(54) Title: INTEGRATED INTERPOLATOR AND METHOD OF OPERATION

An interpolator circuit is formed from a chain of multiplexer/adder circuits. Each multiplexer/adder circuit selects one of the two multi-bit binary values which are to be interpolated in accordance with one bit of a multi-bit ratio value. The selected value is shifted and added to the output of a previous stage in the chain. When one of the two values is injected into the first stage, the final sum generated by the circuit chain is the interpolated value.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
INTEGRATED INTERPOLATOR AND METHOD OF OPERATION

Field of the Invention

This invention relates to circuits for providing linear interpolation between two multi-bit binary values in accordance with a third multi-bit binary value.

Background of the Invention

In many circumstances, it is desirable to obtain a binary value which is an interpolated value lying between two multi-bit binary values where the ratio of the two values is determined by a third multi-bit value. For example, in a color video monitor of the type that is commonly used with personal computers, each color which can be displayed by the monitor is typically coded as an eight-bit binary number. It is desirable with such a system to be able to obtain a "mixed color" signal, which color lies between two other colors on the established color spectrum. This is especially useful at the edges
of the monitor screen where a background or border color is displayed at the edges of the screen. In order to provide a pleasing transition between the border color and the main portion of the display, it is desirable to interpolate between the two binary numbers which represent the main display color and the border color.

Accordingly, it is an object of the present invention to provide a interpolator circuit which can interpolate between two multi-bit binary values.

It is another object of the present invention to provide an interpolation circuit in which the ratio of the two multi-bit binary values is determined by a third multi-bit binary value.

It is still a further object of the present invention to provide an interpolation circuit which can be implemented as an integrated circuit.

It is yet a further object of the present invention to provide an interpolation circuit which is capable of being operated in a "pipelined" manner.

Summary of the Invention
The foregoing objects are achieved and the foregoing problems are solved in one illustrative
embodiment of the invention in which an interpolator circuit is formed from a chain of multiplexer/adder circuits. Each multiplexer/adder circuit selects one of the two multi-bit binary values which are to be interpolated in accordance with one bit of a multi-bit ratio value. The selected value is added to the output of a previous stage in the chain. When one of the two values is injected into the first stage, the final sum generated by the circuit chain is the interpolated value.

Brief Description of the Drawing

Fig. 1 is a block diagram of the multiplexer/adder chain which generates a pair of partial sums which determine the interpolated output.

Fig. 2 is a block diagram of a look-ahead adder circuit which adds the partial sums generated by the multiplexer chain shown in Fig. 1 to produce the final interpolated output.

Fig. 3 is a more detailed block diagram of the multiplexer circuit 120 used in Fig. 1.

Fig. 4 is a more detailed block diagram of the multiplexer/adder circuits 122-128 used in the circuit chain shown in Fig. 1.
Detailed Description of the Preferred Embodiment

The inventive interpolator operates by combining an "old" binary data value and a "new" binary data value in accordance with a ratio or "mix" word to generate a multi-bit binary interpolated output. If "A" represents the old, multi-bit binary value and "B" represents the new multi-bit binary value and "R" represents the ratio or mix binary value, the interpolated output can be expressed as:

\[
\text{new} + (\text{ratio} \times (\text{old} - \text{new})) = \text{B} + (R \times (A - B)) \tag{1}
\]

In this case when \(R = 0 \), the interpolated output is equal to B (new) and when \(R = 1 \), the interpolated output is equal to A (old).

Expression (1) can also be expressed as:

\[
((R \times A) + (1 - R) \times B) \tag{2}
\]

Since

\[
(1 - R) = (1 + (-R)) \tag{3}
\]

and \((-R)\) can be expressed (in two's complement notation) as:

\[
(-R) = (R + 2^{-N}) \tag{4}
\]
where \(N \) is the total number of bits in \(R \), then:

\[
(1 - R) = (1 + R + 2^{-N})
\]

(7)

Inserting expression (7) into expression (2), the interpolated value can be expressed as:

\[
(R \times A) + (1 + R + 2^{-N}) \times B
\]

(8)

Since \(R \) is a ratio, it will always be positive and less than "one" so that it can be written as a binary fraction which is expressed as:

\[
R = 0. r_1 \, r_2 \, r_3 \, \ldots \, r_N
\]

(9)

where \(N \) is the total number of bits in \(R \) and \(r_1 \) is a binary "1" or "0" and denotes whether \(R \) includes the value 1/2. Similarly, \(r_2 \) denotes whether \(R \) includes the value 1/4 and \(r_N \) denotes whether \(R \) includes the value 1/2\(^N\). Therefore, the value \(R \) can be expressed as:

\[
R = 0 + \sum_{i=1}^{i=N} r_i \, 2^{-i}
\]

(10)
If the value R is given by equation (10) above, then R can be expressed as:

$$R = 1 + \sum_{i=1}^{i=N} r_i 2^{-i}$$

(11)

Consequently, equation (7) above is equivalent to:

$$(1 + R + 2^{-N}) = 1 + 1 + \sum_{i=1}^{i=N} r_i 2^{-i} + 2^{-N}$$

(12)

Since R is positive and we are concerned with a limited number of bits, the term $(1 + 1) = 0$ in binary (the carry bit can be discarded), expression (7) is given by:

$$(1 + R + 2^{-N}) = \sum_{i=1}^{i=N} r_i 2^{-i} + 2^{-N}$$

(13)

Putting expressions (10) and (13) into expression (8), the value of the interpolated binary number is:

$$\sum_{i=1}^{i=N} r_i 2^{-i} \times A + \sum_{i=1}^{i=N} r_i 2^{-i} + 2^{-N} \times B$$

(14)
which can be re-expressed as:

$$\sum_{i=1}^{i=N} (r_i \times A + r_i \times B)2^{-i} + 2^{-N} \times B$$

(15)

or:

$$\sum_{i=1}^{i=N} (\text{mux } A, B, r_i)2^{-i} + 2^{-N} \times B$$

(16)

where the function (mux A, B, r_i) indicates that A is selected if r_i is "one" and B is selected if r_i is "zero".

Consequently, it can be seen that the expression for the interpolated output value is determined by selecting either the A value or the B value depending on the value of each of the bits in the ratio value R, multiplying the selected values by two, summing the products and adding the term $2^{-N} \times B$.

A circuit which implements expression (16) is shown in Fig. 1. This circuit combines two eight-bit binary values A (old) and B (new) under control of a five-bit ratio value R. In the illustrated circuit, if R is all "zero"s, then the interpolated output is equivalent to the B input. Alternatively, if the R value is all "one"s, then the interpolated output is 1/32 of the B (new) value and 31/32 of the A (old) value.
The illustrative circuit consists of a multiplexer 120 and four multiplexer/adders 122-128. As the circuits are cascaded and clocked, the entire circuit can be operated in a pipelined fashion. The outputs of the last multiplexer/adder 128 are two partial sums which are stored in registers 154 and 156. As will hereinafter be described in detail, these partial sums are added together by a look-ahead adder circuit 295 shown in Fig. 2 to produce the final interpolated value.

An eight-bit value for the old value A is provided on eight-bit bus 100. Similarly, an eight-bit value for the new, or B value, is provided on eight-bit bus 102. The binary ratio value R is provided on five-bit bus 104.

Since R has five bits, N = 5 in expression (16) and the least significant bit portion (2^{-5}) of the sum in expression (16) above is developed by multiplexer 120. Multiplexer 120 receives the B value at its input bus 134 and the A value at its input bus 136. Either the A or the B value is selected by means of a signal at the select input 106 which is connected to the least significant bit (bit zero) of the R value. The selected input appears at the output 138. Multiplexer 120 is also controlled by a clock
signal appearing on lead 118 which synchronizes the output of the multiplexer to the clock signal.

Fig. 3 shows a more detailed block diagram of multiplexer 120. The R value or select signal is applied, via lead 302, to the D input of a D-type latch 300. The clock input on lead 304 is applied to the clock input of latch 300 so that the select signal is clocked into the latch and held for one clock period. This allows for pipelining of the multiplexer/adder chain. The output of latch 300 is applied, via lead 306 and inverter 308, to the select inputs of multiplexer 310. Multiplexer 310 is thus controlled by means of the output of latch 300 to select either the B (new) value on bus 312 or the A (old) value on bus 314 and apply this to the output bus 316.

Referring back to Fig. 1, the value on eight-bit output bus 138 of multiplexer 120 is applied to the Z input of multiplexer/adder 122. The Y input of multiplexer/adder 122 receives the B (new) value, via bus 116, from bus 132. The B (new) word is also applied, via bus 140, to the "new" input of circuit 122. The A (old) value is applied, via bus 140, to the "old" input of circuit 122. As will hereinafter be explained in detail, circuit 122 selects either the "old" or "new" value in accordance with the bit value
applied, via lead 148, to the select input and adds the selected value to the sum of the signals appearing at the Y and Z inputs. The addition process produces a sum output signal on bus 146 and a carry output signal on bus 144.

As shown in Fig. 4, each multiplexer/adder (122-128) consists of a multiplexer 400 and full adder circuit 418. Multiplexer 400 is equivalent to multiplexer 120 shown in Fig. 1 and disclosed in more detail in Fig. 3. Multiplexer 400 receives a new value, an old value, a select signal and a clock signal, as previously described. The output of multiplexer 400 on bus 402 is split into two sections. The high order bit (bit 7) is split off on lead 412 and applied to a buffer amplifier 416. The six remaining least significant bits (bits 0-6) on bus 414 are provided to the A input of full adder 418. Adder 418 is a seven-bit full carry-save adder which adds the seven-bit signals at its A, B and C inputs to produce a seven-bit sum (S0) on its output 434 and a seven-bit carry value (S1) on its output bus 426.

The eight-bit Y input on bus 404 is also divided into two parts. The seven most significant bits (bits 1-7) on bus 408 are provided to a second input of adder 418. In a
similar manner, the seven most significant bits of the Z input on bus 406 are provided, via bus 410, to the C input of adder 418. The least significant bit (bit 0) of the Y and Z inputs to the circuit are provided, via leads 420 and 422, to AND gate 424. The output of AND gate 424 becomes the least significant bit of the carry output on lead 428 and is combined with the seven-bit carry output (S1) developed by adder 418 on output bus 426 to produce an eight-bit carry output on bus 430. In a similar manner, the seven-bit sum output (S0) of adder 418 on bus 434 is combined with the output of buffer 416 on lead 432 to generate a eight-bit sum value on output bus 436. Because the seven least significant bits at the output of multiplexer 400 are added to the seven most significant bits of the Y and Z inputs, the output of multiplexer 400 is effectively shifted up or multiplied by a factor of two with respect to the Y and Z inputs. Consequently each multiplexer adder stage generates a term of the form: \((\text{mux } A, B, r_i) \times 2^{-i} + (Y + Z) \times 2^{-(i-1)}\).

Referring back to Fig. 1, it can thus be seen that the output of multiplexer 120 is the term \(-\text{mux } (A, B, r_5) \times 2^{-5}\). Consequently, the output of multiplexer/adder 122 is the term \(\text{mux}\).
\[(A, B, r_4) \times 2^{-4} + \text{mux}(A, B, r_5) \times 2^{-5} + B \times 2^{-3}\].

In a similar manner, circuit 124 receives the carry and sum outputs on buses 144 and 146 from circuit 122 and adds the next term in the sequence \((\text{mux}(A, B, r_3) \times 2^{-3})\). The entire sum in expression (16) is thus developed term-by-term by the circuits 122-128. Circuit 128 produces two outputs, a carry output on bus 150 and a sum output on bus 152. These are provided to pipeline latches 154 and 156 which temporarily store the partial sums generated by circuit 128. This temporary storage is necessary for the look-ahead adder circuit shown in Fig. 2. The outputs of registers 154 and 156 on buses 158 and 160, respectively, are provided to the look-ahead adder circuit.

The look-ahead adder circuit shown in Fig. 2 is a standard circuit which splits the partial sums into three-bit and five-bit pieces. In order to speed the final addition, the three-bit sums and five-bit sums are evaluated in parallel and then combined. In particular, the least significant bits of partial sum zero and partial sum one on leads 258 and 260 from latches 158 and 160 are provided to OR-gate 262 to generate the least significant bit (LSB) of a the carry input.
(Cry-In) 264 to adder circuit 266. The carry LSB input on lead 264 is combined with the LSB of the carry output of adder 266 (Low Cry, bit 0) and provided as a two-bit carry input value via bus 270. Adder 266 adds the lowest three bits (bits 1–2) of partial sums zero and one on buses 274 and 272 together with two-bit carry input provided on bus 270. Adder 266 generates two sums: a low sum consisting of two bits and a low carry consisting of two bits on output buses 278 and 276, respectively.

In order to speed the operation of the circuit, adders 280 and 282 generate two sum and carry values simultaneously with the operation of adder 266. In particular, adder 280 generates the sum of the most significant bits (MSBs) of partial sums zero one assuming that the carry bit from adder 266 was a "one". Adder adder 280 generates the sum of the MSBs (bits 3–7) of partial sums zero one assuming that the carry bit from adder 266 was a "zero". The actual carry bit generated by adder 266 is then used to select one of the sums previously computed by adders 280 and 282.

More particularly, adder 280 generates the sum of the MSBs (bits 3–7) of partial sums zero one and a four-bit carry input. The three carry
MSBs are taken from the carry output (Cry 1, bits 0-3) of adder 280. The LSB of the carry input is fixed at "one" (that is, V_{dd}).

In a similar manner, adder 282 generates the sum of the five MSBs of partial sum zero and partial sum one in the case that the carry generated by adder 266 is "zero" (indicated by a LSB carry bit fixed at the V_{ss}).

The output of adder 282 is a four-bit sum output designated as High-Sum zero and a four-bit carry output designated as Cry 0. In a similar manner, the output of adder 280 is a four-bit sum output designated as High Sum 1 and a four-bit carry output designated as Cry 1.

These sum and carry values are provided to multiplexer 286 which is controlled by the MSB of the carry output (Low Cry) generated by adder 266 and provided to the positive selection input of multiplexer 286 and the negative selection input of multiplexer 286 by means of inverter 284. This latter carry bit selects the appropriate sum generated by either of adders 280 or 282. The output of multiplexer 286, consisting of a six-bit output, is combined with the low-sum output of adder 266, via buses 278 and 290, to generate the final interpolated output on bus 288. As described, the circuit shown in Fig. 2
essentially comprises a conventional look-ahead adder.

Although one illustrative embodiment of the invention has been disclosed, that disclosure is intended by way of example only and should not be considered limiting. Additions, changes and modifications and other embodiments will be immediately apparent to those skilled in the art. For example, although the illustrative embodiment uses a simple multiplexer for the first stage in the cascaded circuit stages, the first stage could easily be a multiplexer/adder circuit. In this case the term $2^{-N} \times B$ could be generated by injecting the B value into the one input of the first stage. Similarly, the look-ahead adder used to generate the final output could be replaced by an additional multiplexer/adder stage so that all stages are identical. These changes and modifications are intended to be covered by the claims below.

What is claimed is:
1. A circuit for generating a multi-bit output value from a first multi-bit binary value and a second multi-bit binary value wherein the ratio of said first binary value to said second binary value is determined in accordance with a third multi-bit binary value, said circuit comprising:

a plurality of circuit stages, each having an input and an output, said stages being connected in cascade from a first stage to a last stage with an output of each stage being connected to an input of a succeeding stage, each of said circuit stages comprising means responsive to one bit of said third binary value for generating a stage output by adding to the stage input said first binary value multiplied by two when said one bit is a binary "one" and said second binary value multiplied by two when said one bit is a "zero"; and

means for applying said second multi-bit binary value to an input of said first circuit stage whereby said multi-bit output value is generated at an output of said last circuit stage.
2. A circuit for generating a multi-bit output value from a first multi-bit binary value and a second multi-bit according to Claim 1 wherein said each circuit stage comprises:
 a digital adder;
 multiplexer means responsive to said one bit of said third binary value for multiplying said first binary value by two and applying a first product to a first input of said digital adder when said one bit is a binary "one" and for multiplying said second binary value by two and applying a second product to said first input of said digital adder when said one bit is a "zero"; and
 means for applying said stage input to a second input of said digital adder, said digital adder thereupon computing the sum of said first input and said second input to generate said stage output.

3. A circuit according to Claim 1 wherein each of said circuit stages receives one bit of said third multi-bit binary value and a least significant bit of said third multi-bit binary value is applied to said first circuit stage and a most significant bit of said third multi-bit binary value is applied to said last circuit stage.
4. A circuit for generating a multi-bit output value from a first multi-bit binary value and a second multi-bit binary value wherein the ratio of said first binary value to said second binary value is determined in accordance with a third multi-bit binary value, said circuit comprising:

a plurality of circuit stages, each having an input and an output, said stages being connected in cascade from a first stage to a last stage with an output of each stage being connected to an input of a succeeding stage, each of said circuit stages comprising means responsive to one bit of said third binary value for generating a stage output by multiplying said first binary value by two and adding to the stage input the resulting product when said one bit is a binary "one" and by multiplying said second binary value by two and adding to the stage input the resulting product when said one bit is a "zero";

a first multiplexer responsive to a least significant bit of said third multi-bit binary value for applying said first binary value to an input of said first stage when said one bit is a binary "one" and applying
said second binary value to an input of said first stage when said one bit is a "zero"; and means for applying said second multi-bit binary value value to an input of said first circuit stage whereby said multi-bit output value is generated at an output of said last circuit stage.

5. A circuit according to Claim 4 wherein said stage input, said first multi-bit binary value and said second multi-bit binary values all have N bits and said each circuit stage comprises:
 a digital adder;
 second multiplexer means responsive to said one bit of said third binary value for forwarding the N-1 most-significant bits of said first binary value to a first input of said digital adder when said one bit is a binary "one" and for forwarding the N-1 most-significant bits of said second binary value to said first input of said digital adder when said one bit is a "zero"; and means for applying the N-1 least-significant bits of said stage input to a second input of said digital adder, said digital adder thereupon computing the sum of
said input and said second input to generate said stage output.

6. A circuit according to Claim 4 wherein said digital adder is a carry-save adder having a sum output and a carry output.

7. A circuit according to Claim 6 further comprising an additional adder for adding a sum output of said last stage to a carry output of said last stage to generate said multi-bit output value.

8. A circuit according to Claim 7 wherein said additional adder is a look-ahead adder.

9. A circuit according to Claim 7 further comprising a first latch for temporarily storing said carry output of said last stage and a second latch for temporarily storing said sum output of said last stage.

10. A circuit according to Claim 7 wherein said second multiplexer means is responsive to said one bit of said third binary value for forwarding the most-significant bit of said first binary value to the most significant
bit of said sum output when said one bit is a binary "one" and for forwarding the most-significant bit of said second binary value to said sum output when said one bit is a "zero".

11. A circuit according to Claim 7 further comprising means for forwarding the least significant bit of said stage input to the least significant bit of said carry output.

12. A circuit according to Claim 7 wherein each of said stages has a first stage input, a second stage input and a third stage input and said carry-save adder has a first input for receiving a carry output from a preceding circuit stage, a second input for receiving a sum output from a preceding circuit stage and a third input for receiving said first binary value and said second binary value from said second multiplexer means.

13. A circuit according to Claim 12 further comprising an AND gate responsive to the least significant bit of said first stage input and to the least significant bit of said second stage input for providing an
output to the least significant bit of said carry output.

14. A circuit according to Claim 4 wherein said multiplexer has a first data input, a second data input, a select input, a clock input and an output and said first multiplexer comprises a D-type latch responsive to a select signal at said select input and a clock signal at said clock input for temporarily storing said select signal to generate an output and a third multiplexer connected to said first data input and to said second data input and responsive to the output of said D-type latch for forwarding to said output a signal on one of said first input and said second input.

15. A method for generating a multi-bit output value from a first multi-bit binary value and a second multi-bit binary value wherein the ratio of said first binary value to said second binary value is determined in accordance with a third multi-bit binary value using an accumulating adder, said method comprising the steps of:
A. adding said second binary value to said adder;
B. determining the value of a bit of said third multi-bit binary value;
C. selecting said said first binary value when the determined value is a binary "one" and selecting said second binary value when the determined value is a "zero";
D. multiplying the selected value by two;
E. adding the product calculated in step C to the sum accumulated in said adder; and
F. repeating steps B through E for each bit of said third multi-bit binary value in order from least significant bit to most significant bit whereby the sum accumulated in said adder is said multi-bit output value.

16. A method for generating a multi-bit output value from a first multi-bit binary value and a second multi-bit binary value wherein the ratio of said first binary value to said second binary value is determined in accordance with a third multi-bit binary value, said method comprising the steps of:
A. selecting said said first binary value when the least significant bit of said third binary value is a binary "one" and selecting said second binary value when the least significant bit of said third binary value is a "zero";

B. adding said second binary value to the value selected in step A;

C. determining the value of the next most significant bit of said third multi-bit binary value;

D. selecting said said first binary value when the value determined in step C is a binary "one" and selecting said second binary value when the determined value is a "zero";

E. multiplying the value selected in step D by two;

F. adding the product calculated in step E to the sum calculated in step B; and

G. repeating steps C through F for each bit of said third multi-bit binary value in order from least significant bit to most significant bit whereby the resulting sum is said multi-bit output value.
INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US 91/03199

I. CLASSIFICATION OF SUBJECT MATTER

(if several classification symbols apply, indicate all)

According to International Patent Classification (IPC) or to both National Classification and IPC

| Int.Cl. 5 | G06F15/353 |

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. 5</td>
<td>G06F</td>
</tr>
</tbody>
</table>

Documentation Search other than Minimum Documentation to the extent that such documents are included in the Fields Search

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,P</td>
<td>EP,A,382 139 (HONEYWELL INC.) August 16, 1990</td>
<td>1, 2, 3, 4, 5, 15, 16</td>
</tr>
<tr>
<td></td>
<td>see page 3, line 29 - line 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 4, line 52 - page 4, line 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 6 - page 7; table 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see figures 58-6</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A,3 412 240 (JOHN M. HUNT ET AL.) November 19, 1968</td>
<td>1, 4, 15, 16</td>
</tr>
<tr>
<td></td>
<td>see column 6, line 1 - column 7, line 3; claim 1; figures 1-6</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- A document defining the general state of the art which is not considered to be of particular relevance
- E document earlier document but published on or after the international filing date
- L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O document referring to an oral disclosure, use, exhibition or other means
- P document published prior to the international filing date but later than the priority date claimed

- T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- A document member of the same patent family

IV. CERTIFICATION

<table>
<thead>
<tr>
<th>Date of the Actual Completion of the International Search</th>
<th>Date of Mailing of this International Search Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 AUGUST 1991</td>
<td>03.09 91</td>
</tr>
</tbody>
</table>

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer: CHATEAU J.P. [Signature]
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19/08/91

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP-A- 2245796</td>
<td>01-10-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A- 1388251</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1063014</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82