- . . GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(25) Filing Language: English KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
(26) Publication Language: English MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
(30) Priority Data: SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
60/576,786 3 June 2004 (03.06.2004) US VN, YU, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): HILL- (84) Designated States (unless otherwise indicated, for every
CREST LABORATORIES, INC. [US/US]; 15245 Shady kind of regional protection available): ARIPO (BW, GH,
Grove Road, Rockville, MD 20850 (US). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
— ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
= (72) Inventors; and European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
— (75) InVentOrS/AppllCantS (for Us only): HUNLETH, Frank, FR, GB, GR, HU, IE, IS7 IT, LT, LU, MC, NL, PL, PT, RO,
— A. [US/US], 26 Blue Hosta Way, ROCleHe, MD 20850 SE, SL SK, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN,
= (US)A GRITTON, Charles, W., K. [US[US], 73 Ruther- GQ GW. ML. MR. NE. SN. TD TG).
— ford Circle, Sterling, VA 20165 (US). CONROY, Kevin, S
= M. [US/US]; 6010 California Circle, #202, Rockville, MD Published:
——] 20852 (US). STONER, Ryan [US/US]; 3410 N. Lake — without international search report and to be republished
= Shore Drive, #7E, Chicago, IL 60657 (US). upon receipt of that report
— [Continued on next page]
=== (54) Title: CLIENT-SERVER ARCHITECTURES AND METHODS FOR ZOOMABLE USER INTERFACE
— DISPLAY
— i DEVICE
=_— we AT
= “ | couener [
O O, 6;4\ T I
— WPEG : NPEG {68
— ; 58 STREAM ! STREAM |—— MPEC 08D \/
— . VIDEQ STREAHING
2 IRANS;MTTER ;Romm RECENER DECODER) GRAPHICS
= ' MPEGOVERUDP | 62
= | | Lo mE
N, seveenuesT 4.t o | G '
o ; SCENE ENCODER PROCESSOR = Ll o
< 7 ZDIELVERIAND QVERLAYS AND LOCAL ANMIATIONS
REMOTE CONTROL
‘ =1 COURLER PONTER
S gl TRSTON |> e
: AND
= D USCREENCAPTURER WESADID "
- PONTER |
S A w/]
\sm METADATA, CONTENT,
~ USER INTERFACE
g
o

& (57) Abstract: Exemplary embodiments of the present invention provide methods and systems for communicating and processing
data in communication networks, e.g., cable networks and/or interactive television networks. Selective use of different data streams

O and encoding techniques enable sophisticated user interfaces to be generated on client devices having varying processing capabilities.
MPEG encoding techniques have reduced complexity to enable better response time to user requests. Specialized user interface
features, such as hoverzooming, are enabled.

WO 2005/120067 A2 II}1}10 0800 A0 000 00 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/120067 PCT/US2005/019705

0320-045
CLIENT-SERVER ARCHITECTURES AND METHODS
FOR ZOOMABLE USER INTERFACES
RELATED APPLICATION
[0001] This application is related to, and claims priority from, U.S. Provisional Patent

Application Serial No. 60/576,786, filed on June 3, 2004, entitled “ZUI on PVR Architecture

Specification”, the disclosure of which is incorporated here by reference.

BACKGROUND

[0002] The present invention describes systems and methods for processing and
transferring multimedia data between nodes in a communication system, e.g., an interactive
television system, usable to create, for example, sophisticated entertainment user interfaces in the
home.

{0003] Technologies associated with the communication of information have evolved
rapidly over the last several decades. Television, cellular telephony, the Internet and optical
communication techniques (to name just a few things) combine to inundate consumers with
available information and entertainment options. Taking television as an example, the last three
decades have seen the introduction of cable television service, satellite television service, pay-
per-view movies and video-on-demand. Whereas television viewers of the 1960s could typically
receive perhaps four or five over-the-air TV channels on their television séts, today’s TV
watchers have thg opportunity to select from hundreds and potentially thousands of channels of
shows and information. Video-on-demand technology, currently used primarily in hotels and the
like, provides the potential for in-home entertainment selection from among thousands of movie
titles. Digital video recording (DVR) equipment such as offered by TiVo, Inc., 2160 Gold Street,

/A

Pl renecmss ol pagers

WO 2005/120067 PCT/US2005/019705

0320-045

Alviso, CA 95002, further expand the available choices.

[0004] The technological ability to provide so much information and content to end users
provides both opportunities and challenges to system designers and service providers. One
challenge is that while end users typically prefer having more choices rather than fewer, this
preference is counterweighted by their desire that the selection process be both fast and simple.
Unfortunately, the development of the systems and interfaces by which end users access media
items has resulted in selection processes which are neither fast nor simple. Consider again the
example of television programs. When television was in its infancy, determining which program
to watch was a relatively simple process primarily due to the small number of choices. One
would consult a p?inted guide which was formatted, for example, as series of columns and rows
which showed the correspondence between (1) nearby television channels, (2) programs being
transmitted on those channels and (3) date and time. The television was tuned to the desired
channel by adjusting a tuner knob and the viewer watched the selected program. Later, remote
control devices were introduced that permitted viewers to tuné the television from a distance.
This addition to the user-television interface created the phenomenon known as “channel surfing”
whereby a viewer could rapidly view short segments being broadcast on a number of channels to
quickly learn what programs were available at any given time.

[0005] Despite the fact that the number of channels and amount of viewable content has
dramatically increased, the generally available user interface and control device options and
frameworks for televisions have not changed much over the last 30 years. Printed guides are still
the most prevalent mechanism for conveying programming information. The multiple button
remote control with simple up and down arrows is still the most prevalent channel/content
selection mechanism. The reaction of those who design and implement the TV user interface to

the increase in available media content has been a straightforward extension of the existing

2

WO 2005/120067 PCT/US2005/019705

0320-045

selection procedures and interface objects. Thus, the number of rows and columns in the printed
guides has been increased to accommodate more channels. The number of buttons on the remote
control devices has been increased to support additional functionality and content handling.
However, this approach has significantly increased both the time required for a viewer to review
the available information and the complexity of actions required to implement a selection.
Arguably, the cumbersome nature of the existing interface has hampered commercial
implementation of some services, e.g., video-on-demand, since consumers are resistant to new
services that will add complexity to an interface that they view as already too slow and complex.
[0006] An exemplary control framework having a zoomable graphical user interface for
organizing, selecting and launching media items is described in U.S. Patent Application Serial
No. 10/768,432, filed on January 30, 2004 to Frank A. Hunleth, the disclosure of which is
incorporated here by reference. This framework provides exemplary solutions to the afore-
described problems of conventional interfaces. Among other things, such exemplary frameworks
provide mechanisms which display metadata associated with media items available for selection
by a user in a manner which is easy-to-use, but allows a large number of different media items to
be accessible. One feature of exemplary frameworks described in this patent application is the
use of zooming to provide, among other things, visually informative transitions between different
semantic levels of media objects displayed by the interface and as a mechanism for highlighting
objects currently being considered by a user.

[0007] The implementation of these types of advanced user interfaces is complicated by
the system architectures and communication nodes involved in the processing and transport of
data used to generate these interfaces from various sources to an end user’s device, e.g., a
television. As will be described in more detail below, this data includes so-called metadata that
describes the media content. The term “metadata” as it is used herein refers to all of the

'4'3

WO 2005/120067 PCT/US2005/019705

0320-045

supplementary information that describes the particular content of interest associated with media
items available for selection by a user. As an example for movie objects, the metadata could
include, e.g., the title, description, genre, cast, DVD cover art, price/availability, cast bios and
filmographies, links to similar movies, critical reviews, user reviews, the rights associated with
the metadata itself, rights associated with the content, advertising metadata linked to the content
of interest, etc. An exemplary system for capturing, processing, synthesizing and forwarding
metadata suitable for such advanced user interfaces is described in U.S. Patent Application Serial
No. 11/037,897 entitled “A Metadata Brokering Server and Method”, filed on January 18, 2005,
the disclosure of which is incorporated here by reference.

[0008] Once captured and processed, however, the data needs to be communicated from,
for example, a head-end portion of the system to, for example, a set-top box in a manner which
enables sufficient data to be supplied to render rich user interfaces, while at the same time being
sensitive to time delay and operating within the constraints imposed by legacy hardware.
Accordingly, it would be desirable to provide architectures and methods which resolve these

conflicting parameters and enable advanced user interfaces to be generated.

SUMMARY
[0009] Exemplary embodiments of the present invention provide methods and systems
for communicating and processing data in communication networks, e.g., cable networks and/or
interactive television networks. Selective use of different data streams and encoding techniques
enable sophisticated user interfaces to be generated on client devices having varying processing

capabilities.

-5(.%

WO 2005/120067 PCT/US2005/019705
0320-045

[0010] Accorc.iing to one exemplary embodiment of the present invention, a method for
transmitting data from an upstream node to a client device in a cable communication network
includes the steps of selectively identifying data to be transmitted from the upstream node to the
client device as either first data or second data, encoding the first data using MPEG encoding,
transmitting the MPEG encoded data via an MPEG data stream to the client device, encoding the
second data using a second type of encoding which is different than MPEG encoding and
transmitting the encoded second data using a second data stream to the client device.

[0011] According to another exemplary embodiment of the present invention, a method
for generating a hoverzoom effect on a user interface includes the steps of transmitting
background layer data and foreground data to a client device, displaying the background layer,
identifying a user action associated with the hoverzoom effect, displaying, in response to the user
action, said foreground layer as an overlay on the background layer.

{0012] According to yet another exemplary embodiment of the present invention, a
method for MPEG encoding data to be transmitted from an upstream node to a client device
includes the steps of estimating motion vectors associated with a user interface, sending the
motion vectors to an MPEG encoder, and MPEG encoding the data to be transmitted using the

estimated motion vectors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings illustrate exemplary embodiments of the present
invention, wherein:

[0014] FIGS. 1(a) and 1(b) depict screens of a user interface showing a hoverzoom
feature which can be generated using data processed in accordance with the present invention;
[0015] FIG. 2 depicts another screen of a user interface which can be generated using

5

P

WO 2005/120067 PCT/US2005/019705

0320-045
data processed in accordance with the present invention;

[0016] FIG. 3 is a table showing exemplary metadata types and sources;

[0017] FIG. 4 shows a client-server architecture according to exemplary embodiments of
the present invention;

[0018] FIG. 5 illustrates the MPEG-2 transition and scene encoder of FIG. 4 in more
detail in accordance with an exemplary embodiment of the present invention;

[0019] FIG. 6 illustrates the scene request processor of FIG. 4 in more detail in
accordance with an exemplary embodiment of the present invention;

[0020] FIG. 7 illustrates the client Ul state machine of FIG. 4 in more detail in
accordance with an exemplary embodiment of the present invention;

[0021] FIG. 8 depicts an exemplary messaging interaction between an event processor,
scene loader, exclusive scene and overlay scene in accordance with an exemplary embodiment of
the present invention;

[0022] FIG. 9 shows another exemplary messaging interaction associated with
architecture and methods in accordance with the present invention.

[0023] FIG. 10 depicts a technique for encoding data associated with a hoverzoom effect
according to an exemplary embodiment of the present invention; and
[0024] FIG. 11 illustrates selective encoding of data for transmission to a client device

according to an exemplary embodiment of the present invention.

DETAILED DESCRIPTION

[0025] The following detailed description of the invention refers to the accompanying
drawings. The same reference numbers in different drawings identify the same or similar

elements. Also, the following detailed description does not limit the invention. Instead, the

-7-

WO 2005/120067 PCT/US2005/019705

0320-045

scope of the invention is defined by the appended claims.

[0026] In order to provide some context for this discussion, exemplary user interface
screens which can be created using data and instructions forwarded from a server to a client in
accordance with exemplary embodiments of the present invention are shown in Figures 1(a) and
1(b). Therein, a portion of an exemplary user interface screen which can be generated based on
information transferred to an end user’s system (e.g., set-top box/television or personal
computer) shows ten media selection items. For more information regarding this purely
exemplary interface, including previous screens and navigation techniques, the interested reader
is directed to the above-incorporated by reference U.S. Patent Application Serial No. 10/768,432.
It will be appreciated that such user interfaces are purely exemplary and that architectures and
methods in accordance with the present invention can be implemented to support other interfaces.
[0027] Figure 1(a) shows a user interface screen having a plurality of media objects
available for selection as images, e.g., DVD cover art. In Figure 1(b), the image associated with
the movie “Apollo 13 has been magnified as a result of a preliminary selection activity, e.g., a
user passing a cursor (not shown) over this image on the display screen. This feature, referred to
as a hoverzoom effect and described in more detail below under the heading “Hoverzoom”, can
be achieved by transmitting data (e.g., metadata) and instructions between nodes, €.g., a headend
and a set-top box according to exemplary embodiments of the present invention. At lower levels
of the user interface, additional data, e.g., metadata delivered from content providers, can be used
to generate the user interface screen. For example, as shown in Figure 2, user selection of this
magnified image, e.g., by depressing a button on an input device (not shown), can result in a
further zoom to display additional details. For example, information about the movie “Apollo
13” including, among other things, the movie’s runtime, price and actor information is shown.

Those skilled in the art will appreciate that other types of information could be provided here.

-8-

WO 2005/120067 PCT/US2005/019705

0320-045

Additionally, this GUI screen includes GUI control objects including, for example, button control
objects for buying the movie, watching a trailer or returning to the previous GUI screen (which
could also be accomplished by depressing the ZOOM OUT button on the input device).
Hyperlinks generated from metadata processed in a manner described below can also be used to
allow the user to jump to, for example, GUI screens associated with the related movies identified
in the lower right hand corner of the GUI screen of Figure 2 or information associated with the
actors in this movie. In this example, some or all of the film titles under the heading
“Filmography” can be implemented as hyperlinks which, when actuated by the user via the input
device, will cause the GUI to display a GUI screen corresponding to that of Figure 2 for the
indicated movie. Some or all of the information used to generate the interface screens of Figures
1(a), 1(b) and 2 comes from metadata provided by one or more metadata providers and processed
in accordance with exemplary embodiments of the present invention as will now be described.
[0028] The interface screens shown in Figures 1(a), 1(b) and 2 are purely exemplary and
metadata (and other data) transferred and processed in accordance with the present invention can
be used to support other interfaces or for purposes other than interface generation. Likewise,
many different types of information can be received and processed in accordance with the present
invention. Examples of metadata types, sources and associated uses, e.g., for a TV browser
interface, a video-on-demand (VOD) interface or a music browser, are shown in the table of
Figure 3. Of particular interest for this detailed discussion are the zooming features associated
with user interfaces generated in accordance with these exemplary embodiments of the present
invention. Although the present invention is not limited to techniques or systems for generating
zoomable user interfaces, some of the client/server features discussed herein are particularly
beneficial for use in conjunction with user interfaces which include zooming transitions between

user interface screens. For the purpose of this detailed description, the terms “zoom”,

-9-

WO 2005/120067 PCT/US2005/019705

0320-045

“zoomable” and “zooming” refer to techniques wherein a user interface action results in changes
to the displayed portion of the user interface that a creates a change of perspective which is
consistent and informative to the user. Zooming will typically include changes in object
magnification (e.g., camera-style zooming), but is expressly not limited thereto. For example,
another aspect of zooming in accordance with user interfaces is semantic zooming which
includes the modification of a zoomed object in a manner which is independent of magnification,
e.g., the addition of text or a graphic to an object which was not present as part of the object (at
any level of magnification) prior to the semantic zoom. For more information related to
zoomable user interfaces, the interested reader is referred to the above-identified, incorporated by
reference patent application.

[0029] For context, one example of a zooming transitions in accordance with exemplary
embodiments of the present invention is the zooming transition between the user interface screen
of Figure 1(a) and 1(b), which involves a magnification change of a hoverzoomed object and,
optionally, semantic zooming to that object as well. Another example is found in the transition
between the user interface screen of Figure 1(b) and Figure 2, wherein the image associated with
“Apollo 13” has its magnification changed (e.g., enlarged in Figure 2 relative to the similar
image shown in Figure 1(b)) and translated for use in Figure 2. Panning effects can also be used
to animate the zooming transition.

{0030] A general client-server architecture 40 for providing data processing and transport
according to an exemplary embodiment of the present invention is shown in Figure 4. Therein, a
user interface server 42 communicates with a client device 44 to generate a user interface on a
display device 46 in conjunction with inputs from, for example, a pointing device 48.
Communication of data, e.g., metadata and content data, between the user interface server 42 and

the client device 44 can involve any number of intermediate nodes (not shown) between the user

-10-

WO 2005/120067 PCT/US2005/019705

0320-045

interface server 42 and the client device 44 including hubs, distribution servers, and the like.
Moreover, some or all of the functional elements illustrated as being part of the user interface
server 42 can be located within one or more of these intermediate nodes or reside at the headend
of the system 40. The display device 46 can, for example, be a television, a computer
monitor/display, or any other display device. The client device 44 can be embodied as a set-top
box, a personal computer, or any other device including a processing unit. The pointer 48 can,
for example, be a free space pointing device, a mouse, a remote control device, a track ball, a
joystick, or any other device capable of providing a pointing capability and can be connected to
the client device 44 either via wireline or wirelessly.

[0031] According to this exemplary embodiment of the present invention, the server 42
includes a transition and screen capturer 50, an MPEG-2 transition and scene encoder, an MPEG
and ZSD cache 54, a scene request processor 56 and an MPEG stream transmitter 58, which
components operate to generate and manage the streaming of MPEG-2 data to client devices 44,
and to receive and respond to upstream requests from clients 44. The transition and screen
capturer 50 automates the gathering of scene data used to generate the user interface. At a high
level, this can be accomplished by navigating through, e.g., a scene graph provided as input to
the transition and screen capturer 50, along with metadata and content, and calling the MPEG-2
transition and scene encoder 52 to generate MPEG-2 clips and scene description files associated
with selected scenes to be displayed on display device 46. Detailed information associated with
scene description files and formats (also referred to herein as “ZSD data”) according to
exemplary embodiments of the present invention is provided below under the header “Scene
Description Data Format”.

[0032] Navigation through the scene graph involves capturing and processing data

associated with the various scenes which can be generated by the user interface. A “scene” as

-11-

WO 2005/120067 PCT/US2005/019705

0320-045

that term is used herein generally refers to the framework associated with any user interface
screen which can be generated by the user interface which, despite the sophisticated and dynamic
nature of user interfaces in accordance with the present invention, are all known a priori albeit at
least some of the data used to populate the scenes will vary, e.g., over time as content providers
change, for example, metadata associated with their offerings. Thus, although Figures 1(a), 1(b)
and 2 show only portions of user interface screens, each of those complete screens would be
considered to be a scene. Table 1 below lists exemplary data which can be collected for each

transition and Table 2 lists exemplary data for each scene:

From Scene |ID The scene ID of the starting scene

To Scene ID The scene ID of the destination scene

Focus Command The command to move the focus in interface to the
icon, button, etc. that causes the transition when
selected. An example of a focus command is to
move the mouse pointer over an icon to cause it to
focus. Another focus command could directly
activate a hoverzoom effect.

Activation Command | This command activates the icon, button, etc. to
start the transition from the “From Location” to the
“To Location”.

Table 1 — Per-Transition Information

Scene ID The scene ID of the this scene
Location The interface location instance for the starting scene

Scene Description The user supplied description or an automatically
generated description.

Table 2 — Scene Information

[0033] The transition and scene capturer 50 is thus able to acquire all of the information
necessary to simulate all desired transitions in the user interface from, for example, a database
not shown in Figure 4 which contains the complete user interface “universe”. The transition and

scene capturer 50 includes navigator controller and capture controller components which become

-12-

WO 2005/120067 PCT/US2005/019705
0320-045
active as a user generates inputs to the interface which command scene transitions. At a high
level, the navigation controller has the responsibility of navigation to and from every transition
and scene. An exemplary navigation controller performs the following operations, (1) obtain the
next transition, (2) navigate to the “from” scene, (3) execute a focus command for this transition,
(4) notify the capture controller with the scene and transition information, (5) execute the
activation command, (6) notify the capture controller when the animation completes, (7) notify
the capture controller with the scene and transition information reversed (for the back transition),
(8) invoke a goBack() routine, and (9) notify the capture controller when the animation
completes.

[0034] The capture controller integrates with the MPEG-2 transition and scene encoder
52 to create the MPEG-2 clips and ZSD files. The captu;e controller receives notifications from
the navigation controller when the transition begins and ends and invokes routines on the MPEG-
2 transition and scene encoder at every animation step. To provide a visual indication of the
progress to the user, the capture controller ensures that the canvas still paints the visible scene
graph to the scene and adds a text overlay that indicates the percent of transitions executed.
[0035] A detailed example of an MPEG-2 transition and scene encoder 52 according to
an exemplary embodiment of the present invention is shown in Figure 5. Raw scene data, e.g.,
images, text, metadata, etc., is delivered from the transition and screen capturer 50 and provided
to an object extraction unit 502, a client-rendered feature extraction unit 504 and a video
information extraction unit 506. The object extraction unit 502 (handling user-interactable
objects on the user interface screens) and client-rendered feature extraction unit 504 (handling,
e.g., hoverzoom and text, features to be rendered by the client device 44) operate, under the
contro] of the render-location controller 508, to extract information from the raw data stream and

provide it to the ZSD encoder 507, which encodes the extracted information using the scene

-13-

WO 2005/120067 PCT/US2005/019705
0320-045

description format described in detail below. None, some or all of the ZSD encoded data can be
sent within the MPEG data stream, for example as part of the private data fields within MPEG
frames, using MPEG-2 data encapsulator 509, while other ZSD encoded data can be transmitted
using the OOB link described above with respect to Figure 4.

[0036] The video information extraction unit 506 operates to extract video information
suitable for MPEG-2 encoding, again under the control of the render location controller 508. The
ability of render location controller 508 to selectively determine which type of encoding to apply
to particular data, in this example MPEG or ZSD encoding, and the benefits associated therewith
are described in more detail below with respect to Figure 11.

[0037] As used herein, the term “MPEG encoding” is generic to MPEG-1, MPEG-2 and
similar encodings, although some exemplary embodiments of the present invention do
specifically refer to MPEG-2 encoding. General details associated with MPEG encoding per se
will be known to those skilled in the art and are further available in the form of draft standards
(e.g., ISO CD 11172). An exemplary MPEG-2 encoder 500 includes a plurality of unnumbered
blocks which operate in accordance with thé standard to perform MPEG-2 encoding (an
exception being motion estimation unit 510 described in more detail below). One example of an
MPEG encoder which provides a more detailed description of the unnumbered blocks of MPEG
encoder 500 can be found in the various MPEG-2 standards documents, for example, Test Model
5 documents which evolved as a joint effort between ITU-T SG15.1 (known then as CCITT SG
XV, Working Party XV/1, Experts Group on ATM Video Coding) and ISO/IEC JTC1/SC29
WGI11 (MPEG). Specifically, the MPEG version of Test Model § is known as MPEG 93/225b
and the ITU version of Test Model 5 is known as AVC-445b, the disclosures of which are
incorporated here by reference. MPEG encoded data is stored in the MPEG/ZSD cache unit 54

for subsequent transmission to the client device 44.

-14-

WO 2005/120067 PCT/US2005/019705
0320-045

[0038] Of particular interest with respect to the exemplary MPEG-2 transition and scene
encoder 52 illustrated in Figure 5 is the encoder hint collector 512 and motion estimator 510.
One aspect of MPEG-encoder 500 in the MPEG-2 transition and scene encoder 52 is its ability to
quickly and efficiently provide a high level of compression of the MPEG data being encoded.
Among other things, this can be achieved by using knowledge of where each of the scenes are
“located” relative to one another in the user interface, which is defined a priori in exemplary user
interfaces according to the present invention. This enables selective simplification of the
standard MPEG motion estimation algorithm, which in turn speeds up the MPEG encoding
process and/or reduces the amount of processing power that needs to be dedicated thereto. More
specifically, when encoding sequential MPEG frames in an MPEG data stream, part of the
information that is used to perform the encoding is information regarding where blocks of pixels
have moved from one MPEG frame to the next MPEG frame (and/or backwards from a previous
MPEG frame to a current MPEG frame). For example, if a block of pixels in a first MPEG frame
has simply moved to a new screen location in a second MPEG frame, it is generally more
efficient to determine and transmit a motion vector associated with that block of pixels than to re-
encode that entire block of pixels again and resend them. Similarly, if that block of pixels has
experienced a relatively uniform color difference (e.g., by transiting through a lighting effect), it
is still efficient to provide a motion vector and some color difference information rather than
retransmit the entire block of pixels.

[0039] In order to accommodate random object movement to support all types of, e.g.,
video data compression, standard MPEG motion estimation algorithms perform a search for
blocks of pixel data determine which blocks of pixels have moved (and in which direction) from
frame to frame. For example, some searches, call full pel searches, use 16x16 blocks, while

others, called half-pel searches, use 16x8 blocks. These searches can become computationally

-15-

WO 2005/120067 PCT/US2005/019705

0320-045

expensive, particularly for high definition ‘video data, and has been estimated to require up to
80% of the processing time/power associated with the operations performed by a standard MPEG
encoder 500 (e.g., without the modifications introduced by the encoder hint collector 512). Thus,
according to exemplary embodiments of the present invention, motion estimation associated with
MPEG encoding is simplified using the fact that the user interface being generated by these
client/server architectures does not involve random movement of objects. For e'xample, in
transitioning between the exemplary user interface screens of Figure 1(b) and 2, the image
associated with “Apollo 13” moves from a first position on a display screen to a second position
on a display screen (optionally with s-ome magnification), both positions being known a priori to
the encoder hint collector 512, which can calculate an MPEG motion vector therefrom.

[0040] Thus, the encoder hint collector 512 can pass the MPEG motion vector to motion
estimation unit 510 with a command to use the passed motion vector for performing MPEG
compression rather than performing a search in accordance with standard MPEG techniques.
However, this use of knowledge of interrelated user interface screens to generate MPEG motion
vectors may not always be able to generate a valid MPEG motion vector (e.g., due to limitations
on the number of bits assigned for expressing MPEG motion vectors). Accordingly, encoder hint
collector 512 also has the capability to command motion estimation unit 510 to employ the
standard MPEG search algorithm to determine motion vectors on a frame-by-frame (or other)
basis. In addition to either (1) using motion vectors which are generated entirely using the
standard MPEG search algorithm or (2) using motion vectors which are generated entirely by the
encoder hint generator 512 without use of the standard MPEG search algorithm, a third category
of motion vectors which can be determined in accordance with the present invention are those
which are calculated by the standard MPEG search algorithm having a search range which is

limited in range based on the information available to the encoder hint collector 512.

-16-

WO 2005/120067 PCT/US2005/019705

0320-045

[0041] Referring back again to Figure 4, MPEG data and scene description data
generated by blocks 50 and 52 can be cached in memory device 54 for retrieval as needed by the
scene request processor 56. The scene request processor 56 processes requests for scenes from
client 44, e.g., if the client user interface state machine 62 receives an indication that the cursor
associated with pointer 48 has paused over the image associated with “Apollo 13” (Figure 1),
then a request is sent back to scene request processor 56 to initiate a hoverzoom scene (described
below) or if the client user interface state machine 62 receives an indication that the user wants to
view a more detailed scene associated with “Apollo 13” (Figure 2), then a request is sent back to
scene request processor 56 to initiate that scene. The scene request processor 56 returns MPEG-2
transitions and scene description data back to the client 44 in response to the upstream requests.
According to exemplary embodiments described in more detail below, for certain upstream
requests the scene request processor 56 may dynamically determine whether MPEG data, scene
description data or some combination of both is appropriate to service the requests. A detailed
example of the scene request processor 56 is illustrated in Figure 6.

[0042] Therein, the client request processor 600 coordinates all client interaction, e.g., by
interpreting client requests and dispatching those requests to the appropriate components within
scene request processor 56. For example, the client request processor tracks states and statistics
on a per-client basis and stores such information in database 602. An out-of-band (OOB) client
communication component 604 handles all communication with clients over OOB channels,
including responding to connection requests and extracting protocol requests. The video
playback control function 606 coordinates the operation of the MPEG-2 stream generation
components, e.g., the scene loop generator 608 and the transition playback function 610. The
scene loop generator 608 component generates loops of the user interface scenes and transmits

them when no transitions occur. The transition playback function 610 loads MPEG-2 transition

-17-

WO 2005/120067 PCT/US2005/019705

0320-045

streams that were previously generated by the MPEG-2 transition and scene encoder 52 (e.g., via
cache 54) and streams them to the requested client. The transition playback function 610 may
serve multiple streams simultaneously. The MPEG-2 transport stream encapsulation unit 612
updates the MPEG-2 transport stream as appropriate and forwards the stream to the UDP
encapsulation unit 614 which groups MPEG-2 transport stream packets together and sends them
over UDP to a [P to QAM gateway (not shown) in the MPEG stream transmitter 58.

[0043] Referring again to Figure 4, MPEG stream transmitter 58, on the server side, and
MPEG stream receiver 64 and MPEG decoder 66, on the client side, enable the communication
of both metadata, e.g., data used to populate the text fields shown in the user interface screen of
Figure 2, and content via a video streaming protocol link. The MPEG transmitter 58, receiver 64
and decoder 66 can be implemented using off-the-shelf components and, accordingly, are not
described in detail herein. However readers interested in more details relating to these elements,
as well as other exemplary interactive television system architectures in which the present
invention can be implemented, are referred to U.S. Patent No. 6,804,708 to Jerding et al., the
disclosure of which is incorporated here by reference. The on-screen display (OSD) graphics
controller 68 receives data scene data from the client state machine 62 and input from the cursor
controller 69 to generate overlay graphics and local animations, e.g., zooming transitions, for the
user interface. The MPEG video data and the OSD video data output from decoder 66 and OSD
graphics controller 68, respectively, are combined by video combiner 70 and forwarded to
display device 46 to generate the user interface. As mentioned above, the DVD cover art images
shown in Figure 1(a) are examples of user interface elements created using MPEG video data,
while the zoomed version of the “Apollo 13” image in Figure 1(b) and the circular icons in the
upper right hand corner of the user interface screen of Figure 1(a) are examples of user interface

elements generated using scene description data.

-18-

WO 2005/120067 PCT/US2005/019705

0320-045

[0044] Of particular interest for exemplary embodiments of the present invention is the
client user interface state machine 62, a more detailed example of which is provided in Figure 7.
The client user interface state machine 62 interprets scene data and/or scripts received from the
scene request processor 56 to present user interface scenes (e.g., as shown in Figures 1(a), 1(b)
and 2) on client devices 44. The client user interface state machine 62 can also retrieve scene
data and MPEG-2 transition clips from either the headend 42 (as represented by block 700) or
from a local hard disk drive 702. Those skilled in the art will appreciate that, depending upon the
system and/or type of client device involved, that only one data source 700, 702 may be present
in a particular implementation of the present invention or that some other type of data source can
be used. Out-of-band (OOB) communications 704 can be used to provide signaling and
commands to the client user interface state machine 62 via an operating system (OS) 706, e.g.,
PowerTV, Linux, Win32, etc., and operating system portal layer 708. The OS and OS porting
layer 706, 708 can also track the user’s activities with respect to the user interface and provide
data to an event mapper function 710. Event mapper 710 translates user interface data, e.g.,
cursor movement, voice command input, motion of free space pointer, etc., into events which
may require some change in the user interface, e.g., display change, audio change, zooming
transition, etc. For example, when the user’s cursor hovers over or passes over the image of
“Apollo 13” in Figure 1(a), the event mapper 710 would receive raw cursor data from the OS and
map that into, for example, a hoverzoom event which results in that image being slightly
magnified as illustrated in Figure 1(b) and described in more detail below. As another example,
if the OS 706, 708 passed a button click through to the event mapper 710 while the cursor was
positioned over the magnified version of the “Apollo 13” image in Figure 1(b), indicating that the
user wanted more detail regarding this movie, then the event mapper 710 could identify a

“transition to detailed view event” associated therewith, leading to a transition to the user

-19-

WO 2005/120067 PCT/US2005/019705

0320-045

interface screen of Figure 2.

[0045] Events detected by event mapper 710 are queued in the event queue 712 for
processing by event processor 714. The event processor 714 coordinates the activities of the
client user interface state machine 62 by receiving events from the event queue 712 and
dispatching them to the action library 716 based on, for example, the currently active scene data
and/or script. The action library 716, in conjunction with a scene data loader 720 and various
storage units 718, 722, operates to generate the change(s) to the currently displayed user interface
screen based on the detected event as will be described in more detail below with respect to the

discussion of scene data.

Scene Description Data Format

[0046] Having described some exemplary server/client architecture for generating user
interfaces according to exemplary embodiments of the present invention, a second exemplary
data format (in addition to MPEG/MPEG-2) which can be used in conjunction with this
architecture will now be described. Although other data formats can be used in conjunction with
the present invention, this exemplary data format effectively creates a state machine that enables
the client device 44 to respond to user interactions and system events. This data format is
arbitrarily extensible to support both very low powered client devices 44 and high end client
devices 44, e.g., PCs. Other goals of this exemplary scene data format (also referred to as
“ZSD”) include theme support, future language support, demo scripting, and automated test
support.

[0047] The ZSD format supports two types of scenes: the exclusive scene and overlay
scenes. Herein, the exclusive scene is referred to simply as the scene, since it occupies the full

screen and contains the primary user interaction elements. Overlay scenes describe full or partial

220-

WO 2005/120067 PCT/US2005/019705

0320-045

scenes that the client user interface state machine 62 logically overlays on top of the exclusive
scene. While the exclusive scene changes as the user navigates, the overlay scenes may or may
not change. This enables them to support features such as music controls, global navigation,
bookmarks, etc., that follow the user as they navigate from exclusive scene to scene. Exclusive
scenes launch overlay scenes initially, but overlay scenes may launch other overlays. Although it
is possible to terminate all overlay scenes, the overlay scenes control their own lifetime based on
interaction from the user or based on the current exclusive scene.

The exclusive scene and all overlay scenes logically exist in their own namespaces. In order for
ZSD elements to refer to elements in other scenes, ZSD references as described herein could be
modified to include a field to specify the namespace. Inter-scene communication is useful for
operations such as notifying overlay scenes what is in the exclusive scene. To support inter-
scene communication, the sender triggers actions to generate events. These events are then
dispatched by the event processor 714 to each scene. When the event contains a Resource ID,
that ID is mapped to an equivalent resource in the destination scene. If the destination scene does
not contain an equivalent resource, the event processor 714 moves on to test dispatching the
event to the next scene.

[0048] Every exclusive scene passes through the following states sequentially on the
client, (1) Entered, (2) Loaded, (3) Steady State, (4) Unloading and (5) Exited. When the
exclusive scene’s ZSD data is initially decoded, the scene enters the Entered state. At this point,
the event processor 714 fires the OnLoad event so that the exclusive scene can perform any
initial actions. Once the event processor 714 completes the OnLoad event dispatch process, the
exclusive scene enters the Loaded state. At this point, the event processor 714 may have pending
events in its queue 712. The event processor 714 clears out this queue 712 and then transitions

the exclusive scene to its Steady State. Figure 8 illustrates an exemplary exclusive scene life

21-

WO 2005/120067 PCT/US2005/019705

0320-045

cycle using scene membership messaging to show event processing in all states. The process for
unloading an exclusive scene is essentially the reverse of the load process. For this case, a
GoToScene or other scene-changing action initiates the unload process. At this point, the
exclusive scene changes to the Unloading state. Once all ZSD unload processing completes, the
process transitions to the Exited state, wherein the client may optionally retain some or all of the
exclusive scene’s ZSD data. The changes in the exclusive scene’s state are communicated to all
currently loaded overlay scenes so the overlay scene can take action (if needed).

[0049] Overlay scenes exist independent and on top of the exclusive scene. For example,
in Figure 1(a) the three icons depicted in the upper righthand corner (home, up arrow and TV)
can be implemented as overlay scenes on the exclusive scene (the images of various DVD
covers, implemented in the MPEG layer). Another example, not shown in Figures 1 and 2, is the
provision of volume control and/or channel selection user interface objects as overlay scenes.
Termination of an overlay scene can be accomplished from within the scene itself, or by request
from the exclusive scene. Additionally, SceneMembershipNotifcation events can be used to limit
the lifetime of an overlay scene to a particular set of exclusive scenes as shown, for example, in
Figure 9. Each of the exclusive scenes that belong to this scene group would send a
SceneMembershipNotification message when they are loaded. The overlay scene associated with
this scene group would use the ExclusiveSceneChange events and the
SceneMembershipNotification message to tell if the overlay scene should stay loaded or should
terminate itself. As long as it receives a SceneMembershipNotifaction that matches its Scene
Group, the overlay screen can stay loaded. Triple tables (mentioned in Figure 9) are described in
more detail below.

[0050] According to one exemplary embodiment of the present invention, each scene

contains the following descriptive information:

22

WO 2005/120067 PCT/US2005/019705

0320-045

Scene ID A globally unique ID for this scene
Description An optional string description to help identify this scene to a
developer
SceneDimension The dimensions used to layout the scene
ZSD Format Version This field has the integer value one.
ZSD Profile This field is the name of the minimally supported profile.

Currently it can take on the value “Simple” and “Advanced”.

Maximum Action Stack Size | This field specifies the maximum number of elements that
may be pushed onto the Action Stack for this scene.

Cache Property Type This field specifies how a ZSD interpreter may cache this

scene.

Cache Property Value This field can be used to specify a 32 bit integer value
based on the Cache Property Type. It should be set to 0 if
unused.

Table 3 - Scene Information Fields

In order to improve ZSD load time performance, a client device 44 may optionally implement a
ZSD cache 722. ZSD-encoded scenes specify caching properties to direct clients when the
caching behavior is no longer useful. For example, temporally important information such as
sports scores should not be cached for a long period of time. Table 4 lists exemplary caching

properties types and describes their use.

Timeout Time out this scene after the specified number of Seconds
seconds. (0 seconds implies no caching)

Table 4 - Cache Properties

[0051] An exemplary scene data format according to the present invention has four
fundamental data types (sometimes referred to herein as “elements”), specifically objects, events,
actions, and resources. At a high level, objects describe scene components such as the bounds
for buttons and icons in the MPEG layer, overlay text, and overlay images. Events describe the

notifications that are pertinent to the scene. These include mouse (pointer) move events,

-23-

WO 2005/120067

0320-045

keyboard events, application state change events, etc. Actions describe responses to events such

as going to another scene, and finally, resources contain the raw data used by objects, events, and

PCT/US2005/019705

actions, e.g., image data. Each of these data types are described in more detail below.

[0052)

Exemplary object types and parameters associated therewith (including an

optional set of properties) according to an exemplar embodiment of the present invention are

described in tables 5-8.

c
WholeScene | 0 None The whole scene object, OID 0, has this type.
Bounds 1 X, Y, Width, This object specifies a rectangular bound in
Height the scene coordinate system.
PNode 2 X, Y, Width, This object specifies a PNode with the
Height, Parent specified bounds
Object

Table 5 - Object Types

WholeScene

0 WholeScene

The whole scene

Reserved

N/A

Reserved

Table 6 — Reserved Object IDs

WholeScene v
Bounds v
PNode v

Table 7 - Object Type Support

Property

ype. |-

e

Cursor

Cursor Resource ID

WhoIeScene) Bounds‘,”lsNode

[0053]

unique value. Some event types employ filters to constrain the actions that they would trigger.

Table 8 - Object Properties

Like the other scene description format elements, each event is assigned a globally

For example, the OnKeyPress event uses the key of interest. In addition to filters, events can

24-

WO 2005/120067 PCT/US2005/019705

0320-045

push resources onto the action stack, described below. Actions may use the information on the
stack to modify their behavior.

Exemplary event types are listed in Table 9 below. Overlay scenes affect the propagation of
events by the dispatcher. Dispatch semantics are abbreviated in the table as follows:

1. Active — the dispatcher sends the event only to the active scene. For example, when a
scene is loaded, the OnLoad event only gets sent to that scene.

2. Scenes with Resource Filters — the dispatcher only sends these events to scenes that
contain Resource Table entries for the event. Before iterating through a scene’s triple
table, the event dispatcher remaps the Resource IDs in the event to their equivalents in the
scene.

3. Overlays Only — the dispatcher only sends these events to overlay scenes.

4. Both - the dispatcher first sends this event to the overlay scenes and then to the exclusive

scene

OnLoad 0 Acfive None None This event gets sent when
the object gets loaded.
OnKeyPress 1 Both Key Key This event gets sent when

the user presses a key or
remote control button.

OnKeyRelease 2 Both Key Key This event gets sent when
the user releases a key or
remote control button. -

OnKeyTyped 3 Both Key Key This event gets sent when
the user types a key. If
the key supports auto-
repeat, the system sends
this event repeatedly
while the key is down.

OnMouseEnter 4 Both None None This event gets sent when
the mouse pointer goes
over the object.
OnMouseExit 5 Both None None This event gets sent when
the mouse pointer exits
the bounds of the object.

225

WO 2005/120067

0320-045

PCT/US2005/019705

OnMousePress

Both

Button

X, Y, Button

This event gets sent when
the user presses a mouse
button.

OnMouseRelease

Both

Button

X,Y, Button

This event gets sent when
the user releases a
mouse button.

OnMouseClick

Both

Button

X, Y, Button

The event gets sent when
the user presses and
releases a mouse button.

OnFocusin

Both

None

None

This event gets sent when
the associated object
receives focus. Other
events generally cause
focus such as key presses
and mouse enter.

OnFocusOut

10

Both

None

None

This event gets sent when
the associated object
loses focus.

OnSceneMembers
hipNotification

11

Scenes
with
Resource
Arguments

SceneMem
bership
Resource
ID

SceneMemb
ership
Resource ID

This event gets sent when
a NotifySceneMembership
action gets fired.

OnScrollUp

12

Both

Wheel

Wheel

This event gets fired for
every notch that the
specified scroll wheel
moves up.

OnScrollDown

13

Both

Wheel

Wheel

This event gets fired for
every notch that the
specified scroll wheel
moves down.

OnTimeout

14

Both

Timer

Timer

This event gets fired when
a timer expires.

OnActivate

15

Both

None

None

This event gets fired when
an object gets activated.

OnExclusiveScene
Change

16

Overlays
Only

Entered,
Loaded,
Unloading,
Exited

None

This event gets fired when
the exclusive scene
changes. The argument
specifies the exact
moment in the scene
change. See the scene
the scene life cycle
sequence diagram.

OnUnload

17

Both

None

None

This event gets fired when
an object gets unloaded
as the result of a scene
change.

[0054]

Table 9 - Event Types

In operation of the architectures and methods described herein, the result of an

event on an object is an action. Actions may be linked together in a ZSD Action Table to form

programs. To facilitate parameter passing to actions from events and to linked actions, a ZSD

26-

WO 2005/120067 PCT/US2005/019705

0320-045
interpreter maintains an action stack. The action stack is initialized before dispatching the first
action in an action list with the following items in order:

1. The object in the triple table entry that triggered the action

2. The event in the triple table entry that triggered the action

3. Elements pushed onto the action stack from the event
Before dispatching each action, the ZSD interpreter logically pushes the parameters of the action
onto the stack. Implementations may short-circuit this behavior on built-in actions for simplicity.
Each action type specifies its use of the stack. In general, a ZSD interpreter will only be able to
allocate a small action stack (e.g. 16 — 32 elements), so stack usage should be kept to a minimum.
To ensure that the ZSD interpreter always has a sufficient stack, the ZSD encoder must specify
the maximum stack size in the header. All action types should avoid recursion to simplify the

maximum stack size calculation. Exemplary action types are listed below in Table 10.

NoAction 0 None None None 0 This action is a
NOP.
GoToScene 1 Scene ID, Parameters | None -2 This action causes
Duration the client to

animate to a new
location in the
specified time. If
the server context
buffer has
information, this
command bundles
the context with the
scene navigation
request.

NavigateBack 2 Count Parameters | None -1 Navigate the
specified number of
scenes back in
history. If the
history does not
contain that many

27-

WO 2005/120067

0320-045

PCT/US2005/019705

scenes, it navigates
back as far as
possible. If the
server context
buffer has
information, this
command bundles
the context with the
scene navigation
request.

NavigateForward

Count

Parameters

None

Navigate the
specified number of
scenes forward in
history. It the
history does not
contain that many
scenes, it navigates
forward as far as
possible. if the
server context
buffer has
information, this
command bundles
the context with the
scene navigation
request.

NavigateHome

None

None

None

Navigate to the
home scene. If the
server context
buffer has
information, this
command bundles
the context with the
scene havigation
request.

NavigateUp

Count,
Duration

Parameters

None

Navigate to the
scene that is
geographically up n
times in the
specified time. If
the server context
buffer has
information, this
command bundles
the context with the
scene navigation
request.

StartTimer

Timer,
Duration

Parameters

None

Start a timer that
sends a timeout
event in the
specified duration.
Timers are global to
the scene.

StopTimer

Timer

Parameters

None

Stop the specified
timer.

28-

WO 2005/120067

0320-045

PCT/US2005/019705

StartHoverZoom

X, 'Y, Width,
Height,
Resource
ID, Duration

Parameters

None

Hoverzoom to the
end coordinates (x,
y, width, height)
over the specified
duration, using the
Resource ID
associated with a
HoverZoomPixelDa
ta resource to
create the
HoverZoom.

StopHoverZoom

Duration

Parameters

None

Stop the
hoverzoom over the
specified number of
millisecond

Focus

10

Object ID

Parameters

None

Force the focus to
change to the
specified object.

ChangePointer

11

Resource
ID, Object
ID

Parameters

None

Change the pointer
to that specified by
the Resource ID
when over the
object specified by
the Object ID.

ChangePointerVisibility

12

Visible,
Duration

Parameters

None

True to show the
pointer; false to
hide it. Animate for
specified duration.

MovePointer

13

XY,
Duration

Parameters

None

Move the pointer to
the specified
location over the
specified duration.

Activate

14

Object ID

Parameters

None

Activate the
specified object.

PushServerContext

15

Resource ID

Parameters

None

Push the specified
resource for
transmission back
to the server.

ReportServerContext

16

None

None

None

Report the
gathered context to
the server. If no
pending context,
then this action is
ignored. After the
report, this
command clears
the context buffer.

CreateTextObject

17

Object ID,
Resource ID

Parameters

None

Show the text
object specified by
the Resource ID
using the Object
specified by the
Object ID

CreatelmageObject

18

Object ID,

Parameters

None

Show the image

-29-

WO 2005/120067

0320-045

PCT/US2005/019705

Resource ID

specified by the
Resource ID using
the Object specified
by the Object ID

NotifySceneMembership

19

SceneMem
bership
Resource ID

Parameters

None

-2

Notify scene
membership. This
is usually done in
response to an
OnlLoad event.

StartOverlayScene

20

Overlay
Scene
Resource ID

Parameters

None

2

Load and start the
specified overlay
scene.

TerminateOverlayScene

21

None

None

None

Terminate the
current overlay
scene. Triggering
this action from the
main scene does
nothing.

TerminateAllOverlayScenes

22

None

None

None

Terminate all
overlay scenes.
This action is useful
for resyncing client
and server state.

SetActiveTripleTable

23

Triple Table
Index

Parameters

None

Set the active Triple
Table. Index 0 is
the set by default.

RunScript

24

Resource ID

Parameters

0+

Arbitrary

Interpret the
specified script

[0055]

are listed below in Table 11.

Table 10 - Action Types

Exemplary resources which can be used in conjunction with the present invention

& ‘Pargmety R Scription =1
UTF8String This resource type holds string characters
from the UTF8 character set. The string may
not exceed 256 characters.
UnicodeString 1 UnicodeString This resource type holds Unicode characters.
The string may not exceed 256 characters.
MPEG2TransitionClip | 2 Scene ID, This resource type points to an MPEG-2 clip
Scene ID, file for the transition between the two scenes.
MPEG-2 clip Scenes list all of the MPEG-2 clips for clients
with hard disk support or for servers. These
clips may change based on the current
theme.
Cursor 3 Image This resource holds the cursor image.
Image 4 Image This resource holds an image.
HoverZoom 5 PixMask, This resource holds the image data for
FGTransPix, creating a hoverzoom.

-30-

WO 2005/120067 PCT/US2005/019705

0320-045
FGOpaquePix,
BGPix
SceneMembership | 6 UTF8String This resource identifies a scene’s members
such as belonging to a application.
OverlayScene 7 Scene This resource holds an embedded ZSD
description for an overlay scene.
Table 11 - Resource Types
[0056] According to an exemplary embodiment of the present invention, the scene

description format groups all scene interaction information into five tables: the object table, the
event table, the action table, the resource table and one or more triple tables as described below
in Tables 12-17. This division into tables eliminates most redundant information and enables

quick lookup of interaction behavior on low end clients 44.

» Object Table This table lists ali of the objects in the scene. Objects may
be high level entities such as PNodes or just regions on the
scene.

Event Table This table lists all events that need processing on this
scene. A client may ignore any event not listed in this table.

Action Table This table lists all actions that can be invoked on objects on
this scene.

Resource Table | This table contains strings and images. Its main use is to
decouple the string and image data from the above tables
so that it is trivial for the server to switch themes and
languages.

Triple Table This table associates objects, events, and actions. A ZSD
encoding may include more than one triple table and use
actions to switch between the active one. This enables the
creation of state machines within a scene.

Table 12 - ZSD Tables

Object ID A unique ID for this object. OID number 0 represents the
whole scene.
Object Type The type of the object
Description An optional string description to make the XML clearer
Parameters Additional parameters that describe the object

Table 13 — Object Table Fields

Rl

31-

WO 2005/120067 PCT/US2005/019705
0320-045
Event ID A unique ID for this event
Event Type The type of the event
Description An optional string description to make the XML clearer
Parameters Additional parameters that describe the event

Table 14 - Event Table Fields

Action |D A unique D for this action
Action Type The type of the action
Next Action The Action |D of the next action to run. Specify the
NoAction instance to stop executing actions. ltis illegal to
specify a loop of actions.
Description An optional string description to make the XML clearer
Parameters Additional parameters that describe the action

Table 15 - Action Table Fields

Resource ID A unique D for this resource
Theme |ID The theme ID for this resource
Language ID The language ID for this resource
Resource Type | The type of the resource
Description An optional string description to make the XML clearer
Parameters Additional parameters that describe the resource

Table 16 - Resource Table Fields

Object ID The triple's object
Event ID The event to monitor
Action ID The action to invoke upon receiving the event
Boolean True to terminate event processing if this triple matches an
event
Description An optional string description to make the XML clearer

Table 17 - Triple Table Fields

Various additional information regarding an exemplary scene data format according to the
present invention can be found in the above-incorporated by reference priority application.
[0057] Client devices 44 without local storage request scenes and transitions from the

server 42. An exemplary set of messages which can be used to perform this function is provided

-32-

WO 2005/120067 PCT/US2005/019705
0320-045
below in Table 18. The client/server link can, for example, be made over an Ethernet connection,
QPSK channels (used by cable networks currently for OOB communications) or any other
protocol or type of connection. Those skilled in the art will appreciate that this message set is

purely exemplary and that messages can be added or deleted therefrom.

RequestScene Client Request the specified scene.
RequestSceneAck 1 Server | Acknowledgment that the server is
sending the requested scene.

SceneDetails 2 Server The server may send this to the client if it
does not send scene details in-band with
the MPEG-2 scene transitions

DebugControl 3 Server | The server sends this message to
enable/disable debug logging and remote
control support on the client.

LogMessage 4 Client Log a text message. The client only
sends this message in debug mode.

NotifyEvent 5 Client Notify that an event has occurred. The
client only sends this message in debug
mode.

NotifyAction 6 Client Notify that an action has been fired. The
client only sends this message in debug
mode.

NotifyTriple 7 Client Notify that a triple table entry matched.
The client only sends this message in
debug mode.

GenerateEvent 8 Server Generate and fire the specified event on
the client. These events will be fired
event in lockout mode. The client only
accepts this message in debug mode.
Lockout 9 Server Lockout/unlock all user-generated events
on the client. Example events include
mouse and keyboard events. The client
only accepts this message in debug
mode.

Identity 10 | Client The client sends this message every time
that it establishes a connection with the
server to identify itself.

NotifyServerContext 11 | Client The client sends this message when its
server context buffer is not empty and an
action command invokes a server
notification or request.
RequestScreenCapture | 12 | Server The server sends this message to request
that the client take a snapshot of the
screen and send it back to the serverin a
ScreenCapture message.

-33-

WO 2005/120067 PCT/US2005/019705

0320-045
ScreenCapture 13 | Client This is the response message to
RequentScreenCapture. It contains the
snapshot.
Table 18- Client-Server Messages
Hoverzoom
[0058] As mentioned above, one feature of exemplary client-server architectures and

methods according to the present invention is to provide the capability for sophisticated user
interfaces to be generated at the client-side, while taking into account the relatively small amount
of available memory and/or processing power associated with some existing client devices. Oﬁe
example of the ways in which the above-described systems and methods address this issue can be
seen with respect to the user interface interaction referred to herein as a “hoverzoom”, e.g., the
process whereby when a user rolls a cursor over and/or pauses an indicator relative to a media
item that can be selected, the image associated therewith is magnified so that the user can easily
see which object is poised for selection, an example of which is illustrated in Figures 1(a) and
1(b).

[0059] There are a number of challenges associated with implementing a hoverzoom
feature in bandwidth limited systems, such as interactive television systems wherein the client
devices have limited memory and/or processing power. Consider the example wherein the user
interface screen illustrated in Figure 1(a) is rendered using MPEG data streams transmitted from
the user interface server 42 to the client 44 containing the cover art images associated with
various movies. This visual portion of the user interface screen will be referred to herein as the
background layer. When the event mapper 710 and event processor 714 recognize that the user
has triggered a hoverzoom response, a foreground layer (e.g., the magnified version of the

“Apollo 13 image) is generated and used to modify the user interface screen of Figure 1(a).
-34-

WO 2005/120067 PCT/US2005/019705

0320-045

There are several possibilities for providing the data used to transition from the user interface
screen shown in Figure 1(a) to the user interface screen shown in Figure 1(b). One way to
implement the hoverzoom effect is to have the user interface server 42 transmit complete sets of
MPEG data corresponding to both the background layer and the foreground layer to the client 44.
However, when one considers that the user can roll the cursor over a potentially very large
number of screen objects in the user interface, e.g., dozens or hundreds, quite rapidly, the amount
of data needed to be transmitted by the user interface server 42 could be quite large to implement
this exemplary embodiment of the present invention, resulting in additional delay in rendering
the screen transitions on the client device 44.

[0060] Moreover, it can be seen from comparing Figure 1(a) with Figure 1(b) that a
significant portion of the pixel data associated with the unzoomed version of Figure 1(a) is
reused in creating the hoverzoomed version of Figure 1(b). Thus, according to another
exemplary embodiment of the present invention, the relationship between pixels in the
background layer and the foreground layer can be determined and used to reduce the amount of
data that needs to be transmitted to the client device 44 to generate a hoverzoom effect.
Depending upon the object to be magnified as part of the hoverzoom effect, this relationship can
be relatively simple or somewhat more complex. For example, enlarging the size of the
rectangular DVD cover art images of Figure 1(a) primarily involves enlarging a rectangular
image to occlude neighboring images as part of the transition. On the other hand, more complex
shapesl, e.g., a doughnut shaped object with a hole in the center, present more complex situations
for generating a hoverzoom effect. Consider that as the doughnut-shaped object is enlarged, the
hole in the middle will expand such that background layer pixels that were previously hidden,
become revealed after the hoverzoom effect has occurred.

[0061] According to one exemplary embodiment of the present invention, each pixel in

-35-

WO 2005/120067 PCT/US2005/019705

0320-045

the foregoround version of the image is categorized as being one of: (1) completely opaque (can
extract pixel color from background layer, so do not need to resend for foreground layer
generation) (2) transparent (irrelevant, so do not need to resend for foreground layer), (3)
translucent (e.g., pixels around edges of image can have anti-aliasing applied thereto, need to
send foreground layer data for these pixels) and (4) null (e.g., doughnut “hole” pixels which
reveal background pixels, need to send background layer pixels since those cannot necessarily be
extracted from background layer that was originally sent to create the unzoomed interface
screen). This categorization can be done a priori using any desired technique, including manual
observation and/or using the pseudocode processing techniques described below, and a
foreground/background map is generated wherein each pixel in the foreground layer is
categorized. A hoverzoom map can be stored for each image for which a hoverzoom effect can

be triggered in the user interface.

To Capture Background
for (node = scenegraph.rootO; node = foreground node; node = next node) if (node bounds within
foreground bounds)
paint node to background image

To Capture Foreground

Draw the foreground node to an image with the foreground’s original size (low-res foreground)
Draw the foreground node to an image with the foreground’s maximum size (high-res
foreground)

After mapping, this data is encoded to reduce the amount of data to be saved and transferred at

steps 1010 and 1012 using, for example, the following pseudocode to evaluate the relevance of

the background pixels based on alpha information.

-36-

WO 2005/120067 PCT/US2005/019705
0320-045

To Capture Alpha Information

Calculate Foreground Node starting bounds Calculate Foreground Node ending bounds

Create an alpha image the size of the foreground starting bounds which only contains alpha
values, initialized to opaque

Set the image’s alpha composite rule to keep the minimum value of either its current value or the
value of the pixel being drawn to it

while (foreground.size() <ending bounds) draw foreground to alpha image
increase foreground size

To calculate which pixels are needed for the background image
Any pixels in the original background image which are transparent are irrelevant
For all remaining relevant background pixels
If (low-res foreground pixel is transparent)
Background pixel is irrelevant
Else if (low-res foreground pixel is opaque and captured alpha pixel is opaque)
Background pixel is irrelevant
Else
Background pixel is relevant
Depending upon the particular image to be encoded in this way, most of the foreground layer
pixels will be designated as opaque and need not be resent to the client device 44 to generate the
hoverzoom effect.
[0062] Hoverzoom processing in accordance with this exemplary embodiment of the
presents invention is generally illustrated in Figure 10. Therein, an MPEG (background) version
of the image 1000 and an unzoomed version 1002 of the image to be magnified (for example,
Apollo 13 in Figure 1(a)), e.g., PNG or JPEG, are provided. The background image 1000 is
combined with the unzoomed version 1002 of the image and transmitted to the client device 44 in
the MPEG data stream, after compression at step 1006. The foreground/background map
- described above is retrieved from storage at step 1008, and used to determine which pixel data
associated with the foreground layer and the background layer needs to be transmitted. That data

is encoded (compressed) at steps 1010 and 1012, saved as a ZSD image file and transmitted to

the client device 44. Although this exemplary embodiment of the present invention transmits

-37-

WO 2005/120067 PCT/US2005/019705

0320-045

this information as scene data (ZSD data) outside of the MPEG data stream, it can alternatively
be embedded in the MPEG data stream.

[0063] As will be appreciated by reading the foregoing discussion of hoverzoom
techniques in accordance with an exemplary embodiment of the present invention, some of the
challenges associated with generating sophisticated user interfaces (e.g., which employ zooming)
at client devices connected to, for example, a cable network, can be addressed by intelligent
selection of an encoding stream for particular data to be transmitted. In the foregoing hoverzoom
example, background data was sent using the MPEG encoding stream available in such networks,
while the foreground information was sent using a different type of encoding (described above),
handled for presentation through the OSD layer. However, exemplary embodiments of the
present invention contemplate that other server/client data transfers may benefit from sélectively
deciding, at one of the upstream nodes which is supplying data to the client device 44, which
type of encoding/data stream is appropriate for data to be transmitted, in particular for data
associated with zooming user interfaces.

[0064] This general concept is illustrated in Figure 11. Therein, data is evaluated at block
1100 to determine whether it is first data or second data and selectively determining a type of
encoding (and associated transmit data stream) for handling that data. First and second data can
be different types of data or the same type of data having different characteristics. An example
of the foregoing is the hoverzoom data (background data being first data and foreground data
being second data). An example of the latter is text. MPEG encoding is not particularly efficient
for encoding text and, accordingly, it may be desirable to encode text under certain circumstances
using another type of encoding, e.g., if the text to be transmitted is less than a predetermined font
size (e.g., 16 point).

[0065] Systems and methods for processing metadata according to exemplary

-38-

WO 2005/120067 PCT/US2005/019705

0320-045

embodiments of the present invention can be performed by processors executing sequences of
instructions contained in a memory device (not shown). Such instructions may be read into the
memory device from other computer-readable mediums such as secondary data storage device(s).
Execution of the sequences of instructions contained in the memory device causes the processor
to operate, for example, as described above. In alternative embodiments, hard-wire circuitry may
be used in place of or in combination with software instructions to implement the present
invention.

[0066] The above-described exemplary embodiments are intended to be illustrative in all
respects, rather than restrictive, of the present invention. Thus the present invention is capable of
many variations in detailed implementation that can be derived from the description contained
herein by a person skilled in the art. For example, although MPEG encoding and MPEG data
streams have been described in the foregoing exemplary embodiments, it will be appreciated that
different types of encodings and data streams can be substituted therefore in part or in whole,
e.g., video encodings used in Windows Media-based content and the like. Moreover, although
(MPEG) image and/or video data is described as being transmitted through all or part of a cable
network, the present invention is equally applicable to systems wherein the image and/or video
data is available locally, e.g., on a home disk or from a local server. All such variations and
modifications are considered to be within the scope and spirit of the present invention as defined
by the following claims. No element, act, or instruction used in the description of the present
application should be construed as critical or essential to the invention unless explicitly described

as such. Also, as used herein, the article “a” is intended to include one or more items.

-39-

WO 2005/120067 PCT/US2005/019705

0320-045

WHAT IS CLAIMED IS:

1. A method for generating a zooming user interface on a television using data transmitted
through a cable network, said method comprising the steps of:

generating a first user interface screen on said television, said first user interface screen
having a plurality of images associated therewith, said plurality of images being transmitted as
part of a first data set associated with said first user interface screen through said cable network
to a set-top box connected to said television using MPEG encoding;

providing, at a set-top box connected to said television, a client user interface state
machine which receives said plurality of images and controls generation of said first user
interface screen based thereon;

receiving, by said client user interface state machine, user interaction data associated with
said first user interface screen;

requesting, from a request processor disposed upstream of said set-top box, information to
provide a zooming transition from said first user interface screen to a second user interface
screen based on said user interaction data;

receiving, by said set-top box, a second data set associated with said zooming transition
and said second user interface screen, wherein part of said second data set is received as an
MPEG data stream and part of said second data set is received as another data stream different
from said MPEG data stream; and

generating, under control of said client user interface state machine, said zooming

transition and said second user interface on said television using said second data set.

2. The method of claim 1, wherein said zooming transition is a hoverzoom effect and

wherein said second user interface screen depicts one of said plurality of images magnified

-40-

WO 2005/120067 PCT/US2005/019705
0320-045

relative to a version of said one of said plurality of images in said first user interface screen,
which said one of said plurality of images was selected by said user and partially obscures others

of said plurality of images.

3. The method of claim 1, wherein said zooming transition includes magnification and

translation of one of said plurality of images.

4. The method of claim 3, wherein said second user interface screen depicts additional

details associated with a selected one of said plurality of images.

5. The method of claim 4, wherein said additional details are rendered on said television as
text, said text being received by said client user interface state machine via said another data

stream.

6. The method of claim 1, wherein said first and second sets of data include scene
descriptions which instruct said client user state machine how to render said first and second user
interface screens, respectively, using other data included in said first and second sets of data,

including said plurality of images.

7. A method for generating a zooming user interface on a client system including a display
comprising the steps of:
generating a first user interface screen on said display;

receiving user input;

41-

WO 2005/120067 PCT/US2005/019705
0320-045

sending a request, by said client system, for instructions to perform a zooming transition
associated with said request;

receiving said instructions; and

generating a second user interface screen and said zooming transition on said display.
8. The method of claim 7, wherein said zooming transition is a hoverzoom effect and
wherein said second user interface screen depicts one of a plurality of images magnified relative
to a version of said one of said plurality of images in said first user interface screen, which said
one of said plurality of images was selected by said user and partially obscures others of said

plurality of images.

9. The method of claim 7, wherein said zooming transition includes magnification and

translation of one of a plurality of images.

10. The method of claim 9, wherein said second user interface screen depicts additional

details associated with a selected one of said plurality of images.

11. The method of claim 7, wherein said client system includes a television.

12 The method of claim 7, wherein said client system includes a set-top box.

13. The method of claim 7, wherein said client system includes a personal computer.

42-

WO 2005/120067 PCT/US2005/019705

0320-045
14. The method of claim 7, wherein said instructions are provided using a scene data format

including at least one of objects, events, actions and resources.

15. The method of claim 14, wherein said objects describe components associated with said
second user interface screen including at least one of: bounds for buttons and icons in an MPEG

layer, overlay text and overlay images.

16. The method of claim 14, wherein said events describe notifications associated with said
second user interface screen including at least one of: pointer move events, keyboard events, and

application state change events.

17. The method of claim 14, wherein said actions describe responses to said events including

moving to a third user interface screen

18. The method of claim 14, wherein said resources include image data used by said objects,

said events and said actions.

19. A system for generating a zooming user interface on a client system comprising:

a display;

a processor for generating a first user interface screen on said display, receiving user
input and sending a request for instructions to perform a zooming transition associated with said
request, wherein

said processor receives said instructions and generates a second user interface screen and

said zooming transition on said display.

-43-

WO 2005/120067 PCT/US2005/019705

0320-045

20. The system of claim 19, wherein said zooming transition is a hoverzoom effect and
wherein said second user interface screen depicts one of a plurality of images magnified relative
to a version of said one of said plurality of images in said first user interface screen, which said
one of said plurality of images was selected by said user and partially obscures others of said

plurality of images.

21. The system of claim 19, wherein said zooming transition includes magnification and

translation of one of a plurality of images.

22. The system of claim 21, wherein said second user interface screen depicts additional

details associated with a selected one of said plurality of images.

23. The system of claim 19, wherein said client system includes a television.

24, The system of claim 19, wherein said client system includes a set-top box.

25. The system of claim 19, wherein said client system includes a personal computer.

26. The system of claim 19, wherein said instructions are provided using a scene data format

including at least one of objects, events, actions and resources.

-44-

WO 2005/120067 PCT/US2005/019705
0320-045

27. The system of claim 26, wherein said objects describe components associated with said
second user interface screen including at least one of: bounds for buttons and icons in an MPEG

layer, overlay text and overlay images.
28. The system of claim 26, wherein said events describe notifications associated with said
second user interface screen including at least one of: pointer move events, keyboard events, and

application state change events.

29. The system of claim 26, wherein said actions describe responses to said events including

moving to a third user interface screen

30. The system of claim 26, wherein said resources include image data used by said objects,

said events and said actions.

-45-

WO 2005/120067 PCT/US2005/019705
0320-045
31. A method for transmitting data for generating a zoomable user interface from an upstream
node to a client device in a cable communication network comprising the steps of:

selectively identifying data to be transmitted from said upstream node to said client
device as either first data or second data;

encoding said first data using MPEG encoding

transmitting said MPEG encoded data via an MPEG data stream to said client device;

encoding said second data using a second type of encoding which is different than MPEG
encoding;

transmitting said encoded second data using a second data stream to said client device;
and

generating said zoomable user interface using said first and second data.

32. A method for transmitting data for generating a zoomable user interface from an upstream
node to a client device in a cable communication network comprising the steps of:

transmitting first data using a first type of encoding and a first data stream;

transmitting second data using a second type of encoding and a second data stream, said
second type of encoding bei'ng different than said first type of encoding; and

generating said zoomable user interface at said client device using said first and second

data.

33. The method of claim 32, wherein said first type of encoding is MPEG encoding and said

second type of encoding is scene data encoding.

-46-

WO 2005/120067 PCT/US2005/019705
0320-045

34. The method of claim 33, wherein said first data is image data associated with a
background layer to be generated on a user interface and said second data is image data

associated with a foreground layer to be generated on said user interface.

35. The method of claim 33, wherein said first data is image or video data and said second

data is text.
36. The method of claim 32, further comprising the steps of:

transmitting text as first data via said first data stream if said text has a font size which is
larger than a predetermined threshold; and

otherwise transmitting said text as second data via said second data stream.

37. The method of claim 36, wherein said first type of encoding is MPEG encoding.

38. The method of claim 32, wherein said upstream node is a headend portion of said cable

communication network.

39. The method of claim 32, wherein said client device is one of a set-top box and a personal

computer.

40. A system for transmitting data for generating a zoomable user interface from an upstream

node to a client device in a cable communication network comprising:

-47-

WO 2005/120067 PCT/US2005/019705
0320-045

an upstream processor for transmitting first data using a first type of encoding and a first
data stream and for transmitting second data using a second type of encoding and a second data
stream, said second type of encoding being different than said first type of encoding; and

a client-side processor for generating said zoomable user interface at said client device

using said first and second data.

41. The system of claim 40, wherein said first type of encoding is MPEG encoding and said

second type of encoding is scene data encoding.

42. The system of claim 41, wherein said first data is image data associated with a
background layer to be generated on a user interface and said second data is image data

associated with a foreground layer to be generated on said user interface.

43. The system of claim 41, wherein said first data is image or video data and said second

data is text.

44. The system of claim 40, wherein said processor further operates to transmit text as said
first data via said first data stream if said text has a font size which is larger than a predetermined

threshold and otherwise transmitting said text as said second data via said second data stream.

45. The system of claim 44, wherein said first type of encoding is MPEG encoding.

46. The system of claim 40, wherein said upstream node is a headend portion of said cable

communication network.

-48-

WO 2005/120067 PCT/US2005/019705

0320-045

47. The system of claim 40, wherein said client device is one of a set-top box and a personal

computer.

48. A method for generating a hoverzoom effect on a user interface comprising the steps of:
transmitting background layer data and foreground layer data to a client device;
displaying a background layer based on said background layer data;
identifying a user action associated with said hoverzoom effect;
displaying, in response to said user action, a foreground layer based on said foreground

layer data as an overlay on said background layer.

49. The method of claim 48, wherein said user action is rolling a cursor over a displayed

image and said foreground layer includes a magnified version of said displayed image.

50. The method of claim 48, further comprising the step of:
categorizing each pixel in said foreground layer as either (1) being extractable from said

background layer data or (2) needing to be sent to said client device.

51. The method of claim 50, wherein said step of transmitting background layer data and
foreground layer data further comprises the step of:
selectively transmitting pixel data in said foreground layer based on said categorization

step.

52. The method of claim 50, further comprising the step of:
-49-

WO 2005/120067 PCT/US2005/019705

0320-045
identifying additional background pixels which will be revealed as a result of said
hoverzoom effect; and

transmitting background layer data associated with said additional background pixels.

53. A client system for generating a hoverzoom effect on a user interface comprising:

at least one receiver for receiving background layer data and foreground layer data;

a processor for generating a background layer based on said background layer data,
identifying a user action associated with said hoverzoom effect and generating, in response to
said user action, a foreground layer based on said foreground layer data as an overlay on said

background layer.

54. The system of claim 53, wherein said user action is rolling a cursor over a displayed

image and said foreground layer includes a magnified version of a displayed image.

55. The system of claim 53, wherein said receiver also receives a map which categorizes each
pixel in said foreground layer as either (1) being extractable from said background layer data or

(2) being sent to said client system.

56. The system of claim 55, wherein said received foreground layer data includes only some
of the data needed by said processor to generate said foreground layer and said processor extracts

additional data from said background layer data.

57. A method for MPEG encoding data to be used in generating user interface screens

comprising the steps of:

-50-

WO 2005/120067 PCT/US2005/019705
0320-045

providing a user interface having first and second user interface screen and storing data
associated with object locations on said first and second user interface screens;

determining motion vectors associated with MPEG data frames using said stored data;

sending said motion vectors to an MPEG encoder; and

MPEG encoding said data using said motion vectors.

58. The method of claim 57, wherein said step of determining motion vectors associated with
MPEG data frames using said stored data further comprises the step of:

using said stored data to either (1) determine a motion vector independently of a standard
MPEG motion vector search algorithm or (2) selectively employ said standard MPEG motion

vector search algorithm to determine said motion vector.

59. The method of claim 57, wherein said step of determining motion vectors associated with
MPEG data frames using said stored data further comprises the step of:

using said stored data to either (1) determine a motion vector independently of a standard
MPEG motion vector search algorithm, (2) selectively employ said standard MPEG motion
vector search algorithm to determine said motion vector or (3) reduce a search range of said

standard MPEG motion vector algorithm.

60. A system for MPEG encoding data to be used in generating user interface screens
comprising:

a user interface having first and second user interface screens;

a data storage unit for storing data associated with object locations on said first and

second user interface screens;

-51-

WO 2005/120067 PCT/US2005/019705

0320-045
a motion estimation hint encoder for determining motion vectors associated with MPEG
data frames using said stored data; and

an MPEG encoder for encoding data using said motion vectors.

61. The system of claim 60, wherein motion estimation hint encoder uses said stored data to
either (1) determine a motion vector independently of a standard MPEG motion vector search
algorithm or (2) to selectively command said MPEG encoder to determine said motion vector

using said standard MPEG motion vector search algorithm.
62. The system of claim 60, wherein said motion estimation hint encoder uses said stored

data to provide said MPEG encoder with a reduced search range in which to employ said

standard MPEG motion vector search algorithm.

-52-

WO 2005/120067

PCT/US2005/019705

112
S a
= 3 J
A eewfy
.f;i Nyl 3 {A F GOOD MEN
o) Forrest
ffﬁun\m\ ‘ Gump
@WE‘W CHICAGO %ﬁ
GLADIATOR | [LEGENDSoftme FALL
= W\~ g ﬁ\- < %AE
FIG. 1A

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067

PCT/US2005/019705

2012

APOLLO13 BRAVEHEART

o OILER ROOM -~

=
P
A BEAHHTPT[SJ/
o ‘i \‘g: N

r P ump

X e

| 3 fyoucan CHIGAGO \Q/
GLADIATOR | |LEGENDS ortne FALL %
m:; T\~ @ P\ e\ ﬁ\- ~ 4
FIG. 1B

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/019705

WO 2005/120067

3/12

¢ Ol

Kemy 1582

A103s Ko|.
elyd|apejiyd

€1 ojjody
Uoil|piad 01 peoy
dwno)s3.1404
IIN U315 3y |

'(§861) S1831UN|OA Ul paseadde
B WOYM YIM 'UOS|IA\ BIY $S91108 0] paliiew s

SYUBH '£661 49010 Ul dWi] ||V 4O S1R1S JIAOW 00|
doj ay] jo 1no yi/| se suizebey andwz Aq paiey

VD ‘ploduo) Ul ‘966 | ‘6 AInr ulog ‘ewauid

uely a1ealld Buineg ueduswy Asesodwaluod uj sieys sejndod ysow ayy jo -
Aydesbouwuji4 3UO 3Wo013q sey syueH woj Jo1de buipes| uesuswy | [folis
syueH woj|
slileH p3 ‘asiuls Aieo ‘uodeg UIAl)Y ‘UOIXe(||ig 'SHURH WO] :S1010Y
'$21da poomA|joH |edidAl 91 3,uUop OYM 3SOY] 01 USAS -1
[eadde siaideleyd padojaAsp-||9p 's193)3 |e1dads pue asuadsns Jo suey 10) Aofus
0} Yonp -uoissiw adeds Jarsesip-ieau jo buijjsi1al paded-isey sejndod Ajaaissey
66'€S Mg SANUIN 0ZL Yibua] — ~
(Iova / ¥3IveL HOLYM /ANE) (s66L) €1 OTI0dY

vINvdd

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067 . PCT/US2005/019705

4112
X/ T NIANAYNA VA
SNOILOILS3Y AdOD RN\ N N

o SNOILOMLS4 395 R <! N
= NS EESESEN
= NOIVOOT B<<|_ [=<p>< N
N N N
EEY S E SRS EEN
/L IAVIARNAYNA VA
= VIGINH3HL0 0L SINT RN NN PR
& SMINT WIILD N W =R\
2 EEENEHEENERENS
S GIITTERIN NESENEE
S IN AN VAN AL
_ OLOHINN=<| | B N
2 TN REEEN
SN SEEERE
77777 NYN VAN A VA
00T INAINOO R\ N [<=
ETTANN] N
SYOWL ‘\} :f:\.;] e D i i
14V ¥3N0DBNLIN [=1 | =P = o
ONLLYY f<y>< RN i
JNLINAY :gffx SO) P N ><‘ ><| |><|><|>< 9
RTINS HEN N L
JHNHQ <y >< ‘\>\<: ><|[><|><y>=< ><|><
409310 <] NHEEN
= S N> | N =N
= LS4V AN N <)< o
= [SRIEETEIN NEEEN
SN <= | Bl <P
¥0LI3I0 \\ >< <] PN
EOTINEEENE RN
SOHOMATY 101 [<] S <N
NOLgOSIO << | Bl <=
SisdoMas <= | B<{ ==
300813 << | RN N
EGINERRENEESNE NS
YAk p<y>< ><] [>< ><\‘\>< ><[><
]']“i ~‘>‘2~ >< :;<3 ><|>< L>‘<-« >< ><|><|><
777 77 L NX N AN A
- NEEENEEIN e
2 = B 18| B2 2
= =B PER T
= = S 2 =
= — RRLI 1 T . I sl YA

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/019705

5112

WO 2005/120067

¥ Old JOV4N3INI 439N

'INIINOD ‘VAYOVLIN
s o H
" LI m
gy—| SANOd) 3HOYO “\5%35 NEENALY :
/1 '
' 0SZ ANY 93N |«—on aNY A .
e e | / I~
__ " ! " NOLLISNYAL 7 "
" 69~ | : ALY, _
" ¥3INIOd YIATIONINGD | " ["
" Yosn [" 9% m
! 7 T0MINOD 3LOW3Y / _ |
" SNOLLYWINY T¥20T ONY SAYIH3AO - W 7777) 77 "
! INHOWA ; " NOSSTodd A 1 43000N3 3305 !
m " :E%o R e AW 11V N B4 czéw_wﬁé T~
(IN LN ' ' 4 - 7 "
| e 7 m 777777777770 7777777777 B
m . A_ 79 m m dan mmoo 93N m
". ‘ L 100010 !
L] SOHAVO ¥300030 dNOR | L owyayisoan | SILLNSNVAL "
_ as0 2 WY3LS = : WIS ~_qc “
“ O3dN " " o3dM “
! _ _ : ; :
|||||||| “ 4‘ “lllllllﬂlllllllllJ@lllll_ -lllllllllllll|lllllllllllllllll|III||I|I||I||.
| e | W
" \ 030IA
| R IM lllllll 1
A0 9
wee [

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067

PCT/US2005/019705
6112
52
\ 50
502 I
\ ¥ { I
- VIDEO
OBIECT CLETRENDERED | _|RENDERLOCATON |, | ecrumion |56
/ T e B
504 508 '] FRAMEIFIELD :
Y ‘| RENDERER !
D e 5 i E
ENCODER : :
~N-507 : COLOR ;
| : SPACE L s
509 512 :| CONVERSION L
/ 4 E T
MPEG-2 DATA ENCODERHINT |1 | MPEG2VIDEO
1 ENCAPSULATOR COLLECTOR EELEMGEE‘J‘E\EXT%TF?EAM
‘—_'...T."._.:'_—J
e §oT V !
¥ MPEG-2
' MOTION MOTION DIFFERENCER
: PROGRAM | > >
| ecapsuLATON 7| ESTIMATION COMPENSATION
! /)\ y
510 oCT
z — :
! FRAME RATE
5 ¥ BUFFER | | coNTROLLER] CUANTIZATION
o MPEG-2TS 1 Y
1 ENCAPSULATION INVERSE ENTROPY
: IDCT = QuANTIZATION[1 CODING
v E J
MPEGIZSD
CACHE o
FIG.5

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067

PCT/US2005/019705

712
N
54
SR
;| TRANSITION SCENE LOOP | _ VIDEO PLAYBACK
| PLAYBACK GENERATOR [CONTROL
5 \ \ 4 1
; 610 508 606 -
E ,
| MPEG-2 TRANSPORT , CLIENT REQUEST
: STREAM ENCAPSULATION CL'E'}LSWE PROCESSOR
5 < STATISTICS 7 N
612 600
: 602
E \ 4 Y
: UDP 614 604~ 00B CLIENT
| ENCAPSULATION [COMMUNICATION
58 62

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067

8/12

PCT/US2005/019705

706 708 70 62
N / L
EVENT |
>| MAPPER
\
|_~712 EVENT QUEUE
704 *
\
008) EVENT [-T14
NETWORKING [~ PROCESSOR |
03 718
0S |PORTING
LAYER
700
\ Y
716~ SCREEN DATA
INBAND MPEG-2 - - ACTION | TABLES AND
PRIVATE DATA g - UBRARY [T | ACTIONMACROS
> ! <>
720
- f A I
HARD “~"| LOADER
DISK
702 FIG. 7 22

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067 PCT/US2005/019705

9/12

|EVENT PROCESSOR] SCENE LOADER | EXCLUSIVE SCENE | | OVERLAY SCENE |

» _ 1TLOADSCENE) .

L

2ALOCATE) ¢ :

i
[}
L
'

3 EXCLUSIVESCENECHANGE(ENTERED)

>

5. QUEUE;NOTIFYSCENEMEMBERSH]P()

1
s

-

4: ONLOAD) : U

6: QUEUE LOAD COMPLETE

-~] T: SCENEMENBERSHPNOTIFICATION)
i G EXCLUSVESCENECHANGE(LOADED) g
. :
E G GUEUEGOTOSCENE)

T

; 10 EXCLUSVESCENECHANGE(UNLOADING

2
>
1
]
)
]
¢
Foug
| o

11; ONUNLOAD()

12. QUEUE UNLOAD COMPLETE :

)

]
- !
-

]

]

13 EXCLUSIVESCENECHANGE(EXITED)

.2

14:FREE L U

A

FIG.8

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067

10/12

[VER AT FERAAGER | [TOLLHECON ROLOVERAVSCERE
' 5 EXCLUSNESCENECHANCED| ENTERED)

'
’
[}

IF TRIPLETABLE1 1S
STILLACTIVE. THIS CALL
CETSMADE.
OTHERWISE 1T
CONTINUES ON.

A

6: SETACTIVETRIPLETABLE(1)

8 SOENEMEMBERSHIPNOTIFICATION)

% SETACTIVETRIPLETABLE(2)

g

- 10: RETURN

f: EXCLUSIVESCENECHANGED {LOADED

12, TERMNATEOVERLAYSCENE

u 13 RETLRN
_______________ .

PCT/US2005/019705

THIS EVENT IS SENT BY THE B
UNLOAD HANDLER IN THE EXCLUSIVE
SCENE. IF THE EXCLUSIVE SCENE
DOESN'T HAVE THIS HANDLER
OBVIOUSLY NO MESSAGE IS SENT
BUT LESS OBVIOUSLY THE TRIPLE
TABLE DOESN'T CHANGE EITHER

IF TRIPLETABLE IS STILL
ACTIVE, THS RETURNS US TO
-<| " THE STEADY SITE.

1t SETACTVETRIPLETABLE (0]

T {5RETURN

LI I

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2005/120067

1000
\

1004

\

BACKGROUND
IMAGE -

| COMBINE INTO

MPEG LAYER

1112

PCT/US2005/019705

1006

/

MPEG-2

PNG OR JPEG
IMAGE

GENERATE
FG/BG MAP

1010

\

ENCODE

1002

/
1008

SUBSTITUTE SHEET (RULE 26)

™1 FOREGROUND

™1 COMPRESSION

- SAVE 28D

ENCODE

™1 BACKGROUND

[

1012

FIG. 10

- IMAGE

\
1014

WO 2005/120067 PCT/US2005/019705

12/12

1100

FIRST DATA
> OR
SECOND DATA

DATA MPEG ENCODING

OTHER ENCODING (ZSD)

FIG. 11

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

