发明名称
驱动变压器隔离自适应驱动电路

摘要
本发明公开了一种驱动变压器隔离自适应驱动电路，包括：电源、第一场效应管和第二场效应管，第一场效应管的栅极与电源的正极连接，源极与第二场效应管的漏极连接，第二场效应管的源极与电源的负极连接；驱动变压器，设有第一绕组和第二绕组，第一单向正电压快速驱动电路，一端与第一绕组连接，另一端与第一场效应管的栅极连接；第二单向正电压快速驱动电路，一端与第二绕组连接，另一端与第二场效应管的栅极连接；第一自适应死区控制子电路，用于根据第一场效应管的栅极与源极之间的电压 Vds 输出相应电平至其栅极；第二自适应死区控制子电路，用于根据第二场效应管的 Vds 输出相应电平至其栅极。
权利要求书

1. 一种驱动变压器隔离自适应驱动电路，其特征在于，包括：
电源、第一场效应管和第二场效应管，第一场效应管的漏极与所述电源的正极连接，源
极与所述第二场效应管的漏极连接，所述第二场效应管的源极与所述电源的负极连接；
驱动变压器，设有第一绕组和第二绕组；
第一单向正电压快速驱动电路，一端与所述第一绕组连接，另一端与所述第一场效应
管的栅极连接；
第二单向正电压快速驱动电路，一端与所述第二绕组连接，另一端与所述第二场效应
管的栅极连接；
第一自适应死区控制子电路，用于根据所述第一场效应管的漏极与源极之间的电压输
出相应电平至所述第一场效应管的栅极；
第二自适应死区控制子电路，用于根据所述第二场效应管的漏极与源极之间的电压输
出相应电平至所述第二场效应管的栅极；
所述第一单向正电压快速驱动电路包括第一电阻、第二电阻、第一二极管和第一三极
管（Q11），其中第一三极管（Q11）为PNP三极管，其基极通过第一电阻分别与所述第一绕
组和第二电阻的一端连接，集电极与所述第一绕组的另一端连接，发射极与所述第一二极管
的阴极连接，该第一二极管的阳极与所述第二电阻的另一端连接；
所述第二单向正电压快速驱动电路包括第三电阻、第四电阻、第二二极管和第二三极
管（Q12），其中第二三极管（Q12）为PNP三极管，其基极通过第三电阻分别与所述第二绕
组和第四电阻的一端连接，集电极与所述第二绕组的另一端连接，发射极与所述第二二极管
的阴极连接，该第二二极管的阳极与所述第三电阻的另一端连接，所述第一绕组与所述第
一电阻连接的一端和所述第二绕组与所述第二三极管（Q12）集电极连接的一端为同名
端；
所述第一自适应死区控制子电路包括第三场效应管、第三二极管、第五电阻和第六电
阻，其中第三场效应管的漏极与所述第三场效应管的栅极连接，源极与所述第一场效应管
的源极连接，栅极分别通过第五电阻与所述第三场效应管的源极连接，通过第六电阻与所
述第三二极管的阴极连接，该第三二极管的阳极与所述第二电阻的漏极连接；
第二自适应死区控制子电路包括第四场效应管、第四二极管、第七电阻和第八电阻，其
中第四场效应管的漏极与所述第二场效应管的栅极连接，源极与所述第二场效应管的源
极连接，栅极分别通过第七电阻与所述第二场效应管的源极连接，通过第八电阻与所述第
四二极管的阴极连接，该第四二极管的阳极与所述第二场效应管的漏极连接。

2. 如权利要求1所述的驱动变压器隔离自适应驱动电路，其特征在于，所述第三场效
应管的栅极与所述第五电阻之间还连接有第一二极管组，该第一二极管组包括输入端和输
出端，该输入端与所述第五电阻和第六电阻连接的一端连接，输出端与所述第三场效应管
的栅极连接，所述第一二极管组由二二极管或至少两个二极管依次串联而成。

3. 如权利要求2所述的驱动变压器隔离自适应驱动电路，其特征在于，所述第一自适
应死区控制子电路还包括第三三极管（Q13），该第三三极管（Q13）为PNP三极管，其发射极
与所述第三场效应管的栅极连接，集电极与所述第三场效应管的源极连接，基极与所述第
五电阻和第六电阻连接的一端连接。

4. 如权利要求1所述的驱动变压器隔离自适应驱动电路，其特征在于，所述第四场效
应管的栅极与所述第七电阻之间还连接有第二二极管组，该第二二极管组包括输入端和输出端，该输入端与所述第七电阻和第八电阻连接的一端连接，输出端与所述第四场效应管的栅极连接；所述第二二极管组由一极二极管或至少两个二极管依次串联形成。

5. 如权利要求4所述的驱动变压器隔离自适应驱动电路，其特征在于，所述第二自适应死区控制子电路还包括第四三极管(Q14)，该第四三极管(Q14)为PNP三极管，其发射极与所述第四场效应管的栅极连接，集电极与所述第四场效应管的源极连接，基极与所述第七电阻和第八电阻连接的一端连接。
驱动变压器隔离自适应驱动电路

技术领域
[0001] 本发明涉及电子产品技术领域，特别涉及一种驱动变压器隔离自适应驱动电路。

背景技术
[0002] 随着世界能源危机的激化，降低能耗，保护环境已成共识。为了提高 AC/DC 和 DC/DC 电源变换器的效率，半桥和全桥及其 LLC 谐振变换器已广泛应用。但由于谐振变换器的工作频率随着负载变化，驱动变压器的漏感、场效应管的 Qg、驱动电阻和场效应管的体二极管均会改变驱动波形及其死区；而现有技术中，由于采用固定的死区时间控制时，若死区时间太长，则不能实现零电压开关，若死区时间太短，则可能导致同一桥臂的上下场效应管出现直通现象，进而导致谐振变换器失效。

发明内容
[0003] 本发明的主要目的在于提供一种驱动变压器隔离自适应驱动电路，旨在减小驱动信号的失真和时延，实现零电压开关，降低开关损耗，提高效率，同时避免出现“直通现象”。
[0004] 为了实现上述目的，本发明提供一种驱动变压器隔离自适应驱动电路，该驱动变压器隔离自适应驱动电路包括：
[0005] 电源、第一场效应管和第二场效应管，第一场效应管的漏极与所述电源的正极连接，源极与所述第二场效应管的漏极连接；所述第二场效应管的源极与所述电源的负极连接；
[0006] 驱动变压器，设有第一绕组和第二绕组；
[0007] 第一单向正电压快速驱动电路，一端与所述第一绕组连接，另一端与所述第一场效应管的栅极连接；
[0008] 第二单向正电压快速驱动电路，一端与所述第二绕组连接，另一端与所述第二场效应管的栅极连接；
[0009] 第一自适应死区控制子电路，用于根据所述第一场效应管的漏极与源极之间的电压输出相应电平至所述第一场效应管的栅极；
[0010] 第二自适应死区控制子电路，用于根据所述第二场效应管的漏极与源极之间的电压输出相应电平至所述第二场效应管的栅极。
[0011] 优选地，所述第一单向正电压快速驱动电路包括第一电阻、第二电阻、第一二极管和第一三极管 Q11，其中第一三极管 Q11 为 PNP 三极管，其基极与通过第一电阻分别与所述第一绕组和第二绕组的一端连接，集电极与所述第一绕组的另一端连接，发射极与所述第一二极管的阴极连接，且该第一二极管的阳极与所述第二电阻的另一端连接。
[0012] 优选地，所述第二单向正电压快速驱动电路包括第三电阻、第四电阻、第二二极管和第二三极管 Q12，其中第二三极管 Q12 为 PNP 三极管，其基极与通过第二电阻分别与所述第二绕组和第四电阻的一端连接，集电极与所述第二绕组的另一端连接，发射极与所述第二
二极管的阴极连接，且该第二二极管的阳极与所述第四电阻的另一端连接；所述第一绕组与所述第一电阻连接的一端和所述第二绕组与所述第二三极管 Q12 集电极连接的一端为同名端。

【0013】优选地，所述第一自适应死区控制子电路包括第三场效应管、第三二极管、第五电阻和第六电阻，其中第三场效应管的源极与所述第一场效应管的栅极连接，源极与所述第二场效应管的源极连接，栅极分别通过第五电阻与所述第一场效应管的源极连接，通过第五电阻与所述第三二极管的阴极连接，该第三二极管的阳极与所述第一场效应管的漏极连接。

【0014】优选地，所述第三场效应管的栅极与所述第五电阻之间还连接有第一二极管组，该第一二极管组包括输入端和输出端，该输入端与所述第五电阻和第六电阻连接的一端连接，输出端与所述第三场效应管的栅极连接；所述第一二极管组由一极管或至少两个二极管依次串联形成。

【0015】优选地，所述第一自适应死区控制子电路还包括第三三极管 Q13，该第三三极管 Q13 为 PNP 三级管，其发射极与所述第三场效应管的栅极连接，集电极与所述第三场效应管的源极连接，基极与所述第五电阻和第六电阻连接的一端连接。

【0016】优选地，所述第二自适应死区控制子电路包括第四场效应管、第四二极管、第七电阻和第八电阻，其中第四场效应管的漏极与所述第二场效应管的栅极连接，源极与所述第二场效应管的源极连接，栅极分别通过第七电阻与所述第二场效应管的源极连接，通过第七电阻与所述第四二极管的阴极连接，该第四二极管的阳极与所述第二场效应管的漏极连接。

【0017】优选地，所述第四场效应管的栅极与所述第七电阻之间还连接有第二二极管组，该第二二极管组包括输入端和输出端，该输入端与所述第七电阻和第八电阻连接的一端连接，输出端与所述第四场效应管的栅极连接；所述第二二极管组由一极管或至少两个二极管依次串联形成。

【0018】优选地，所述第二自适应死区控制子电路还包括第四三极管 Q14，该第四三极管 Q14 为 PNP 三级管，其发射极与所述第四场效应管的栅极连接，集电极与所述第四场效应管的源极连接，基极与所述第七电阻和第八电阻连接的一端连接。

【0019】本发明通过设置第一单向正电压快速驱动电路和第二单向正电压快速驱动电路，当驱动变压器输出正电压驱动信号至相应的驱动电路时，相应的驱动电路输出正电压驱动信号；当驱动变压器输出负电压驱动信号时，相应的驱动电路输出为零，并将对应的驱动变压器绕组的电流限制在几个毫安以下，以降低功耗和驱动时延。第一自适应死区控制子电路实时检测第一场效应管的 Vds，并当第一场效应管的 Vds 低于其工作电压时，该第一自适应死区控制子电路不工作；当 Vds 等于工作电压时，第一自适应死区控制子电路检测第一场效应管的体二极管的开通和反向恢复状态，并调整相应驱动信号的脉宽；同时设置第二自适应死区控制子电路实时检测第二场效应管的 Vds，并当第二场效应管的 Vds 低于其工作电压时，该第二自适应死区控制子电路不工作；当 Vds 等于工作电压时，第二自适应死区控制子电路检测第二场效应管的体二极管的开通和反向恢复状态，并调整相应驱动信号的脉宽，从而实现自适应死区调整。因此本发明提供的驱动变压器隔离自适应驱动电路可减小驱动信号的失真和时延，根据变换器谐振腔内工作电流的大小和第一场效应管、第二
场效应的体二极管的反向恢复特性，自适应地实时调整同一桥臂的上下场效应管的死区时间，实现零电压开关，降低开关损耗，提高效率，同时避免出现“直通现象”。

附图说明

[0020] 图1为本发明驱动变压器隔离自适应驱动电路第一实施例的电路图，
[0021] 图2为本发明驱动变压器隔离自适应驱动电路第二实施例的电路图。
[0022] 本发明目的的实现、功能特点及优点将结合实施例，参照附图做进一步说明。

具体实施方式

[0023] 应当理解，此处所描述的具体实施例仅仅用以解释本发明，并不用于限定本发明。
[0024] 参照图1，图1为本发明驱动变压器隔离自适应驱动电路第一实施例的电路图。
[0025] 本实施例提供的一种驱动变压器隔离自适应驱动电路包括：电源V1、第一场效应管Q1和第二场效应管Q2，第一场效应管Q1的漏极与电源V1的正极连接，源极与第二场效应管Q2的漏极连接；第二场效应管Q2的源极与电源V1的负极连接；
[0026] 驱动变压器T1，设有第一绕组S1和第二绕组S2；
[0027] 第一单向正电压快速驱动电路10，一端与第一绕组S1连接，另一端与第一场效应管Q1的栅极连接；
[0028] 第二单向正电压快速驱动电路20，一端与第二绕组S2连接，另一端与第二场效应管Q2的栅极连接；
[0029] 第一自适应死区控制子电路30，用于根据第一场效应管的漏极与源极之间的电压输出相应电平至第一场效应管Q1的栅极；
[0030] 第二自适应死区控制子电路40，用于根据第二场效应管Q2的漏极与源极之间的电压输出相应电平至第二场效应管Q2的栅极。
[0031] 具体地，上述第一单向正电压快速驱动电路10包括第一电阻R1、第二电阻R2、第一二极管D1和第一三极管Q11，其中第一三极管Q11为PNP三极管，其基极与通过第一电阻R1分别与第一绕组S1和第二电阻R2的一端连接，集电极与第一绕组S1的另一端连接，发射极与第二二极管D1的阴极连接，且该第一二极管D1的阳极与第二电阻R2的另一端连接。
[0032] 上述第二单向正电压快速驱动电路20包括第三电阻R3、第四电阻R4、第二二极管D2和第二三极管Q12，其中第二三极管Q12为PNP三极管，其基极与通过第三电阻R3分别与第二绕组S2和第四电阻R4的一端连接，集电极与第二绕组S2的另一端连接，发射极与第二二极管D2的阴极连接，且该第二二极管D2的阳极与第四电阻R4的另一端连接；第一绕组S1与第一电阻R1连接的一端和第二绕组S2与第二三极管Q12集电极连接的一端为同名端。
[0033] 上述第一自适应死区控制子电路30包括第三场效应管Q3、第三二极管D3、第五电阻R5和第六电阻R6，其中第三场效应管Q3的漏极与第一场效应管Q1的栅极连接，源极与第一场效应管Q1的源极连接，栅极分别通过第五电阻R5与第一场效应管Q1的源极连接，通过第六电阻R6与第三二极管D3的阴极连接，该第三二极管D3的阳极与第一场效应管Q1的漏极连接。
[0034] 上述第二自适应死区控制电路包括第四场效应管 Q4，第四二极管 D4，第七电阻 R7 和第八电阻 R8。其中第四场效应管 Q4 的漏极与第二场效应管 Q2 的栅极连接，源极与第二场效应管 Q2 的源极连接，栅极分别通过第二电极 R7 与第二场效应管 Q2 的源极连接，通过第八电阻 R8 与第四二极管 D4 的阴极连接，该第四二极管 D4 的阳极与第二场效应管 Q2 的漏极连接。

[0035] 本实施例中，场效应管内部设有体二极管，在场效应管导通前，首先导通其体二极管。且场效应管关断时刻取决于体二极管的反向恢复特性及导通电流。上述第一场效应管 Q1 和第二场效应管 Q2 为位于同一桥臂的上下管。

[0036] 电路处于谐振工作状态中，当第一场效应管 Q1 及其体二极管关断，且第二场效应管 Q2 体二极管导通时，第二场效应管 Q2 的漏极与源极之间的电压 Vds 为 0V，从而使得第四场效应管 Q4 的栅极电压为 0V，该第四场效应管 Q4 截止，第二场效应管 Q2 可被第二绕组 S2 的高电平驱动信号经第四电阻 R4 和第二二极管 D2 驱动该第二场效应管 Q2 导通。当第一场效应管 Q1 体二极管导通，且第二场效应管 Q2 及其体二极管关断时，第二场效应管 Q2 的漏极与源极之间的电压 Vds 为 400V，从而使得第二场效应管 Q1 的栅极电压等于第七电阻 R7 两端的电压，即第四场效应管 Q4 的栅极电压为高电平，进而使得第四场效应管 Q4 导通，因此第二场效应管 Q2 的栅极被第四场效应管 Q4 经第四电阻 R4 和第二二极管 D2 致位至零，从而使得第二绕组 S2 的高电平信号交换，而不能驱动第二场效应管 Q2。即第二场效应管 Q2 的死区时间被延长，驱动信号脉宽被缩窄。

[0037] 电路处于谐振工作状态中，当第二场效应管 Q2 及其体二极管导通，且第一场效应管 Q1 体二极管导通时，第一场效应管 Q1 的漏极与源极之间的电压 Vds 为 0V，从而使得第三场效应管 Q3 的栅极电压为 0V，该第三场效应管 Q3 截止，第一场效应管 Q1 可被第二绕组 S1 的高电平驱动信号经第二电阻 R2 和第二二极管 D1 驱动该第一场效应管 Q1 导通。当第二场效应管 Q2 体二极管导通，且第一场效应管 Q1 及其体二极管关断时，第一场效应管 Q1 的漏极与源极之间的电压 Vds 为 400V，从而使得第三场效应管 Q3 的栅极电压等于第五电阻 R5 两端的电压，即第三场效应管 Q3 的栅极电压为高电平，进而使得第三场效应管 Q3 导通，因此第一场效应管 Q1 的栅极被第三场效应管 Q3 经第二电阻 R2 和第二二极管 D1 致位至零，从而使得第二绕组 S1 的高电平信号交换，而不能驱动第一场效应管 Q1。即第一场效应管 Q1 的死区时间被延长，驱动信号脉宽被缩窄。

[0038] 电路处于谐振工作状态中，当第一绕组 S1 的高电平 15V 驱动信号到达时，且第二场效应管 Q3 处于关断状态，驱动信号经第二电阻 R2 和第二二极管 D1 驱动第一场效应管 Q1 导通。当第一绕组 S1 由高电平 15V 降低至低电平 -15V 时，第一三极管 Q1 将导通，并通过第一电阻 R1 快速关断第一场效应管 Q1。应当说明的是，本实施例中可通过调节第一电阻 R2 的阻值大小，从而调节第一场效应管 Q1 导通的速度，通过调节第一电阻 R1 的阻值大小，从而调整第一场效应管 Q1 的关断速度。

[0039] 电路处于谐振工作状态中，当第二绕组 S2 的高电平 15V 驱动信号到达时，且第二场效应管 Q4 处于关断状态，驱动信号经第四电阻 R4 和第二二极管 D2 驱动第二场效应管 Q2 导通。当第二绕组 S2 由高电平 15V 降低至低电平 -15V 时，第二三极管 Q12 将导通，并通过第三电阻 R3 快速关断第二场效应管 Q2。应当说明的是，本实施例中可通过调节第四电阻 R4 的阻值大小，从而调整第二场效应管 Q2 导通的速度，通过调节第三电阻 R3 的阻值大小，从而调整第二场效应管 Q2
的关断速度。

[0040] 综上所述，本发明通过设置第单于正电压驱动电路，当第二单于正电压驱动电路时，当驱动变压器输出正电压驱动信号至相应的驱动电路时，相应的驱动电路输出正电压驱动信号；当驱动变压器输出负电压驱动信号时，相应的驱动电路输出为零，并将对应的驱动变压器绕组的电流限制在几个毫安以下，以降低功耗和驱动时延。第一自动适应电路实时检测第一场效应管的 VDs，并当第一场效应管的 VDs 低于其工作电压时，该第一自动适应电路电路不工作；当 VDs 等于工作电压时，该第一自动适应电路电路不工作。电路检测第一场效应管的体二极管的开通和反向恢复状态，并调整相应驱动信号的脉宽；同时设置第二自动适应电路电路实时检测第二场效应管的 VDs，并当第二场效应管的 VDs 低于其工作电压时，该第二自动适应电路电路不工作；当 VDs 等于工作电压时，该第二自动适应电路电路不工作。电路检测第二场效应管的体二极管的开通和反向恢复状态，并调整相应驱动信号的脉宽，从而实现自适应死区调整。因此本发明提供的驱动变压器隔离自适应驱动电路可减小驱动信号的失真和时延，根据变换器谐振腔内工作电流的大小和第一场效应管、第二场效应的体二极管的反向恢复特性，自适应地适时调整同一桥臂的上下场效应管的死区时间，实现零电压开关，降低开关损耗，提高效率，同时避免出现“直通现象”。

[0041] 应当说明的是，所述电源 V1 为 280～430V 的直流电源。

[0042] 进一步地，参照图 2，图 2 为本发明驱动变压器隔离自适应驱动电路电路视频的电路图。基于上述实施例，本实施例中，所述第三场效应管 Q3 的栅极与第二电阻 R5 之间还连接有第一二极管组 D11。该组第一二极管组 D11 包括输入端和输出端。该输入端与第五电阻 R5 和第六电阻 R6 连接的一端连接，输出端与第三场效应管 Q3 的栅极连接；第二二极管组 D11 由二极管或至少两个二极管依次串联形成。所述第二自适应死区控制子电路 30 还包括第三三极管 Q13，该第三三极管 Q13 为 NPN 三极管，其发射极与第三场效应管 Q3 的栅极连接，集电极与第三场效应管 Q3 的源极连接，基极与第五电阻 R5 和第六电阻 R6 连接的一端连接。

[0043] 上述第四场效应管 Q4 的栅极与第七电阻 R7 之间还连接有第二二极管组 D12，该第二二极管组 D12 包括输入端和输出端，该输入端与第七电阻 R7 和第八电阻 R8 连接的一端连接，输出端与第四场效应管 Q4 的栅极连接；第二二极管组 D12 由二极管或至少两个二极管依次串联形成。所述第二自适应死区控制子电路 40 还包括第四三极管 Q14，该第四三极管 Q14 为 PNP 三极管，其发射极与第四场效应管 Q4 的栅极连接，集电极与第四场效应管 Q4 的源极连接，基极与第七电阻 R7 和第八电阻 R8 连接的一端连接。

[0044] 本实施例中，以两个二极管组成第一二极管组 D11 为例作出详细说明。例如第一二极管组包括宽级二极管和后级二极管，前级二极管的阳极为上述输出端，后级二极管的阳极为上述输出端，且前级二极管的阳极与后级二极管的阳极连接。由于在第三场效应管 Q3 的栅极增加了第一二极管组 D11，可适当提高第三场效应管 Q3 的栅极驱动的门槛电压。例如第三场效应管 Q3 采用 2V 激励的场效应管，此时则需要第五电阻 R5 两端达到的 3.4V 以上的电压才能驱动第三场效应管 Q3 导通。因此本发明可适当调整第一二极管组 D11 中二极管的数量，选择不同驱动电压合适的场效应管，同时，可保证在开机和关机的过程中，相应场效应管不工作，从而提高了电路的实用性。可以理解的是，上述第二二极管组 D12 的原理与第一二极管组 D11 的原理一致在此不再赘述。
[0045] 以上仅为本发明的优选实施例，并非因此限制本发明的专利范围，凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换，或直接或间接运用在其他相关的技术领域，均同理包括在本发明的专利保护范围内。