FOLDING WHEEL CHAIR

Inventors
H.A. Everest
H.C. Jennings

Attorneys.
Oct. 12, 1937.

H. A. EVEREST ET AL

FOLDING WHEEL CHAIR

Filed Feb. 11, 1936

3 Sheets-Sheet 3

Inventors
H. A. Everest
H. C. Jennings

Attorneys.
Our invention relates to a folding wheel chair, this being of a type in which the leg framework carrying the wheels may be collapsed or folded inwardly to make a narrow and compact folded chair for either storage in a room or for carrying in an automobile.

In this type of chair, our invention comprehends as one of its main objects a simplification of the folding framework, using preferably metal rods and tubes. Hence, by our construction, one of the features of the frame is that it provides on each side of the chair a front and a rear leg. The front and rear leg on each side are connected by a pivoted or hinged member, from which diagonal intersecting braces extend upwardly to a sliding horizontal member, this being mounted to slide and be guided in the upper portion of the front and rear legs. With this construction the seat is formed of fabric looped between the vertically sliding members, such seat folding when the two side legs are shifted together, as also does a foot rest or step which is connected to the front to rear bottom member. A fabric back connected to an upward extension of the rear legs may also thus be extended or folded, thereby enabling the sides of the chair to be spread apart for use of the chair, or to be collapsed together.

Another object and feature of our invention is forming the frame with certain loose connections, especially at the bottom front to rear member, so that when the chair is provided with four wheels, that is, two propelling wheels at the front and two caster wheels at the back, this flexible connection allows a certain warping or twisting of the side members of the chair frame to accommodate the passage of wheels over bumps or depressions in a road or other surface on which the vehicle is used. One of the objects of this flexible construction is to maintain both driving wheels always in contact with the floor or ground and thus enable the occupant of the chair to propel it.

In wheel chairs of the type in which the occupant may propel the chair by actuating the driving wheels, it is an objectionable feature in most of the designs that there are large driving wheels. The periphery of such wheels extends so far forward of the front leg, and hence of the front of the chair, that it is difficult for an occupant to wheel the chair close to a table, a desk, a vehicle, or other chair or couch to which he may desire to move.

A further object and feature of our invention, therefore, is forming the driving wheels of the chair of small diameter, preferably about the same size as the caster wheels.

The form of drive is by means of a flexible chain or belt operating over a sprocket or pulley directly connected to each driving wheel. The belt then operates over a horizontal guide located immediately below the arm rest of the chair, the guide having inturned ends so that the occupant of the chair may manipulate the belt along the guide frames on each side and thus transmit motion to the driving wheels for propelling the wheel chair.

A further detail feature of our invention relates to the construction of this driving belt, such being made of rubber with a fabric incorporated therein, and being channel shaped in cross-section to loop over the horizontal guides. This construction prevents the occupant of the chair from having the fingers caught between the belt and the guide.

As an alternative construction the belt may be formed with a sprocket chain, generally incorporated therein.

Another detail feature of improvement is in having the back rest, which is formed of fabric, readily disconnectible from the back posts of the chair to enable a person to enter and leave the chair from the rear. That is, on entering the chair a person progresses foot first over the seat from a bed, couch, or the like, and in leaving the chair the occupant may move rearwardly from the seat through the open back of the chair, drawing his feet over the seat of the chair.

Our invention is illustrated in connection with the accompanying drawings in which,

Figure 1 is a perspective view of the metal frame of the chair when in its expanded position for use;

Figure 2 is a side elevation of a completed chair when expanded in position for use;

Figure 3 is a front elevation taken in the direction of the arrow 3 of Figure 2;

Figure 4 is a view similar to Figure 3 but showing the chair collapsed in its folded position;

Figure 5 is a horizontal section on the line 5—5 of Figure 3 in the direction of the arrows 45 with parts omitted to show the attachment of the back;

Figure 6 is a vertical section on the line 6—6 of Figure 3 taken in the direction of the arrows through one of the side frames, to illustrate the details of construction of the side frames; and

Figure 7 is a detail transverse section on the line 7—7 of Figure 2 with parts omitted showing the upper guide or flexible wheel driving chain.

Referring first to the construction of the frame...
of the chair, such frame being designated generally by the numeral 11. This frame is constructed of two similar side frames 12 and each side frame has a front leg 13, this being preferably vertical. There is also a rear leg 14 having an upper section 15 parallel to the upper portion 16 of the front leg. Each rear leg has a rearwardly diverging lower portion 17 and a lower projecting vertical end 18 having a collar 19 at the bottom. These leg members are preferably all made of metal tubing. There is an arm rest bar 20 on each side which is formed integral with the front leg, having a right angular bend 21 at the front. Rear chair posts 22 extend upwardly from the rear legs and preferably incline slightly rearwardly as shown in Figure 2. The rear end 23 of the arm rest has a curved end cut to partly encircle the tube forming the integral rear legs and the integral posts 21, the arm rests being secured by welding, brazing or the like to the combined rear legs and posts. The bottom bar or rail construction 25 employs a tube 26 at the forward portion, such tube being rigidly secured by welding or the like to the lower end of the front leg 13, this lower end being cut in a part circle to encircle the tube 26, which tube is closed with a cap 27. A pin 28 runs in the tube 26 and also in a rear leg section 30. The rear bar assembly has a rear curved tube 31 connected at 32 to the short rear tube 33 and at 34 to the lower portion of the rear leg 14 preferably adjacent to the connection point of the vertical section 17 and the rearwardly extending portion 18. This tube 31 preferably forms a bend developing a right angular turn that is for the purpose of accommodating the rear caster wheels of the chair, the assembly of which is described hereunder.

An improved feature of our chair is that we employ only two diagonal braces 35. Each of these braces has a lower portion 36 and an upper portion 37 connected together by a longitudinal hinge pin or a bolt 38. These intersecting braces are preferably formed of tubes. The bottom of the lower portion 36 of each brace is rigidly connected to a sleeve 39, such sleeve being fitted over the rod 29 connecting the tubes 26 and 30. This sleeve is shorter in length than the exposed portion of the rod 29, such sleeve being indicated at 40 and 41. This allows a slight lengthwise movement of the sleeve 39 on the rod 29.

The seat bar 45 comprises two short end bars 46 and 47 each having a rounded cut-out end 48, such end being adapted to partly encircle the upper portion 16 of the front leg 13 for the tube 45 and the upper portion 15 of the rear leg 14 for the short tube 47. Each of these short bars 46 and 47 has a pivot pin 49 and a swivel sleeve 50 fitted over the pivot pins. Such swivel sleeve 50 is rigidly connected at 51 to the upper portion 37 of each cross bar. There is a snug fit at the joint 52 of the sleeve 50 and the short bars 46 and 47. This construction permits the side frames of the chair to be spread apart, as shown in Figure 1, or folded or collapsed as shown in Figure 4. In this manipulation of the frame the lower sleeve 39 swivels on the rod 29 of the bottom rail 25. The sleeve 50 also has a swivel action on the pins 49, but causes an up and down movement of the short bars 46 and 47, and thus of the seat bars 45, this sliding motion being on the parallel sections 16 of the front leg 13, and 15 of the rear leg 14.

The chair is provided with a fabric seat 55, which is preferably made with upper and lower fabric sections 56 and 57 looped over the seat bars 45, and having a split 58 in the lower fold of the seat to form a diagonal braces 35 at their connection with the seat bars. The fabric of the seat from the front to rear direction extends substantially between the portion 16 of the front leg and the portion 15 of the rear leg. The portion 16' and a lower projecting vertical end 17 having a collar 19 at the bottom. These leg members are preferably all made of metal tubing. There is an arm rest bar 19 on each side which is formed integral with the front leg, having a right angular bend 21 at the front. Rear chair posts 22 extend upwardly from the rear legs and preferably incline slightly rearwardly as shown in Figure 2. The rear end 22 of the arm rest has a curved end cut to partly encircle the tube forming the integral rear legs and the integral posts 21, the arm rests being secured by welding, brazing or the like to the combined rear legs and posts. The bottom bar or rail construction 25 employs a tube 26 at the forward portion, such tube being rigidly secured by welding or the like to the lower end of the front leg 13, this lower end being cut in a part circle to encircle the tube 26, which tube is closed with a cap 27. A pin 28 runs in the tube 26 and also in a rear leg section 30. The rear bar assembly has a rear curved tube 31 connected at 32 to the short rear tube 33 and at 33 to the lower portion of the rear leg 14 preferably adjacent to the connection point of the vertical section 17 and the rearwardly extending portion 18. This tube 31 preferably forms a bend developing a right angular turn that is for the purpose of accommodating the rear caster wheels of the chair, the assembly of which is described hereunder.

An improved feature of our chair is that we employ only two diagonal braces 35. Each of these braces has a lower portion 36 and an upper portion 37 connected together by a longitudinal hinge pin or a bolt 38. These intersecting braces are preferably formed of tubes. The bottom of the lower portion 36 of each brace is rigidly connected to a sleeve 39, such sleeve being fitted over the rod 29 connecting the tubes 26 and 30. This sleeve is shorter in length than the exposed portion of the rod 29, such sleeve being indicated at 40 and 41. This allows a slight lengthwise movement of the sleeve 39 on the rod 29.

The seat bar 45 comprises two short end bars 46 and 47 each having a rounded cut-out end 48, such end being adapted to partly encircle the upper portion 16 of the front leg 13 for the tube 45 and the upper portion 15 of the rear leg 14 for the short tube 47. Each of these short bars 46 and 47 has a pivot pin 49 and a swivel sleeve 50 fitted over the pivot pins. Such swivel sleeve 50 is rigidly connected at 51 to the upper portion 37 of each cross bar. There is a snug fit at the joint 52 of the sleeve 50 and the short bars 46 and 47. This construction permits the side frames of the chair to be spread apart, as shown in Figure 1, or folded or collapsed as shown in Figure 4. In this manipulation of the frame the lower sleeve 39 swivels on the rod 29 of the bottom rail 25. The sleeve 50 also has a swivel action on the pins 49, but causes an up and down movement of the short bars 46 and 47, and thus of the seat bars 45, this sliding motion being on the parallel sections 16 of the front leg 13, and 15 of the rear leg 14.

The chair is provided with a fabric seat 55, which is preferably made with upper and lower
2,095,411

The manner of propelling the chair is by the occupant of the chair grasping the horizontal section of the rubberband and thrusting this in the direction of the arrow. This rotates the driving wheels in the proper direction to move the wheel chair forward. The reverse movement is by pulling on the upper horizontal band section, which causes the chair to move rearwardly. The steering is accomplished by moving one of the propelling wheels faster than the other, or by moving one in a forward direction and the other in a rearward direction. It will be noted by this construction that the front driving wheels are quite small, and hence the chair may be moved close to a table, desk, couch or a bed.

Various changes may be made in the details of construction without departing from the spirit or scope of the invention as defined by the appended claims.

We claim:

1. A folding chair having two side frames, each frame having a bottom rod forming at least part of a connection between the front and rear ends of its frame, a sleeve rotatably mounted on each rod, a single diagonal brace extending upwardly from each sleeve, the said braces intersecting and being connected by a single hinge pin, the upper end of each diagonal brace being connected to a seat bar, each seat bar having a guiding connection at its ends with parallel portions of the upper part of each side frame, the point of connection of the upper part of each brace to the seat bar being substantially midway between the said parallel portions of the frame.

2. A folding chair as claimed in claim 1, a wheel connected to the forward portion of each frame, one or more wheels connected to the rear parts of the frames, means to confine each sleeve on the rod on which it is mounted whereby each sleeve independent of the other may have a slight sliding movement longitudinal of the rod to permit a slight twisting of one frame relative to the other to maintain both of the front wheels in contact with the ground.

3. A folding chair having two side frames each with a front and a rear leg, the upper portions of said legs being cylindrical and parallel, a bottom rod forming at least part of the connection between the front and rear legs of each frame, a single diagonal brace having a pivotal connection at its bottom to the said rod, said braces intersecting and being connected by a single hinge pin, each of said rods at its upper end being rigidly connected to a swivel tube, each end of the swivel tube being rotatably mounted in a short bar, each said short bar having a cut-out end forming a jaw slidably engaging the cylindrical portion and parallel portions of the front and rear legs, whereby on folding and extending the chair each sleeve connected to a brace rotates on the short bars and said bars have a vertical sliding movement on the front and rear legs of each frame.

4. A folding chair as claimed in claim 3, a front wheel connected to the front leg of each side frame, one or more wheels connected to the rear legs of the frames, the pivotal connection of the lower end of each brace to the bottom rod comprising a second sleeve rotatable on said rod, means to confine each second sleeve to a slight sliding motion on the rod, the said rod having a forward extension beyond the front legs of each frame, a foot rest hingedly connected to each extension, the foot rest being formed in two parts hinged together whereby when the chair is extended the portions of the foot rest operate to hold the side frames of the chair apart, and the sliding movement of the second sleeve connected to the lower part of each brace permits a slight twisting of the frame to maintain both of the front wheels in contact with the ground.

5. A wheel chair having two side frames, each with a front and a rear leg connected by an arm rest, each front leg being vertical, an axle attached to each front leg and having a wheel thereon, each rear leg having a rear wheel connected thereto, each side frame having a rod forming part of a connection between the front and rear legs, a sleeve rotatably and slidably movable on said rod, a cross brace extending upwardly from each sleeve, the cross braces being pivoted together, a seat bar slidably mounted on each frame, the upper end of each cross brace being connected to a seat bar, the said seat bars forming a support for the seat whereby the chair may be collapsed with the side frames movable towards each other, the sliding movement of the said sleeve on the said rod permitting a slight twisting of the frame to maintain both driving wheels on the ground when the chair is in its extended position.

6. A folding wheel chair having two side frames, each frame having a bottom assembly including a front straight portion and a rear upwardly curved portion, a sleeve rotatably mounted on a straight portion of each bottom assembly, a single diagonal brace extending upwardly from each sleeve, the said braces intersecting and being connected by a single hinge pin, the upper end of each diagonal brace being connected to a seat bar, each seat bar having a guiding connection at its ends with parallel portions of the upper part of each side frame, the point of connection of the upper part of each brace to the seat bar being substantially midway between the said parallel portions of the frame.

7. A folding wheel chair as claimed in claim 6, the single hinge pin rotatable whereby to which the two side frames may twist as to each other whereby both of the front wheels may be retained on the ground if one of the four wheels engages an elevation or is over a depression in a road.

8. A folding wheel chair as claimed in claim 6, means to confine each sleeve on its lower frame assembly whereby each sleeve may have a slight
sliding movement longitudinally to permit a slight twisting of one frame relative to the other, the single hinge pin forming a center of twist of one frame relative to the other to maintain both of the front wheels in contact with the ground should the ground be irregular.

9. A wheeled chair having two side frames, each frame having a bottom assembly including a straight portion, a seat connecting the side frames, a spacing device securing said frames in spaced relation, said device having a sliding part thereof mounted on the straight portion of the bottom assembly of each side frame with means providing for a limited longitudinal sliding movement thereof along the said straight portion, a pair of front wheels connected one to each of the side frames, one or more wheels connected to the rear portion of the side frames, the said sliding connection being adapted to provide for the two front wheels being always in contact with the ground should one of the wheels engage a slight elevation or be over a slight depression in the ground.

HERBERT A. EVEREST.

HARRY C. JENNINGS.