WO 2006/024903 A1 |0 000 000 0 000 0 0 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 March 2006 (09.03.2006)

7 3
o IPOS |) 00 O O A A

(10) International Publication Number

WO 2006/024903 A1l

(51) International Patent Classification:
GOGF 1/00 (2006.01)

(21) International Application Number:
PCT/IB2005/002136

(22) International Filing Date: 22 July 2005 (22.07.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/929,221 30 August 2004 (30.08.2004) US

(71) Applicant (for all designated States except US): AXALTO
SA [FR/FR]; 50, avenue Jean Jaures, F-92120 Montrouge
(FR).

(72) Inventors: SACHDEVA, Kapil; 18 rue Auber, F-92120
Montrouge (FR). PREVOST, Sylvain; 12703 Hupa Circle,
Austin, TX 78729 (US).

(74) Agent: JACQUOT, Ludovic; c/o Axalto S.A., 50, avenue
Jean Jaures, F-92120 Montrouge (FR).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: APPLICATION CODE INTEGRITY CHECK DURING VIRTUAL MACHINE RUNTIME

401

PARTITON THE APPLICATION
INTO BASIC BLOCKS

403 |

GOMPUTE A CHECK
VALUE ASSOCIATED WITH
EACH BASIC BLOCK

405 l

REMEMBER THE CHECK
VALUE ASSOCIATED WITH
EACH BASIC BLOCK

PRELIMINARY
RUNTIME

407

DURING EXECUTION OF
THE APPLICATION PROGRAM
RE-COMPUTE THE GHECK VALUE
FOR EACH BASIC BLOCK

409 !

VERIFY THAT RE-COMPUTED
CHECK VALUE CONFORMS TO
THE REMEMBERED CHECK VALUE

VERIFICATION
O?K

1SSUE
ERROR MESSAGE

(57) Abstract: Protecting an application of a multi-applica-
tion smart card against unauthorized manipulations. A system
and method for guarding against unauthorized modifications
includes partitioning the application into a plurality of basic
blocks. Basic blocks are programming atomic units that have
one entry point and one exit point and comprises a set of data
units. For each basic block a check value associated with a
basic block is computed wherein the check value is a function
of the data units of the basic block. This check value is some
how remembered and later recalled and checked either during
execution of the corresponding basic block of the application
program or prior to execution of the application program. Dur-
ing or prior to execution of the basic block the re-computed
check value is verified to be the same as the remembered check
value. If not, an error condition is indicated and a corrective
action may be taken.

10

15

20

WO 2006/024903 PCT/IB2005/002136

APPLICATION CODE INTEGRITY CHECK DURING VIRTUAL

MACHINE RUNTIME

[01] BACKGROUND OF THE INVENTION

[02] 1.0 Field of the Invention

[03] The present invention relates generally to verification of the integrity
of computer programs during run-time and more particularly to verification
that a smart card application program has not been manipulated after the

application program has been loaded.

[04] 2.0 Description of the related art

[05] Smart cards are small personal computing devices that are used to
protect very sensitive information. Smart cards may be used to perform
banking functions, provide access to health records, personalization of
computer network access, secure building access, and many more functions.
Smart cards are also used as subscriber identity modules (SIM) in certain

mobile telephony networks.

[06] A crucial selling point of smart cards is the security of the data stored
thereon or accessed through the use of smart cards. In many circumstances
smart cards provide heightened levels of security than other security

mechanisms because smart cards include a combination of security features.

CONFIRMATION COPY

10

15

20

WO 2006/024903 PCT/IB2005/002136

For example, to gain access to some data you need to know a password stored

on the smart card and you must be in possession of the smart card.

[07]1 A recent trend in smart card technology is so called multi-application
smart cards. These cards may be programmed with multiple disjointed
application programs. For example, the same card may be used to access
both banking records as well as provide health care information. Examples of
such cards include the Cyberflex family of cards from Axalto Inc., Austin,

Texas.

[08] A common feature of multi-application smart cards is that the
application programs may be loaded onto the smart card after the card has
been issued by the manufacturer or even after an end-user has taken
possession of the card. Each such application program in a multi-application
smart card is stored in some form of programmable memory on the smart

card.

[09] Such post-manufacture programmability of smart cards provide
increased flexibility and power of use of the smart cards. However, the price
for that flexibility and power is vulnerability to program manipulation.
Because the application programs are stored on the smart card in
programmable memory, there is a risk that the programs are manipulated
with. Furthermore, because the application programs may be loaded from

sources where they have been manipulated with prior to loading onto a smart

10

15

20

WO 2006/024903 PCT/IB2005/002136

card, there is a risk that even when first loaded onto a smart card, the

program has been corrupted in some fashion.

[10] The risks of such manipulations are numerous. It is conceivable that a
program that otherwise appears to behave as expected, issues unauthorized
transactions or reveals private information to unauthorized persons. Other
modifications can simply result in incorrect computations or other

undesirable behavior.

[11] As noted, modification to application programs may be from
intentional malicious actions on the part of someone intent on defeating
security mechanisms of the smart card. However, modifications may also
occur from some type of hardware or software failure that is entirely
unintentional. It is desirable to guard against both intentional and

inadvertent modifications to application programs.

[12] Hitherto, un-authorized manipulation of smart card application
programs have been avoided by techniques that are employed during the
loading of the application programs onto the smart card such as using the
DAP mechanism of GlobalPlatform, on-card byte code verification, or
performing checksum calculations. The DAP mechanism is described in The

GlobalPlatform Card Specification, version 2.1, issued June 2001, obtainable

from www.globalplatform.org and an on-card byte code verifier is described

in Java bytecode verification on Java cards, Roberto Barbuti, Stefano

10

WO 2006/024903 PCT/IB2005/002136

Cataudella, Proceedings of the 2004 ACM symposium on Applied Computing,

Pages: 431 - 438, 2004, ISBN:1-58113-812-1.

[13] A problem with the known prior art application program verification
schemes is that these schemes do not catch malicious modifications made to
application programs after the programs have been loaded onto a smart card.
Therefore, there is a continuing need to perform integrity checking of smart
card application programs during run-time. Accordingly, from the foregoing
it is apparent that there is a hitherto unresolved need for a system and

methodology for verifying integrity of smart card programs during run-time.

10

15

WO 2006/024903 PCT/IB2005/002136

[14] SUMMARY OF THE INVENTION

[15] In a preferred embodiment, a system and method according to the
invention guard against unauthorized manipulation or unintentional
modification of an application program of a multi-application smart card by
partitioning the application into a plurality of basic blocks, wherein each
basic block has one entry point and one exit point and comprises a set of data
units, computing a check value associated with a basic block wherein the
check value is a function of the data units of the basic block, remembering the
corresponding check value, recomputing the check value either during
runtime execution of the application program or prior to execution of the
application program, and verifying that the re-computed check value is the

same as the remembered check value.

[16] Other aspects and advantages of the present invention will become
apparent from the following detailed description, taken in conjunction with
the accompanying drawings, illustrating by way of example the principles of

the invention.

10

15

WO 2006/024903 PCT/IB2005/002136

[17] BRIEF DESCRIPTION OF THE DRAWINGS

[18] Figure 1 is a schematic illustration of the operating environment in
which a smart card according to the invention may be used to provide secure

computing services.

[19] Figure 2 is a schematic illustration of an exemplary architecture of a

resource-constrained device.

[20] Figure 3 is a schematic illustration of a software architecture for a

resource-constrained device.

[21] Figure 4 is a flow-chart illustrating the operation of a method or
system according to the invention to verify the integrity of application

programs during the run-time of the application program.
[22] Figure 5 is a flow-chart illustrating an alternative embodiment of the
invention in which the integrity of application programs is verified prior to

the execution of the application program.

10

15

20

WO 2006/024903 PCT/IB2005/002136

[23] DETAILED DESCRIPTION OF THE INVENTION

[24] In the following detailed description and in the several figures of the

drawings, like elements are identified with like reference numerals.

[25] As shown in the drawings for purposes of illustration, the invention is
embodied in a system and method for guarding application programs,
particularly those loaded onto resource-constrained devices such as smart
cards, against unauthorized manipulation or modification. Unauthorized
manipulation or modification may originate from intentional malicious
conduct of someone intent on manipulating a program to perform some
unauthorized task. However, modifications to programs may occur from
unintentional causes such as hardware or software failures. The system and
method according to the invention uses the computer programming concept of
basic blocks to verify the integrity of computer programs during execution to
detect modifications to application programs whether intentional or

unintentional.

[26] TFigure 1 is a schematic illustration of the operating environment in
which a resource-constrained device according to the invention may be used
to provide secure communication with a remote entity. A resource-
constrained device 101, for example, a smart card, is connected to a computer
network 109, for example, the Internet. The resource-constrained device 101

may be connected to the computer network 109 via a personal computer 105

10

15

20

WO 2006/024903 PCT/IB2005/002136

that has attached thereto a card reader 103 for accepting a smart card.
However, the resource-constrained device 101 may be connected in a myriad
of other ways to the computer network 104, for example, via wireless
communication networks, smart card hubs, or directly to the computer
network 109. The remote node 105 is a computer system of some sort capable
to implement some functionality that may either seek access to information
on the smart card 101 or to which the smart card user may seek access. For
example, the remote node 107 may be executing a banking software that a
user of the smart card 101 is seeking to obtain access to. The smart card 101
may then provide some access control functionality or may even be an

electronic purse to which funds are downloaded from the remote computer.

[27] The scenario of Figure 1 is presented here merely for the purpose of
providing an example and must not be taken to limit the scope of the
invention whatsover. Only the imagination of designers limits the myriad of

possible deployment scenarios and uses for smart cards.

[28] Figure 2 is a schematic illustration of an exemplary architecture of a
resource-constrained device 101. The resource-constrained device 101, e.g., a
smart card has a central processing unit 203, a read-only memory (ROM) 205,
a random access memory (RAM) 207, a non-volatile memory (NVM) 209, and
a communications interface 211 for receiving input and placing output to a

device, e.g., the card reader 102, to which the resource-constrained device 101

10

15

20

WO 2006/024903 PCT/IB2005/002136

is connected. These various components are connected to one another, for
example, by bus 213. In one embodiment of the invention, the SSL/TLS
module 103, as well as other software modules shown in Figure 1, would be
stored on the resource-constrained device 101 in the ROM 206. During
operation, the CPU 203 operates according to instructions in the various

software modules stored in the ROM 205.

[29] Figure 3 is a block diagram of an exemplary software architecture 300
that one may find implemented on a smart card 101. The software
architecture 300 includes several application programs 301. These are loaded
onto the smart card by a loader 303. The application programs 301 would
typically be loaded into the non-volatile memory 209. However, in other
scenarios an application program may be permanently written onto the smart
card at manufacture by having it stored in the ROM 205. If the smart card
101 is called upon to execute a program for only one session, it would be
possible to have the program loaded in the RAM 207. However, that would
be a rare circumstance. On the other hand, during execution of an
application program, it is indeed possible that certain portions of the

application program is loaded into the RAM 207.

[30] In this example, a several application programs 301 are executed by
the CPU 203 under the control of instructions of an interpreter 305. The

interpreter 303 may, for example, be a Javacard Virtual Machine as found on

10

15

20

WO 2006/024903 PCT/IB2005/002136

10

the Cyberflex smart card family from Axalto Inc. of Austin, Texas. In
alternative embodiments, the application programs 301 are compiled into
executable code and do not require further interpretation by the interpreter
305. However, in such embodiments, the job control would be managed by

some operating system program that would take the place of the interpreter

303.

[81] The interpreter 303 is usually a static component of a smart card 101
and would therefore be loaded into the ROM 205. The interpreter 303 may
also be burned into some form of firmware. In another alternative the

interpreter 303 may be stored in the non-volatile memory 209.

[32] In most embodiments of the invention, the smart card software
architecture 300 also includes some system functions 307. System functions
307 may include security functionality, cryptography functionality, and

utility libraries that may be called by application programs 301.

[33] The application programs 301 may access functions provided by the
smart card system software 307 by issuing calls through an application

program interface 309.

[34] One possible breach of security provided by a smart 101 is the
manipulation of the application programs 301 to perform some function other
than or additional to that for which a give program was designed. Such

manipulations could be either intentional so as to provide a maliciously

10

15

20

WO 2006/024903 PCT/IB2005/002136

11

intending party access to some information for which she is not authorized.
Alternatively, the manipulations could be purely accidentally caused by a
failure of the smart card hardware or software. In either case, it is desirable
to detect any modifications made to the application programs. It is desirable
that such detection be performed during the execution of an application

program by the interpreter 305.

[35] The present invention presents a solution for detecting modifications of
application programs during interpreter runtime by breaking an application

program into basic blocks and performing integrity checks on the basic

blocks.

[36] A basic block is a sequence of instructions without any branches in or
out of the sequence. Another way to define a basic block is that it is a
sequence of instructions in which the instructions are executed in the order
they appear in the program. A basic block may begin with procedure entry
points, fall-through statements following conditional statements. Basic
blocks terminate at branch statements and conditional statements. Basic
blocks are described in Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,

Compilers - Principles, Techniques and Tools. Addison-Wesley 1988, ISBN 0-

201-10088-6.

[37] Consider the following example code:

10

15

20

25

30

35

WO 2006/024903 PCT/IB2005/002136

12
1 RadiusArray = [1,2,3,5,10]
2 PI = 3.14159
3 ArraySize = 5
4 MaxSphereSize = 600
5 For I = 1, ArraySize
6 {
7 Radius = RadiusArray[i]
8 CircleArea = PI * R**2
9 CircleCircumference = PI * R * 2
10 SphereVolume = 4/3 * PI * R **3
11 IF SphereVolume > MaxSphereSize Then
12 {
13 R =28
14 SphereVolume = 4/3 * PI R**3
15 Write (‘Radius Reset to 8')
16 }
17 ELSE
18 {
19 Write (‘Radius OK')
20 }
21 WRITE (R, CircleArea, CircleCircumference,
SpherevVolume)
22 }

Table 1: Example Code Illustrating Basic Blocks

[38] In the code segment of Table 1, several basic blocks may be identified,

for example, the instructions of lines 1-4, the instructions of lines 7-10, the

instructions of lines 13-15, line 19, and line 21 are each basic blocks,

respectively.

[89] Figure 4 is a flow-chart illustrating the use of basic blocks to verify the

integrity of a program 301 during the execution of the program 301 by the

interpreter 305.

[40] An application program 301 is first partitioned into a plurality of basic

blocks, step 401. The partitioning step may be performed as part of the

10

15

20

WO 2006/024903 PCT/IB2005/002136

13

compilation or conversion of the program 301 and thus be performed off-card
prior to loading the application program 301 onto the smart card 101.
Alternatively, the partitioning step is performed by the loader 303 in
conjunction with the loading of the application program 301 onto the smart

card 101.

[41] For each basic block of the application program 301 a check value is
computed for that basic block, 403. The check value should ideally be a
unique number that is a function of all the elements that make up the basic
block. Examples, of check value computations include checksum
computations. In alternative embodiments, a digest of the components of the
basic block may be computed by, for example, the MD5 or SHA-1 algorithms.
MD5 and SHA-1 are two different algorithms that may be used for
determining a condensed fixed length representation of a message. This
representation is known as a digest. MD5 is described in “The MD5 Message-
Digest Algorithm”, IETF Network Working Group RFC 1321, by R. Riverst,
which is incorporated herein by reference. SHA-1 is described in “US Secure
Hash Algorithm 1 (SHA1)”, IETF Network Working Group RFC 3174, by D.

Eastlake, and P. Jones, which is incorporated herein by reference.

[42] In an alternative embodiment, check values are not computed for all
basic blocks but only a subset of the basic blocks that make up an application

program 301. This could be done by either selecting for integrity check only

10

15

20

WO 2006/024903 PCT/IB2005/002136

14

those basic blocks that are particularly prone to modification or the selection
of basic blocks for verification could be made on an entirely random basis.
Alternatively, the selection of basic blocks for verification according to the
method of the invention may be in response to a security level parameter. If
the security level is set low, no basic blocks are verified. On the other hand,
if the security level is set at its highest allowable level, all basic blocks are
verified. Security levels between these values would cause some subset of

basic blocks to be verified.

[43] When the check values for the basic blocks have been computed by step
403 these check values are somehow remembered, step 405. The
remembering step may be accomplished, for example, by storing the check
values in a one-to-one mapped table indexed by an identifying number for

each basic block. Other examples include appending the code for each basic

block with the check value associated with the basic block.

[44] Steps 401, 402 and 403 have been described herein above as if these
steps are each performed on the entire application program and then followed
by the next step in sequence. However, that is merely one possible program
flow. In an alternative, the steps of computing a check value for a basic block
is performed after a basic block has been identified and then the check value

stored for that basic block. Indeed, such an architecture may be preferred.

10

15

20

WO 2006/024903 PCT/IB2005/002136

15

[45] The steps 401 through 403 are performed as a preliminary operation to
compute check values that are later used to verify the integrity of an
application program during interpreter runtime. During runtime the
interpreter 305 (or some other system function) causes the CPU 203 to re-
compute the check values as each basic block is being executed, step 407.
After the check value has been re-computed, the re-computed check value is
compared against the remembered check value, step 409. If the check values
are stored in a table with a mapping of basic blocks against check values, the
step 409 includes the sub-step of retrieving the remembered check value for

the basic block from that table.

[46] If the verification step confirms that the re-computed and remembered
check values match, step 411, the execution of the program continues and
steps 407 and 409 are performed on the next basic block that is to be
executed. On the other hand, if the verification step fails, step 411, an error
message or a warning message may be issued, step 413, and some corrective
action, e.g., termination of the application program 301 or confiscation of the

smart card 101 may be executed.

[47] In an alternative embodiment, illustrated in the flow chart of Figure 5,
prior to executing an application program, the interpreter 305 determines all
basic blocks of an application program 301 (The interpreter 305 may do that

by first determining the “first” basic block assigning that basic block to a

10

15

20

WO 2006/024903 PCT/IB2005/002136

16

pointer “current” basic block, step 501. On subsequent loops the interpreter
305 would identify the “next” basic block, step). For each basic block (the
“current” basic block), the interpreter 305 computes the check value
associated with that basic block, step 503, retrieves the remembered check
value for that basic block, step 505, and compares the check value against the
remembered check value, step 507. If the computed check value does
correspond to the remembered check value, which would indicate some form
of modification, step 507, the interpreter issues an error or warning
condition, step 509. In some embodiments the interpreter may terminate the

checking at that point.

[48] Otherwise, the checking continues until all basic blocks have been
verified, step 511, by determining the next basic block, step 513, and
repeating steps 503 through 513 until the entire program 301 has been

verified.

[49] As discussed above, in some alternatives, not all basic blocks are

verified.

[50] In one embodiment of the invention, the application programs are
originally written in the JAVA programming language. Programming of
application programs in Java and loading such programs onto smart cards is
described in U.S. Patent 6,308,317, issued to Timothy J. Wilkinson, et al. on

October 23, 2001 and entitled Using a high level programming language with

10

15

WO 2006/024903 PCT/IB2005/002136

17

a microcontroller, the entire disclosure of which is incorporated herein by

reference. The application programs are first converted from a compiled form
into a binary form suitable for loading onto the smart card 101. One example

of such files include Converted Applet (CAP) files. CAP files are described in

Java Card Platform Specification, v2.1,

http://java.sun.com/products/javacard/specs.html. In one embodiment of the
invention, the check values for the basic blocks of a CAP file is appended as a

data structure of the CAP file.

[51] Although specific embodiments of the invention has been described and
illustrated, the invention is not to be limited to the specific forms or
arrangements of parts so described and illustrated. For example, the
invention, while described in the context of smart cards for illustrative
purposes, is applicable to other computing devices. The invention is limited

only by the claims.

We Claim:

10

15

20

25

WO 2006/024903 PCT/IB2005/002136

18

CLAIMS

1. A method of protecting an application of a multi-application smart

card against unauthorized manipulations, comprising:

partitioning the application into a plurality of basic blocks,
wherein each basic block has one entry point and one exit

point and comprises a set of data units;

computing a check value associated with a basic block wherein
the check value is a function of the data units of the basic
block;

remembering the corresponding check value;

verifying that the re-computed check value is the same as the

remembered check value.
2. The method of Claim 1, further comprising:

repeating the steps of computing a check value and
remembering the check value for each of a plurality of

basic blocks;

repeating the step of re-computing the check value for each of

the plurality of basic blocks.
3. The method of Claim 1, wherein the check value is a checksum.

4. The method of Claim 1, wherein the check value is a digest computed
using MD5 or SHA-1.

5. The method of Claim 1, wherein the check value is remembered by
storing the check value in a data structure appended to the

application.

10

15

20

25

WO 2006/024903 PCT/IB2005/002136

19

6. The method of Claim 1, wherein the application is a CAP file.

7. The method of Claim 6, wherein the data structure is a custom

component appended to the CAP file.

8. The method of Claim 1, further comprising terminating execution of

the application in response to failure of the verifying step.

9. The method of Claim 1, wherein the verification step is performed in

conjunction with the execution of the program.

10.The method of Claim 1, wherein the verification step is performed

prior to executing the program.

11.The method of Claim 2, wherein the verification step of a particular
basic block is performed in conjunction with the execution of that

particular basic block.
12. The method of Claim 2, further comprising:
defining a protection level for a program;

verifying the plurality of basic blocks according to a policy

associated with the protection level for a program.

13.The method of Claim 12, wherein the protection level is selected from
protection levels associated with policies selected from the set
including examining the check value for each basic block, examining
the check value for selected basic blocks, examining the check value
for each basic block on an initial execution of the basic block,
examining the check value for each basic block on every execution of
the each basic block.

14.The method of Claim 1, further comprising:

loading the application onto the smart card from an external

device;

10

15

20

25

WO 2006/024903 PCT/IB2005/002136

20

linking the application on the smart card; and

wherein the step of computing the check value is performed

after the linking step.

15.The method of Claim 14, comprising operating an operating system
program on the smart card to perform the step of computing the check

value.

16.The method of Claim 14, comprising operating an operating system
program on the smart card to perform the step of verifying the check

value.

17. A method of verifying that a program has not been manipulated with

subsequent to loading the program onto a computer, comprising:

dividing the program into a plurality of basic blocks wherein

each basic block has one entry and one exit;

computing a check value from the data that make up the basic
block;

remembering the check value in a data structure of the

program;
while executing the program:
recomputing the check value;

verifying that the recomputed check value conforms to

the remembered check value;

rejecting execution of the program if the verification step

fails.

18.The method of Claim 17, wherein the check value is computed using a

cyclic redundancy check.

10

15

20

25

WO 2006/024903 PCT/IB2005/002136

21

19.The method of Claim 17,wherein the check value is computed by
computing a digest of the basic block.

20.The method of Claim 19 wherein the digest is computed using an
method selected from MD5 and SHA-1.

21.The method of Claim 17,wherein the data structure is a table
appended to the program.

22.A multi-application smart card in which an application may be
verified to confirm that the application has not been tampered with
subsequent to loading and linking the application onto the smart card,

comprising:
at least one application program loaded onto the smart card;

a first logic for managing the execution of the application
program;

a second logic for identifying a basic block of the application
program;

a third logic for computing a check value based on data that
make up the basic block;

a fourth logic for remembering the check value;

a fifth logic for verifying at some later time that the check value
is the same as the check value computed by the third
logic.

23.The multi-application smart card of Claim 22, wherein the first logic

means is a virtual machine operable to interpret the application.

24.The multi-application smart card of Claim 22, wherein the fourth logic
comprises a logic means for creating a data structure to remember the

check value and for appending the data structure to the application.

WO 2006/024903 PCT/IB2005/002136

22

25.The multi-application smart card of Claim 22, comprising an

operating system comprising the fifth logic means.

26.The multi-application smart card of Claim 22, wherein the second

logic means is operable to determine a plurality of basic blocks of the

5 program; wherein the third logic means is operable to compute the
check value of a plurality of basic blocks of the program; wherein the

fourth logic means is operable to remember the check value of a

plurality of the basic blocks of the program; and the fifth logic means

is operable to verify a plurality of the check values according to a

10 security policy.

27.The multi-application smart card of Claim 26, wherein the security
policy is selected from the set including verifying each basic block on
each execution, verifying a subset of the basic blocks on each

execution.

15

WO 2006/024903

1/4

PCT/IB2005/002136

FIG. 1
101~
SMART CARD
o1 207 205
170 RAM ROM
L |
2137 55, Il 209~
CPU NV

FIG. 2

READER

101

SMART CARD

WO 2006/024903 PCT/IB2005/002136

2/4

303~
appLICATION PROGRAMS 30
APl 309
LOADER
INTERPRETER 305
system FuNcTions 307

FIG. 3

WO 2006/024903 PCT/IB2005/002136

3/4

401~

PARTITON THE APPLICATION
INTO BASIC BLOCKS

403~ v

COMPUTE A CHECK
VALUE ASSOCIATED WITH
EACH BASIC BLOCK

405~ Y

REMEMBER THE CHECK
VALUE ASSOCIATED WITH
EACH BASIC BLOCK

PRELIMINARY

—— s ——————————— — — —— e ————— ——— . ——— ———— " ———— T ——— — ——— i T o 2 —

i RUNTIME

DURING EXECUTION OF
THE APPLICATION PROGRAM
RE-COMPUTE THE CHECK VALUE
FOR EACH BASIC BLOCK

409\ /

VERIFY THAT RE-COMPUTED
CHECK VALUE CONFORMS TO
THE REMEMBERED CHECK VALUE

413~

ISSUE
ERROR MESSAGE

VERIFICATION
O?K

FIG. 4

WO 2006/024903

501~

4/4

PCT/IB2005/002136

IDENTIFY FIRST
BASIC BLOCK

—> "CURRENT" BB

503~

-

A 4

COMPUTE CHECK VALUE
FOR "CURRENT" BB

505~

A

RETRIEVE REMEMBERED
BASIC BLOCK

513~

COMPARE IS
0K
?

ERROR CONDITION

ISSUE

IDENTIFY NEXT
BASIC BLOCK

—

"CURRENT"
BASIC BLOCK

FIG.

]

INTERNATIONAL SEARCH REPORT

PCT/1IB2005/002136

A. CLASSIFICATION OF SUBJECT MATTER
GO6F1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F GO7F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, IBM-TDB

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

page 3, line 18 - 1ine 29
page 5, line 27 - page 6,
page 7, line 27 - page 8,
page 8, lines 1-12

page 9, lines 26-28

page 11, lines 6-15

X WO 00/54155 A (GEMPLUS; GIRARD, PIERRE; 1-27
NACCACHE, DAVID; ROUSSEAU,
14 September 2000 (2000-09-14)

LUDOVIC)

line 28
line 12

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

‘E" earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed i_nvemion
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-—
merr:ts, such combination being obvious to a person skilled
in the art.

'&" document member of the same patent family

Date of the actuat completion of the international search

17 November 2005

Date of mailing of the intemational search report

06/12/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31~70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Veillas, E

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

PCT/IB2005/002136

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2004/143739 Al (DE JONG EDUARD)

22 July 2004 (2004-07-22)

paragraph ‘0040!

paragraphs ‘0081! - 0084!

paragraphs ‘0107! - ‘0115!

paragraph ‘0122!

paragraph ‘0185!

paragraphs ‘0203! - ‘0210!

claims 1-9,17

SHEN J P ET AL: "ON-LINE SELF-MONITORING
USING SIGNATURED INSTRUCTION STREAMS"
INTERNATIONAL TEST CONFERENCE.
PHILADELPHIA, OCTOBER 18 - 20, 1983,
SILVER SPRING, I.E.E.E. COMPUTER SOCIETY,
us,

vol. CONF. 1983, October 1983 (1983-10),
pages 275-282, XP000746339

Section 2: Signatured instruction streams.
US 2004/034823 Al (WATKINS DANIEL R ET AL)
19 February 2004 (2004-02-19)

the whole document

1-27

Form PCT/ISA/210 {continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

PCT/1B2005/002136
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 0054155 A 14-09-2000 AT 232616 T 15-02-2003
AU 3058900 A 28-09-2000
CN 1350675 A 22-05-2002
DE 60001393 D1 20-03-2003
DE 60001393 T2 11-12-2003
EP 1161725 Al 12-12-2001
FR 2790844 Al 15-09-2000
JP 2002539523 T 19-11-2002
MX PA01009056 A 24-04-2002
US 2004143739 Al 22-07-2004 EP 1584017 A2 12-10-2005
WO 2004066071 A2 05-08-2004
US 2004034823 Al 19-02-2004 NONE

Form PCT/ISA/210 (patent family annex) {January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

