Compositions are administered to block IgE binding to receptors and ultimately displace native IgE from mast cells and related cell types, to prevent the activation of these cells during an allergic response. The compositions consist of a pharmaceutically acceptable carrier for systemic or local administration and an amount of compound binding specifically to the FcεRI IgE binding sites, and more preferably, FccRI and FccRII IgE binding sites, to prevent activation and degranulation of mast cells in response to exposure to allergens. The compounds can consist of IgE molecules and fragments and modifications thereof, such as IgE fragments, humanized or single chain IgE antibodies or fragments thereof, IgE with a modified Fab, non-cross-linkable IgE, or peptidomimetics which bind to the same site on the receptor as the IgE, jointly referred to herein as "IgE fragments" unless otherwise stated.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>Ls</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>Fi</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>Fr</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>Ga</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>Ge</td>
<td>Georgia</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>Gh</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>Gn</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>Gr</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>Hu</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>Ie</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>Il</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>Is</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>It</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>Jp</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>Ke</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>Kg</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>Kp</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>Kr</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>Kz</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>Lc</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>Li</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>Lk</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>Lr</td>
<td>Liberia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>Lt</td>
<td>Lithuania</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>Lu</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>Lv</td>
<td>Latvia</td>
</tr>
<tr>
<td>SE</td>
<td>Swaziland</td>
<td>Mc</td>
<td>Monaco</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>Md</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>Mg</td>
<td>Madagascar</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>Mk</td>
<td>The former Yugoslavia</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td>Republic of Macedonia</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>Ml</td>
<td>Mali</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>Mn</td>
<td>Mongolia</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>Mr</td>
<td>Mauritania</td>
</tr>
<tr>
<td>UC</td>
<td>Uganda</td>
<td>Mw</td>
<td>Malawi</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>Nx</td>
<td>Mexico</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td>Nl</td>
<td>Netherlands</td>
</tr>
<tr>
<td>ZA</td>
<td>Zaire</td>
<td>No</td>
<td>Norway</td>
</tr>
<tr>
<td>ZC</td>
<td>Zambia</td>
<td>Nz</td>
<td>New Zealand</td>
</tr>
<tr>
<td>ZK</td>
<td>Zimbabwe</td>
<td>Pl</td>
<td>Poland</td>
</tr>
<tr>
<td>ZM</td>
<td>Mozambique</td>
<td>Pt</td>
<td>Portugal</td>
</tr>
<tr>
<td>ZR</td>
<td>Romania</td>
<td>Ru</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>ZS</td>
<td>Sudan</td>
<td>Se</td>
<td>Sweden</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td>Sg</td>
<td>Singapore</td>
</tr>
</tbody>
</table>
PAN-SPECIFIC ANTI-ALLERGY THERAPY

Background of the Invention

The symptoms of allergy in humans and animals are primarily attributable to the release of histamine and a large variety of other bioactive compounds from mast cells and related cell types. The mast cell contains numerous secretory granules in which these substances are stored at extremely high concentrations. Activation of the mast cell results in the fusion of these granules with the cell surface membrane, leading to the exocytosis of the granule contents and the concomitant induction of allergic symptoms. The plasma membrane of these cells are endowed with receptors for the Fc portion of the IgE (FcεRI). This receptor binds circulating IgE with very high affinity and retains it at the mast cell surface for extended periods of time. Activation is accomplished through the binding of an allergen simultaneously to more than one polyvalent molecule of FcεRI-bound IgE. This "cross linking" of at least two surface-bound IgE molecules brings FcεRI proteins into close association with one another in the plane of the mast cell plasma membrane. Kinases associated with these receptors become activated as a result of this proximity, initiating the second messenger cascade which results in cell degranulation.

At least one other class of receptors can bind to the Fc portion of IgE. The low affinity receptor for IgE, FcεRII (also known as CD23) is expressed on mast cells and related cell types, B cells, and subsets of antigen presenting cells. It has been suggested that occupancy of FcεRII negatively regulates IgE synthesis.

It is an object of the present invention to provide a means and method of preventing activation and degranulation of mast cells and related cell types in response to exposure to allergens.

Summary of the Invention

Compositions are administered to block IgE binding to cell surface receptors and ultimately displace native IgE from mast cells and related cell
types to prevent the activation of these cells during an allergic response and
to reduce native IgE synthesis. The compositions consist of a
pharmaceutically acceptable carrier for systemic or local administration and
an amount of compound binding specifically to the FcεRI IgE binding sites,
and more preferably, FcεRI and FcεRII IgE binding sites, to prevent
activation and degranulation of mast cells in response to exposure to
allergens. The compounds can consist of IgE molecules and fragments and
modifications thereof, such as IgE fragments, humanized or single chain IgE
antibodies or fragments thereof, IgE with a modified Fab, non-crosslinkable
IgE, or peptidomimetics which bind to the same site on the receptor as the
IgE, jointly referred to herein as "IgE fragments" unless otherwise stated.

Detailed Description of the Disclosure

As used herein, the term "mast cells" includes all cells expressing on
their surface FcεRI, including mast cells, basophils, and related cell types.

I. Compounds Specifically Binding to Mast Cell IgE Receptors.

IgE Fragments which bind to IgE receptors

Allergen-induced release of mast cell granule contents can be
prevented, or minimized, if the FcεRI IgE binding sites in the mast cell
plasma membrane are occupied with an analogue of IgE which is unable to
bind antigen and thus is incapable of initiating receptor cross-linking. The
domain of the IgE protein which binds to its receptor is termed the Fc
portion. This component of the IgE molecule does not contain any of the
variable regions which contribute to the formation of high affinity antigen
binding sites. When the Fc portion of IgE (or selected fragments of the Fc
portion) are prepared by enzymatic cleavage or recombinant techniques, the
resultant polypeptides bind with high affinity to mast cells. IgE Fc
fragments can effectively block the binding of antigen-specific polyvalent
native IgE to mast cell FcεRI. Consequently, Fc fragments of the IgE
molecule can prevent activation of mast cells by any antigen.

It has been suggested that occupancy of FcεRII negatively regulates
pharmaceutical administration of IgE fragments is expected to both inhibit binding of native IgE to mast cells and to reduce the secretion of native IgE from patient B cells. To achieve this desirable outcome, it is necessary to administer an IgE fragment which retains the ability to interact with both FcεRI and FcεRII.

Preparation of Recombinant IgE Fc and Modifications to Increase Efficacy

Detailed analysis of the affinities of IgE fragments for FceRI reveal that the highest affinity is observed with the entire Fc region, which stretches from amino acids 226-547. The on and off rate constants and hence the equilibrium binding constant observed with this piece are essentially identical to the same parameters measured for native IgE (Helm, et al. J Biol. Chem. 271: 7494-7500, 1996; Keown, et al. Eur. Biophys J. 25: 471-476, 1997). Recombinant IgE fragments can be prepared by expression in E. coli (Kenten, et al. Proc. Nat. Acad. Sci. 81:2955-2959, 1984; Coleman, et al. Eur. J. Immunol. 15:966-969, 1985; Ishizaka, et al. Proc. Nat. Acad Sci. 83:8323-8327, 1986; Kurokawa, et al. Nucleic Acids Res. 11:3077-3085, 1983), yeast, insect cells (using a baculovirus system) or in transfected mammalian cells (Ikeyama, Molec. Immunol. 24: 1039-1046, 1987). The protein forms large intracellular inclusion bodies when synthesized in E. coli. Following extraction from these inclusion bodies it can be dimerized by oxidative formation of a critical disulfide bond and gains full biological activity (Kenten, et al., 1984; Coleman, et al., 1985). IgE and IgE fragments synthesized in E. coli is not glycosylated. Recent evidence indicates that synthesis in mammalian cells of an IgE Fc whose glycosylation sites have been eradicated by site-directed mutagenesis produces a molecule whose affinity for FceRI is similar to that of native IgE (Young, et al. Protein Eng. 8:193-199, 1995). It would appear, therefore, that lack of glycosylation does not disrupt the FceRI-binding domain of IgE Fc and that material prepared either in mammalian cells or in E. coli should manifest similar biological activities. Furthermore, the non-glycosylated IgE Fc domain exhibits higher affinity binding to the low affinity FceRII receptor than its fully glycosylated counterpart (Young, et al. Protein Eng. 8:193-199, 1995).

In a preferred embodiment, a cDNA sequence encoding amino acids 226-547 of the human IgE protein which corresponds to the portion of the IgE molecule then is essentially identical to native IgE with respect to its
affinity for both the FceRI and FceRII receptors (Helm, et al. J. Biol. Chem. 271: 7494-7500, 1996). Glycosylation sites at Asn 265 and Asn 371 can be removed by site-directed mutagenesis so as to increase the molecule's affinity for FceRII (Young, et al. Protein Eng. 8:193-199, 1995). Lack of glycosylation should also increase the serum half-life of the circulating molecule, since it will not be a substrate for binding to the asialoglycoprotein receptor (ASGPR), and thus will not be subject to the hepatic clearance and degradation which binding to ASGPR initiates. A potential susceptibility site for cleavage by the serum protease thrombin has been noted in the sequence of the IgE Fc molecule (Kamiya, Human Antibodies and Hybridomas 7:42-47, 1996). This site can be altered by site-directed mutagenesis to ensure that the Fc molecule is not a substrate for thrombin-mediated degradation. By preventing thrombin cleavage and ASGPR-mediated clearance, it should be possible to attain higher levels of circulating IgE fragments for longer periods of time than would be possible with the native molecule. The resultant increase in the serum concentration of IgE fragments will favor the binding of this molecule to the surfaces of patient mast cells and will thus speed the displacement of native IgE required for its therapeutic effects.

It is critically important that the IgE fragments described herein not induce any immune reaction in the patients who receive it. Initiation of a humoral immune response to this molecule would result in the production of polyvalent antibodies which could cross-link the fragments bound to the FceRI receptors on mast cells surfaces. This cross-linking could, in turn, activate the FceRI signal cascade and lead to undesirable and potentially catastrophic mast cell degranulation. All of the recombinant IgE Fc fragments described to date have been prepared as fusion proteins. Consequently, they retain protein sequences derived from the fusion construct or from linkers which are not native to the IgE molecule. These sequences are very likely to be immunogenic. Furthermore, the incorporation of N-formyl-methionine at the N-terminus of bacterially synthesized proteins increases the likelihood that IgE fragments generated
through bacterial expression will induce an immune response unless post-
synthetic modifications are effected. It is unlikely, therefore, that any of the
IgE Fc constructs described to date would possess any clinical utility.

These molecules must therefore be designed, or modified, so as to
ensure that the sequences described in the preceding paragraph are easily
removable to avoid the problems posed by the potential immunogenicity of
non-IgE derived sequences. For example, for expression in mammalian,
insect or yeast cells, a DNA construct could be employed in which the
nucleotide sequence encoding the leader peptide and N-terminal 10 amino
acids of rat preprolactin are fused to the sequence corresponding to amino
acids 226-547 of IgE Fc. Interposed between the leader peptide sequence
and the Fc coding sequence is a sequence encoding a His$_6$ tag followed by a
Factor Xa cleavage site. The Fc coding sequence will be inserted
immediately 3' to the sequence encoding the Factor Xa cleavage site.

The protein encoded by this cDNA construct will be translated in
association with the rough endoplasmic reticulum (RER) and will be co-
translationally transported across the RER membrane with concomitant
cleavage of the leader peptide. The protein will pursue the secretory
pathway and can be released constitutively from the cells. Metal ion
chromatography can be used to recover the secreted His-tagged protein from
the culture media. Cleavage with Factor Xa will generate a protein whose N-
terminal amino acid residue corresponds to amino acid 226 of the IgE Fc
protein sequence. Cleaved protein will be purified by gel filtration
chromatography.

A similar approach can be taken for bacterial expression. A
methionine start codon will follow the promoter sequence, after which will
be inserted the His$_6$ tag and the Factor Xa cleavage site. Bacterially
synthesized protein will be recovered from the inclusion bodies, purified by
metal ion chromatography, cleaved by Factor Xa and dimerized through
oxidation. Once again, the N-terminal residue will correspond to amino acid
226 of the IgE Fc sequence. Intact dimer will be prepared by gel filtration
chromatography. The vectors employed to drive synthesis in mammalian,
insect or yeast cells or in bacteria will incorporate promoters designed to maximize exogenous protein expression.

Humanization of Antibodies

The IgE used to prepare the analogs can be human or animal, and will typically be animal if monoclonal antibodies are used as a source. Since the methods for immunizing animals yield antibody which is not of human origin, the antibodies could elicit an adverse effect if administered to humans. This is also true if the antibodies are to be administered to any other species which is different from the species of origin of the antibodies. As used herein, "humanization" refers to modifying the species-specific region of the antibody to be homologous to the species to be treated. Methods for "humanizing" antibodies, or generating less immunogenic fragments of non-human antibodies, are well known. A humanized antibody is one in which only the antigen-recognized sites, or complementarity-determining hypervariable regions (CDRs) are of non-human origin, whereas all framework regions (FR) of variable domains are products of human genes. These "humanized" antibodies present a less xenographic rejection stimulus when introduced to a human recipient.

To accomplish humanization of a selected mouse monoclonal antibody, the CDR grafting method described by Daugherty, et al., Nucl. Acids Res., 19:2471-2476 (1991) may be used. Briefly, the variable region DNA of a selected animal recombinant anti-idiotype ScFv is sequenced by the method of Clackson, T., et al., Nature, 352:624-688, 1991. Using this sequence, animal CDRs are distinguished from animal framework regions (FR) based on locations of the CDRs in known sequences of animal variable genes. Kabat, H.A., et al., Sequences of Proteins of Immunological Interest, 4th Ed. (U.S. Dept. Health and Human Services, Bethesda, MD, 1987). Once the animal CDRs and FR are identified, the CDRs are grafted onto human heavy chain variable region framework by the use of synthetic oligonucleotides and polymerase chain reaction (PCR) recombination. Codons for the animal heavy chain CDRs, as well as the available human heavy chain variable region framework, are built in four (each 100 bases
long) oligonucleotides. Using PCR, a grafted DNA sequence of 400 bases is formed that encodes for the recombinant animal CDR/human heavy chain FR protection.

The immunogenic stimulus presented by the monoclonal antibodies so produced may be further decreased by the use of Pharmacia’s (Pharmacia LKB Biotechnology, Sweden) "Recombinant Phage Antibody System" (RPAS), which generates a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody. In the RPAS, antibody variable heavy and light chain genes are separately amplified from the hybridoma mRNA and cloned into an expression vector. The heavy and light chain domains are co-expressed on the same polypeptide chain after joining with a short linker DNA which codes for a flexible peptide. This assembly generates a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody.

Compared to the intact monoclonal antibody, the recombinant ScFv includes a considerably lower number of epitopes, and thereby presents a much weaker immunogenic stimulus when injected into humans.

Compounds Identified by Combinatorial Chemistry

It may be preferable to utilize non-peptide compounds to block binding of IgE to the mast cell receptors. Molecules with a given function, for example, binding, can be selected for from a complex mixture of random molecules in what has been referred to as "in vitro genetics" (Szostak, *TIBS* 19:89, 1992) or combinatorial chemistry. One synthesizes a large pool of molecules bearing random and defined sequences and subjects that complex mixture, for example, approximately 10^{15} individual sequences in 100 μg of a 100 nucleotide RNA or DNA, to some selection and enrichment process. For example, by repeated cycles of affinity chromatography and PCR amplification of the molecules bound to the ligand on the column, Ellington and Szostak (1990) estimated that 1 in 10^{10} RNA molecules folded in such a way as to bind a given ligand. DNA molecules with binding behavior have also been isolated (Ellington and Szostak, 1992; Bock et al, 1992).

Using methodology well known to those of skill in the art, in
combination with various combinatorial libraries, one can isolate and characterize those compounds which bind to or interact with the desired target. The relative binding affinity of these compounds can be compared and optimum compounds identified using competitive binding studies which are well known to those of skill in the art.

For example, the mast cell receptor(s), or relevant portions thereof, can be bound to a solid support, and interacted with various combinatorial libraries. Those molecules which do not bind these molecules at all are removed immediately by elution with a suitable solvent. Those molecules which bind to inactive portions of the receptor(s) can be removed by competitive binding with an excess of a chimeric peptide with the inactive portions represented by human sequences, or sequences from the desired species, and the active portion represented by the sequence from another species. Those compounds which bind to the receptor(s) will remain bound to the solid support, whereas unbound compounds will be removed from the column. Finally, those compounds still bound to the column can be removed, for example, by competitive binding. Following removal, these compounds can be identified and their relative binding affinity compared as described above.

Rational Drug Design

Drugs with the ability to mimic the function of the portion of the IgE which binds to the mast cell receptors can be identified using rational drug design. The compounds preferably include the surface active functional groups of the IgE, or substantially similar groups, in the same or substantially similar orientation, so that the compounds possess the same or similar biological activity. The surface active functional groups in the IgE possess a certain orientation when they are in their active conformations, in part due to their secondary or tertiary structure. Rational drug design involves both the identification and chemical modification of suitable compounds which mimic the function of the parent molecules.

Compounds that mimic the conformation and desirable features of a particular peptide, e.g., an oligopeptide, but that avoid undesirable features,
e.g., flexibility (loss of conformation) and metabolic degradation, are known as "peptidomimetics". Peptidomimetics that have physical conformations which mimic the three dimensional structure of amino acids 226-547 of the human IgE protein, in particular, which have surface active groups as present in this portion of the IgE, or peptidomimetics that have physical conformations which mimic the three dimensional structure of amino acids amino acids 226-547 of the human IgE protein can be used to make the pharmaceutical compositions described herein.

The physical conformation of the peptidomimetics are determined, in part, by their primary, secondary and tertiary structure. The primary structure of a peptide is defined by the number and precise sequence of amino acids in the IgE. The secondary structure is defined by the extent to which the polypeptide chains possess any helical or other stable structure. The tertiary structure is defined by the tendency for the polypeptides to undergo extensive coiling or folding to produce a complex, somewhat rigid three-dimensional structure.

Computer modeling technology allows visualization of the three-dimensional atomic structure of a selected molecule and the rational design of new compounds which will mimic the molecule or which will interact with the molecule. The three-dimensional structure can be determined based on data from x-ray crystallographic analyses and/or NMR imaging of the selected molecule, or from ab initio techniques based solely or in part on the primary structure, as described, for example, in U.S. Patent No. 5,612,895 to Balaji et al. The computer graphics systems enable one to predict how a new compound will link to the target molecule and allow experimental manipulation of the structures of the compound and target molecule to perfect binding specificity.

Many databases and computer software programs are known that can be used to design drugs. For example, see Ghoshal et al., "Computer Aids in Drug Design - Highlights" (1996) Pol. J. Pharmacol. 48(4), 359-377; Wendoloski et al., "Biophysical Tools for Structure-Based Drug Design" (1993) Pharmacol. Ther. 60(2), 169-183; Lybrand, "Ligand-Protein Docking

Data bases including constrained metabolically stable non-peptide moieties may be used to search for and to suggest suitable IgE analogs. Searches can be performed using a three dimensional data base for non-peptide (organic) structures (e.g., non-peptide analogs, and/or dipeptide analogs) having three dimensional similarity to the known structure of the active regions of these molecules. See, e.g., the Cambridge Crystal Structure Data Base, Crystallographic Data Center, Lensfield Road, Cambridge, CB2 1EW, England; and Allen, F. H., et al., Acta Crystallogr., B35: 2331-2339 (1979). Alternatively, three dimensional structures generated by other means such as molecular mechanics can be consulted. See, e.g., Burkert, et al., Molecular Mechanics, American Chemical Society, Washington, D.C. (1982); and Weiner, et al., J. Am. Chem. Soc., 106(3): 765-84 (Eng.) (1984).

as Day Light Information Systems, Inc., Irvine, Calif. 92714, and Molecular
Design Limited, 2132 Faralton Drive, San Leandro, Calif. 94577. The
searching is done in a systematic fashion by simulating or synthesizing
analogs having a substitute moiety at every residue level. Preferably, care is
taken that replacement of portions of the backbone does not disturb the
tertiary structure and that the side chain substitutions are compatible to retain
the IgE/receptor interactions. Using the information regarding bond angles
and spatial geometry of the critical amino acids, one can use computer
programs as described herein to develop peptidomimetics.

Chemical Modifications

Chemically modified analogs of the active portion of the IgE
fragment can also be identified using the techniques described above.
Peptidomimetics can be modified to increase bioavailability. Preferably, the
compounds are structurally constrained such that the surface active groups
are oriented in the active conformation. The compounds can further include
chemical modifications that minimize the metabolic degradation of the
compounds once they are administered. See, for example, Spatola, A. F.
Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins
which describes the use of the methylenethio bioisostere [CH₂S] as an amide
replacement; and Szleke et al., In Peptides: Structure and Function,
Proceedings of the Eighth American Peptide Symposium, (Hruby and Rich,
Eds.); pp. 579-582, Pierce Chemical Co., Rockford, Ill. (1983), which
describes methyleneamino [CH₂NH] and hydroxyethylene [CHOHCH₂]
bioisosteres.

The flexible portions of the structure can be replaced with suitable
bioisosteres or equivalents, so that the active conformation can be
maintained. As defined herein, the term "bioisostere" refers to atoms or
groups of atoms which are of similar size to the atom or group of atoms
which are to be replaced, wherein the compound containing the replacement
atom or group of atoms retains, to a substantial degree, the biological activity
of the original, unmodified peptide. See, for example, Nelson, Mautner, and

Numerous peptide backbone substitutions are known to those of skill in the art which can provide peptidomimetics with improved physical and chemical properties, including enhanced rigidity and chemical and/or metabolic stability. Suitable substitutions include modifying one or more of the amide bonds by replacing the amide nitrogen with an oxygen atom, or a sulfur atom, or by replacing H at the amide nitrogen with an alkyl, aryl, aralkyl or alkaryl group, producing an N-substituted amide, or by replacing the amide group with a methylene moiety, optionally substituted with one or two alkyl, aryl, aralkyl or alkaryl groups, which can in turn optionally be substituted with various functional groups, such as halogens, carbonyl groups, amines, nitriles, azides, thiols, hydroxy groups, and carboxylic acid groups. The alkyl groups are preferably C₁₋₆ straight, branched or cyclic groups. Further, one or more of the amide bonds present in the peptide backbone can be modified, for example, by replacing the amide carbonyl group with a methylene group (optionally substituted as described above), a thiocarbonyl group, a sulfone moiety or a sulfoxide moiety.

The peptide can be further modified by introducing alkyl, aryl, aralkyl or alkaryl substituents, optionally substituted as described above, at one or more of the alpha-carbon atoms, such that the peptide backbone is unchanged, but additional side chain substituents are present in the chemically modified analog. Suitable α-carbon atom modifications include cyclopropyl groups, ethyldiene groups, and primary, secondary or tertiary amines.

Each of these modifications can be introduced into the peptide chain in either orientation (i.e., in the orientation shown, or in the "reverse" orientation). In addition, various substituents on the amide nitrogen and the α-carbon can be bound to one another, thereby forming a cyclic structure which is a relatively constrained analog. Other constrained, cyclic structures can also be prepared by linking various substituents to form cyclic structures.
using chemical techniques known to those of skill in the art. Other modifications include those described in U.S. Patent No. 5,612,895 to Balaji et al., the contents of which are hereby incorporated by reference.

Chemically modified analogs are typically more resistant to enzymatic cleavage than the native peptides from which they are derived because the modified residues are not typically recognized by the enzymes which degrade naturally occurring proteins. Further, the backbone and side chains of peptides can be modified to provide peptidomimetics with reduced conformational flexibility. Accordingly, the possibility that the peptide will adopt conformation(s) other than the specifically desired conformation(s) can be substantially minimized by appropriate modification.

Methods of Chemically Preparing IgE Analogs

Once the desired analog (including backbone and side chain modifications, as appropriate) has been identified, chemical synthesis is undertaken, employing standard synthetic techniques. For a given target compound, the skilled artisan can readily identify suitable synthetic approaches for the preparation of the target compound. Particular techniques for synthesizing certain classes of compounds are described in more detail below.

Proteins can be expressed recombinantly or naturally and cleaved by enzymatic digest, expressed from a sequence encoding just a peptide, or synthesized using standard techniques. It is a routine matter to make appropriate peptides, test for binding, and then utilize the peptides. The peptides are easily prepared by standard techniques. They can also be modified to increase in vivo half-life, by chemical modification of the amino acids or by attachment to a carrier molecule or inert substrate, as discussed above. The peptides can also be conjugated to a carrier protein by standard procedures such as the commercial Imject kit from Pierce Chemicals or expressed as a fusion protein, which may have increased stability. Solid phase synthesis described by J. Merrifield, 1964 J. Am. Chem. Soc. 85, 2149, used in U.S. Patent No. 4,792,525, and described in U.S. Patent No. 4,244,946, wherein a protected alpha-amino acid is coupled to a suitable
resin, to initiate synthesis of a peptide starting from the C-terminus of the peptide. Other methods of synthesis are described in U.S. Patent No. 4,305,872 and 4,316,891, the contents of which are hereby incorporated by reference. These methods can be used to synthesize peptides having identical sequence to the receptor proteins described herein, or substitutions or additions of amino acids, which can be screened for activity as described above.

The peptide can also be prepared as a pharmaceutically acceptable acid- or base- addition salt, formed by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, and organic bases such as mono-, di-, trialkyl and aryl amines and substituted ethanolamines.

Peptides containing cyclopropyl amino acids, or amino acids derivatized in a similar fashion, can also be used. These peptides retain their original activity but have increased half-lives in vivo. Methods known for modifying amino acids, and their use, are known to those skilled in the art, for example, as described in U.S. Patent No. 4,629,784 to Stammer.

After the compounds are synthesized, their biological activity can be evaluated, for example, using competitive binding studies, and iterative refinement of the peptidomimetic (in the case of a constrained analog itself) can then be carried out. Those chemically modified analogs which are biologically active can be employed as peptidomimetics without further modification.

II. Pharmaceutical Compositions

Formulations

Dissociation of IgE from its receptor is extremely slow, exhibiting half-times of days to weeks (Isersky, et al. J. Immunol. 122: 1926-1936, 1979). Consequently, IgE fragments bound to FceRI should produce a stable
and long term block of these receptors' capacity to activate mast cells. It must also be noted, however, that in order to be effective, IgE fragments will need to occupy a sufficient number of receptor to block antigen-induced activation of the mast cells. Thus, any pharmaceutical preparation of IgE fragments must be presented in sufficiently high concentration and for a sufficient length of time to displace native IgE from the patient's mast cell population.

The compounds described above are preferably administered in a pharmaceutically acceptable vehicle. Suitable pharmaceutical vehicles are known to those skilled in the art. For parenteral administration, the compound will usually be dissolved or suspended in sterile water or saline. Carriers suitable for local release, including administration by inhalation or by injection into muscle for production of recombinant IgE by the individual to be treated, or topical administration, include ointments, salves, lotions, gels, and controlled release formulations, such as liposomes or microspheres (or microparticles). Methods for preparing liposomes and microspheres for administration to a patient are known to those skilled in the art. U.S. Patent No. 4,789,734 describe methods for encapsulating biological materials in liposomes. Essentially, the material is dissolved in an aqueous solution, the appropriate phospholipids and lipids added, along with surfactants if required, and the material dialyzed or sonicated, as necessary. A review of known methods is by G. Gregoriadis, Chapter 14. "Liposomes", Drug Carriers in Biology and Medicine pp. 287-341 (Academic Press, 1979). Microspheres formed of polymers or proteins are well known to those skilled in the art, and can be tailored for passage through the gastrointestinal tract directly into the bloodstream. Alternatively, the compound can be incorporated and the microspheres, or composite of microspheres, implanted for slow release over a period of time, ranging from days to months. See, for example, U.S. Patent No. 4,906,474, 4,925,673, and 3,625,214.

The formulation and method for administration can be used to modulate the specific IgE responses. For example, as described by Vrta, et al., Int. Arch. Allergy Immunol. 107(1-3), 290-294 (1995), an antigen can be
administered to an individual through the use of a recombinant expression host, such as an apathogenic Salmonella strain, which can be orally administered. Studies by Vrtala, et al., showed that this method induced a Th1 immune response with undetectable IgG1 or IgE.

Methods for Administration

One of the following four routes of administration to achieve the daily dosage calculated below for the required period of time.

A. Direct subcutaneous injection.
B. Implantation of a subcutaneous depot.
C. Direct injection into a muscle of cDNA vector encoding the requisite portion of IgE fragments under the control of a strong muscle-specific promoter. Similar techniques have been employed to express factor VII in mice (Miller, et al. Gene Therapy 2: 736-742, 1995). To ensure that expression of the exogenous gene could be discontinued in the event that it proved to be deleterious, IgE fragments coding sequence would be flanked by lox sequences. The sequence encoding the CRE recombinase would also be carried by the vector, under the control of a tight inducible promoter. Activation of the inducible promoter through ingestion of a small molecule (i.e., tetracycline) would activate the CRE recombinase, leading to the excision of the lox-flanked IgE fragments sequence (Tsien, et al. Cell 87:1317-1326, 1996). Similarly, transfected MHC-matched cells expressing and secreting IgE fragments could be infused or implanted. Co-transfection of these cells with the cDNA encoding the Herpes Simplex Virus thymidine kinase would ensure that they could be killed through the administration of acyclovir, should the need to eliminate them arise (Bonin, et al. Science 276: 1719-1724, 1997).

pulmonary administration are comparable to those which can be achieved through parenteral administration (Patton, et al. Biotech. Therap. 1:213-228, 1990). It is likely, therefore, that sufficiently high plasma levels of IgE fragments could be achieved through inhalation-based pulmonary administration. It is also important to note that a very large proportion of allergy symptoms are attributable to the degranulation of mast cells embedded within the nasal and pulmonary epithelium. Furthermore, recent evidence indicates that the IgE responsible for the nasal symptoms of allergy is synthesized locally within the nose itself (Durham, et al. Eur. J. Immunol. 27: 2899-2906, 1997; Durham, et al. Int. Arch. of Allergy and Immunol. 113: 128-130, 1997). Inhalation might be expected to deliver extremely high concentrations IgE fragments directly to this important population of nasal and respiratory mast cells. Inhibition of allergen-induced degranulation of nasal and pulmonary mast cells might be expected to dramatically ameliorate symptoms such as allergic rhinitis and bronchiolar constriction. Thus, even if the circulating levels of IgE fragments which can be achieved by inhalation are not sufficient to ensure that mast cells throughout the entire system are disarmed, the local inactivation of pulmonary and nasal mast cells might be sufficient to bring about significant symptomatic relief. It is likely, therefore, that the dose of IgE fragment required to bring about relief of nasal and respiratory allergic symptoms will be much smaller (and hence more easily attainable and maintainable) than that required for the systemic dose calculated below.

Dosages

In the preferred embodiment, pharmaceutically acceptable carriers will typically by saline, phosphate buffered saline, or water, if the composition is administered by injection. The pharmaceutical preparation of the human IgE fragment, or analogue, is administered for the dual purposes of occupying mast cell FceRI receptors so as to prevent allergen-induced degranulation and occupying FceRII receptors to reduce circulating levels of native IgE. This preparation serves as a pan-specific anti-allergy therapy, relieving and preventing allergy symptoms independent of the nature of the
allergen. Consequently, patients allergic to multiple substances will be completely treated by this preparation, obviating the need for multiple courses of allergen-specific immunizations.

Previous animal studies indicate that systemic delivery of approximately 25 mg/kg/day of monospecific IgE is sufficient to block subsequent passive sensitization with a different monospecific IgE (Spiegelberg, et al. J. Immunol. 136:131-135, 1986). However, this dose of IgE delivered daily over 13 days did not significantly diminish the allergic response in animals which had been actively immunized with a specific allergen on day 0 or -3 of the protocol. Given the extremely long half-life of IgE bound to FceRI at the mast cell surface (Isersky, et al. J. Immunol. 122: 1926-1936, 1979), this observation is not at all surprising. To attain therapeutic levels of displacement of native IgE from patient mast cells it will be necessary to maintain continuously high circulating levels of exogenous IgE fragments for at least 6-8 weeks. Serum IgE concentrations in adults are approximately 10^{-8} g/ml (Nye, et al. Clin. Allergy 1:13-24; 1975). It is desirable, therefore, to maintain continuous serum IgE fragments concentrations of at least 5 \times 10^{-6} g/ml. A similar 100-fold excess was sufficient to block the Prausnitz-Kustner passive immunization reaction in human subjects (Geha, et al. Nature. 315:577-578, 1985). Since the half-life of circulating IgE is approximately 12 hours (Spiegelberg, et al. J. Immunol. 136:131-135, 1986), between approximately 0.4 and 0.8 G should constitute a reasonable upper estimate of the single daily dose required for a 70 kg individual.

IV. Assays for Efficacy

Serum levels of IgE fragments can be measured by quantitative western blot analysis employing an 125I-conjugated anti-IgE fragments antibody as a probe. Protein in serum samples is separated by SDS polyacrylamide gel electrophoresis (SDS-PAGE) followed by electrophoretic transfer to nitrocellulose paper. For quantitation purposes, a dilution series of known quantities of IgE is also to be loaded on separate lanes of the same gel. IgE fragments can be distinguished from native IgE by its distinctive
molecular weight. Labelled bands are excised and bound radioactivity
determined by γ-counting.

Fractional levels of IgE fragments bound to FceRI can be determined
by quantitative western blotting. Peripheral blood basophils can be isolated
from patient serum (Weyer, et al. Clin. and Exp. All. 25:935-941, 1995) and
their associated proteins separated by SDS-PAGE followed by
electrophoretic transfer. The relative quantity of native IgE versus IgE
fragments bound to the cells is determined using quantitative western blot
analysis employing an [125I]-conjugated anti-IGE fragments antibody as a
probe. Native IgE is distinguished from IgE fragments by virtue of their
distinct molecular weights. Radioactivity in excised bands can be
quantitated by γ-counting and the native IgE/IgE fragments ratio determined.

The susceptibility of cells from treated patients to undergo cross-
linking dependent granule exocytosis can be determined with peripheral
All. 25:935-941, 1995). Cells can be exposed to a bivalent IgG antibody
directed against the Fab portion of IgE. This reagent should not interact with
surface-bound IgE fragment. Degranulation is measured by standard
techniques (Weyer, et al. 1995). This treatment should not induce basophils
from successfully treated patients to degranulate. An IgG antibody directed
against the Fc portion of IgE is employed as a positive control to
demonstrate that the basophils from treated patients retain the capacity to
undergo cross-linking mediated degranulation.
We claim:

1. A method of inhibiting an allergic response comprising
 administering to an individual in need thereof an effective amount to
 prevent clinically significant allergen-induced mast cell activation of a
 composition comprising
 - a pharmaceutically acceptable carrier and
 - a compound binding to an Fce receptor to prevent occupancy of the
 receptor by native IgE, which cannot be cross-linked by antigen, and which
 does not elicit an immune reaction.

2. The method of claim 1 wherein the compounds are selected
 from the group of compounds binding to the FceRI on mast cells consisting
 of human IgE fragments, recombinant IgE fragments, and single chain IgE
 fragments.

3. The method of claim 1 wherein the compounds are non-
 crosslinkable recombinant antibodies to FcεRI.

4. The method of claim 1 wherein the compound is a
 peptidomimetic.

5. The method of claim 1 wherein the compound encodes a
 molecule selected from the group of molecules binding to the FcεRI on mast
 cells consisting of IgE fragments, recombinant IgE fragments, single chain
 IgE fragments, and non-cross-linkable recombinant antibodies to FcεRI.

6. The method of claim 1 wherein the composition is
 administered to the individual in need thereof by injection.

7. The method of claim 1 wherein the composition is
 administered to the individual in need thereof by inhalation.

8. The method of claim 1 wherein the composition is
 administered to the individual in need thereof locally or topically.

9. The method of claim 1 formulated for controlled release.

10. The method of claim 1 formulated to maximize mucosal
 adhesion and release.
11. A composition comprising
 a pharmaceutically acceptable carrier and
 an effective amount to prevent clinically significant allergen-induced
 mast cell activation of a composition comprising a compound binding to an
 Fce receptor to prevent occupancy of the receptor by native IgE, which
 cannot be cross-linked by antigen, and which does not elicit an immune
 reaction.

12. The composition of claim 11 wherein the compounds are
 selected from the group of compounds binding to the FceRI or FceRII on
 mast cells consisting of IgE fragments, recombinant IgE fragments, and
 single chain IgE fragments.

13. The composition of claim 11 wherein the compounds are non-
 crosslinkable recombinant antibodies to FceRI.

14. The composition of claim 11 wherein the compound is a
 peptidomimetic.

15. The composition of claim 11 wherein the compound encodes
 a molecule selected from the group of molecules binding to the FceRI or
 FceRII on mast cells consisting of IgE fragments, recombinant IgE
 fragments, single chain IgE fragments, and non-crosslinkable recombinant
 antibodies to FceRI.

16. The composition formulated for controlled release.

17. The composition formulated to maximize mucosal adhesion.

18. The composition formulated for administration nasally or by
 inhalation.
INTERNATIONAL SEARCH REPORT

Internal Application No.

PCT/US 99/12526

A. CLASSIFICATION OF SUBJECT MATTER

| IPC 6 | A61K39/395 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC 6 | C07K A61K |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic databases consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 499 112 A (F. HOFFMANN-LA ROCHE) 19 August 1992 (1992-08-19) page 3, line 28 - page 4, line 10 page 5, line 28 - line 45 page 22 - page 23: claims 1-12</td>
<td>1,3,5,6, 8,9,11, 13,15,16</td>
</tr>
<tr>
<td>X</td>
<td>WO 95 14779 A (RESEARCH EXPLOITATION LIMITED) 1 June 1995 (1995-06-01) page 4, line 19 - page 5, line 6</td>
<td>1.2.4.5, 11,12, 14,15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Date of the actual completion of the international search

3 September 1999

Date of mailing of the international search report

13/09/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Le Flao, K

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 93 04173 A (GENENTECH) 4 March 1993 (1993-03-04)</td>
<td>1, 2, 4-6, 11, 12, 14, 15</td>
</tr>
<tr>
<td></td>
<td>claims 15, 16</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 96 12741 A (GLAXO GROUP LIMITED) 2 May 1996 (1996-05-02)</td>
<td>1, 6-8, 10-12, 15, 17, 18</td>
</tr>
<tr>
<td></td>
<td>page 11, line 10 – page 12, line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1-4</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

PCT/US 99/ 12526

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [x] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

 Remark: Although claims 1-10 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. [] Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- [] The additional search fees were accompanied by the applicant's protest.
- [] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)
INTERNATIONAL SEARCH REPORT

Publication date	**Patent family member(s)**	**Publication date**
--- | --- | ---
--- | --- | ---
--- | --- | ---
--- | --- | ---

Form PCT/ISA/210 (patent family annex) (July 1992)