发明名称

一种防腐大豆蛋白胶粘剂的制作方法

摘要

本发明涉及的是一种防腐大豆蛋白胶粘剂的制作方法。将大豆蛋白和水加入到反应容器中，其中水为溶剂，再加入十二烷基硫酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌，控制搅拌速度为 60～80r/min，防止表面活性剂溶解后起泡，通过十二烷基硫酸钠改性的大豆蛋白其内部疏水端转而向外，从而增加了蛋白的表面疏水性，待上述搅拌过程持续 2 小时后，往上述容器中加入多功能基多亚甲基多异氰酸酯，进行交联反应，再加入复配防腐剂，搅拌，制备出防腐大豆蛋白胶粘剂。本发明的胶粘剂室温储存 60 天外观无变化，综合性能优于现有同类产品，得到了大豆蛋白的深加工产品，提高了大豆蛋白的附加值。
1. 一种防腐大豆蛋白粘剂的制作方法，其特征是：

（1）将 10～20 重量份的大豆蛋白和 100 重量份的水加入到反应容器中，其中水为溶剂。再加入 0.2～0.5 重量份的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌，控制搅拌速度为 60～80r/min，防止表面活性剂溶解后起泡，通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端转而向外，从而增加蛋白的表面疏水性；

（2）待上述搅拌过程持续 2 小时后，往上述容器中加入 5～20 重量份的多苯基多亚甲基多异氰酸酯，进行交联反应；

（3）交联反应进行 1～2h 后，加入 0.1～0.5 重量份的复配防腐剂，搅拌 10～20min，制备出防腐大豆蛋白胶粘剂；

所述的复配防腐剂由 1,2-苯并异噻唑啉-3-酮与均三嗪两种杀菌剂按质量比 1：1 复配而成。

2. 根据权利要求 1 所述的一种防腐大豆蛋白胶粘剂的制作方法，其特征在于所述的大豆蛋白选自大豆粉、大豆分离蛋白或低温豆粕中的一种。

3. 根据权利要求 1 所述的一种防腐大豆蛋白胶粘剂的制作方法，其特征在于所述的多苯基多亚甲基多异氰酸酯，异氰酸酯基团-NCO 质量分数为 29%～32%。
一种防腐大豆蛋白胶粘剂的制作方法

技术领域
[0001] 本发明涉及一种防腐大豆蛋白胶粘剂的制作方法，该大豆蛋白胶粘剂主要用在木材胶合板生产和家具制造上，属于木材胶粘剂技术领域。

技术背景
[0002] 大豆基胶粘剂的研究始于1923年，由于以石蜡产品为原料的合成树脂胶粘剂具有更好的粘接性能和耐水性能，故大豆基胶粘剂逐渐被取代。近年来，随着胶粘剂市场的不断扩大，全球石油资源的有限性和环境污染等问题逐渐引起人们的重视；而合成树脂胶粘剂因含有甲醛、苯酚等有毒物质，在生产、运输和使用过程中会对环境和人体健康造成极大的危害。因此，胶粘剂行业必须考虑使用可再生的、环境友好型胶粘剂。由于大豆基胶粘剂是环境友好型胶粘剂，性能上可以替代合成树脂胶粘剂，因而大豆基胶粘剂又一次成为研究的热点。
[0003] 但用大豆蛋白制作的胶粘剂也有一定的局限性，其粘接强度和耐水性能相对较差，抗微生物降解能力低，阻碍了大豆蛋白基木材胶粘剂的推广。如何提高大豆蛋白基木材胶粘剂的耐水性、粘接强度以及防腐性，满足木材工业应用的需求，成为当前大豆蛋白基木材胶粘剂开发的关键。
[0004] 多苯基多亚甲基多异氰酸酯，简称PAPI，浅黄色至褐色粘稠液体，是由50％MDI与50％官能度大于2以上的多异氰酸酯组成的混合物，升温时能发生自聚作用，由其制作的聚氨酯胶黏剂近年来发展较快，是性能较为全面、应用相当广泛的一类树脂材料。聚氨酯胶具有许多优异的特性，如较高的粘接强度、固化收缩率低、尺寸稳定性好、耐化学介质、适用范围广、毒性低、无环境污染等，对金属、塑料、木材、陶瓷、玻璃、复合材料等多种材料都有良好的粘接能力，但聚氨酯胶粘剂价格昂贵，故一般不适合于木材胶合板的生产和家具的制造。
[0005] 为了制备具有良好性能的大豆蛋白胶粘剂，至今已公开了一些方法。在中国发明专利申请公开说明书（公开号：CN101302417）中，提出了将大豆蛋白与水经10分钟搅拌混合，加入消石灰浆和10分钟，再加入硅酸钠、过氧化钠，经15分钟搅拌后制备的大豆蛋白粘合剂可用于胶合板工业。在中国发明专利申请公开说明书（公开号：CN101255328）中，介绍了有机溶剂乙醇改性大豆胶粘剂技术。在中国发明专利申请公开说明书（公开号：CN101130678）中，提供了一种大豆蛋白水性高分子异氰酸酯胶粘剂制作技术。以上三种方法只是举例介绍了大豆蛋白胶粘剂的制作方法，未涉及改善大豆胶粘剂使用及储存过程中最易出现的腐败性能，且制备的胶粘剂的耐水性能及胶合强度还有进一步提升的空间。

发明内容
[0006] 本发明的目的就是针对上述不足，提供一种防腐大豆蛋白胶粘剂的制作方法，选用水性表面活性剂使大豆蛋白中硫酸性基团裸露，多肽链舒展，加入多苯基多亚甲基多异氰酸酯及由1，2-苯并异噻唑啉-3-酮与均三嗪两种杀菌剂形成的复配防腐剂，通过共混反应制
备出大豆胶粘剂，其室温储存寿命可达 60 天以上，综合性能优于现有的大豆胶粘剂。

【0007】为实现本发明的目的采用的技术方案是：利用丰富的大豆蛋白资源，选用水作为溶剂，选用表面活性剂使大豆蛋白中疏水性基团裸露、肽链舒展，加入多苯基多亚甲基多异氰酸酯及复合防腐剂，通过多苯基多亚甲基多异氰酸酯与大豆蛋白里的活性基团发生交联反应，减少了大豆蛋白里的亲水基团，提高胶粘剂的耐水胶合强度，同时，通过复合防腐剂的作用，改善大豆胶粘剂的防腐性能，制备出室温储存寿命可达 60 天以上，综合性能优于现有同类产品的大豆胶粘剂。

【0008】一种防腐大豆蛋白胶粘剂的制作方法如下：

【0009】(1) 将 10～20 重量份的大豆蛋白和 100 重量份的水加入到反应容器中，其中水为溶剂，再加入 0.2～0.5 重量份的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌。控制搅拌速度为 60～80r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白的内部疏水端而向外，从而增加蛋白的表面疏水性。

【0010】(2) 待上述搅拌过程持续 2 小时后，往上述容器中加入 5～20 重量份的多苯基多亚甲基多异氰酸酯，进行交联反应。

【0011】(3) 交联反应进行 1～2h 后，加入 0.1～0.5 重量份的复合防腐剂，搅拌 10～20min，制备出防腐大豆蛋白胶粘剂。

【0012】本发明所述的大豆蛋白选用大豆粉，大豆分离蛋白或低温豆粕中的一种。

【0013】本发明所述的多苯基多亚甲基多异氰酸酯，异氰酸酯基团 -NCO 质量分数为 29%～32%。

【0014】本发明所述的复合防腐剂由 1,2-苯并异噻唑啉-3-酮与三嗪两种杀菌剂按质量比 1：1 复配而成，其杀菌活性成份包括异噻唑啉酮衍生物和有机含氮化合物两种。

【0015】本发明所述的防腐大豆蛋白胶粘剂的创新之处在于：以可再生资源——大豆蛋白为原料，选用水作为溶剂，选用多苯基多亚甲基多异氰酸酯与大豆蛋白进行交联改性，使两者间发生化学反应，同时加入含有两种杀菌成分的复合防腐剂，从而制备出室温储存寿命可达 60 天以上，综合性能优于现有同类产品的大豆胶粘剂，得到了具有产业化价值的大豆蛋白的深加工产品，提高了大豆蛋白的附加值。

【0016】本发明：

【0017】(1) 合成得到了耐水接合性能优良的大豆蛋白胶粘剂；

【0018】(2) 发明出一种多苯基多亚甲基多异氰酸酯改性大豆蛋白胶粘剂的制作方法，所选用的多苯基多亚甲基多异氰酸酯可以和大豆蛋白发生化学反应，产生有机结合；

【0019】(3) 发明出一种防腐性能得到有效改善，储存周期更长的防腐大豆蛋白胶粘剂，所选用的防腐剂为含有两种杀菌成分的复合防腐剂，价格较低，在增强大豆蛋白胶粘剂防腐性能的同时，有效控制了胶粘剂成本的增加；

【0020】(4) 选用水做溶剂，大幅度降低大豆蛋白及多苯基多亚甲基多异氰酸酯使用量，使得胶粘剂成本大幅度降低，远远低于纯聚氨酯胶粘剂，更具有使用价值；

【0021】(5) 胶粘剂不会产生甲醛、苯酚等有毒有害的物质，胶粘剂在使用过程中环保、卫生，可应用于木材胶合板、刨花板、纤维板等领域。

具体实施方式
说明 书

[0022] 以下的具体实施例是对本发明的进一步说明，而不是限制本发明的范围。

[0023] 实施例 1：

[0024] (1) 将 10g 的大豆粉和 100g 的水加入到反应容器中，其中水为溶剂，再加入 0.2g 的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌。控制搅拌速度为 60r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端转向外，从而增加蛋白的表面疏水性。

[0025] (2) 待上述搅拌过程持续 2 小时后，往上述容器中加入 5g 的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯基团 -NCO 质量分数为 29%。

[0026] (3) 交联反应进行 1h 后，加入 0.1g 的复配防腐剂，搅拌 10min，制备出防腐大豆蛋白胶粘剂。

[0027] 经检测，胶粘剂固含量为 26.6%，在杨木单板表面的接触角为 48°，用旋转粘度计测得粘度为 232mPa•S，室温储存 60 天后外观无变化，室温储存 60 天前后胶粘剂粘接杨木单板的耐水胶合强度 (63℃, 3h) 分别为 1.911MPa、1.534MPa，综合性能明显优于现有的大豆胶粘剂。

[0028] 实施例 2：

[0029] (1) 将 20g 的大豆分离蛋白和 100g 的水加入到反应容器中，其中水为溶剂，再加入 0.5g 的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌。控制搅拌速度为 80r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端转向外，从而增加蛋白的表面疏水性。

[0030] (2) 待上述搅拌过程持续 2 小时后，往上述容器中加入 20g 的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯基团 -NCO 质量分数为 32%。

[0031] (3) 交联反应进行 2h 后，加入 0.5g 的复配防腐剂，搅拌 20min，制备出防腐大豆蛋白胶粘剂。

[0032] 经检测，胶粘剂固含量为 28.3%，在杨木单板表面的接触角为 45°，用旋转粘度计测得粘度为 198mPa•S，室温储存 60 天后外观无变化，室温储存 60 天前后胶粘剂粘接杨木单板的耐水胶合强度 (63℃, 3h) 分别为 2.033MPa、1.427MPa，综合性能明显优于现有的大豆胶粘剂。

[0033] 实施例 3：

[0034] (1) 将 15g 的低温豆粕和 100g 的水加入到反应容器中，其中水为溶剂，再加入 0.35g 的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌。控制搅拌速度为 70r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端转向外，从而增加蛋白的表面疏水性。

[0035] (2) 待上述搅拌过程持续 2 小时后，往上述容器中加入 12.5g 的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯基团 -NCO 质量分数为 30.5%。

[0036] (3) 交联反应进行 1.5h 后，加入 0.3g 的复配防腐剂，搅拌 15min，制备出防腐大豆蛋白胶粘剂。

[0037] 经检测，胶粘剂固含量为 23.2%，在杨木单板表面的接触角为 51°，用旋转粘度计测得粘度为 203mPa•S，室温储存 60 天后外观无变化，室温储存 60 天前后胶粘剂粘接杨木单板的耐水胶合强度 (63℃, 3h) 分别为 1.689MPa、1.422MPa，综合性能明显优于现有的...
大豆胶粘剂。

【0038】 实施例 4：

【0039】（1）将 10g 的低温豆粕和 100g 的水加入到反应容器中，其中水为溶剂，再加入 0.5g 的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌。控制搅拌速度为 80r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端转而向外，从而增加蛋白的表面疏水性。

【0040】（2）待上述搅拌过程持续 2 小时后，往上述容器中加入 20g 的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯基团 -NCO 质量分数为 30.5%。

【0041】（3）交联反应进行 1h 后，加入 0.5g 的复配防腐剂，搅拌 10min，制备出防腐大豆蛋白胶粘剂。

【0042】经检测，胶粘剂固含量为 23.2%，在杨木单板表面的接触角为 44°，用旋转粘度计测得粘度为 178mPa·S，室温储存 60 天后外观无变化，室温储存 60 天前后胶粘剂粘接杨木单板的耐水胶合强度 （63℃，3h）分别为 1.771MPa、1.356MPa，综合性能明显优于现有的大豆胶粘剂。

【0043】实施例 5：

【0044】（1）将 20g 的大豆分离蛋白和 100g 的水加入到反应容器中，其中水为溶剂，再加入 0.2g 的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌。控制搅拌速度为 80r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端转而向外，从而增加蛋白的表面疏水性。

【0045】（2）待上述搅拌过程持续 2 小时后，往上述容器中加入 5g 的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯基团 -NCO 质量分数为 32%。

【0046】（3）交联反应进行 2h 后，加入 0.1g 的复配防腐剂，搅拌 20min，制备出防腐大豆蛋白胶粘剂。

【0047】经检测，胶粘剂固含量为 24.2%，在杨木单板表面的接触角为 42°，用旋转粘度计测得粘度为 186mPa·S，室温储存 60 天后外观无变化，室温储存 60 天前后胶粘剂粘接杨木单板的耐水胶合强度 （63℃，3h）分别为 1.902MPa、1.781MPa，综合性能明显优于现有的大豆胶粘剂。

【0048】实施例 6：

【0049】（1）将 15g 的大豆粉和 100g 的水加入到反应容器中，其中水为溶剂，再加入 0.2g 的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在 60℃，同时用搅拌机开始搅拌。控制搅拌速度为 80r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端转而向外，从而增加蛋白的表面疏水性。

【0050】（2）待上述搅拌过程持续 2 小时后，往上述容器中加入 12.5g 的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯基团 -NCO 质量分数为 29%。

【0051】（3）交联反应进行 2h 后，加入 0.3g 的复配防腐剂，搅拌 15min，制备出防腐大豆蛋白胶粘剂。

【0052】经检测，胶粘剂固含量为 26.4%，在杨木单板表面的接触角为 55°，用旋转粘度计测得粘度为 235mPa·S，室温储存 60 天后外观无变化，室温储存 60 天前后胶粘剂粘接杨木单板的耐水胶合强度 （63℃，3h）分别为 1.365MPa、1.286MPa，综合性能明显优于现有的
大豆胶粘剂。

实施例 7：

【0054】（1）将10g的大豆分离蛋白和100g的水加入到反应容器中，其中水为溶剂，再加入0.35g的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在60℃，同时用搅拌机开始搅拌。控制搅拌速度为80r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端向外，从而增加蛋白的表面疏水性。

【0055】（2）待上述搅拌过程持续2小时后，往上述容器中加入20g的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯应具-NCO质量分数为29%。

【0056】（3）交联反应进行1.5h后，加入0.1g的复配防腐剂，搅拌15min，制备出防腐大豆蛋白胶粘剂。

【0057】经检测，胶粘剂固含量为29.0%，在杨木单板表面的接触角为53°，用旋转粘度计测定粘度为246mPa•S，室温储存60天后外观无变化，室温储存60天前后胶粘剂粘接杨木单板的耐水胶合强度（63℃，3h）分别为2.011MPa、1.645MPa，综合性能明显优于现有的大豆胶粘剂。

实施例 8：

【0059】（1）将20g的大豆粉和100g的水加入到反应容器中，其中水为溶剂，再加入0.35g的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在60℃，同时用搅拌机开始搅拌。控制搅拌速度为60r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端向外，从而增加蛋白的表面疏水性。

【0060】（2）待上述搅拌过程持续2小时后，往上述容器中加入20g的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯应具-NCO质量分数为30.5%。

【0061】（3）交联反应进行1h后，加入0.5g的复配防腐剂，搅拌10min，制备出防腐大豆蛋白胶粘剂。

【0062】经检测，胶粘剂固含量为28.9%，在杨木单板表面的接触角为48°，用旋转粘度计测定粘度为199mPa•S，室温储存60天后外观无变化，室温储存60天前后胶粘剂粘接杨木单板的耐水胶合强度（63℃，3h）分别为1.543MPa、1.365MPa，综合性能明显优于现有的大豆胶粘剂。

实施例 9：

【0064】（1）将16g的低温豆粕和100g的水加入到反应容器中，其中水为溶剂，再加入0.28g的十二烷基苯磺酸钠，用恒温水浴锅加热，温度设定在60℃，同时用搅拌机开始搅拌。控制搅拌速度为80r/min，防止表面活性剂溶解后起泡。通过十二烷基苯磺酸钠改性的大豆蛋白其内部疏水端向外，从而增加蛋白的表面疏水性。

【0065】（2）待上述搅拌过程持续2小时后，往上述容器中加入15g的多苯基多亚甲基多异氰酸酯，进行交联反应。异氰酸酯应具-NCO质量分数为30.5%。

【0066】（3）交联反应进行2h后，加入0.4g的复配防腐剂，搅拌12min，制备出防腐大豆蛋白胶粘剂。

【0067】经检测，胶粘剂固含量为33.3%，在杨木单板表面的接触角为60°，用旋转粘度计测定粘度为254mPa•S，室温储存60天后外观无变化，室温储存60天前后胶粘剂粘接杨木单板的耐水胶合强度（63℃，3h）分别为1.664MPa、1.512MPa，综合性能明显优于现有的
大豆胶粘剂。